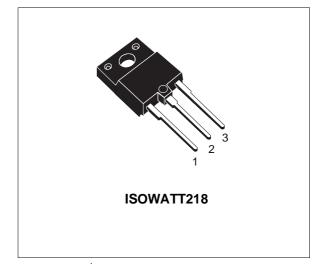
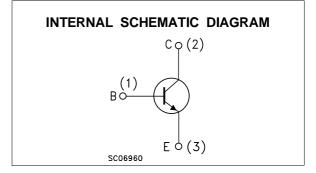


S2000AFI

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR


- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- U.L. RECOGNISED ISOWATT218 PACKAGE (U.L. FILE # E81734 (N).


APPLICATIONS:

 HORIZONTAL DEFLECTION FOR COLOUR TV

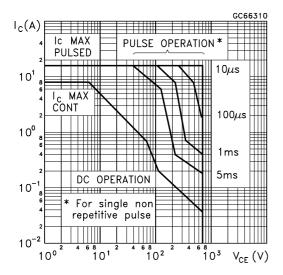
DESCRIPTION

The S2000AFI is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.

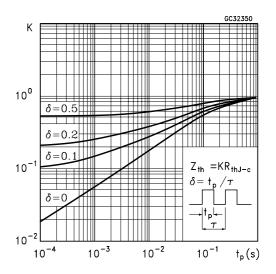
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1500	V
Vceo	Collector-Emitter Voltage (I _B = 0)	700	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	10	V
Ιc	Collector Current	8	A
I _{CM}	Collector Peak Current (t _p < 5 ms)	15	A
P _{tot}	Total Dissipation at $T_c = 25 \ ^{\circ}C$	50	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

THERMAL DATA

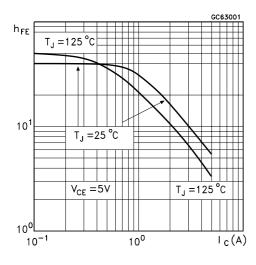

R _{thj-case} Ther	rmal Resistance Junction-case	Max	2.5	°C/W	
----------------------------	-------------------------------	-----	-----	------	--

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

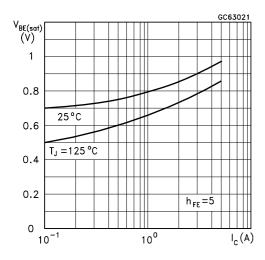

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1500 V T _C = 125 °C V _{CE} = 1500 V			1 2	mA mA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 5 V			100	μA
$V_{CEO(sus)}^{*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	700			V
V_{EBO}	Emitter Base Voltage (I _C = 0)	I _E = 10 mA	10			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{\rm C} = 4.5 \text{ A}$ $I_{\rm B} = 2 \text{ A}$			1	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 4.5 A I _B = 2 A			1.3	V
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$ I_C = 4.5 \text{ A} h_{FE} = 2.5 V_{CC} = 140 \text{ V} \\ L_C = 0.9 \text{ mH} L_B = 3 \mu\text{H} $		7 0.55		μs μs
f⊤	Transition Frequency	$I_{C} = 0.1 \text{ A} \qquad V_{CE} = 5 \text{ V} f = 5 \text{ MHz}$		7		MHz

* Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

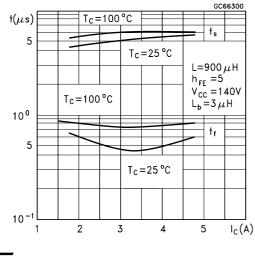
Safe Operating Area.

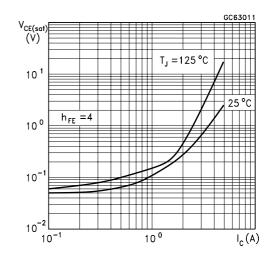


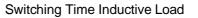
Thermal Impedance



57

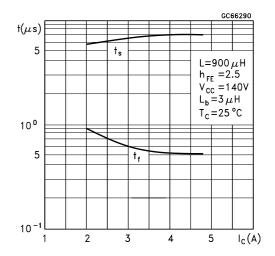
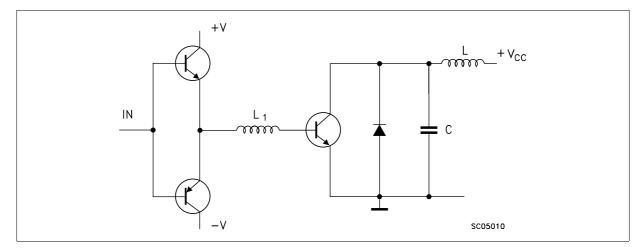

DC Current Gain

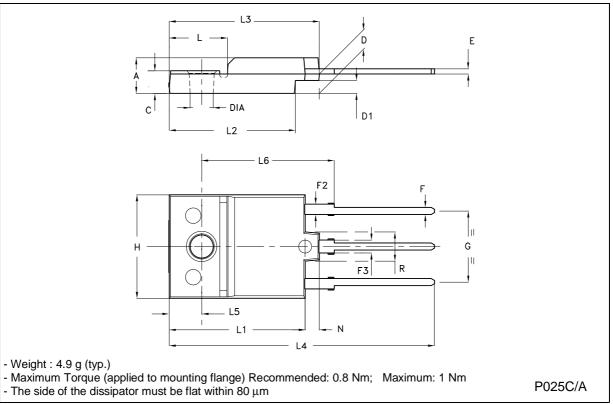

Base Emitter Saturation Voltage



Switching Time Inductive Load (see figure 1)

Collector Emitter Saturation Voltage


Figure 1: Inductive Load Switching Test Circuit.

57

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	5.35		5.65	0.211		0.222
С	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.082
Е	0.75		0.95	0.030		0.037
F	1.05		1.25	0.041		0.049
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
G	10.80		11.20	0.425		0.441
Н	15.80		16.20	0.622		0.638
L		9			0.354	
L1	20.80		21.20	0.819		0.835
L2	19.10		19.90	0.752		0.783
L3	22.80		23.60	0.898		0.929
L4	40.50		42.50	1.594		1.673
L5	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
Ν	2.1		2.3	0.083		0.091
R		4.6			0.181	
DIA	3.5		3.7	0.138		0.146

ISOWATT218 MECHANICAL DATA

P025C/A

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.