

Current Transducer LT 505-S/SP5

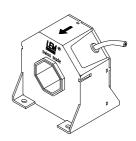
For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		720		Α
I _P	Primary current, measuring range		0 ± 1400		Α
\mathbf{R}_{M}	Measuring resistance		$\mathbf{R}_{_{\mathrm{M}\mathrm{min}}}$	$R_{\text{M ma}}$	x
	with ± 24 V	$@ \pm 720 A_{max}$	10	90	Ω
		@ ±1400 A _{max}	10	23	Ω
I _{SN}	Secondary nominal r.m.s. current		144		mΑ
K _N	Conversion ratio		1:500	0	
v c	Supply voltage (± 5 %)		± 24		V
	Current consumption		30 + I _s		mΑ
N ^q	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV
V _b	R.m.s. rated voltage 1), basic isolation		3500		V

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{e}_{L}}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error		± 0.5 < 0.1		% %
O	Offset current @ $\mathbf{I}{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C - 40°C + 80°C	+ 0.2	Max ± 0.4 ± 0.5 ± 1.0	
t _, di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz


General data

$T_{_{A}}$	Ambient operating temperature	- 40 + 80	°C
T _s	Ambient storage temperature	- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 80°C	52	Ω
m	Mass	600	g
	Standards	EN 50155 : 1995	

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

²⁾ With a di/dt of 100 A/µs.

$I_{PN} = 720 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

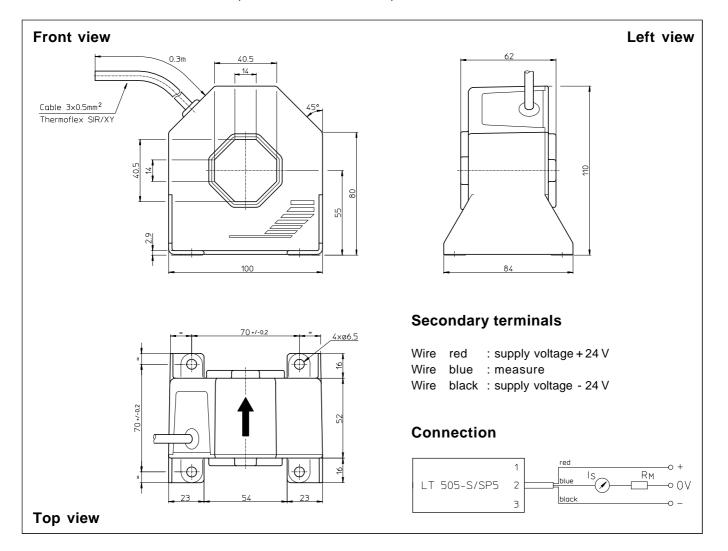
Special features

- I_{PN} = 720 A
- $I_p = 0 ... \pm 1400 A$
- $\dot{V}_{C} = \pm 24 (\pm 5 \%) \text{ V}$
- $T_{\Delta} = -40^{\circ}\text{C} ... + 80^{\circ}\text{C}$
- Connection to secondary circuit on cable-Thermoflex SIR/XY 3 x 0.5 mm²
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060405/3

page 1/2

Dimensions LT **505-S/SP5** (in mm. 1 mm = 0.0394 inch)

Remarks

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- · Connection of secondary
- \pm 0.5 mm
- 4 holes Ø 6.5 mm
- 40.5 x 40.5 mm

cable-Thermoflex SIR/XY 3 x 0.5 mm²

- \mathbf{I}_{S} is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.