

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

September 1983 Revised May 2005

MM74HC573 3-STATE Octal D-Type Latch

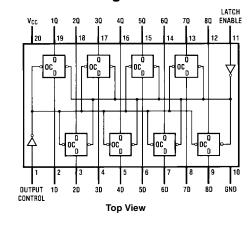
MM74HC573 3-STATE Octal D-Type Latch

General Description

The MM74HC573 high speed octal D-type latches utilize advanced silicon-gate P-well CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

When the LATCH ENABLE(LE) input is HIGH, the Q outputs will follow the D inputs. When the LATCH ENABLE goes LOW, data at the D inputs will be retained at the outputs until LATCH ENABLE returns HIGH again. When a HIGH logic level is applied to the OUTPUT CONTROL OC input, all outputs go to a HIGH impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The 74HC logic family is speed, function and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.


Features

- Typical propagation delay: 18 ns
- Wide operating voltage range: 2 to 6 volts
- Low input current: 1 μA maximum
- \blacksquare Low quiescent current: 80 μA maximum (74HC Series)
- Compatible with bus-oriented systems
 Output drive capability: 15 LS-TTL loads
- ieries)

Ordering Code:

Order Number	Package Number	Package Description					
MM74HC573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide					
MM74HC573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
MM74HC573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
MM74HC573N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Connection Diagram

Truth Table

Output Control	Latch Enable	Data	Output
L	Н	Н	Н
L	н	L	L
L	L	х	Q ₀
н	Х	Х	Z

H = HIGH Level L = LOW Level

 $Q_0 =$ Level of output before steady-state input conditions were established Z = High Impedance

X = Don't Care

(Note 2)

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V _{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T _A)	-40	+85	°C	
Input Rise or Fall Times				
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 6.0V$		400	ns	
Nete 4. Absolute Maximum Datings are these up	aluaa ha	wood wh	ich dom	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65 °C to 85 °C.

DC Electrical Characteristics (Note 4)

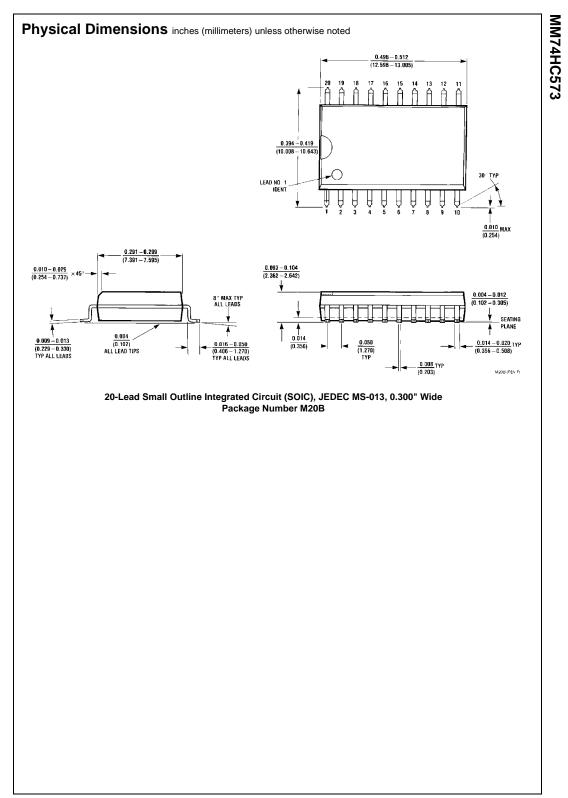
Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falameter			Тур	Guaranteed Limits			- 01113
VIH	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	V
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level Input		2.0V		0.5	0.5	0.5	V
	Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$\left I_{OUT}\right \leq 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
l _{oz}	Maximum 3-STATE Output	$V_{OUT} = V_{CC} \text{ or } GND$						
	Leakage Current	$OC = V_{IH}$	6.0V		±0.5	±5.0	±10	μA
I _{CC}	Maximum Quiescent Supply	$V_{IN} = V_{CC}$ or GND						
	Current	$I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μA
ΔI_{CC}	Quiescent Supply Current	$V_{CC} = 5.5V$	OE	1.0	1.5	1.8	2.0	mA
	per Input Pin	$V_{IN} = 2.4V$	LE	0.6	0.8	1.0	1.1	mA
		or 0.4V (Note 4)	DATA	0.4	0.5	0.6	0.7	mA

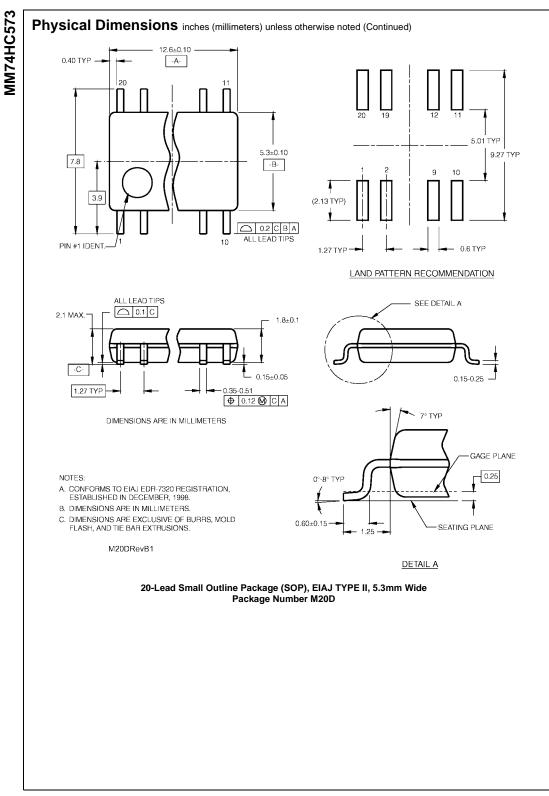
Note 4: For a power supply of 5V \pm 10% the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

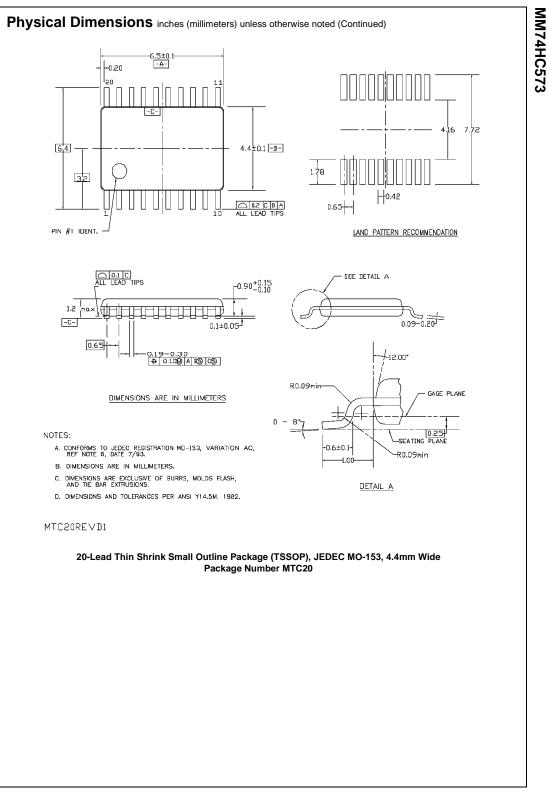
AC Electrical	Characteristics
----------------------	-----------------

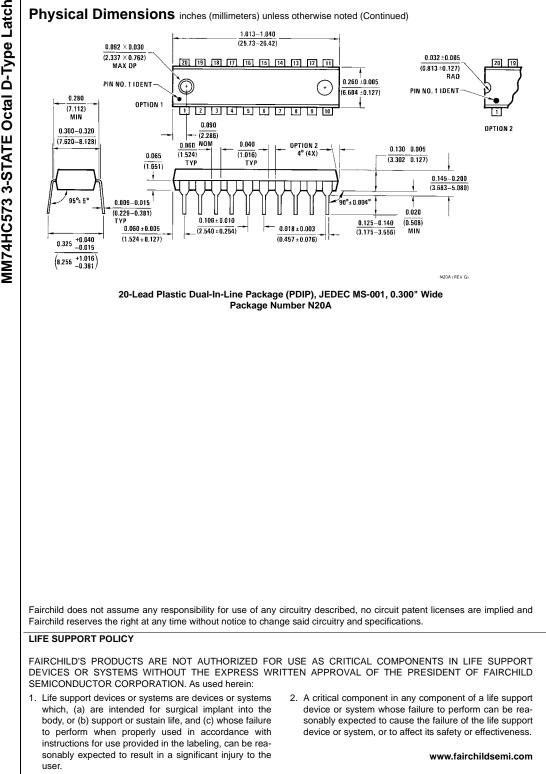
				Guaranteed	
Symbol	Parameter	Conditions	Тур	Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Data to Q	C _L = 45 pF	16	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, LE to Q	C _L = 45 pF	14	22	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \ k\Omega$	15	27	ns
		$C_L = 45 \text{ pF}$			
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \ k\Omega$	13	23	ns
		$C_L = 5 \text{ pF}$			
t _S	Minimum Set Up Time, Data to LE		10	15	ns
t _H	Minimum Hold Time, LE to Data		2	5	ns
tw	Minimum Pulse Width, LE or Data		10	16	ns

AC Electrical Characteristics


Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_{A} = -40$ to 85°C	$T_A = -55$ to $125^{\circ}C$	Units
Cynibol		Conditions	• 00	Тур		Guaranteed L	imits	onits
t _{PHL} , t _{PLH}	Maximum Propagation	$C_L = 50 \text{ pF}$	2.0V	45	110	138	165	ns
	Delay Data to Q	C _L = 150 pF	2.0V	58	150	188	225	ns
		$C_L = 50 \text{ pF}$	4.5V	17	22	28	33	ns
		$C_L = 150 \text{ pF}$	4.5V	21	30	38	40	ns
		$C_L = 50 \text{ pF}$	6.0V	15	19	24	29	ns
		$C_L = 150 \text{ pF}$	6.0V	19	26	33	39	ns
t _{PHL} , t _{PLH}	Maximum Propagation	$C_L = 50 \text{ pF}$	2.0V	46	115	138	165	ns
	Delay, LE to Q	C _L = 150 pF	2.0V	60	155	194	233	ns
		$C_L = 50 \text{ pF}$	4.5V	14	23	29	35	ns
		$C_L = 150 \text{ pF}$	4.5V	21	31	47	47	ns
		$C_L = 50 \text{ pF}$	6.0V	12	20	25	30	ns
		$C_L = 150 \text{ pF}$	6.0V	19	27	34	41	ns
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 \ k\Omega$						
	Time	$C_L = 50 \text{ pF}$	2.0V	55	140	175	210	ns
		C _L = 150 pF	2.0V	67	180	225	270	ns
		C _L = 50 pF	4.5V	15	28	35	42	ns
		C _L = 150 pF	4.5V	24	36	45	54	ns
		C _L = 50 pF	6.0V	14	24	30	36	ns
		C _L = 150 pF	6.0V	22	31	39	47	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 \ k\Omega$	2.0V	40	125	156	188	ns
	Time	$C_L = 50 \text{ pF}$	4.5V	13	25	31	38	ns
			6.0V	12	21	27	32	ns
t _S	Minimum Set Up Time		2.0V	30	75	95	110	ns
	Data to LE		4.5V	10	15	19	22	ns
			6.0V	9	13	16	19	ns
t _H	Minimum Hold Time		2.0V		25	31	38	ns
	LE to Data		4.5V		5	6	7	ns
			6.0V		4	5	6	ns
t _W	Minimum Pulse Width LE,		2.0V	30	80	100	120	ns
	or Data		4.5V	9	16	20	24	ns
			6.0V	8	14	18	20	ns
t _{TLH} , t _{THL}	Maximum Output Rise	C _L = 50 pF	2.0V	25	60	75	90	ns
	and Fall Time, Clock		4.5V	7	12	15	18	ns
			6.0V	6	10	13	15	ns
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$	l	5				pF
	(Note 5) (per latch)	OC = GND		52				pF
CIN	Maximum Input		t	5	10	10	10	pF
- 114	Capacitance							


MM74HC573


AC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
-,				Тур		Guaranteed L	imits		
C _{OUT}	Maximum Output			15	20	20	20	pF	
	Capacitance								

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

MM74HC573WMX MM74HC573MTC MM74HC573SJ MM74HC573WM MM74HC573SJX MM74HC573MTCX