Ratings

Coil

Item	Rated current (mA)	Coil resistance (Ω)	Coil inductance (H)		Must operate voltage	Must release voltage	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { permissible } \end{array}$	Power consumption (VA-W)
Rated voltage			Armature ON	$\begin{gathered} \text { Armature } \\ \text { OFF } \end{gathered}$	On the basis of rated voltage			
12 VAC	142							$\begin{array}{\|l} \text { Approx. } 1.7 \\ \text { to } 2.5 \end{array}$
24 VAC	71				75\% max.	15\% min.	110\%	
50 VAC	34							
100 to 120 VAC	17.0 to 20.4				75 V max.	18 V min.	132 V	
200 to 240 VAC	8.5 to 10.2				150 V max.	36 V min.	264 V	
6 VDC	317	18.9	0.09	0.21	75\% max.	15\% min.	110\%	Approx. 1.9
12 VDC	158	75	0.37	0.88				
24 VDC	79	303	1.42	3.54				
48 VDC	40	1220	6.1	15.3				
100 VDC	19	5260	21.3	60.0				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance.
2. The inductances shown above are reference values.
3. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum allowable coil voltage refers to the maximum value in a varying range of operating power voltage, measured at ambient temperature $23^{\circ} \mathrm{C}$.
5. The "to" (for example "100 to 120") represents the range of rated voltages.

Contacts

Contact Form load Item	$\begin{aligned} & \text { G7L-1A-T } \\ & \text { G7L-1A-B } \end{aligned}$		$\begin{aligned} & \text { G7L-2A-T } \square \\ & \text { G7L-2A-B } \end{aligned}$		$\begin{aligned} & \text { G7L-1A-P } \\ & \text { G7L-2A-P } \end{aligned}$	
	Resistive load	Inductive load $(\cos \phi=0.4)$	Resistive load	$\begin{aligned} & \text { Inductive } \\ & \text { load } \\ & (\cos \phi=0.4) \end{aligned}$	Resistive load	$\begin{gathered} \text { Inductive } \\ \text { load } \\ (\cos \phi=0.4) \end{gathered}$
Contact type	Double break					
Contact material	Ag alloy					
Rated load	30 A at 220 VAC	25 A at 220 VAC	25 A at	220 VAC	20 A a	220 VAC
Rated carry current	30 A		25 A		20 A	
Max. switching voltage	250 VAC					
Max. switching current	30 A		25 A		20 A	

Note. When using B-series (screw) products, since the screw diameter of the contact terminal is M4, be careful that the contact current should be 20 A or less according to JET standard (electrical appliance and material control law of Japan).

■Characteristics

Contact resistance *1		$50 \mathrm{~m} \Omega$ max.
Operate time *2		30 ms max.
Release time *3		30 ms max.
Max. operating frequency	Mechanical	1,800 operations/hr
	Rated load	1,800 operations/hr
Insulation resistance *3		1,000 M 2 min
Dielectric strength	Between coil and contacts	$\begin{aligned} & \text { 4,000 VAC min., } 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \text { min } \end{aligned}$
	Between contacts of same polarity	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for
	Between contacts of different polarity (DPST-NO model)	$1 \mathrm{~min}$
Impulse withstand voltage		10,000 V between coil and contact *4
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	$1,000,000$ operations min. (at 1,800 operations/hr)
	Electrical *5	100,000 operations min. (at 1,800 operations/hr under rated load)
Failure rate (P level) (reference value *6)		100 mA at 5 VDC
Weight		Approx. 90 g: Quick-connect terminal models Approx. 100 g : PCB terminal models Approx. 120 g : Screw terminal models

Note. The values given above are initial values.
*1. Measurement conditions: $5 \mathrm{VDC}, 1 \mathrm{~A}$, voltage drop method.
*2. Measurement conditions: Rated operating voltage applied not including contact bounce.
Ambient temperature: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: The insulation resistance was measured with a 500 -VDC megohmmeter at the same locations as the dielectric strength was measured. JEC-212 (1981) Standard Impulse Wave Type ($1.2 \times 50 \mu \mathrm{~s}$).
*5. Ambient temperature: $23^{\circ} \mathrm{C}$
*6. This value was measured at a switching frequency of 60 operations/min.

Ambient operating temperature	$-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity	5% to 85%

Engineering Data

G7L-1A-T (TJ) (TUB) (TUBJ)
G7L-1A-B (BJ) (BUB) (BUBJ)
Maximum Switching Power

Endurance

G7L-2A-T (TJ) (TUB) (TUBJ) G7L-2A-B (BJ) (BUB) (BUBJ) Maximum Switching Power

Endurance

G7L-1A-P
G7L-2A-P
Maximum Switching Power

Endurance

Ambient Temperature vs. Operate and Release Voltage
G7L-1A VAC (60 Hz)

G7L-1A VDC

Ambient Temperature vs.

Coil Temperature Rise

G7L-1A 120 VAC (50 Hz)

Shock Malfunction

G7L-1A VDC

G7L-2A-T (TUB) 100 to 120 VAC

Momentary Voltage Drop Test G7L-2A-T (TUB) 100 to 120 VAC Test Circuit

Voltage distribution of wave e which chattering does not occur.

Characteristic variation resulted from different mounting directions

G7L-2A-T (TUB) 100 to 120 VAC

Operate time

Release time

Operate voltage

Release voltage

(Note.)The mounting direction A^{\prime} deteriorates switching performance.

Actual Load Endurance Test

G7L-2A 100 to 200 VAC

Operate and Release voltages

$\mathrm{N}=5$

Contact resistance

Load conditions

- 1 ф 220 VAC

- Applied coil voltage: 100% of rated voltage

Operate and Release voltages
$\mathrm{N}=5$

Contact resistance

Load conditions

- $1 \phi 220$ VAC

- Applied coil voltage: 100% of rated voltage

