
C Series

DC-HVDC Converter

1 Watt

- +12VDC Input [11.5 to 16V]
- Voltage Regulated
- Output Voltages from 100V to 8000V
- 0 to 100% Programmable Output
- High Reliability 2.6MHrs MTBF
- <50ppm/°C Temperature Coefficient
- Shielded Case for Low EMI
- Low Ripple down to 0.002%
- 3 Year Warranty

These converters exhibit very low ripple, noise, and EMI/RFI by utilizing a quasi-sinewave oscillator, shielded transformer, excellent filtering techniques and an isolated steel enclosure featuring a separate grounding pin. A proprietary encapsulation process and a custom UL 94 V-0 listed, high-performance formula are used to achieve excellent high voltage and thermal properties. Temperature drift is typically less than 50ppm/°C.

Dimensions:

C01 - C20: 1.40 × 1.11× 0.50" (35.6 × 28.2 × 12.7mm) C25 - C40: 1.75 × 1.11 × 0.50" (44.4 × 28.2 × 12.7mm) C50 - C60: 2.10 × 1.11 × 0.50" (53.3 × 28.2 × 12.7mm) C80: 2.50 × 1.25 × 0.60" (63.50 × 31.75 × 15.24mm)

Key Applications:

- Photo Multiplier Tube
- Solid State Detectors
- Electrophoresis
- Piezo Devices
- Capacitor Charging
- EO Lenses

Input					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage Range	11.5	13.75	16	VDC	Works with nominal 12V or 15V supply
Input Current, Full Load			250	mA	
Input Current, No Load			100	mA	
Programming Inputs	0		5	VDC	Analog DC Voltage Controls Output 0 to 100%
Input Capacitance		440		μA	Low ESR

Output							
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions		
Output Voltage			8000	VDC	See Models and Ratings Table		
Output Current			10	mA	See Models and Ratings Table		
Output Programming	0		100	%	Output Voltage programmable via Analog DC Programming Voltage Input		
Setpoint Accuracy ⁽⁴⁾		±1		%	@ Max Vpgm, No Load		
Gain Adjust ⁽⁵⁾		±5		%	Potentiometer, See Signals & Controls		
Linearity: Output vs Program ⁽⁶⁾			±1	%	15 to 100% Output		
Minimum Load	No minimum load required						
Start Up Response			250	msec	At Max Vout, Full Load		
Line Regulation	0.05		1.0	%	100% Vpgm, Full Load, [Min to Max Input]		
Load Regulation	0.07		0.75	%	100% Vpgm, 13.75Vin, [NL to FL]		
Ripple and Noise	0.002		0.75	%	1MHz bandwidth, See Models and Ratings Table		
Temperature Coefficient		50		ppm/°C			
Stability			100	ppm/hr	After 30 minute warm up		

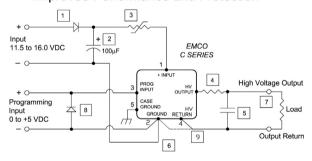
Notes

- 1. Maximum current is available at maximum output voltage.
- 2. Specifications after 1 hour warm-up, full load, 25°C, unless otherwise noted.
- Proper thermal management techniques are required to maintain safe case temperature.
- SET POINT ACCURACY refers to the ability of the unit to accurately deliver the programmed voltage.
- GAIN ADJUST refers to the ability to alter the gain of the circuit to allow for set-point accuracy error.
- 6. LINEARITY refers to how much the transfer function can deviate from a straight line in the absence of any set-point error.

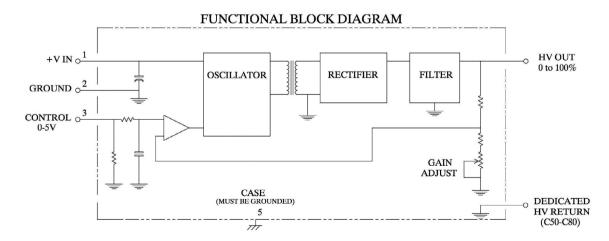
Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-10		+60	°C	Case Temperature
Storage Temperature	-20		+90	°C	
Humidity			95	%RH	Non-condensing
Cooling					Natural convection
Thermal Shock Limit			1	°C/10sec	Natural convection

Safety Approvals


Safety Agency	Safety Standard	Notes & Conditions
UL	IEC/UL/CSA/EN 62368	
CE	CE Directive, RoHs and LVD	Where applicable
RoHS	RoHS 2 and 3 Directive (2011/65/EU)	Where applicable

General


Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Isolation: Input to Output	N/A – Input ground is connected to output ground				
Construction	Case material is zinc plated steel. Solid vacuum encapsulation, UL 94 V-0 rated.				
Switching Frequency	50		350	kHz	
Mean Time Between Failure	2.6			MHrs	Per Bellcore TR 332

Application Notes

Improved Performance and Protection

- 1 Diode provides reverse polarity protection.
- 2 Capacitor reduces ripple.
- [3] Resettable fuse (Raychem P/N RXE020,025 or 030) provides indefinite short circuit protection. Selection depends on model used, load characteristics and operating temperature range.
- 4 Series resistance increases arc protection and reduces ripple (when used with an output capacitor).
- 5 Capacitor reduces ripple.
- [6] IMPORTANT: Keep Input, Programming and Output return paths separate to eliminate ground loop accuracy errors.
- 7 Conformal coating recommended on all exposed high voltage conductors.
- 8 Diode provides protection against negative programming voltage or negative transient spike.
- 9 Output circuit return to HV return (pin 4) on C50 C80. On C01-C40, output circuit return to ground (pin 2).

