

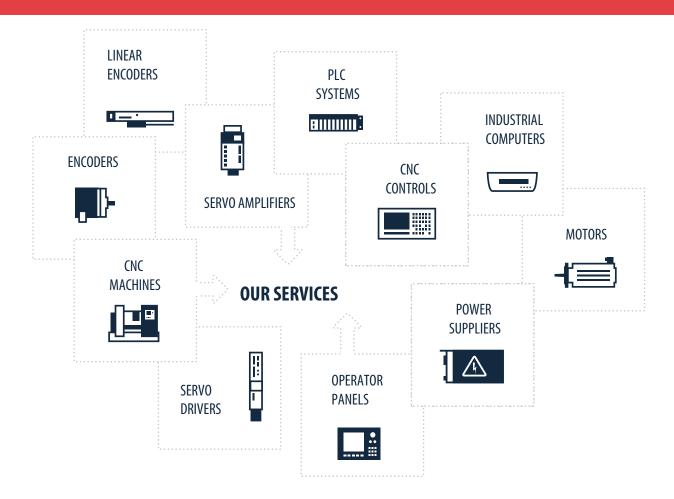
OTHER SYMBOLS:

RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA

Jana Dlugosza 2-6 Street 51-162 Wrocław Poland

■ biuro@rgbelektronika.pl

L +48 71 325 15 05



www.rgbautomatyka.pl

YOUR PARTNER IN MAINTENANCE

Repair this product with RGB ELEKTRONIKA

ORDER A DIAGNOSIS

At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit. Our trained employees, equipped with a wide variety of tools and having several testing stands at their disposal, are a guarantee of the highest quality service.

IGBT-Module IGBT-Modules

BSM50GX120DN2

Elektrische Eigenschaften / Electrical properties

Höchstzulässige Werte / Maximum rated values

Periodische Rückw. Spitzensperrspannung repetitive peak reverse voltage		V_{RRM}	1600	٧
Durchlaßstrom Grenzeffektivwert RMS forward current per chip		I _{FRMSM}	40	А
Dauergleichstrom DC forward current	T _C = 80°C	I _d	50	А
Stoßstrom Grenzwert	t _P = 10 ms, T _{vJ} = 25°C	I _{FSM}	500	Α
surge forward current	t _P = 10 ms, T _{vj} = 150°C		400	Α
Grenzlastintegral	t _P = 10 ms, T _{vJ} = 25°C	l²t	1250	A ² s
² t - value	t _P = 10 ms, T _{vj} = 150°C		800	A²s
Transistor Wechselrichter/ Transistor Inve	erter			
Kollektor-Emitter-Sperrspannung collector-emitter voltage		V _{CES}	1200	V
Kollektor-Dauergleichstrom DC-collector current	Tc = 80 °C T _c = 25 °C	I _{C,nom} .	50 80	A A
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t _p = 1 ms, T _c = 80 °C		100	А
Gesamt-Verlustleistung total power dissipation	T _c = 25°C	P _{tot}	360	w
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		V _{GES}	+/- 20V	٧
Diode Wechselrichter/ Diode Inverter				
Dauergleichstrom DC forward current	Tc = 80 °C	l _F	50	А
Periodischer Spitzenstrom repetitive peak forw. current	t _P = 1 ms	I _{FRM}	100	А
Grenzlastintegral ² t - value	$V_R = 0V$, $t_p = 10$ ms, $T_{v_j} = 125$ °C	l²t	1.200	A²s
Transistor Brems-Chopper/ Transistor Bra	ke-Chopper			
Kollektor-Emitter-Sperrspannung collector-emitter voltage		V _{CES}	1200	٧
Kollektor-Dauergleichstrom	T _c = 80 °C	I _{C,nom.}	25	Α
DC-collector current	T _c = 25 °C	l _c	45	Α
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t _P = 1 ms, T _C = 80°C	I _{CRM}	50	А
Gesamt-Verlustleistung total power dissipation	T _c = 25°C	P _{tot}	230	W
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		$V_{\sf GES}$	+/- 20V	٧
Diode Brems-Chopper/ Diode Brake-Chop	per			
Dauergleichstrom DC forward current	Tc = 80 °C	l _F	15	А
Periodischer Spitzenstrom repetitive peak forw. current	t _p = 1 ms	I _{FRM}	30	А
	T			
prepared by: Andreas Schulz	date of publication:12.06.2003			

$\begin{array}{ll} \textit{Technische Information / Technical Information} \\ \textit{IGBT-Module} \\ \textit{IGBT-Modules} \\ \end{array} \qquad \qquad BSM50GX120DN2 \\ \end{array}$

eupec

小

Modul Isola	tion/ Mo	dule Iso	dation

Isolations-Prüfspannung	RMS, f = 50 Hz, t = 1 min.	. v.	2.5	kV
insulation test voltage	NTC connected to Baseplate	V _{ISOL}	2,0	N.V

Elektrische Eigenschaften / Electrical properties

Charakteristische Werte / Characteristic values

Diode Gleichrichter/ Diode Rectifier				min.	typ.	max.	
Durchlaßspannung forward voltage	T _{vj} = 150°C, I _F =	50 A	V _F	-	1,05	-	٧
Schleusenspannung threshold voltage	T _{vj} = 150°C		V _(TO)	-	-	8,0	٧
Ersatzwiderstand slope resistance	T _{vj} = 150°C		r⊤	-	-	6,5	mΩ
Sperrstrom reverse current	T _{vj} = 150°C, V _R =	1600 V	I _R	-	3	-	mA
Modul Leitungswiderstand, Anschlüsse-Chip lead resistance, terminals-chip	T _C = 25°C		R _{AA'+CC'}	-	4	-	mΩ
Transistor Wechselrichter/ Transistor Inve	rter			min.	typ.	max.	
Kollektor-Emitter Sättigungsspannung	V _{GE} = 15V, T _{VI} = 25°C, I _C =	50 A	V _{CE sat}	-	2,2	2,55	V
collector-emitter saturation voltage	V _{GE} = 15V, T _{Vj} = 125°C, I _C =	50 A		-	2,5	-	ν
Gate-Schwellenspannung gate threshold voltage	V _{CE} = V _{GE} , T _{vI} = 25°C, I _C =	2 mA	V _{GE(TO)}	4,5	5,5	6,5	V
Eingangskapazität input capacitance	f = 1MHz, T _{vl} = 25°C V _{CE} = 25 V, V _{GE} = 0 V		C _{les}	-	3,3	-	nF
Kollektor-Emitter Reststrom	$V_{GE} = 0V$, $T_{vj} = 25$ °C, $V_{CE} =$	1200 V	ICES	-	3,0	500	μΑ
collector-emitter cut-off current	V _{GE} = 0V, T _{VI} = 125°C, V _{CE} =	1200 V	L	-	4,0	-	mΑ
Gate-Emitter Reststrom gate-emitter leakage current	V _{CE} = 0V, V _{GE} =20V, T _{vj} =25°C		IGES	-	-	300	nΑ
Einschaltverzögerungszeit (ind. Last)	I _C = I _{Nenn} , V _{CC} =	600 V					
turn on delay time (inductive load)	V _{GE} = ±15V, T _{vj} = 25°C, R _G =	15 Ohm	t _{d,an}	-	65	-	ns
	V _{GE} = ±15V, T _{VJ} = 125°C, R _G =	15 Ohm		-	60	-	ns
Anstiegszeit (induktive Last)	I _C = I _{Nenn} , V _{CC} =	600 V					
rise time (inductive load)	V _{GE} = ±15V, T _{vj} = 25°C, R _G =	15 Ohm	t _r	-	45	-	ns
	V _{GE} = ±15V, T _{vj} = 125°C, R _G =	15 Ohm		-	45	-	ns
Abschaltverzögerungszeit (ind. Last)	I _C = I _{Nenn} , V _{CC} =	600 V					
turn off delay time (inductive load)	V _{GE} = ±15V, T _{vj} = 25°C, R _G =	15 Ohm	t _{d,off}	-	380	-	ns
	V _{GE} = ±15V, T _{vj} = 125°C, R _G =		ļ		400		ns
Fallzeit (induktive Last)	I _C = I _{Nenn} , V _{CC} =						
fall time (inductive load)	V _{GE} = ±15V, T _{VI} = 25°C, R _G =		t _f	-	10	-	ns
	V _{GE} = ±15V, T _{vj} = 125°C, R _G =			-	30	-	ns
Einschaltverlustenergie pro Puls	I _C = I _{Nenn} , V _{CC} =						
turn-on energy loss per pulse	V _{GE} = ±15V, T _{vj} = 125°C, R _G =	15 Ohm	E _{on}	-	6,5	-	mWs
	L _S =						
Abschaltverlustenergie pro Puls	I _C = I _{Nenn} , V _{CC} =	600 V	_				
turn-off energy loss per pulse	V _{GE} = ±15V, T _{vl} = 125°C, R _G =	15 Ohm	Eoff	-	6	-	mWs
	 	50 nH			ļ	ļ	
Kurzschlußverhalten	t _P ≤ 10µs, V _{GE} ≤ 15V, R _G =	15 Ohm					
SC Data	T _v ≤125°C, V _{cc} =	720 V	Isc	-	300	-	Α
	dl/dt =	4000 A/μs					

$\begin{array}{ll} \text{Technische Information / Technical Information} \\ \text{IGBT-Module} \\ \text{IGBT-Modules} \\ \end{array} \qquad \begin{array}{ll} \text{BSM50GX120DN2} \\ \end{array}$

eupec

(字)

Elektrische Eigenschaften / Electrical properties

Charakteristische Werte / Characteristic values

				min.	typ.	max.	
Modulinduktivität stray inductance module			L _{eCE}	-	-	100	nΗ
Modul Leitungswiderstand, Anschlüsse-Chip lead resistance, terminals-chip	T _C = 25°C		R _{CC'+EE'}	-	7	-	mΩ
Diode Wechselrichter/ Diode Inverter			min.	typ.	max.		
Durchlaßspannung	V _{GE} = 0V, T _{VJ} = 25°C, I _F =	50 A	V _F	-	1,75	2,2	V
forward voltage	V _{GE} = 0V, T _{vJ} = 125°C, I _F =	50 A		-	1,7	-	V
Rückstromspitze	I _F =I _{Nem} - di _F /dt =	1600A/µs					
peak reverse recovery current	V _{GE} = -10V, T _{vl} = 25°C, V _R =	600 V	IRM	- 1	75	-	А
	V _{GE} = -10V, T _{vI} = 125°C, V _R =	600 V		_	85	_	А
Sperrverzögerungsladung	F= Nemp - dip/dt =						
recovered charge	V _{GE} = -10V, T _M = 25°C, V _R =	600 V	Q,	_	5.5	_	uAs
	V _{GE} = -10V, T _{VI} = 125°C, V _R =	600 V	~	_	12	_	μAs
Abschaltenergie pro Puls			\vdash		12		μna
reverse recovery energy	V _{GE} = -10V, T _{vI} = 25°C, V _R =	600 V	ERO	_	1.6	_	mWs
reverse recovery energy	- ·		□ RQ	-	4		
	V _{GE} = -10V, T _{vj} = 125°C, V _R =	600 V	L	<u>-</u> i			mW
Transistor Brems-Chopper/ Transistor Bra				min.	typ.	max.	
Kollektor-Emitter Sättigungsspannung	$V_{GE} = 15V$, $T_{VJ} = 25^{\circ}C$, $I_{C} =$	25,0 A	V _{CE sat}	-	2,2	2,55	V
collector-emitter saturation voltage	V _{GE} = 15V, T _{vj} = 125°C, I _C =	25,0 A	L	-	2,5		V
Gate-Schwellenspannung gate threshold voltage	V _{CE} = V _{GE} , T _{vj} = 25°C, I _C =	1mA	V _{GE(TO)}	4,5	5,5	6,5	٧
Eingangskapazität	f = 1MHz, T _{vl} = 25°C		Cies				_
input capacitance	V _{CE} = 25 V, V _{GE} = 0 V	~		-	1,5	-	nF
Kollektor-Emitter Reststrom	V _{GE} = 0V, T _{vl} = 25°C, V _{CE} =	1200 V	I _{CES}	-	1,5	500	μΑ
collector-emitter cut-off current	V _{GE} = 0V, T _{VJ} = 125°C, V _{CE} =	1200 V		-	2,0	-	mA
Gate-Emitter Reststrom gate-emitter leakage current	V _{CE} = 0V, V _{GE} = 20V, T _{VJ} = 25°C		I _{GES}	-	-	300	nA
Diode Brems-Chopper/ Diode Brake-Chop	per			min.	typ.	max.	
Durchlaßspannung	T _{ul} = 25°C,	25.0 A	V _F		2,1	2.4	V
forward voltage	T _{vl} = 125°C, I _F =	25.0 A	''	_	2		v
NTC-Widerstand/ NTC-Thermistor	1.4 .20 0,	20,071		min.	typ.	max.	
Nennwiderstand	T - 0500						
rated resistance	T _C = 25°C		R ₂₅	-	5	-	kΩ
Abweichung von R ₁₀₀							
deviation of R ₁₀₀	T _C = 100°C, R ₁₀₀ = 493 Ω		ΔR/R	-5		5	96
Verlustleistung power dissipation	T _C = 25°C		P ₂₅			20	mW
B-Wert B-value	R ₂ = R ₁ exp [B(1/T ₂ - 1/T ₁)]		B _{25/50}		3375		К

eupec

IGBT-Module IGBT-Modules BSM50GX120DN2

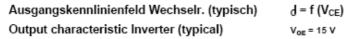
Thermische Eigenschaften / Thermal properties

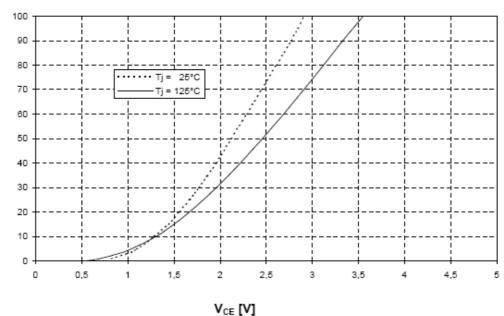
				min.	typ.	max.	
Innerer Wärmewiderstand	Gleichr. Diode/ Rectif. Diode		R _{thJC}	-	-	0,65	K/W
thermal resistance, junction to case	Trans. Wechsr./ Trans. Inverter			-	-	0,35	K/W
	Diode Wechsr./ Diode Inverter			-	-	0,55	K/W
	Trans. Bremse/ Trans. Brake			-	-	0,55	K/W
	Diode Bremse/ Diode Brake			-	-	1,2	K/W
Übergangs-Wärmewiderstand	Gleichr. Diode/ Rectif. Diode	λ _{Fatte} =1W/m°K	R _{thCK}	-	0,04	-	K/W
thermal resistance, case to heatsink	Trans. Wechsr./ Trans. Inverter	λ _{greate} =1W/m°K		-	0,02	-	K/W
	Diode Wechsr./ Diode Inverter			-	0,04	-	K/W
Höchstzulässige Sperrschichttemperatur maximum junction temperature			T _{vj}	-	-	150	°C
Betriebstemperatur operation temperature			Тор	-40	-	125	°C
Lagertemperatur storage temperature			T _{stg}	-40	-	125	°C

Mechanische Eigenschaften / Mechanical properties

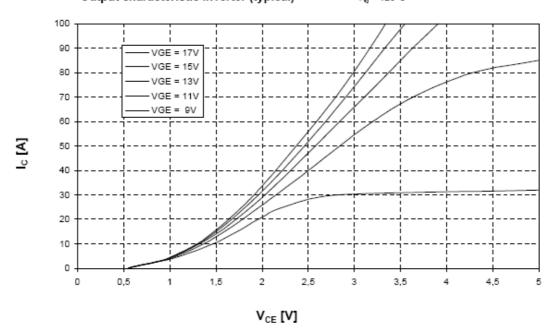
Innere Isolation internal insulation		Al ₂ O ₃	
CTI comperative tracking index		225	
Anzugsdrehmoment f. mech. Befestigung	M	3	Nm
mounting torque		±10%	
Gewicht	G	300	g
weight		300	8

Technische Information / Technical Information IGBT-Module

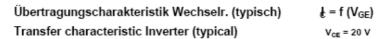

eupec 令

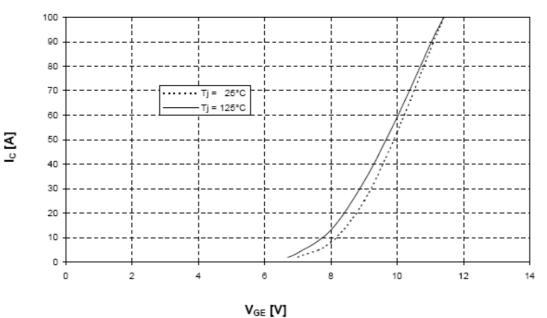

IGBT-Modules

l_c[A]

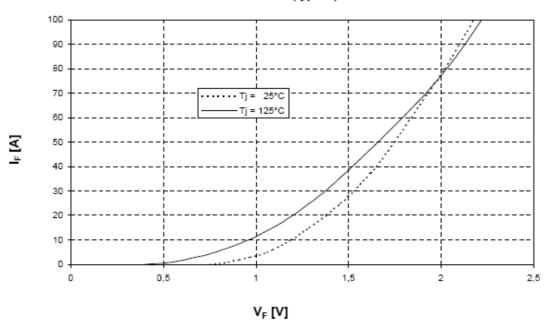

BSM50GX120DN2

Ausgangskennlinienfeld Wechselr. (typisch) $d = f(V_{CE})$ Output characteristic Inverter (typical) T_{vj} = 125°C

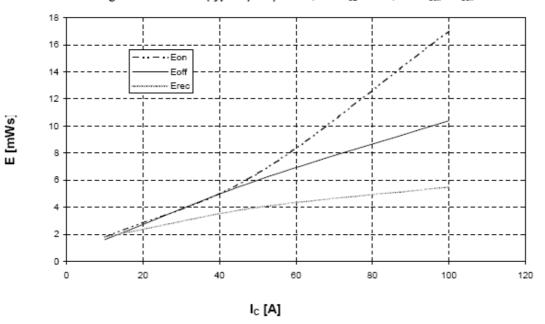



eupec

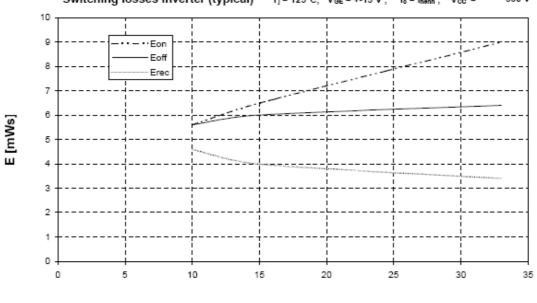
IGBT-Module IGBT-Modules


BSM50GX120DN2

Durchlaßkennlinie der Freilaufdiode Wechselr. (typisch) $del = f(V_F)$ Forward characteristic of FWD Inverter (typical)

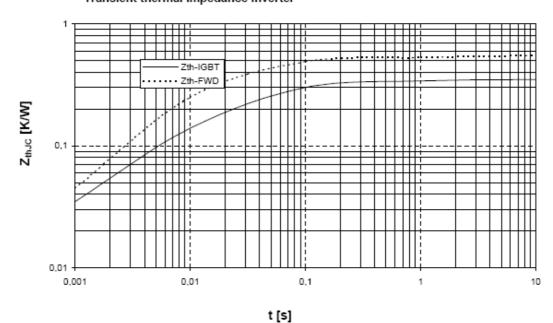

eupec

IGBT-Module IGBT-Modules


BSM50GX120DN2

Schaltverluste Wechselr. (typisch) $E_{on} = f(I_C)$, $E_{off} = f(I_C)$, $E_{rec} = f(I_C)$ $v_{cc} = 600 \text{ V}$ Switching losses Inverter (typical) $T_J = 125^{\circ}C$, $V_{GE} = \pm 15 \text{ V}$, $R_{Gon} = R_{Goff} = 15 \text{ Ohm}$

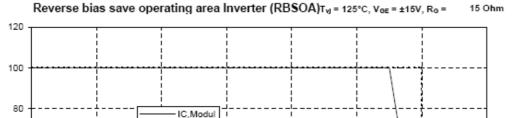
Schaltverluste Wechselr. (typisch) Switching losses Inverter (typical) $E_{en} = f(R_G), E_{off} = f(R_G), E_{rec} = f(R_G)$ $T_J = 125^{\circ}C, V_{GE} = +-15 V, I_o = I_{nenn}, V_{CC} = 6$

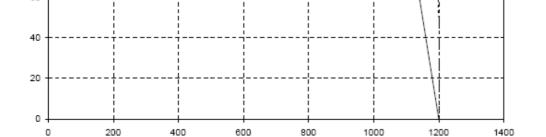

 $R_G[\Omega]$

eupec

IGBT-Module IGBT-Modules BSM50GX120DN2

₩

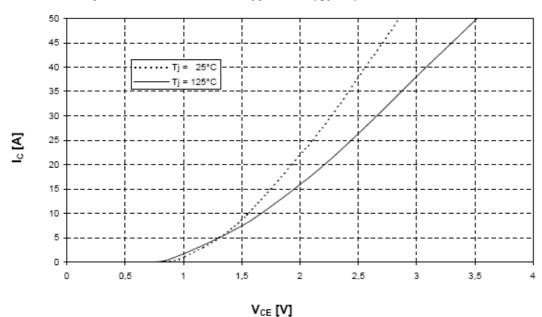

Transienter Wärmewiderstand Wechselr. Transient thermal impedance Inverter $Z_{thJC} = f(t)$


Sicherer Arbeitsbereich Wechselr. (RBSOA)

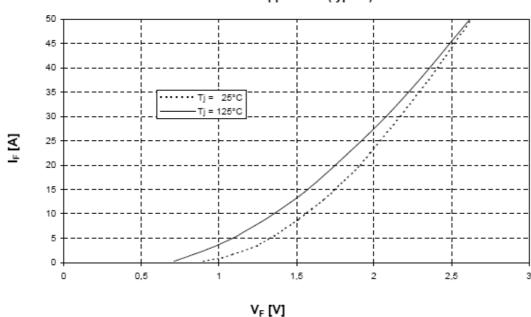
· · · · IC,Chip

 $\mathbf{k} = \mathbf{f}(V_{CE})$

V_{CE} [V]

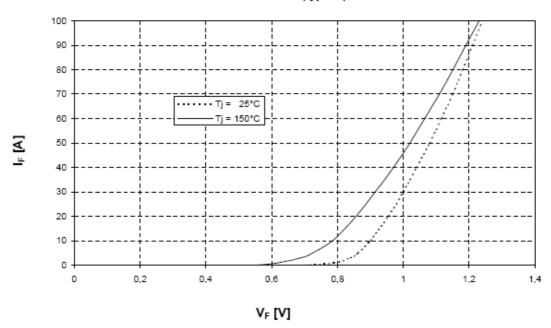

eupec

IGBT-Module IGBT-Modules

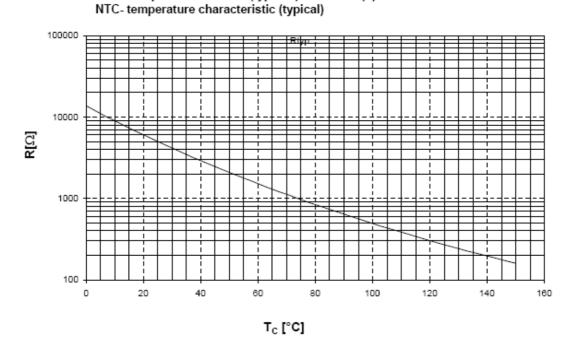

BSM50GX120DN2

炒

Ausgangskennlinienfeld Brems-Chopper-IGBT (typisch) $d = f(V_{CE})$ Output characteristic brake-chopper-IGBT (typical) $v_{oe} = 15 \text{ V}$


Durchlaßkennlinie der Brems-Chopper-Diode (typisch) \sharp = f (V_F) Forward characteristic of brake-chopper-FWD (typical)

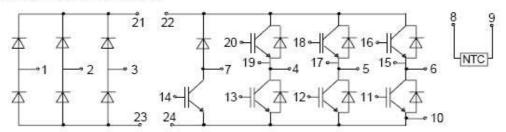
IGBT-Modules


BSM50GX120DN2

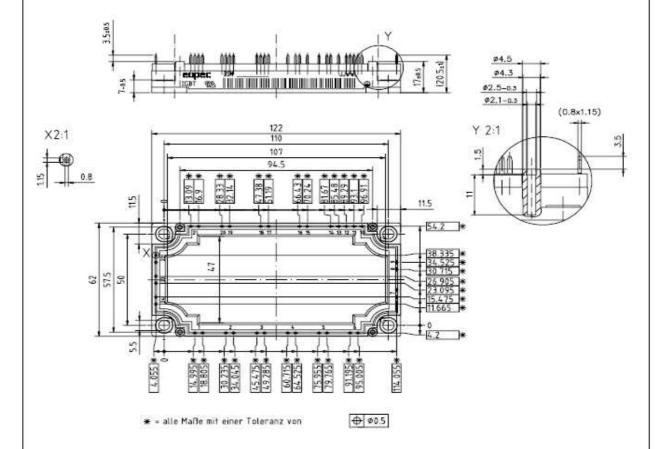
Durchlaßkennlinie der Gleichrichterdiode (typisch) Forward characteristic of Rectifier Diode (typical)

NTC-Temperaturkennlinie (typisch)

R = f(T)


IGBT-Module

BSM50GX120DN2



ぱ

Schaltplan/ Circuit diagram

Gehäuseabmessungen/ Package outlines

Mit dieser technischen Information werden Halbleiterbauelemente spezifiziert, jedoch keine Eigenschaften zugesichert. Sie gilt in Verbindung mit den zugehörigen Technischen Erläuterungen.

This technical information specifies semiconductor devices but promises no characteristics. It is valid in combination with the belonging technical notes.