onlinecomponents.com

Circuit Protectors

Circuit Protector Selection Guide

Note: See the following pages for further information about the certified products.

Note: See the following pages for further information about the certified products.

* Protectors indicated with (RE) are for the switch type.

Also, the series trip and relay trip types of NRL series are excluded from

Circuit Protector Selection Guide

*1: Reset time is the value at the reference ambient temperature of $25^{\circ} \mathrm{C}$.
*2: TÜV certification: for 8A, 10A and 15A only.

Common Description of Circuit Protectors

Internal Circuit Overview and Application Examples

Series Trip
This is the most common circuit protector, providing excellent overload and short circuit protection. It can also be used as ON/OFF switch, except NRF and NRP series.

Relay Trip/Voltage Trip

The internal structure is identical to the current tripping protector, but the protective element has no time-delay function and the load circuit is cut off by the instantaneous tripping of the protector. Suitable for purposes, such as cutting off the power supply by using the alarm signal of the secondary circuit of the transformer.

Series Trip with Auxiliary Contacts
As the auxiliary contact operation is interlocked with the ON/OFF of the main contactor, circuit protector operation can be monitored by a lamp. The auxiliary contact can also be used to control auxiliary circuits

Series Trip with Alarm Contacts
The alarm contact is electrically independent of the ON/OFF of the main contactor, but actuates when the protective element operates. Therefore, the alarm contact can be used with a lamp or buzzer to indicate trip operation and control alarm circuits. After the alarm contact has tripped, turn the lever ON to set the alarm contact

Dual-coil Type

The dual coil type circuit protector is provided with both a series trip (current trip) and relay trip (voltage trip). In the following example circuit, Coil A (current coil) performs overload and short circuit protection, while Coil B (voltage coil) serves to shut down the circuit when the alarm contact detects an abnormal condition.

-Applications by Time Delay Curve

Time Delay Curves	Applications
Curve AD Curve AA	The most common curves used for circuit breakers.
Curve MD Curve MA	Suited for motor loads that draw high inrush currents lasting for a rather long period of time.
With inertia delay (Inertia delay mechanism)	Suited for transformer and lamp loads that draw steep inrush currents.

NH1 series Circuit Protectors

Wide Range of Applications frominefoinanoteftemation and Consumer Use to Factory Automation.

- Compact, lightweight, and high-performance circuit protectors.
- Rocker type snaps into a panel.
- Rated voltage: 250 V AC and 65V DC
- 35mm-wide DIN rail mounting (NH1V)
- Available with dual-coil type
- Available with auxiliary contact or alarm contacts.
- Available with inertia delay
- Hydraulic-magnetic tripping system
- Safe trip-free mechanism
- Available in tab terminal type and screw-terminal type.

This product is recognized by Underwriters Laboratories under UL1077 as a "Supplementary Protector."

Applicable Standards	Certification Mark	Certification Organization / File No.
UL1077		
CSA C22.2 No. 235 (Note 1)	C	US

- Rocker Type NH1Y

- Lever Type NH1S

For details, see the list of standard certified products in the back of this catalog.
Note 1: Series trip, relay trip, dual coil (for AC)
Note 2: Series trip
Specifications

Circuit

 Protectors
Power

Supplies

PLCs \& SmartRelay

Operator Interfaces

Sensors

Control
Stations

Explosion Protection

References

NH1 Series Circuit Protectors

- Rocker Color, Rocker Indication
(NH1Y/NH1L)

Rocker Color (Code)	Black (blank) Red (R), Green (G), White (W)	
	\bullet	ON OFF
Rocker Indication (Code)	(blank)	(A)

- Operating Voltage of Indicator

NH1L)			
			Code
Neon (Red)	125 V AC, $50 / 60 \mathrm{~Hz}$ (operating voltage: 100 to 125V AC)		1
LED (Red) [Note]	For AC/DC (operating voltage: within $+10 \%$ of the rated voltage)	6 V	3
		12V	4
		24 V	5
		48 V	6

Note: Both types of indicators contain a currentlimiting resistor.

- Lever Color (NH1S, NH1V):

Black
[Type No. Example]

Type No. Development

- Operation of Auxiliary Contacts

Since auxiliary contact operations are interlocked with ON/OFF positions of main terminal, operating status of the circuit protector can be monitored using a lamp. Auxiliary contacts also serve as a control of auxiliary circuits.

Operator Position	NO Contact	NC Contact
ON	Closed	Open
Tripped	Open	Closed
OFF	Open	Closed

- Operation of Alarm Contacts

Alarm contacts are not interlocked with main contacts and operate only when an overcurrent occurs.

Operator Position	NO Contact	NC Contact
ON	Open	Closed
Tripped	Closed	Open
OFF	Open	Closed

Not possible to designate with voltage
trip type trip type.

3-pole type is available with NH1S Series Trip, NH1S Relay Trip, and NH1V.
Note: Dual coil type is available with
1-pole and
2-pole types
only.
 NH1V.

Dual-coil type: Blank "w/Alarm Contact" type is available with NH 1 S and

8

$10 \quad$
\square

To be designated for voltage trip and dual coil types.

NH1S (Lever Type) Type No.

ontinnecomponents.com-

- Specify a rated current, time delay curve, and rated voltage in place of 78 8. $8 . \quad$ Package Quantity: 1

Relays \&

NH1Y (Rocker Type) Type No.

ontinecomponents.com

- Specify a rated current, time delay curve, rated voltage, rocker indication, and rocker color in place of 7891112.

Package Quantity: 1

Internal Circuit	No. of Poles	Terminal Style	Inertia Delay	Auxiliary Contact Alarm Contact	Type No. (Ordering Type No.)	Designation Code				
						7 Rated Current	8 Time Delay Curve	9 Rated Voltage	11 Rocker Indication	(12) Rocker Color
Series Trip Current Trip	1	Tab Terminal	Without	Without	NH1Y-1100-7781112	0.5 A0.75 A1 A2 A3 A5 A7.5 A10 A15 A20A25A30A	AA BA MA AD MD		Blank,$\mathrm{A}, \mathrm{C}, \mathrm{D}$	Blank, R, G, W
				w/Auxiliary Contact	NH1Y-1111-781112					
				w/Alarm Contact	-					
			With	Without	NH1Y-1100F-781112					
				w/Auxiliary Contact	NH1Y-1111F- 78112					
				w/Alarm Contact	-					
		Screw Terminal	Without	Without	NH1Y-1100S-781112					
				w/Auxiliary Contact	NH1Y-1111S-781112					
				w/Alarm Contact	-					
			With	Without	NH1Y-1100FS-7811112					
				w/Auxiliary Contact	NH1Y-1111FS- 781112					
				w/Alarm Contact	-					
Series Trip Current Trip	2	Tab Terminal	Without	Without	NH1Y-2100-7811 12					
				w/Auxiliary Contact	NH1Y-2111-781112					
				w/Alarm Contact	-					
			With	Without	NH1Y-2100F-78116					
				w/Auxiliary Contact	NH1Y-2111F-7 7112					
				w/Alarm Contact	-					
		Screw Terminal	Without	Without	NH1Y-2100S-78116					
				w/Auxiliary Contact	NH1Y-2111S- 781112					
				w/Alarm Contact	-					
			With	Without	NH1Y-2100FS-781112					
				w/Auxiliary Contact	NH1Y-2111FS-7811 12					
				w/Alarm Contact	-					
Relay Trip Voltage Trip	1	Tab Terminal	Without	Without	NH1Y-1500-9 1112	-	-	$\begin{aligned} & 100 \mathrm{~V} \text { AC } \\ & 24 \mathrm{~V} \text { DC } \end{aligned}$	Blank, A, C, D	Blank, R, G, W
	2			Without	NH1Y-2500-91112					
	-			-	-					

NH1L (Rocker Type) Type No.

onlintecomponents.com

- Specify a rated current, time delay curve, reated vooffage, indicator, rocker indicator, and rocker color in place of 7 8 9 101112.

Package Quantity: 1

NH1V (Lever Type) Type No.

> -ontinnecomponents.com

- Specify a rated current, time delay curve, and rated voltage in place of 780 . Package Quantity: 1

Internal Circuits and Terminal Arrangements

Note: The 2-pole type with auxiliary or alarm contact has the contacts on the left side as viewed from the front. The 3-pole type with auxiliary and alarm contacts has the contacts on the center.
See the dimensional drawings for the terminal arrangement.

- Wiring Example
- Lead Wires for Neon and LED Indicators:

Lead Wire	Color	Neon	LED
Lead wire A	Red	AC	Positive
Lead wire B	Black	AC	Negative

-NH1V

Type	Series Trip (Current Trip)	Series Trip (w/auxiliary contact)	Series Trip (w/alarm contact)	Relay Trip (Voltage Trip)
NH1V				
Appearance				

Note: See the dimensional drawings for the terminal arrangement.

NH1 Series Circuit Protectors
Overcurrent - Time Delay Characteristics (sec at $25^{\circ} \mathrm{C}$) [at vertical mounting]

For	Time Delay Curve	onlinecomponents.c\%ament of Rated Current							
		100\%	125\%	1980\%	200\%	400\%	600\%	800\%	1000\%
$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	AA	No Trip	12-180	6-70	2-25	0.15-3.5	0.005-0.3	0.004-0.13	0.004-0.04
	BA	No Trip	0.7-15	0.3-4	0.1-1.3	0.02-0.25	0.006-0.13	0.003-0.07	0.003-0.04
	MA	No Trip	50-800	20-300	5.5-110	0.3-17	0.008-2.5	0.004-0.5	0.004-0.1
DC	AD	No Trip	10-180	6-75	2.6-30	0.5-7	0.015-3	0.004-0.8	0.003-0.1
	MD	No Trip	70-800	25-300	10-100	1.2-20	0.02-5	0.004-0.65	0.003-0.1

Note: Circuit protectors with inertia delay may have a slightly longer time delay at 400% or higher.

-Dual Coil Type

For	Time Delay Curve	Percent of Rated Current							
		100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	AA	No trip	6-500	2-150	0.7-40	0.1-8	0.005-1.2	0.003-0.2	0.003-0.15
	BA	No trip	0.7-60	0.25-20	0.07-6	0.013-1.2	0.004-0.4	0.003-0.2	0.003-0.15
	MA	No trip	50-800	15-600	6-250	0.4-40	0.06-3	0.003-0.2	0.003-0.15
DC	AD	No trip	10-180	1.5-100	0.6-30	0.1-7	0.015-3	0.004-0.8	0.003-0.1
	MD	No trip	70-800	14-600	5-200	0.8-40	0.007-20	0.003-4	0.003-0.1

Note: Circuit protectors with inertia delay may have a slightly longer time delay at 400% or higher.

Time Delay Curves

Note: The dashed lines show dual coil type.

For AC

Current (percent load of the rated current)

Current (percent load of the rated current)

Current (percent load of the rated current)

For DC

Current (percent load of the rated current)

Current (percent load of the rated current)

Time Delay Curve and Ambient Temperature

Since NH1 series circuit protectors employ aroalinneconnponéntsicom ping system, the rated current (trip current) is notaffected by"ambis ent temperatures but the time delay varies with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in shorter delay, whereas at lower temperatures the delay will be prolonged. The time delay curves on the preceding page are at $25^{\circ} \mathrm{C}$. With reference to these curves, time delays can be corrected.

Temperature Correction Curve

The time delay curves are at $25^{\circ} \mathrm{C}$. With reference to the following figure, time delays can be corrected.

Impedance and Coil Resistance

- Series Trip Type
[Current Trip Type]

	For AC $50 / 60 \mathrm{~Hz}$ Impedance (Ω)	For DC Resistance (Ω)		For AC $50 / 60 \mathrm{~Hz}$ Impedance (Ω)	For DC Resistance (Ω)
	Curves AA, BA, and MA	Curves AD and MD		Curves AA, BA, and MA	Curves AD and MD
0.5A	3.36	3.24	7.5A	0.018	0.017
0.75A	1.49	1.45	10A	0.012	0.012
1A	0.92	0.90	15A	0.0068	0.0066
2A	0.21	0.21	20A	0.0048	0.0048
2.5A	0.13	0.13	25A	0.0043	0.0043
3A	0.092	0.09	30A	0.0041	0.0036
5A	0.036	0.036			

Note: Tolerance: $\pm 25 \%$ (up to 5 A), $\pm 50 \%$ (7.5A or higher)

- Relay Trip Type
[Voltage Trip Type]

Rated Voltage	For AC $50 / 60 \mathrm{~Hz}$ Impedance (Ω)	For DC Resistance (Ω)
100 V AC	1350	-
24 V DC	-	248

- Dual Coil Type
[Current Trip Type]

Rated Current	For AC 50/60Hz Impedance (Ω)	For DC Resistance (Ω)
	Curves AA, BA, and MA	Curves AD and MD
2 A	0.308	0.307
3 A	0.129	0.127
5 A	0.0509	0.0518
7.5 A	0.0249	0.0245
10 A	0.0150	0.0150
15 A	0.0084	0.0080

Note: Tolerance: $\pm 25 \%$ (up to 5 A), $\pm 50 \%$ (7.5A or higher)
[Voltage Trip Type]

Rated Voltage	For AC 50/60Hz Impedance (Ω)	For DC Resistance (Ω)
100 V AC	321	-
24 V DC	-	15.7

Note: Tolerance: $\pm 25 \%$

Circuit Protector with Inertia Delay

1. Circuit protectors equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents.
2. Inertia delay is designed not to trip on a pulse of 1500% the rated current for a duration of 10 ms .

- Voltage Drop Due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves in spite of the same rated current, which should also be considered during installation.

NH1 Series Circuit Protectors

Dimensions

[NH1S]
-1-pole Type
onlinecomponents.com

-2-pole Type

-3-pole Type

[NH1Y • NH1L]

Dimensions
[NH1V]
-1-pole Type

onlinecomponents.com

Series Trip (Auxiliary/Alarm Contacts)

Relay Trip

-2-pole Type

-3-pole Type

Accessories (Optional)

Mounting Hole Layout

[NH1S]
-1-pole Type

[NH1Y • NH1L]
-1-pole Type

- Determine the dimension A within the panel thickness using the following formula:
Dimension A $(\mathrm{mm})=50.4+($ Panel thickness -0.8$) \times 0.87$
Applicable panel thickness: 0.8 to 3.2 mm
- Panel Mounting Screw Length

Select the screw length with reference to the following table.

Panel thickness (mm)	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.6	3.2
Without washer $\quad \square$	5	5	5	6	6	6	6	6	7	7
With plain washer (0.5 mm thick)	5	6	6	6	6	6	7	7	7	8
With spring washer (0.7 mm thick)	6	6	6	6	6	7	7	7	7	8
With plain washer (0.5 mm thick) and spring washer (0.7 mm thick)	6	6	7	7	7	7	7	8	8	8

M3 screw mounting
Tightening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}$ minimum
Tightening strength: $0.7 \mathrm{~N} \cdot \mathrm{~m}$
onlinecomponents.com

-2-pole Type

-2-pole Type

正

-3-pole Type

[NH1V]

- Installation Angle

Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle because operating currents are influenced by the weight of movable iron core. With reference to the following figure, correct the rated current.

Note 1: The rated current does not change depending on the installation angle. Note 2: The minimum operating current is calculated from the following formula: (Minimum operating current) $=($ Rated current $) \times 125 \% \times$ (Correction factor by installation angle)

Instructions

One-pole type circuit protectors cannot be combined to make 2- or 3 -pole units due to their characteristics. Order multi-pole types from IDEC.

- Recommended Soldering Conditions

Solder the main terminal at a temperature of $390^{\circ} \mathrm{C}$ within 10 seconds using a 60W soldering iron.
Solder the auxiliary/alarm terminal at a temperature of $350^{\circ} \mathrm{C}$ within 3 seconds using a 60W soldering iron. (Sn-Ag-Cu lead-free solder is recommended.)
When soldering, do not touch the circuit protector housing, auxiliary and alarm contacts with the soldering iron, and do not bend the terminals or pull the wires.
Check your actual soldering conditions before soldering.

- Main Circuit Terminal: Screw terminal

1. Applicable wire size	1.25 to $5.5 \mathrm{~mm}^{2}$
2. Applicable crimping terminal	R1.25-4 to R5.5-4
3. No.of crimping terminal	1
4. Tightening torque	1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$
5. Tensile strength (Static 1 minute)	Axial direction: 80 N Transverse direction: 20 N

Thrust force (screw pressing load) in screw tightening should be 29 N or less. The screw driver may slip out depending on the shape type and conditions. In this case, hold the terminal with a tool and tighten the screw by applying a thrust force of about 50 N without deforming the terminal.

NRA series Circuit Protectors

Best Selling Circuit Protectoranlinecomponents.com Wide selection of applications ranging from computers to office and factory automation

- Available with inertia delay
- Available with auxiliary contact or alarm contact
- Hydraulic-magnetic tripping system
- Safe trip-free mechanism
- Vibration-proof design
- Variety of mounting methods
- IEC(IEC 60934) compliant
- Available in tab-terminal type and screw-terminal type suited for crimping-terminal wiring.

Applicable Standards	Certification Mark	Certification Organization / File No.
UL1077 CSA C22.2 No. 235 (Note 1)	C	US

For details, see the list of standard certified products in the back of this catalog.
Note 1: All standard models
Note 2: All models

Specifications

- Indicator Ratings (Illuminated rocker unit)

Indicator	Rated Voltage
Neon	100 to $110 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$ 200 to $220 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
LED	4 to 8 V DC

- Standard Color

Housing		Black	
Lever (NRAS-,NRAN)		Black with white letters, ON-OFF, I/O	
Rocker Color,		Rocker Color	Indicator Color
Indicator	Non-illuminated	Opaque white	-
Color (NRAR)	with Neon lamp	Transparent red	Red

Type No. Development

ontinecomponents.com

Type No. Examples
(1) Circuit protector: Lever type

(2) Circuit Protector: Illuminated rocker type

NRAS (Lever Type)

onlinecomponents.com

- Specify a rated current, time delay curve, and rated voltage in place of 789.

Flush Silhouette

NRAS (Lever Type)

onlinecomponents.com-

- Specify a rated current, time delay curve, and rated voltage in place of 780. Package Quantity: 1

Internal Circuit	No. of Poles	Terminal Style	Inertia Delay	Flush Plate	Auxiliary Contact Alarm Contact	Type No. (Ordering Type No.)	Designation Code		
							7 Rated Current	8 Time Delay Curve	9 Rated Voltage
Series Trip Current Trip	3	Tab Terminal	Without	Without	Without	NRAS300-78	$\begin{array}{r} 0.3 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0.75 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \\ 3 \mathrm{~A} \\ 5 \mathrm{~A} \\ 7.5 \mathrm{~A} \\ 10 \mathrm{~A} \\ 15 \mathrm{~A} \\ 20 \mathrm{~A} \\ 25 \mathrm{~A} \\ 30 \mathrm{~A} \end{array}$	AA BA MA AD MD	-
					w/Auxiliary Contact	NRAS3111-78			
					w/Alarm Contact	NRAS3121-78			
			With	Without	Without	NRAS3100F-78			
					w/Auxiliary Contact	NRAS3111F-78			
					w/Alarm Contact	NRAS3121F-78			
		Screw Terminal	Without	Without	Without	NRAS3100S-78			
					w/Auxiliary Contact	NRAS3111S-78			
					w/Alarm Contact	NRAS3121S-78			
			With	Without	Without	NRAS3100FS-78			
					w/Auxiliary Contact	NRAS3111FS-78			
					w/Alarm Contact	NRAS3121FS-78			
Relay Trip Voltage Trip	1	Tab Terminal	Without	Without	Without	NRAS1500-9	-	-	24 V DC
	2				Without	NRAS2500-9			
	3				Without	NRAS3500-9			

NRAN (Lever Type)

ontinecomponents.com
Flush Silhouette

- Specify a rated current, time delay curve, and rated voltage in place of 789. Package Quantity: 1

NRA Series Circuit Protectors

NRAR (Rocker Type)

ontinecomponents.com-

- Specify a rated current, time delay curve, and indicator rated voltage in place of 7810 Package Quantity: 1

Internal Circuits
NRAS and NRAN onlinecomponents.com

Series Trip (Current Trip)	Series Trip (Current Trip) With Auxiliary Contact	Series Trip (Current Trip) With Alarm Contact	Relay Trip (Voltage Trip)	

Flush
Silhouette

NRAR • Dashed lines show the illuminated rocker type.

| Series Trip
 (Current Trip) |
| :---: | | Series Trip |
| :---: |
| (Current Trip) |
| With Auxiliary Contact |\quad| Series Trip |
| :---: |
| (Current Trip) |
| With Alarm Contact |

- Indicator terminals on the illuminated rocker type

Indicator terminals are available only on the series trip type without auxiliary and alarm contacts.
Auxiliary and alarm contacts are provided with color-coded lead wires as
shown in the table at right.

- Wiring Example

Indicator		Lead Wire	
	A	B	
Neon (for AC)	100 to 110V	White	White
	200 to 220V	Black	Black
	Positive	Black	-
	Negative	-	White

Overcurrent - Time Delay Characteristics (sec at 25으)

For	Time Delay Curve	Percent of Rated Current							
		100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	AA	No Trip	10-120	6-45	2.2-15	0.3-2	0.05-0.55	0.007-0.13	0.005-0.04
	BA	No Trip	0.75-10	0.45-3.5	0.22-1.3	0.045-0.22	0.012-0.12	0.005-0.06	0.004-0.03
	MA	No Trip	60-900	30-260	9-70	1.5-8	0.18-2.5	0.009-0.25	0.006-0.08
DC	AD	No Trip	10-130	6-55	2.6-20	0.5-3.5	0.12-1.4	0.008-0.1	0.005-0.05
	MD	No Trip	35-400	20-200	7-60	1.3-8	0.2-3	0.01-0.25	0.006-0.08

Terminal Blocks
Comm. Terminals
AS-Interface
 Timers

Note: Circuit protectors with inertia delay may have a slightly longer time delay at 600% or higher.

Time Delay Curves

For AC

For DC

Current (percent load of the rated current)
onlinecomponents.com

Time Delay Curve and Ambient Temperature

Since the NRA series circuit protectors employ an electromagnetic tripping system, the rated current (trip current) is not affected by the ambient temperatures, but the time delay varies with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in shorter delay, whereas at lower temperatures the delay will be prolonged.
The above time delay curves are at $25^{\circ} \mathrm{C}$. With reference to these curves, time delays can be corrected.

Temperature Correction Curve

The above time delay curves are at $25^{\circ} \mathrm{C}$. With reference to the following figure, time delays can be corrected

Circuit Protector with Inertia Delay

Circuit protectors equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents.

Note: Inertia delay is designed not to trip on a pulse of 20 times the rated current (peak value) for a duration of 8 ms . See the above curve.

Impedance and Coil Resistance

- Series Trip (Current Trip)

Rated Current	For AC 50/60Hz Impedance (Ω)	For DC Resistance (Ω)
	Curves AA, BA, and MA	Curves AD and MD
	9.82	9.67
0.5 A	3.36	3.24
0.75A	1.49	1.45
1A	0.92	0.90
2A	0.21	0.21
3 A	0.092	0.09
5A	0.036	0.036
7.5 A	0.018	0.017
10 A	0.012	0.0012
15 A	0.0068	0.0066
20 A	0.0048	0.0048
25A	0.0043	0.0043
30 A	0.0041	0.0036

Note: Tolerance: $\pm 25 \%$ (up to $5 A$), $\pm 50 \%$ (7.5A or higher)

- Relay Trip (Voltage Trip) (at $25^{\circ} \mathrm{C}$)

Rated Voltage	For DC Resistance (Ω)
$24 V$ DC	163

Note: Tolerance: $\pm 25 \%$

- Voltage Drop due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used for a power-supply switch, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves in spite of the same rated current, which should also be considered during installation.

Dimensions

NRAS (Lever Type)

-1-pole Type

Tab terminal \#250

-2-pole Type

-3-pole Type

NRAS (Lever Type with Flush Plate)

NRAN (Lever Type)

NRAR (Rocker Type)

Mounting Hole Layout

Type	NRAS on	monentSS.E06 with Flush Plate	NRAN and NRAR
Panel Cut-out	Note: See "Accessories" for the mounting hole when the plug-in base is used.	Note: Flush plate is installed on the circuit protector before shipment and cannot be removed.	Note: "Accessories" for the mounting holes when the flush plate or plugin base is used.

M3 screw mounting
Tightening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}$
Tightening strength: $1.1 \mathrm{~N} \cdot \mathrm{~m}$

- Panel Mounting Screw Length

Select the screw length with reference to the following table.

Panel thickness (mm)	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.6	3.2	
Without washer	\square	(4)	(4)	5	5	5	5	5	6	6	6
With plain washer (0.5 mm thick)	\square	5	5	5	5	6	6	6	6	6	(7)
With spring washer (0.7 mm thick)	\square	5	5	5	5	6	6	6	6	6	7
With plain washer (0.5 mm thick) and spring washer $(0.7$ mm thick)	\square	6	6	6	6	6	6	6	(7)	(7)	8

Note: Avoid using screws in the parenthesized lengths whenever possible.

- Installation Angle

Overcurrent tripping method is hydraulic magnetic. Minimum operating current varies with installation angle because operating currents are influenced by the weight of movable iron core. With reference to the following figure, correct the minimum operating current.

1. Applicable wire size	1.25 to $5.5 \mathrm{~mm}^{2}$
2. Applicable crimping terminal	$\mathrm{R} 1.25-4$ to $\mathrm{R} 5.5-4$
3. No.of crimping terminal	1
4. Tightening torque	1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$
5. Tensile strength (Static 1 minute)	Axial direction: 80 N Transverse direction: 20 N

Thrust force (screw pressing load) in screw tightening should be 29 No less. The screw driver may slip out depending on the shape type and conditions. In this case, hold the terminal with a tool and tighten the screw by applying a thrust force of about 50 N without deforming the terminal.

NRA Series Circuit Protectors
Accessories (Option)
Package Quantity: 1

Appearance	Color	Type No.	Ordering Type No.	Package Quantity	For Use on	Description
- Color Cap$\stackrel{\leftrightarrow 15.8 \mathrm{~mm}}{ }$ Color Cap	Blue	NR5S	NR5SPN05	5	NRAS	Color caps fit onto NRAS circuit protectors for color-coding circuits and improved appearance of the panel. Available in four colors: Blue (7.5B4/8 approx.) Red (7.5R5/14 approx.) White (N9.5 approx.) Yellow (2.5Y9/4 approx.)
	Red	NR5R	NR5RPN05			
	White	NR5H	NR5HPN05			
	Yellow	NR5Y	NR5YPN05			

NRL series Circuit Protectors

Miniature circuit protectors withallathpometis.dongetic tripping system, allow for space and cost savings. Long life also reduces maintenance costs.

- Compact size (only $36.6 \mathrm{H} \times 16.8 \mathrm{~W} \times 42 \mathrm{D} \mathrm{mm}$)
- One-lever (one-rocker) for 2-poles, ensures proper interruption to both poles when one pole is tripped.
- Low, middle, and high speed response
- Variety of rated currents and internal circuits
- Available with auxiliary contacts and inertia delay
- Over 20,000 mechanical operations
- Hydraulic-magnetic tripping system
- Safe trip-free mechanism
- Vibration-proof design

This product is recognized by Underwriters Laboratories under UL1077 as a "Supplementary Protector."

Applicable Standards	Certification Mark	Certification Organization / File No.
UL1077		UL/c-UL File No. E68029
CSA C22.2 No. 235		No. LR83454
EN60934 (VDE0642)	NV:	No. 102746
GB17701	CCS	CCC No. 2005010307151789
Electrical Appliance and Material Safety Law Technical Standard	PS (For switch type)	(Electrical appliance except- ing specified appliances)

For details, see the list of standard certified products in the back of this catalog.

Specifications

Type	NRLT	NRLP		NRLY		NRLR	NRLK
Appearance	Lever Type (Lever color: Black)	Lever Type (Lever color: Black)				Illuminated Rocker Type (Neon, LED)	
Operator Style	Lever	Lever	Rocker	non-illuminated)	minated	ker	Large rocker (non-illuminated)
Protection Method	Hydraulic-magnetic tripping system						
Internal Circuit	Series trip (Current trip), Relay trip (Voltage trip)* Series trip (Current trip) with auxiliary contacts, Switch only, Switch only with auxiliary contact						*: Not available on NRLP
No. of Poles	1-pole, 2-pole (1-lever)	1-pole	1-pole, 2	-pole (1-rocker)			
Rated Voltage	250 V AC 50/60Hz, 50 V DC						
Minimum Applicable Load	24 V AC/DC, 100 mA (reference value)						
Rated Current	Current trip: 0.1A, 0.5A, 1A, 2A, 3A, 4A, 5A, 7.5A, 10A, 12.5A, 15A, 20A						Switch only type: 20A max.
Trip Voltage (Voltage trip)	100 V AC $50 / 60 \mathrm{~Hz}, 24 \mathrm{~V} \mathrm{DC} \mathrm{(operating} \mathrm{at} 90 \%$ of the rated voltage or higher, at $25^{\circ} \mathrm{C}$) Voltage application duration: 1 sec maximum Trip time: 0.05 sec maximum (at the rated voltage)						
Rated Interrupting Capacity	250 V AC $50 / 60 \mathrm{~Hz}, 750 \mathrm{~A}$ PC1 (UL rating: 1000A) 50 V DC, 500A PC1 (UL rating: 1000A)						
Auxiliary Contact	SPDT microswitch125 V AC $\cdot 3 \mathrm{~A}$ (resistive load), $30 \mathrm{VDC} \cdot 2 \mathrm{~A}$ (resistive load)						
Reference Temperature	$+25^{\circ} \mathrm{C}$						
Operating Temperature	-40 to $+60^{\circ} \mathrm{C}$ (no freezing)						
Operating Humidity	45 to 85\% RH (no condensation)						
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500 V DC megger)						
Dielectric Strength	2000V AC, 1 minute (between live part and ground, between terminals of different poles, between terminals of the same pole when main contacts are open, between main circuit and auxiliary contact)						
Vibration Resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 55 Hz), with the rated current applied						
Shock Resistance	$500 \mathrm{~m} / \mathrm{s}^{2}$ (operating extremes and damage limits), with the rated current applied (auxiliary contact: $360 \mathrm{~m} / \mathrm{s}^{2}$)						
Life	Electrical: Over 10,000 operations minimum (6 operations $/ \mathrm{min}$)Mechanical: Over 20,000 operations minimum (6 operations $/ \mathrm{min}$)						
Terminal Style (Note)	Main terminal: Tab terminal \#250 [NRLP: PCB terminal] Auxiliary contact terminal: Solder terminal [NRLP: PCB terminal] Indicator terminal [llluminated rocker type] : Tab terminal \#110						
Mounting Style	Ring mounting	PC board mounting	Snap-on	mounting	Screw m	unting	Screw mounting
Weight (Approx.)	$\begin{aligned} & \text { 1-pole: } 30 \mathrm{~g} \\ & \text { 2-pole: } 60 \mathrm{~g} \text { (NRLT series trip) } \end{aligned}$						

- The ratings of switch only type are 250 V AC/50V DC and 20A, without protection function.

Note: Indicator terminal of 1-pole illuminated rocker type with auxiliary contact is a lead wire.

- Indicator Ratings (Illuminated Rocker Type)

Indicator	Voltage
Neon	100 to 125 V AC
LED	$6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V} \mathrm{AC/DC}$

Note: Both neon and LED indicators have a built-in current limiting resistors.

- Standard Color

Housing		Black	
Lever (NRLT and NRLP)		Black	
Rocker and Indicator		Rocker Color	Indicator Color
(NRLY) (NRLR)	Non-illuminated	Black, red, green	-
	Neon	Transparent red	Red
	LED	Transparent red	Red
Large Rocker (NRLK)		Black, Red	

Type No. Development

ontintecomponents.com

NRLT (Lever Type)

- Specify a rated current or voltage, and time delay curve in place of 6 7.

Package Quantity: 1

Internal	No. of	Inertia	Auxiliary Contact	Type No.	Design	on Code
Circuit	Poles	Delay	xiliary Contact	(Ordering Type No.)	6 Rated Current or Voltage	7 Time Delay Curve
Series Trip Current Trip	1	Without	Without	NRLT1100-67	$0.1 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}$ 7.5A, 10A, 12.5A, 15A, 20A	AA, AD, BA, BD, EA, ED
			With	NRLT1111-6] 7		
		With	Without	NRLT1100F- 67		AA, AD, BA, BD
			With	NRLT1111F-6 7		
	2	Without	Without	NRLT2100-6 7		AA, AD, BA, BD, EA, ED
			With	NRLT2111-67		
		With	Without	NRLT2100F-667		AA, AD, BA, BD
			With	NRLT2111F-6 7		
Relay Trip Voltage Trip	1	Without	Without	NRLT1500-6	100 V AC 24 V DC	-
	2		Without	NRLT2500-6		
Switch Only Type	1	Without	Without	NRLT1000	-	-
			With	NRLT1011		
	2		Without	NRLT2000		
			With	NRLT2011		

NRL Series Circuit Protectors

NRLY (Rocker Type)

[Snap-on Mounting Type]
onlinecomponents.con

- Specify a rated current or voltage, time deflay curve, and indicator or rocker color in place of 6 7 8. Package Quantity: 1

							Designa	on Code	
Illumination	Internal Circuit	No. of Poles	Inertia Delay	Auxiliary Contact	Type No. (Ordering Type No.)	6 Rated Current and Voltage	7 Time Delay Curve	8 Indicator	8 Rocker Color
Illuminated Type	Series Trip Current Trip	1	Without	Without	NRLY1100-67-7-8	$\begin{aligned} & 0.1 \mathrm{~A} \\ & 0.5 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 7.5 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 12.5 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 20 \mathrm{~A} \end{aligned}$	AA, AD, BA, BD, EA, ED	$\begin{aligned} & \text { 1: Neon } \\ & \text { 125V AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	-
				With	NRLY1111-67-8				
			With	Without	NRLY1100F-6 7-8		AA, AD, BA, BD		
				With	NRLY1111F-6 7-8				
		2	Without	Without	NRLY2100-677-8		AA, AD, BA, BD, EA, ED		
				With	NRLY2111-6 7-8				
			With	Without	NRLY2100F-677-8		AA, AD, BA, BD	$\begin{aligned} & \text { 3: LED } \\ & \text { 6V AC/DC } \end{aligned}$	
				With	NRLY2111F-6 7-8				
	Relay Trip Voltage Trip	1	Without	Without	NRLY1500-6-8	100 V AC 24V DC		$\begin{aligned} & \text { 4: LED } \\ & \text { 12V AC/DC } \end{aligned}$	
		2		Without	NRLY2500-6-8			$\begin{aligned} & \text { 7: LED } \\ & 48 \mathrm{~V} \text { AC/DC } \end{aligned}$	
	Switch Only Type	1	Without	Without	NRLY1000-8		-		
				With	NRLY1011-8				
		2		Without	NRLY2000-8				
				With	NRLY2011-8				
Nonilluminated Type	Series Trip Current Trip	1	Without	Without	NRLY1100-6] 7-8	$\begin{gathered} 0.1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \\ 3 \mathrm{~A} \\ 4 \mathrm{~A} \\ 5 \mathrm{~A} \\ 7.5 \mathrm{~A} \\ 10 \mathrm{~A} \\ 12.5 \mathrm{~A} \\ 15 \mathrm{~A} \\ 20 \mathrm{~A} \end{gathered}$	AA, AD, BA, BD, EA, ED		B, G, R
				With	NRLY1111-6 7 - 8				
			With	Without	NRLY1100F-6 7-8		$\begin{aligned} & \mathrm{AA}, \mathrm{AD}, \mathrm{BA} \text {, } \\ & \mathrm{BD} \end{aligned}$		
				With	NRLY1111F-67-8				
		2	Without	Without	NRLY2100-6] 7-8		AA, AD, BA, BD, EA, ED		
				With	NRLY2111-6 7-8				
			With	Without	NRLY2100F-67-8		$\begin{aligned} & A A, A D, B A \text {, } \\ & B D \end{aligned}$		
				With	NRLY2111F-6 7-8				
	Relay Trip Voltage Trip	1	Without	Without	NRLY1500-6-8	100 V AC 24V DC			
		2		Without	NRLY2500-6-8				
	Switch Only Type		Without	Without	NRLY1000-8	-	-		
				With	NRLY1011-8				
		2		Without	NRLY2000-8				
				With	NRLY2011-8				

NRLR (Rocker Type)

[Screw Mounting Type]
onlinecomponents.com

- Specify a rated current or voltage, time delay cerivive, an ind indicartor or rocker color in place of 6 678 . Package Quantity: 1

NRLK (Large Rocker Type)

[Snap-on Mounting Type]
ontinecomponents.com

Package Quantity: 1

Internal Circuit	No. of Poles	Inertia Delay	Auxiliary Contact	Type No. (Ordering Type No.)	Designation Code		
					6 Rated Current and Voltage	7 Time Delay Curve	8 Rocker Color
Series Trip Current Trip	1	Without	Without	NRLK1100-6 7-8	$\begin{aligned} & 0.1 \mathrm{~A} \\ & 0.5 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 7.5 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 12.5 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 20 \mathrm{~A} \end{aligned}$	AA, AD, BA, BD, EA, ED	, G, R
			With	NRLK1111-6 7-8			
		With	Without	NRLK1100F-6-7-8		AA, AD, BA, BD	
			With	NRLK1111F-67-8			
	2	Without	Without	NRLK2100-6 7-8		AA, AD, BA, BD, EA, ED	
			With	NRLK2111-67-7 8			
		With	Without	NRLK2100F-67-8		$\begin{aligned} & \mathrm{AA}, \mathrm{AD}, \mathrm{BA} \text {, } \\ & \mathrm{BD} \end{aligned}$	
			With	NRLK2111F-67-8			
Relay Trip Voltage Trip	1	Without	Without	NRLK1500-6-8	$\begin{aligned} & 100 \mathrm{~V} \text { AC } \\ & 24 \mathrm{~V} \text { DC } \end{aligned}$		
	2		Without	NRLK2500-6-8			
Switch Only Type	1	Without	Without	NRLK1000-8		-	
			With	NRLK1011-8			
	2		Without	NRLK2000-8			
			With	NRLK2011-8			

NRLP (Lever Type)

[PC Board Mounting Type]

- Specify a rated current and time delay curve in place of 67 .

Internal Circuit	No. of Poles	Inertia Delay	Auxiliary Contact	Type No. (Ordering Type No.)	Designation Code	
					6 Rated Current	7 Time Delay Curve
Series Trip Current Trip	1	Without	Without	NRLP1100-6 7	$\begin{aligned} & 0.1 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	AA, AD, BA, BD, EA, ED
			With	NRLP1114-67	$\begin{aligned} & 2 A \\ & 3 A \end{aligned}$	
		With	Without	NRLP1100F-6 7	$\begin{aligned} & 7.5 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 12.5 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 20 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{AA}, \mathrm{AD}, \mathrm{BA}, \\ & \mathrm{BD} \end{aligned}$
			With	NRLP1114F-6 7		
Switch Only Type	1	Without	Without	NRLP1000	-	-
			With	NRLP1014		

Internal Circuits

Overcurrent - Time Delay Characteristics (sec at 25으)

Time Delay Curves		Percent of Rated Current						
AC $50 / 60 \mathrm{~Hz}$	DC	100%	135%	150%	200%	400%	600%	800%
$\mathrm{AA} \star$	AD \star	No Trip	$3-70$	$2-40$	$1-15$	$0.1-4$	$0.01-2$	$0.007-0.8$
$\mathrm{BA} \star$	BD \star	No Trip	$0.3-7$	$0.2-5$	$0.1-2$	$0.03-0.5$	$0.01-0.3$	$0.007-0.15$
EA	ED	No Trip	$0.015-0.5$	$0.01-0.25$	$0.009-0.1$	$0.006-0.03$	$0.005-0.02$	$0.004-0.02$

Note: Curves marked with \star are also available with inertia delay. (Inertia delay is not available for Curves ED and EA)
Time Delay Curves Note: Curves marked with \star are also available with inertia delay.

Current (percent load of the rated current)

Current (percent load of the rated current)

Current (percent load of the rated current)

Circuit Protector with Inertia Delay

Inertia delay is designed not to trip on a non-renliteremponents:eom
 dition, circuit protectors equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents. Curves EA and ED are not available with inertia delay.

Temperature Correction Curve

The time delay curves on the preceding page are at $25^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to the ambient temperature.

Operation of Auxiliary Contacts

At tripping or manual ON-OFF operation, there is a lag in time between the operation of the main contact and the auxiliary contact.

Impedance and Coil Resistance (at 25으)

Rated Current	For AC 50/60Hz Impedance (Ω)	For DC, Impedance between Terminals (Ω)
	Curves AA, BA, and EA	Curves AD, BD, and ED
0.1 A	97.0	96.0
0.5 A	3.2	3.1
1 A	0.81	0.78
2 A	0.19	0.18
3 A	0.086	0.085
4 A	0.051	0.050
5 A	0.034	0.034
7.5 A	0.017	0.016
10 A	0.0092	0.0087
12.5 A	0.0068	0.0065
15 A	0.0052	0.0050
20 A	0.0033	0.0031

Note: Tolerance: $\pm 25 \%$

Relays \&

 Timers
Sockets

Rated Current (Trip Current) by Installation Angle

Overcurrent tripping method is hydraulic magnetic. Minimum operating currents vary with installation angle because operating currents are influenced by the weight of the iron core. With reference to the following figure, correct the rated current.

Note 1: The rated current does not change depending on the installation angle.
Note 2: The minimum operating current is calculated from the following formula:
(Minimum operating current) $=($ Rated current $) \times 135 \% \times$ (Correction factor by installation angle)

Dimensions

- NRLT (Lever Type) Note: The dashed lines anlinecomponentsacom

- NRLP (Lever Type with PCB terminals)

All dimensions in mm.

- NRLY (Snap-on Mounting, Rocker Type) Note: The dashed lines show the 2-pole type.

- NRLK (Large Rocker Type) Note: The dashed lines show the 2-pole type.

- NRLR (Screw Mounting, Rocker Type) Note: The dashed lines show the 2-pole type.

Illuminated Rocker Type
(1-pole, with auxiliary contact) Series Trip, Switch Only Type
(without auxiliary contact) Series Trip, Switch Only Type

Indicator terminal: Tab \#110

Rocker Type (Non-illuminated) Relay Trip (4-terminal)

Lead wire length: Approx. 100 mm
Illuminated Rocker Type (1-pole)
Relay Trip (4-terminal)

Lead wire length: Approx. 100 mm

Illuminated Rocker Type
(2-pole, with auxiliary contact)
Series Trip, Switch Only Type
Indicator terminal: Tab \#110

Illuminated Rocker Type (2-pole)
Relay Trip (4-terminal)

Lead wire length: Approx. 100 mm

Mounting Hole Layout

NRL Series Circuit Protectors

Accessories for NRLT (Lever Type) • Optional

Package Quantity: 1

NRBM series Circuit Protectors

Variety of rated currents: 1A dalinioumponents.com
 Widely employed for protection of PC power circuits and large current circuits of welding machines.

NRBM is the largest in the rated current among the IDEC circuit protector series.

- Electromagnetic trip, not affected by ambient temperature
- Safe trip-free mechanism
- Available with auxiliary contact and alarm contact
- Available with inertia delay
- Vibration-proof design

This product is recognized by Underwriters Laboratories under UL1077 as a "Supplementary Protector."

Applicable standards	Certification Mark	Certification Organization / File No.
$\begin{aligned} & \text { UL1077 } \\ & \text { CSA C22.2 No. } 235 \end{aligned}$	c	UL/c-UL File No. E68029
$\begin{aligned} & \text { EN60934 } \\ & \text { (VDE0642) } \end{aligned}$	V_{E}	No. 113434
GB17701	$C(s)$	CCC No. 2005010307151788
Electrical Appliance and Material Safety Law Technical Standard	PS	JET

For details, see the list of standard certified products in the back of this catalog.

Specifications

Type	NRBM
Operator	Lever type
Protection Method	Hydraulic-magnetic tripping system
Internal Circuit	Series trip (current trip) Series trip with auxiliary contacts Series trip with alarm contacts
No. of poles	$1,2,3$ poles
Rated Voltage	250 V AC 50/60 Hz, 65V DC
Minimum Applied Load	$24 \mathrm{~V} \mathrm{AC/DC,100} \mathrm{~mA} \mathrm{(reference} \mathrm{value)}$
Rated Current	Current trip: $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}$
Rated Interrupting Capacity	250 V AC 50/60Hz, 65V DC, 1000A
Auxiliary Contact	SPDT microswitch Alarm Contact $250 \mathrm{~V} \mathrm{AC} \mathrm{5A}$ 50 V DC 1A (resistive load)
Reference Temperature	$+25^{\circ} \mathrm{C}$
Operating Temperature	-40 to +85 ${ }^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity	45 to 85% RH (no condensing)
Insulation Resistance	$100 \mathrm{M} \mathrm{\Omega}$ minimum (500V DC megger)
Dielectric Strength	$2000 \mathrm{~V} \mathrm{AC} \mathrm{for} \mathrm{1} \mathrm{minute} \mathrm{(between} \mathrm{live} \mathrm{part} \mathrm{and} \mathrm{ground} ,\mathrm{between} \mathrm{terminals} \mathrm{of} \mathrm{different} \mathrm{poles} between$, terminals of the same poles when main contacts are open, between main circuit and auxiliary contact)
Vibration Resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 55 Hz)
Shock Resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Life	10,000 operations minimum (6 operations per minute)
Terminal Style	Main terminal: M5 stud screw Auxiliary contact and alarm contact: Tab terminal \#80
Weight (Approx.)	1 -pole: $100 \mathrm{~g}, 2$-pole: 200g, 3-pole: 300g

Circuit

 ProtectorsPower Supplies

PLCs \& SmartRelay

Operator Interfaces

Sensors

Control
Stations

Explosion Protection

References

NRBM Series Circuit Protectors

Type No. Development

,3, or 4-pole tys, raing and in each pole. Simultaneous-throw and simultaneous-break (all levers interconnected) is standard.
onimecomponents.com

1	0

4 Auxiliary Contact / Alarm Contact		
Without	(Code) 00	
With auxiliary contact	\square	11
With alarm contact	\square	21

Note:
On the multi-pole types, one auxiliary contact is provided on the left side or one alarm contact is provided on the right side as viewed from the front.

5 Inertia Delay	
Without	(Code) Blank
With	F

7 Time Delay Curve	
	Time Delay Curve
AC type $[50 / 60 \mathrm{~Hz}]$	AA
	BA
DC type	MA
	AD
	MD

NRBM (Lever Type)

- Specify a rated current and time delay curve in place of 67 .

Package Quantity: 1

Internal Circuit	No. of Poles	Inertia Delay	Auxiliary Contact Alarm Contact	Type No. (Ordering Type No.)	Code for Ordering	
					6 Rated Current	7 Time Delay Curve
Series Trip Current Trip		Without	Without	NRBM1100-6 7	1A 2A 3A 5A 7.5A 10A 15A 20A 25A 30A 40A 50A	AA BA MA AD MD
			w/Auxiliary Contact	NRBM1111-67		
			w/Alarm Contact	NRBM1121-6 7		
		With	Without	NRBM1100F-6 7		
			w/Auxiliary Contact	NRBM1111F-6 7		
			w/Alarm Contact	NRBM1121F-6 7		
	2	Without	Without	NRBM2100-6 7		
			w/Auxiliary Contact	NRBM2111-67		
			w/Alarm Contact	NRBM2121-6 7		
		With	Without	NRBM2100F-6 7		
			w/Auxiliary Contact	NRBM2111F-6 7		
			w/Alarm Contact	NRBM2121F-6 7		
	3	Without	Without	NRBM3100-6 7		
			w/Auxiliary Contact	NRBM3111-67		
			w/Alarm Contact	NRBM3121-6 7		
		With	Without	NRBM3100F- 67		
			w/Auxiliary Contact	NRBM3111F- 67		
			w/Alarm Contact	NRBM3121F-6 7		

Internal Circuits

Mounting Hole Layout

Circuit Protector with Inertia Delay

Circuit protectors equipped with inertia delay do nonlarecomponiehts.com inrush currents caused by transformer or lamp loadse, batrperformmwen the specified interruption on the subsequent overcurrents.

Note: Inertia delay is designed not to trip on a pulse of 20 times the rated current (peak value) for a duration of 8 ms . See the above curve.

Impedance and Coil Resistance (at 25으)

Rated Current (A)	For AC 50/60Hz Impedance (Ω)	For DC Resistance (Ω)
	Curves AA, BA, and MA	Curves AD and MD
1	1.1	1
2	0.245	0.227
3	0.11	0.091
5	0.039	0.035
7.5	0.018	0.015
10	0.0124	0.0088
15	0.0065	0.005
20	0.0047	0.003
25	0.0032	0.0023
30	0.0031	0.0019
40	0.002	0.001
50	0.0016	0.0006

Note: Tolerance: $\pm 25 \%$ (up to 20 A), $\pm 50 \%$ (25A or higher)

- Voltage Drop due to Coil Resistance or Impedance The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used for a power-supply switch, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves in spite of the same rated current, which should be also considered during installation.

Temperature Correction Curve

Time Delay Curve and Ambient Temperature

Since the NRBM series circuit protectors employ an electromagnetic tripping system, the rated current (trip current) is not affected by ambient temperatures, but the time delay varies with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in shorter delay, whereas at lower temperatures the delay will be prolonged.
The time delay curves on the preceding page are at $25^{\circ} \mathrm{C}$. With reference to these curves, time delays can be corrected.

Instructions

- Panel Mounting Screw Length

Select a proper screw length according to the table.

Panel thickness (mm)	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.6	3.2
Without washer ${ }_{\text {¢ }}$	(4)	(4)	5	5	5	5	5	6	6	6
With plain washer (0.5 mm thick)	5	5	5	5	6	6	6	6	6	(7)
With spring washer (0.7 mm thick)	5	5	5	5	6	6	6	6	6	7
With plain washer (0.5 mm thick) and spring washer (0.7 mm thick)	6	6	6	6	6	6	6	(7)	(7)	8

Note: Avoid using screws in the parenthesized lengths whenever possible.

- M3 Screw Mounting

Tightening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}$ minimum
Tightening strength: $1.1 \mathrm{~N} \cdot \mathrm{~m}$ maximum

- Installation Angle

Designed to be mounted on a vertical surface in principle, the circuit protector must be mounted on a surface within 10° from a vertical plane. If the circuit protector is mounted on a horizontal surface or at any angle other than specified, the characteristics will be changed.

- Multi-pole Type

Multi-pole types such as 2- or 3-pole types are assembled by IDEC. Because of their characteristics, 1-pole type protectors cannot be combined to provide multi-pole types.

NRC series Circuit Protectors

Small and high-performance qinmetinmantantons with rated interrupting capacity 2500A (2-pole type: 1500A) [Molded case circuit breaker]
 Suited for FA related equipment and control panels.

- Sliding knob operator or lever operator
- Two-way mounting: DIN rail mounting or screw mounting. Mounting bracket is available for panel mounting.
- Easy-to-view trip indication
- Available with auxiliary contacts
- Variety of rated currents and time delay curves
- Hydraulic-magnetic tripping system and safe trip-free mechanism
- Shockproof construction to withstand shocks and vibrations
This product is recognized by Underwriters Laboratories under UL1077 as a "Supplementary Protector".

Applicable Standards	Certification Mark	Certification Organization / File No.
UL1077	UL File No. E68029	
CSA C22.2 No. 235	NE	No. LR83454
Electrical Appliance and Material safety Law Technical Standard	JET	

For details, see the list of standard certified products in the back of this catalog.

Specifications

Applications

NRC series circuit protectors are small, high-performance overcurrent protectors developed for use in control circuits and small electrical equipment. Due to their ability to be reset many times, a wide range of applications, including replacement of various fuses as in relay circuits, motor circuits, heater circuits, transformers, solenoids, solenoid valves, semiconductors, and many more.

- Panels

Automatic control boards, instrumentation boards, power supply boards, electronic control boards, explosion-protected panels.

- Machine Tools

Milling machines, drilling machines, grinding machines, presses, electric discharge machines.

- Industrial Machines

Injection molding machines, printing presses, spinning machines, elevators, conveyors, cranes.

- Chemical and Food Processing Machines

Packaging machines, stirrers, centrifuges, dryers, vacuum equipment.

- Communication and Measuring Equipment

Industrial instruments, recording instruments, oscilloscopes, audio systems.

- Office Machines
 Computer power lines and peripheral equipment, copying machines.

- Other Machines and Equipment

Medical equipment, vending machines, hairdresser's equipment, recreation and game machines.

Sliding Knob Operator Type

Specify a rated current in place of 2

No. of Poles	Auxiliary Contact	Type No. (Ordering Type No.)	Designation Code
			(2) Rated Current
1	Without	NRC110-2 AA	0.3A, 0.5A, 1A, 2A, 3A, 5A, 7.5A, 10A, 15A, 20A, 30A
		NRC110-2 EA	
		NRC110-2 AD	
		NRC110-2 ED	
	With	NRC111-2 AA	
		NRC111-2 EA	
		NRC111-2 AD	
		NRC111-2 ED	

Lever Operator Type

- Specify a rated current in place of 2. \quad Package Quantity: 1

No. of Poles	Auxiliary Contact	Type No. (Ordering Type No.)	Designation Code
			2 Rated Current
1	Without	NRC110L- 2 AA	0.3A, $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 30 \mathrm{~A}$
		NRC110L- 2 EA	
		NRC110L- 2 AD	
		NRC110L- 2 ED	
	With	NRC111L-2 AA	
		NRC111L-2 EA	
		NRC111L-2 AD	
		NRC111L-2 ED	
2	Without	NRC210L- 2 AA	0.3A, 0.5A, 1A, 2A, 3A, 5A, 7.5A, 10A, 15A, 20A, 30A
		NRC210L- 2 EA	
		NRC210L- 2 AD	
		NRC210L- 2 ED	
	With	NRC211L- 2 AA	
		NRC211L- 2 EA	
		NRC211L- 2 AD	
		NRC211L- 2 ED	

Ordering Information

Specify the type No., rated current and time delay curves.

Note: Use the AC type for use in AC circuits and DC type for use in DC circuits. AC types are not interchangeable with DC types.
[Example]
NRC111-30A • AA

团Type No.	22 Rated Current 3 Time Delay Curve			
	\square	-		.
NRC110	Sliding knob operator (w/o auxiliary contact) 1-pole	$0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7 \mathrm{~A}$, 10A, 15A, 20A, 30A	AA	Slow delay type for AC
NRC111	Sliding knob operator (w/auxiliary contact) 1-pole		EA	Fast delay type for AC
NRC110L	Lever operator (w/o auxiliary contact) 1-pole		AD	Slow delay type for DC
NRC111L	Lever operator (w/auxiliary contact) 1-pole		ED	Fast delay type for DC

Internal Circuits and Terminal Arrangements

Type	1-pole w/o auxiliary contact	1-pole w/auxiliary contact	2-pole w/o auxiliary contact	2-pole w/auxiliary contact
	NRC110, NRC110L	NRC111, NRC111L	NRC210L	NRC211L
Series Trip				

Accessories

Product / Appearance

Flush
Silhouette

Control

 UnitsDisplay Lights

Display Units

Safety Products

Terminal
Blocks

Comm.
Terminals

AS-Interface

Relays \&
Timers

Sockets

Circuit
Protectors

Power
Supplies

PLCs \&
SmartRelay

Operator
Interfaces

Sensors

Control
Stations

Explosion
Protection

References

NRC Series Circuit Protectors
Dimensions and Mounting Hole Layout (1-pole Type)

Type	Type No.	onlinPcommponents.com	Mounting Hole Layout
Sliding Knob	NRC110 (Without Auxiliary Contact)		> θ°
Operator (1-pole)	NRC111 (With Auxiliary Contact)		- Mounting Hole Layout
Lever Operator (1-pole)	NRC110L (Without Auxiliary Contact)		The circuit protectors without auxiliary contacts can be mounted to the panel by using the mounting bracket (optional). See the "Accessories" for the dimensions and mounting hole layout when the mounting brackets are used.
	NRC111L (With Auxiliary Contact)		

Dimensions and Mounting Hole Layout (2-pole Type)

Type	Type No.	Dimensions	Mounting Hole Layout
Lever Operator (2-pole)	NRC210L (Without Auxiliary Contact)		
	NRC211L (With Auxiliary Contact)		The circuit protectors without auxiliary contacts can be mounted to the panel by using the mounting bracket (optional).

Overcurrent - Time Delay Characteristics (sec at $40{ }^{\circ} \mathrm{C}$)

Type	Time Delay Curve	OIIIIIIECOMIIDOIEIIS.COIII Percent of Rated Current							
		100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
AC	AA	No Trip	40-240	10-50	3.5-18	0.9-4	0.35-2	0.07-1.2	0.01-0.5
	EA	No Trip	0.05-0.4	0.03-0.17	0.02-0.07	0.008-0.025	0.005-0.018	0.004-0.017	0.004-0.017
DC	AD	No Trip	40-240	10-50	3.5-18	0.6-3	0.008-0.5	0.005-0.09	0.004-0.07
	ED	No Trip	0.04-0.4	0.025-0.15	0.015-0.06	0.007-0.025	0.005-0.018	0.004-0.017	0.004-0.017

Time Delay Curves

Coil Resistance and Impedance (at $40^{\circ} \mathrm{C}$) Temperature Correction Curve

- Time Delay Curve and Ambient Temperature

Since the NRC series circuit protectors employ an electromagnetic tripping system, the rated current (trip current) is not affected by the ambient temperatures but the time delay varies with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in shorter delay, whereas at lower temperatures the delay will be prolonged
The above time delay curves are at $40^{\circ} \mathrm{C}$. With reference to these curves, time delays can be corrected.

Selection Guide

Select an appropriate circuit protector with a required delay curve and rated current in consideration of the characteristics of the circuit or equipment to be protected.

- When starting an inductive load, the inrush current reaches up to over ten times the rated current. Select the rated current to prevent tripping at starting current.

For solenoid protection such as the above example, NRC circuit protector for the rated current 1 A is suited.

- For semiconductor element, the joint-use of short delay fuse for semiconductor protection is more effective.

Installation Angle

Designed to be mounted on a vertical surface in principle, the circuit protector should be mounted on a surface within 10° from a vertical plane.
If the protector is mounted on a horizontal surface or at any angle other than specified, the characteristics will be changed.

Wiring Example

NRF series Circuit Protectors

Snaps into a 16-mm-diameter hanlecomponents.com Wide variety of applications such as office automation equipment

-16-mm-dia fuse holder size

- More than 1,000 repeat operations
- Snap-on mounting
-Visible trip indicator
- Variety of rated currents
- Available with auxiliary contact which can be used to make an alarm or control circuit
- Solder or quick-connect terminations
- Round design and colorful bezels
- Mounting on 35 -mm-width DIN rails is made possible by using a special adapter
- Cycling trip-free mechanism

This product is recognized by Underwriters Laboratories under UL1077 as a "Supplementary Protector."

Applicable Standards	Certification Mark	Certification Organization / File No.		
UL1077	CSA C22.2 No. 235 (Note 1)	SA	No. LR83454	ENile No. E68029
:---				
EN60934 (Note 2)				
GB17701				

For details, see the list of standard certified products in the back of this catalog.
Note 1: Only NRF series circuit protectors without manual OFF mechanism are certified by CSA.
Note 2: NRF110, rated current 8A, 10A, and 15A, without manual OFF mechanism

Types

- Specify a rated current and the bezel color code in place of 12.

Package Quantity: 1

Auxiliary Contact	Internal Circuit	Manual OFF Mechanism	Type No. (Ordering Type No.)	Standard	Designation Code		
					1 Rated Current	(2) Bezel Color	
w/o Auxiliary Contact		Without	NRF110 2-1	UL CSA	0.3A, 0.5A	$\begin{array}{l}\text { Bezel } \\ \text { Color }\end{array}$ Code	
			NRF110 2-1	UL CSA TÜV (Note)	1A, 2A, 3A, 5A, 8A, 10A, 15A		
		With	NRF210 2-1	UL	0.3A, 0.5A	Black	Blank
			NRF210 2-1	UL	1A, 2A, 3A, 5A, 8A, 10A, 15A	Green	G
w/Auxiliary Contact		Without	NRF111 2-1	UL CSA	$0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}$, 8A, 10A, 15A	Blue	S
						White	W
		With	NRF211 2-1	UL CSA		Yellow	Y

Note: TÜV approved models are for $8 \mathrm{~A}, 10 \mathrm{~A}$, and 15 A only. When ordering the TÜV approved models, specify "-EN" at the end of the Type No.

Ordering Information

When ordering, specify the Type No. the rated current, and the bezel color code.
[Example]

- Wiring Example

- Manual OFF Mechanism

Manual OFF mechanism opens the main contacts by pressing the button, convenient for checking the circuit with power OFF. When manually turning OFF, make sure that the current is not applied (under no-load condition).

Specifications

Protection Method	Thermal tripping onlinecommonel
Internal Circuit	Series trip Series trip (w/auxiliary contact) \quad THE омLNE ISTRRBUTOR O F ELECTRONC
No. of Poles	1 pole
Rated Voltage	250V AC, 32V DC
Rated Current	0.3A, $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}$
Minimum Applicable Load	24 V AC/DC 100 mA (reference value)
Rated Interrupting Capacity	300 mA to 5A: Rated current $\times 6$ 8, 10, and 15A: Rated current $\times 10$
Auxiliary Contact Rating	1 NO (contact output) 125 V AC / 32V DC, 50 mA
Reference Temperature	$25^{\circ} \mathrm{C}$
Operating Temperature	-10 to $+60^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity	45 to 85\% RH (no condensation) (Note 1)
Trip Time (at $25^{\circ} \mathrm{C}$)	- No trip at the rated current - Within 1 hour at 135% the rated current
Reset Time	60 sec minimum (Note 2)
Vibration Resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 55 Hz)
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$, Operating extremes: $500 \mathrm{~m} / \mathrm{s}^{2}$
Life	- Overcurrent durability: 1,000 operations minimum (tripping at 200\% the rated current) - Mechanical life (with manual OFF mechanism): 240 operations minimum (switching at no load)
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	- Between main contacts and between main contact and ground: 2000V AC, 1 minute - Between main and auxiliary contacts: 1500 V AC, 1 minute
Terminal Style	Main terminal: Tab terminal \#250 Auxiliary contact terminal: $1.4 \mathrm{~W} \times 0.2 \mathrm{~mm}$ thick solder terminal
Weight (Approx.)	15 g

Note 1: The rated current is the value at the reference ambient tempera ture of $25^{\circ} \mathrm{C}$, and varies with the operating temperature. The rated current can be corrected according to the temperature correction curve.
Note 2: Reset time is the value at the reference ambient temperature of $25^{\circ} \mathrm{C}$.

Applications

tS.cothF series circuit protectors are small, high-performance overcurrent protectors developed for use in control circuits and small electrical equipment. Because they can be easily reset, they are suited for use in relay circuits, motor circuits, heater circuits, transformers, solenoids, solenoid valves, semiconductor circuits, and many other applications

[Application Examples]

- Office Automation Equipment

Copiers, shredders, personal computers, word processors, fax machines, printers, computer terminals, communication equipment, and power supplies.

- Measuring Instruments

Electrical measuring instruments, industrial meters, analyzers, recorders, data processors, test equipment, and chemical equipment

- Industrial Machines

CNC equipment, robots, molding machines, processing machines, packaging machines, and carriers

- Business machines

Medical equipment, vending machines, hairdresser's equipment, recreation and game machines, and small printing machines

- Electric Controller and Instrumentation Equipment Automatic control devices, electronic equipment, and instrumentation boards

Time Delay Curves

Note: Dashed lines are reference values.

Rated Current vs Internal Resistance

The internal resistance tends to be larger for smaller rated currents. When the circuit protector is used in a low-voltage circuit, voltage drop should be taken into consideration.

Temperature Correction Curve

The rated current is based on an ambient temperature of $25^{\circ} \mathrm{C}$. Since a thermal tripping method is employed, the rated current should be corrected according to the ambient temperature with reference to the curves shown below.

- Surface Mount Adapter

Type No.	Ordering Type No.	Package Quantity
NRF-M	NRF-MPN10	10

Instructions

1. Since the NRF is designed for protection against overload, it should be used within the rated interrupting capacity. An excessive overcurrent may affect the bimetal characteristics or damage the internal mechanism.
2. After tripping, the NRF cannot be reset until the bimetal cools down. Allow the NRF at least 60 seconds before resetting. When the NRF is used at an ambient temperature higher than the reference temperature, resetting sometimes fails even after 60 seconds because it takes a long time to cool down the bimetal.
3. The NRF may not trip at an instantaneous overcurrent due to its principle.
4. The NRF is shipped in the ON status. To confirm operation of the models without manual OFF mechanism, apply approximately 200% the rated current to trip the NRF.
5. When installing quick connect receptacles to the terminals, hold the NRF body and press it into the quick connect receptacles.
6. Unlike conventional switches, the models with manual OFF mechanism are not suited for frequent switching due to their construction. (Their mechanical life is 240 operations at minimum when switching at no load.)
7. The models with manual OFF mechanism should be operated without load.

NRP series PC Board Circuit Protectors

Higher economic efficiency than anfinesomponents．com

－SIL type subminiature circuit protectors adopting IC termi－ nal arrangements，and mountable directly on PC boards
－Simple construction and high performance applying a pos－ itive load reversing mechanism by IDEC＇s original design
－Unlike fuses，the thermal trip mode（bimetal type）elimi－ nates erroneous interruption due to inrush currents．
－Rated current can be selected to meet the load．Circuits with high inrush currents can be protected against over－ loads（unlike fuses）．
－Reusable 200 operations（tripping at 200% the rated cur－ rent）with higher economic efficiency，and less mainte－ nance than fuses．
－Available in slim and flat types．Slim types（can be mounted on PC boards by using pick and place machines）
－Available in non－sealed and sealed types．With the sealed type，cleaning after soldering is possible．
－With a manual OFF mechanism，convenient for circuit checkups
This product is recognized by Underwriters Laboratories under UL1077 as a＂Supplementary Protector．＂

For details，see the list of standard certified products in the back of this catalog．

Types

－Specify a rated current in place of \square

	pe	Appearance	Type No．	Ordering Type No．	\square Rated Current	Contact	Internal Circuit （Note）	Package Quantity
NRPS （Slim Type）	Non－sealed		NRPS10－प	NRPS10－ロPN10	$\begin{aligned} & 1 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{~A} \\ & 3.15 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A} \end{aligned}$	1NC		10
	Sealed （Tape－sealed）		NRPS10－G］	NRPS10－GDPN10	1A，1．6A，2A， 3．15A，4A，5A，6A	1NC		10
NRPF （Flat Type）	Non－sealed		NRPF10－■	NRPF10－ロPN10	1A，1．6A，2A， 3．15A，4A，5A，6A	1NC		10
	Sealed （Tape－sealed）		NRPF10－G口	NRPF10－GDPN10	$\begin{aligned} & \text { 1A, 1.6A, 2A, } \\ & 3.15 A, 4 A, 5 A, 6 A \end{aligned}$	1NC		10
NRPS （Slim Type）	Non－sealed		NRPS11－■	NRPS11－םPN10	1A，1．6A，2A， 3．15A，4A，5A，6A	SPDT		10
	Sealed （Tape－sealed）		NRPS11－G口	NRPS11－GDPN10	1A，1．6A，2A， 3．15A，4A，5A，6A	SPDT		10
NRPF （Flat Type）	Non－sealed		NRPF11－■	NRPF11－पPN10	$\begin{aligned} & 1 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{~A} \\ & 3.15 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A} \end{aligned}$	SPDT		10
	Sealed （Tape－sealed）		NRPF11－G口	NRPF11－GDPN10	$\begin{aligned} & 1 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{~A} \\ & 3.15 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A} \end{aligned}$	SPDT		10

Note：Terminal（3）on 1NC contact type is provided for firm mounting on printed－circuit boards，without internal connections．

Ordering Information

When ordering，select appropriate circuit protectors in consideration of the soldering method and necessity of cleaning．

NRP Series PC Board Circuit Protectors

- Selection Guide - Select appropriate circuit protectors (marked with X in the table below) according to your application.

Applications	onlinetominoments.com		Flat Type	
	Non-sealed ${ }^{\text {THE OMNE OsTr }}$	mowsealed	Non-sealed	Sealed
	NRPS10- NRPS11-	NRPS10-G \square NRPS11-G	NRPF10- NRPF11-	NRPF10-G \square NRPF11-G
Manual soldering	X	X	X	X
Dip soldering	-	X	-	X
Cleaning after soldering	-	X	-	X
Automatic mounting on PC boards	X	X	-	-

Note: The sealed type is provided with epoxy-seal on the base and a tape seal on the actuator side. After cleaning, be sure to remove the tape seal.
When using flux, use rosin flux. Select the sealed type irrespective of cleaning necessity.

Specifications

Protection Method	Thermal tripping
Internal Circuit	Series Trip
No. of Poles	1 pole
Rated Voltage	250 V AC ($50 / 60 \mathrm{~Hz}$), 32V DC
Rated Current	1A, 1.6A, 2A, 3.15A, 4A, 5A, 6A
Rated Interrupting Capacity	1 to 4A: Rated current x 10 (resistive load) 5 and 6A: 250V AC/40A, 32V DC/40A (resistive load)
Minimum Applicable Load	5V AC/DC 100 mA (reference value)
Reference Temperature	$25^{\circ} \mathrm{C}$
Operating Temperature (Note)	-10 to $+50^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity	45 to 85\% RH (no condensation)
Storage Ambient Temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (no freezing)
Storage Ambient Humidity	45 to 85\% RH (no condensation)
Vibration Resistance	$100 \mathrm{~m} / \mathrm{sec}^{2}$ (10 to 55 Hz)
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ Operating extremes: $500 \mathrm{~m} / \mathrm{s}^{2}$
Life	200 operations (tripping at 200\% the rated current)
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	1500 V AC $(50 / 60 \mathrm{~Hz})$, 1 minute (between terminals of the same pole when main contacts are open, and between live parts and ground)
Initial contact	Between terminals(1) and (2): $200 \mathrm{~m} \Omega$ maximum (5V DC •1A) Between terminals(2) and (3): $100 \mathrm{~m} \Omega$ maximum (5V DC $\cdot 100 \mathrm{~mA}$)
Weight (Approx.)	2 g

Note: The rated current is the value at the reference ambient temperature of $25^{\circ} \mathrm{C}$, and varies with operating temperature. The rated current can be corrected according to the Temperature Correction Curve

Time Delay Curves

Temperature Correction Curve

The rated current is based on an ambient temperature of $25^{\circ} \mathrm{C}$. Since a thermal tripping method is employed, the rated current should be corrected according to the ambient temperature with reference to the curve shown below.

Overcurrent - Time Delay Characteristics (sec at 25ºC)

Percent of Rated Current	100%	175%	200%	400%	600%	800%	1000%
Time Delay	No Trip	$2.2-120$	$1.2-40$	$0.24-2.2$	$0.1-1$	$0.06-0.7$	$0.04-0.5$

Dimensions and PC Board Drilling Layout

- Slim Type

onlinecomponents.comiat Type

- Dielectric Strength Test • Short-circuit Test (AC)

- Short-circuit Test (DC)

Item	1500V AC 1 minute	Critical Values		
		MIN	MAX	
Between terminals (Open) (1) - (2) \& (3)	Normal	2800	1700	3400
Between terminals (Open) (2) - (3) \& (1)	Normal	2740	2700	3400
Between housing and terminal (4) - (1) \& (2) \& (3)	Normal	3600	3300	3800

Frequency: 60 Hz

- Short-circuit current (effective value)

20A

- Power factor: $\cos \varnothing=1$ (4 cycles after power is applied)

Data

- Power voltage: 32V DC
- Short-circuit current: 31.5A

Applications of NRPS/NRPF Circuit Protectors

The NRPS/NRPF series circuit protectors are ideal for use on printed-circuit boards in small electric appliances to protect power transformers, rectifiers, small-motors, solenoid valves, and solenoids from overloads.
In addition to higher economic efficiency than that of fuses, the capability of over 200 repeated uses will find a wide range of applications in place of various fuses.

Applications Examples

Office Automation Equipment: Copiers, Shredders, Fax machines, Tools: Machine tools, Hydraulic devices, Robots, etc.
Measuring equipment:
Communication Equipment:
Commu
Power Supplies:
Testers, Oscilloscopes, etc.
Transmitter/Receiver, Telephone
Exchanger
Switching Power Supplies, Small Generators

Application Circuits Example

Safety Precautions

1. Soldering

(1) • Soldering to the printed-circuit boards

Soldering should be done quickly referring to the conditions below. If the terminals are heated excessively, the bimetal may trip.

- Manual soldering

For manual soldering, complete soldering with a 60W soldering iron (soldering tip temp.: $350^{\circ} \mathrm{C}$) quickly with in 3 seconds. (When lead-free soldering is used, Sn -$\mathrm{Ag}-\mathrm{Cu}$ is recommended.)
During soldering, keep the soldering iron away from the plastic housing of the circuit protector, and apply no external force by bending the terminal or pulling the wires.
(Check your actual soldering conditions before soldering.)

- Dip soldering

Dipping temperature: $260^{\circ} \mathrm{C}$
Dipping duration: 5 seconds maximum
(2) Do not solder the sealed type in a flow soldering bath. Since preheating process weakens the viscosity of the tape seal on the actuator due to the air expansion inside NRPS and the NRPF, air-tightness is possibly lowered.
(3) For the non-sealed type, perform manual soldering. Do not use the water-soluble flux because it runs into the unit and it causes malfunctions.
(4) Non-corrosive rosin flux is recommended because washing is not required.

2. Washing

(1) When there is a possibility of washing, select the seal type.
(2) Washing should be done at $60^{\circ} \mathrm{C}$ maximum within 30 seconds (and 50 mm depth for full washing). Avoid steam washing. Use pure water as a cleaning solvent. When an organic solvent is used, use of alcohol is recommended. Before using other organic solvents, make sure that after actual washing, the tape seal is not removed and sealant or housing material is not affected.
(3) The base of sealed type is provided with epoxy resin sealing and a tape seal covers the actuator. After cleaning, be sure to remove the tape from the actuator before use.
3. Notes for Bimetal
(1) Storage temperature should not exceed $70^{\circ} \mathrm{C}$. If storage temperature exceeds $70^{\circ} \mathrm{C}$, the bimetal may trip.
(2) Applied current should be under the rated current for the normal use. The rated current should be corrected according to the ambient temperature chart due to bimetal characteristics.
(3) Since the NRPS and NRPF are designed for protection against overloads, they should be used within the rated interrupting capacity. An excessive overcurrent may affect the bimetal characteristics or damage the internal mechanism.
(4) Note that the NRPS and NRPF do not respond to overcurrent for a period of few tens to few hundreds msec.

4. Manual OFF Mechanism

Manual OFF mechanism is performed by slightly pulling the white pin at the top of the unit with tweezers.

5. Other Notes

(1) Make sure that no load (current) is applied before resetting manually turning the circuit OFF with actuator operation. In addition, avoid frequent opening and closing of the actuator at no load (current is not applied).
(2) Turn power off and allow at least 60 seconds before rethrowing (at reference ambient temperature of $25^{\circ} \mathrm{C}$). Reset the protector with no load. Do not press the actuator with something sharp, otherwise the internal part may be damaged.
(3) Do not hold the actuator depressed while an overcurrent is present, because the overcurrent may damage the circuit protectors.

