HO 40 .. 150-NP series

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test $50 / 60 \mathrm{~Hz} / 1 \mathrm{~min}$	$U_{\text {d }}$	kV	4.3	
Impulse withstand voltage $1.2 / 50 \mu \mathrm{~s}$	\hat{U}_{w}	kV	8	
Partial discharge extinction rms voltage @ 10 pC	$U_{\text {e }}$	V	> 930	Primary / Secondary
Clearance (pri. - sec.)	$d_{\text {c }}$	mm	> 8	Shortest distance through air
Creepage distance (pri. - sec.)	$d_{\text {cp }}$	mm	> 8	Shortest path along device body
Clearance (pri. - sec.)		mm	> 8	When mounted on PCB with recommended layout
Case material			V0 according to UL 94	
Comparative tracking index	CTI		600	
Application example	-	-	$\begin{aligned} & 600 \mathrm{~V} \\ & \text { CAT III PD2 } \end{aligned}$	Reinforced insulation, non uniform field according to EN 50178, EN 61010
Application example	-	-	$\begin{aligned} & 1000 \text { V } \\ & \text { CAT III PD2 } \end{aligned}$	Based insulation, non uniform field according to EN 50178, EN 61010
Application example	-	-	$600 \text { V }$ CAT III PD2	Simple insulation, non uniform field according to UL 508

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Typ	Max	Comment
Ambient operating temperature	T_{A}	${ }^{\circ} \mathrm{C}$	-40		105	
Ambient storage temperature	T_{S}	${ }^{\circ} \mathrm{C}$	-40		105	
Mass	m	g		31		

Electrical data HO 40-NP-0100

At $T_{\mathrm{A}}=25^{\circ} \mathrm{C}, U_{\mathrm{C}}=+5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$ unless otherwise noted (see Min, Max, typ. definition paragraph in page 11).

Parameter	Symbol	Unit	Min	Typ	Max	Comment
Primary nominal rms current	$I_{\text {PN }}$	A		40		
Primary current, measuring range	$I_{\text {PM }}$	A	-100		100	@ $U_{\text {c }} \geq 4.6 \mathrm{~V}$
Number of primary turns	$N_{\text {P }}$			1,2,4		See application information
Primary jumper resistance @ +25 ${ }^{\circ} \mathrm{C}$	$R_{\text {P }}$	$\mathrm{m} \Omega$		0.09		4 jumpers in parallel
Primary jumper resistance @ +120 ${ }^{\circ} \mathrm{C}$	$R_{\text {P }}$	$\mathrm{m} \Omega$		0.12		4 jumpers in parallel
Supply voltage ${ }^{1)}$	$U_{\text {c }}$	V	4.5	5	5.5	
Current consumption	$I_{\text {c }}$	mA		19	25	
Reference voltage (output)	$V_{\text {ref }}$	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	$V_{\text {ref }}$	V	0.5		2.65	External reference
Output voltage range @ $I_{\text {PM }}$	$V_{\text {out }}-V_{\text {ref }}$	V	-2		2	Over operating temperature range
$V_{\text {ref }}$ output resistance	$R_{\text {ref }}$	Ω	130	200	300	Series
$V_{\text {out }}$ output resistance	$R_{\text {out }}$	Ω		2	5	Series
Allowed capacitive load	C_{L}	nF	0		6	
OCD output: On resistance	$R_{\text {on }}$	Ω	70	95	150	Open drain, active low Over operating temperature range
OCD output: Hold time	$t_{\text {hold }}$	ms	0.7	1	1.4	Additional time after threshold has released
EEPROM control	$V_{\text {out }}$	mV	0		50	$V_{\text {out }}$ forced to GND when EEPROM in an error state ${ }^{2)}$
Electrical offset voltage @ $I_{\mathrm{P}}=0 \mathrm{~A}$	$V_{\text {OE }}$	mV	-5		5	$V_{\text {out }}-V_{\text {ref }} @ V_{\text {ref }}=2.5 \mathrm{~V}$
Electrical offset current Referred to primary	$I_{\text {OE }}$	A	-0.25		0.25	
Temperature coefficient of $V_{\text {ref }}$	$T C V_{\text {ref }}$	ppm/K	-170		170	$-40{ }^{\circ} \mathrm{C} \ldots 100^{\circ} \mathrm{C}$
Temperature coefficient of $V_{\text {OE }}$	$T C V_{\text {OE }}$	mV / K	-0.075		0.075	$-40^{\circ} \mathrm{C} \ldots 105^{\circ} \mathrm{C}$
Offset drift referred to primary @ $I_{\mathrm{P}}=0 \mathrm{~A}$	$\mathrm{TCl}_{\text {OE }}$	mA/K	-3.75		3.75	$-40^{\circ} \mathrm{C} \ldots 105{ }^{\circ} \mathrm{C}$
Theoretical sensitivity	$G_{\text {th }}$	mV / A		20		800 mV @ $I_{\text {PN }}$
Sensitivity error @ $I_{\text {PN }}$	ε_{G}	\%	-0.75		0.75	Factory adjustment, 1 turn configuration, 4 jumpers in parallel
Temperature coefficient of G	TCG	ppm/K	-200		200	$-40^{\circ} \mathrm{C} \ldots 105{ }^{\circ} \mathrm{C}$
Linearity error $0 \ldots I_{\text {PN }}$	ε_{L}	\% of $I_{\text {PN }}$	-0.75		0.75	
Linearity error $0 \ldots I_{\text {PM }}$	ε_{L}	\% of $I_{\text {PM }}$	-0.5		0.5	
Magnetic offset current (@ $10 \times I_{\text {PN }}$) referred to primary	$I_{\text {ом }}$	A	-0.8		0.8	One turn
Reaction time @ 10% of $I_{\text {PN }}$	$t_{\text {ra }}$	$\mu \mathrm{s}$			2	@ $50 \mathrm{~A} / \mu \mathrm{s}$
Response time @ 90% of $I_{\text {PN }}$	$t_{\text {r }}$	$\mu \mathrm{s}$			2.5	@ $50 \mathrm{~A} / \mu \mathrm{s}$
Frequency bandwidth (-3 dB)	$B W$	kHz		350		
Output rms voltage noise (spectral density) $(100 \mathrm{~Hz} \ldots 100 \mathrm{kHz})$	$e_{\text {no }}$	$\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$			16	
Output voltage noise (DC ... 10 kHz) (DC ... 100 kHz) (DC ... 1 MHz)	$V_{\text {no }}$	mVpp		$\begin{gathered} 8 \\ 25 \\ 46.2 \end{gathered}$		
Over-current detect		A	$2.64 \times I_{\text {PN }}$	$2.93 \times I_{\text {PN }}$	$3.22 \times I_{\text {PN }}$	Peak value ± 10 \%
Accuracy @ $I_{\text {PN }}$	X	\% of $I_{\text {PN }}$	-1.5		1.5	
Accuracy @ $I_{\text {PN }} @ T_{\mathrm{A}}=+105^{\circ} \mathrm{C}$	X	$\%$ of $I_{\text {PN }}$	-3.85		3.85	See formula note ${ }^{3)}$
Accuracy @ $I_{\text {PN }} @ T_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	X	$\%$ of $I_{\text {PN }}$	-3.26		3.26	See formula note ${ }^{3)}$

Notes: ${ }^{1)} 3.3 \mathrm{~V}$ SP version available
${ }^{2)}$ EEPROM in an error state makes the transducer behave like a reverse current saturation. Use of the OCD may help to differentiate the two cases.
3) Accuracy @ $X_{T A}\left(\%\right.$ of $\left.I_{P N}\right)=X+\left(\frac{T C G}{10000} \times\left(T_{A}-25\right)+\frac{T C I_{\mathrm{OE}}}{1000 \times I_{\mathrm{P}}} \times 100 \times\left(T_{\mathrm{A}}-25\right)\right)$.

