Ordering information

Example: 48 series, 35 mm rail (EN 50022) mount relay interface module, 2 CO (DPDT) 8 A contacts, 24 V sensitive DC coil, green LED + diode.

Technical data

Insulation		48.31/61/62	48.52	48.31/52/61/6	
Insulation according to EN 61810-1 ed. 2	V	250	250	400	
	kV	4	4	4	
		3	2	2	
	overvoltage category	III	III	III	
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$)	kV	$6(8 \mathrm{~mm})$			
Dielectric strength between open contacts	\checkmark AC	1,000			
Dielectric strength between adjacent contacts	\checkmark AC	2,000 (48.52); 2,500 (48.62)			
Conducted disturbance immunity					
Burst (5...50)ns, 5 kHz , on A1-A2		EN 61000-4-4		level $4(4 \mathrm{kV})$	
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)		EN 61000-4-5		level 3 (2 kV)	
Other data					
Bounce time: NO/NC	ms	2/5			
Vibration resistance ($5 \ldots .55$) Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	10/4 (for 1 pole)		15/3 (for 2 pole)	
Power lost to the environment	W	0.7			
	W	1.2 (48.31)	1.3 (48.52)	1.2 (48.61)	1.2 (48.62)
Wire strip length	mm	8			
	Nm	0.5			
Max. wire size		solid cable		stranded cable	
	mm^{2}	$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

Contact specification

F 48 - Electrical life (AC) v contact current
Types 48.31/61

F 48 - Electrical life (AC) v contact current
Types 48.52

Types $48.31 / 52 / 61$

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

$$
\text { H } 48 \text { - Maximum DC1 breaking capacity }
$$

F 48 - Electrical life (AC) v contact current
Type 48.62

\qquad

Abstract

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

