## BOSCH

## Industrieausrüstung

Bosch Servodyn Inverter System Servo Module SM . . -T

Handbook No. 12

## Antriebstechnik

## Contents

1. Design of the Inverter System ..... 1
1.1 Construction and function SM ..-T ..... 1
1.2 Regulation and monitoring functions SM ..-T ..... 1
2. Technical Data ..... 4
2.1 Type designation ..... 4
2.2 Power unit ..... 4
2.3 Regulating and control unit ..... 5
2.3.1 Control inputs ..... 5
2.3.2 Motor feedback ..... 5
2.3.3 Control outputs ..... 5
2.3.4 Test points ..... 6
2.4 Diagnostics module ..... 6
3. Application Instructions ..... 7
3.1 Recommended module/motor combinations ..... 7
3.2 Option diagnostics module ..... 9
3.3 Option tandem drive ..... 9
3.4 Option backlash compensation ..... 9
3.5 Option ramp generator ..... 10
3.6 Option short circuit braking ..... 10
4. Dimensioned Drawings ..... 12
4.1 Dimensioned drawing - servo module SM..-T ..... 12
4.2 Dimensioned drawing - ramp generator ..... 13
4.3 Dimensioned drawing - short circuit braking module ..... 13
5. Mounting Instructions ..... 14
5.1 Configuration and mounting position ..... 14
5.2 Cabinet ..... 15
5.3 Connection cables ..... 15
5.4 Mounting instructions SM . .-T ..... 16
6. Electrical Connection ..... 17
6.1 Basic circuit drawing SM ..-T + VM 60-T ..... 17
6.2 Basic circuit drawing SM ..-T + VM 100/R-T ..... 18
6.3 Front plate designation SM . .-T ..... 19
c 1986
ROBERT BOSCH GMBH


## 1. Design of the Servodyn Inverter System

Bosch inverter systems are of modular construction. At least one supply and one servo module are required to make up an operative installation.

The supply module generates a DC link voltage and various supply voltages (for logic and driver circuits) from the mains ( $3 \times 380-3 \times 415 \mathrm{~V}$ ).

The individual modules are connected to one another by plug-in cables which are supplied with them.

On an installation with several modules up to 10 SM modules can be connected to one supply module, depending on the size of the modules.

Since the mechanical construction and the electrical connection to the supply module are the same as for the ASM system (inverter system for standard asynchronous motors) as well as the SPM system (inverter system for controlled spindle drives) combinations of these systems are possible (for instance 3 SM modules and 1 SPM module for the main spindle).

### 1.1 Construction and Function of Servo Module SM..-T

### 1.2 Regulating and Monitoring Functions Servo Module SM..-T

Bosch AC inverters of the SM..-T range allow optimum utilization of the brushless Bosch servo motors

In conjunction with a rotor position recognition function and a brushless tacho the servo module regulates the motor torque and motor speed.

In a inverter stage with power semiconductors voltages and currents are generated in such a way that the machine can produce the required torque at any speed.

## Speed Regulation Function

The speed regulator is contained on an optimisation card. Two speed command signals and one actual speed signal are available as input quantities (SW1, SW2 and tacho). The output (UN) is the command for the current regulator. The regulating process can be influenced in several ways.

The speed commands SW1 and SW2 and the tacho signal are transmitted via differential amplifiers. The differential amplifier for SW1 is linked to a slope limiting device in order to smooth out the stepped output of most NC controls (see 7.3.3). Its input voltage of 7 V to 11 V can be adapted. SW2 has a fixed amplification of $1: 1$.

The tacho signal can be adapted within the wide range of 500 to 4000 rpm with micro-switches and an additional potentiometer for fine adjustment. It is also possible to connect an active filter between the tacho input amplifier and the speed regulator (see 7.3.8).

The speed regulator has a PI circuit as standard. For special cases derivative action can also be realized (see 7.3.8).

The l-portion of the regulator can be switched off via an external interface signal. For purposes of integration and testing the regulator can be limited to $1: 1$ amplification in the P -portion via a switch.

When the enable signal for the regulator has not been given the P -portion is also limited to $1: 1$ and command 1 (SW1) is short-circuited. There are two possible responses when the enable signal is switched off. First possibility: SW1 is short circuited; P-portion =1:1 amplification; the drive idles down to zero speed. Second possibility: braking to zero speed with the maximum servo module current (see 7.2.3 R68, R69).
The speed regulator output (UN) can be limited as command for the current regulator by an external interface signal (Mred), which determines the maximum acceleration current (see connections 6.4.13).
If the motor is jammed this also results in a limitation of UN, in that the maximum current will be reduced to $50 \%$ after 2 seconds.

## Current Regulator Functioning

The current regulator compares the speed regulator output as a current command with the actual current value and sends a suitable control signal for the adaptive control of the pulse inverter for electronically motors.
In conjunction with the commutation encoder of the motor the pulse inverter control operates the power semi conductors of a bridge circuit.
This makes it possible to regulate the current in the motor windings, in which an instant torque can be generated depending on the rotor position.

## Monitoring Functions

All the monitoring functions described below can be displayed and stored on an optional diagnostics card.

## PSU Fault ( $\mathbf{N}$ )

The internal supply voltages of servo module are monitored for overvoltage or undervoltage ( 14 V and 16 V ). If one of these faults occurs Ready 2 (BTB 2) is switched off and the internal enable (FGI) is taken away.
With the aid of the optional diagnostics module the PSU fault (NF) can be displayed with an LED and signalled to a higher level control via an interface signal.

## Module Fault (Mf)

This fault signal is produced if the load circuit (motor connection) is interrupted or short-circuited.
Ready 2 (BTB 2) is switched off and FG 1 is taken away. Further processing of the signal possible with the diagnostics module (see PSU fault).

## Tacho Fault (Tr)

This signal is produced if the tacho line is interrupted or short-circuited. Ready 2 (BTB 2) is switched off; FG I is taken away. Further processing possible with the diagnostics module (see PSU fault).

## Commutation Monitoring (KF)

This monitoring function produces a fault signal if inadmissible combinations of commutation signals come from the rotor position encoder, if the tacho connector is not plugged in, or if there is a fault in the tacho electronics or the tacho line.

Ready 2 (BTB 2) is switched off; enable signal FG I is taken away. Further processing possible with the diagnostics module (see PSU fault).

## Excess Heat Sink Temperature ( $\partial \mathrm{K}$ )

When the temperature of the heat sink of the power unit exceeds 8 max, Ready 1 (BTB 1 ) is switched off and signal $8 k$ is set, if there is a diagnostics module.

But the axis remains active for one more minute (in order to initiate "Feed Hold", for instance). Only then is the internal enable signal (FG I) taken away. This condition remains stored even if the fault signal disappears after a drop in temperature, in order to prevent an automatic restarting of the axis.
The fault signal can be reset via the diagnostics module on the condition that the enable has been switched off externally first.

If the diagnostics module is not used the drive must be switched off; the signal is then reset with mains ON.

## Excess Motor Temperature ( 8 M )

This fault signal is produced when the motor winding temperature exceeds $140^{\circ} \mathrm{C}$.

Further processing of the fault signal corresponds to that for the excess heat sink temperature ( 8 K ).

## Motor Blocked ( x t)

This signal appear on the diagnostics module if the motor receives the maximum current for more than 2 seconds without moving. After this time the maximum current is reduced to $50 \%$.

The drive will remain in this condition until the cause of the motor blocking is eliminated.

The signal ( $1 \times t$ ) has no further effect. Further processing of the signal is possible with the diagnostics module (see PSU fault).

## Speed Monitoring ( $\mathbf{n}<\mathbf{n x}$ )

This signal is produced if the speed at any one time is below a predetermined minimum speed.
The signal can be displayed via the diagnostics module. By changing components on the optimisation card this signal can be made to appear only at standstill. This signal has no further effect.

The monitoring speed ( $n x$ ) is predetermined by the value of a component on the optimisation card (see integration instructions 7.3.7).

## 2. Technical Data

### 2.1 Type Designation


2.2 Power Unit

| Type | SM5/10-T | SM 10/20-T | SM17/35-T | SM 25/70-T | SM 35/70-T | SM 50/100-T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rated current [A] <br> at amb. temp. $=45^{\circ}$ <br> at amb. temp. $>45^{\circ} \mathrm{C}$ | 5 current | $10$ <br> reduction | $17$ <br> by 1,2\% | $25$ <br> per degre | 35 <br> ee K | 50 |
| peak current [A] (2 sec) | 10 | 20 | 35 | 50 | 70 | 100 |
| DC link voltage | $460 \mathrm{~V}_{\text {rated }}<\mathrm{V}_{\mathrm{N}}<700 \mathrm{~V}_{\text {max }}$ |  |  |  |  |  |
| speed regulating range | > 1: 10,000 |  |  |  |  |  |
| requirement for <br> energy - <br> power supply [W] $\begin{array}{lllllll}20 & 20 & 22 & 24 & 26 & 30\end{array}$ |  |  |  |  |  |  |
| max. power loss [W] | 60 | 90 | 150 | 200 | 250 | 350 |
| Cooling | - | - | X | X | X | X |
| mass [kg] |  |  |  |  |  |  |
| max. operating temperature max. storage temperature |  |  | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
| max. operating height |  |  | 1000 m amsl |  |  |  |
| protection standard |  |  | IP 00 to DIN 40050 and IEC 144 |  |  |  |
| admissible humidity |  |  | class F and DIN 40040 |  |  |  |
| cooling |  |  | forced ventilation with 1 axial blower, supply: 24 V DC, 100 mA |  |  |  |

### 2.3 Regulating and Control Unit

### 2.3.1 Control inputs

2.3.2 Motor Feedback
2.3.3 Control Outp Jts

| differential command inputs | SW 1: range $\pm 7 \mathrm{~V}$ to $\pm 11 \mathrm{~V}$ on connector X6, PINS 5 and 6 , internal setting of slope limitation for stepped NC output |
| :---: | :---: |
|  | SW 2: range $\pm 10 \mathrm{~V}$ with fixed input amplification 1:1 |
| enable | FG: $\mathrm{X} 6.3+24 \mathrm{~V}$ and X 6.40 V , opto-coupler input |
| torque reduction (reduction of the peak current of the unit) | $M_{\text {red }}=0 \mathrm{~V} . . .10 \mathrm{~V}$ on X14.4 and 3 reduction from 100 down to $10 \%$ via component R25 |
| switching off integral portion of speed regulator | $\begin{aligned} & \text { P-REG: } \times 14.1 \text { and } 2 \\ & +24 \mathrm{~V} \text { signal on } \times 14.2 \text { and } 0 \mathrm{~V} \text { on } \\ & \mathrm{X} 14.1 \end{aligned}$ |
| rotor position encoder | X5; digital signals $A, B, C / 1,2,3$ |
| tacho voltage | $X 5.4$ and 5 analogue $\pm 2,7 \mathrm{~V} /$ $1000 \mathrm{~min}^{-1}$ |
| Ready 1 | BTB 1: X1.3 and 4 potential-free relay contact max. contact load: 24 V 1 ADC |
| Ready 2 | BTB 2: X1.1 and 2 potential-free relay contact max. contact load: 24 V 1 A DC |
| tacho voltage; measuring output | Ta: X6.8 short circuit proof measuring output $2.7 \mathrm{~V} / 1000 \mathrm{rpm} \pm 5 \%$ |
| standardized current; measuring output | Inorm: X6.7 <br> short circuit proof measuring output $0 . . \pm 8 \mathrm{~V}$, <br> $\pm 8 \mathrm{~V}=$ peak current of unit |
| command output, standardized | SW 1a: X6.2 short circuit proof output |

2.3.4 Test Points (with high frequency protection)

| command 1 | SW 1: | $\begin{aligned} & \text { measured against } \stackrel{\perp}{=} \\ & \text { level: } 0 \text { to } \pm 7.5 \mathrm{~V} \end{aligned}$ |
| :---: | :---: | :---: |
| tacho | T : | measured against $\stackrel{\perp}{=}$ level: 0 to $\pm 2.7 \mathrm{~V}$ per 1000 rpm |
| standardized current | $I_{\text {norm: }}$ | measured against $\stackrel{\perp}{=}$ level: 0 to $\pm 8 \mathrm{~V}$ <br> $8 \mathrm{~V} \xlongequal{=}$ unit peak current |
| speed regulator output | $U_{N}$ : | measured against $\stackrel{\perp}{=}$ level: 0 to $\pm 8 \mathrm{~V}$ <br> $8 \mathrm{~V} \xlongequal{=}$ unit peak current |

### 2.4 Diagnostics Module (Option)

| voltage supply | external: $+24 \mathrm{~V} \pm 15 \%$ $\mathrm{I}=100 \mathrm{~mA}$ per output |
| :---: | :---: |
| control outputs | 24 VDC ; max. load 100 mA <br> 300 mA short-time <br> (relay pull-in current); <br> short circuit proof and protected against surge voltages resulting from the switching of inductive loads |
| LED displays |  |
| reset input | Res: $\mathrm{X7} .1$ for ext. reset signal $+24 \mathrm{VDC}, 20 \mathrm{~mA}$ |
| reset pushbutton | S 1 |

xible Automation

## 3. Application Instructions

### 3.1 Recommended Module/ Motor Combinations

| type of motor SD-... <br> (1) | type of module SM..-T |  |  | 25/50 | 35/70 | 50/100 | capacitor moduleKM....-T |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5/10 | 10/20 | 17/35 |  |  |  | 1-axis | $\geqq 2$-axes |
| B3.031.030 | X | - | - | - | - | - | - | - |
| B3.050.030 |  | $\bar{x}$ | - | - | - | - | $-$ |  |
| B3.068.030 | - | X | - | - | - | - | - |  |
| B3.095.030 | - | X | - | - | - | - | - |  |
| B4.070.030 | - | X | - | - | - | - | - |  |
| B4.092.020 | - | X | - | - | - | - | - |  |
| B4.140.020 | - | $x$ | $\bar{x}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | - | $\begin{aligned} & - \\ & - \end{aligned}$ | - | 1100 |
| B4.140.030 | - | - | $x$ | $\bar{x}$ | - | - | $-$ | 1100 |
| B4.180.020 | - | $x$ | $\bar{x}$ | - | - | - | $-$ | 1100 |
| B5.250.015 | - | - | X | - | - | - | 1100 | 1100 |
| B5.250.020 | - | $\begin{aligned} & - \\ & - \end{aligned}$ | $x$ | $\bar{x}$ | - | - | $1100$ | $\begin{aligned} & 1100 \\ & 2200 \\ & \hline \end{aligned}$ |
| B5.380.012 |  |  | $x$ | $\bar{x}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | - | $\begin{aligned} & 1100 \\ & 1100 \end{aligned}$ | $\begin{aligned} & 1100 \\ & 2200 \end{aligned}$ |
| B5.380.020 | - | $\begin{aligned} & - \\ & - \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$ | $x$ | $\bar{X}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $\begin{aligned} & 1100 \\ & 1100 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2200 \\ & 2200 \end{aligned}$ |
| B6.480.020 | - | - | - | $\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$ | $x$ | $\bar{X}$ | $\begin{aligned} & 1100 \\ & 1100 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2200 \\ & 2200 \\ & \hline \end{aligned}$ |
| B6.720.020 | - | - | - | - | - | X | 2200 | 2200 |
| B6.960.010 | - | - | $\begin{aligned} & - \\ & - \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $x$ | $\bar{x}$ | $\begin{aligned} & 1100 \\ & 1100 \end{aligned}$ | $\begin{aligned} & 2200 \\ & 2200 \end{aligned}$ |
| B6.960.015 | - | - | - | - | - | X | 2200 | 2200 |

(1) Motors in ferrite construction

Technical data see handbook 01

### 3.2 Diagnostics Module (option)

The diagnostics module is available as an option. It can be used in all modules of the Servodyn range.

This module facilitates fast fault diagnosis in the area of the drive electronics by the enduser's maintenance personnel. 8 different diagnostic signals are output. 4 of these signals are stored and displayed via red LEDs.

The other 4 signals are warning signals and they are displayed with yellow LEDs.

In addition all faults can be signalled to a higher-level control via 24 VDC interface signals. For this purpose each diagnostics module has a separate 24 VDC supply which will supply the fault stores and the interface even when the drive is switched off (by E.Stop, for instance).
Each type of module has a space for this card on the right side behind the front plate. The 24 VDC diagnostic signals can be taken directly from a 10 -pole terminal strip on the front plate. The external 24 VDC is connected via a 2-pole terminal strip

The fault stores can be reset either via a reset input, "RES" (+24 VDC), or via a reset button located on the diagnostics module
on request

### 3.4 Option <br> Backlash Compensation on request

### 3.5 Option Ramp Generator

This additional module allows a limitation of the leading and trailing edge of the command signal, thereby limiting the time for motor acceleration and braking ( $\mathrm{t}_{\text {min }}=5 \mathrm{~ms}$; $\mathrm{t}_{\text {max }}=10 \mathrm{~s}$ ). Leading and trailing edge can be set separately (for range see the section on connections, 6.4.14 and the drawings in 4.2).

The card is designed to be clipped onto a tophat rail and is supplied with a $\pm 15 \mathrm{~V}$ auxiliary voltage from the supply module VM .

### 3.6 Option Short Circuit Braking

In order to prevent the feed axes from slowing down in an uncontrolled way in the event of an E.Stop the feed motors can be shut down by short circuiting the motor windings.
The values of the short circuit braking resistors are chosen to ensure that the short circuit current achieves 3 to 4 times the rated current, and therefore also 3 to 4 times the rated torque, in the initial phase.
The required resistor values are calculated on the basis of the rotational energy ( $W_{\text {rot }}=1 / 2 J \omega^{2}$ ), which needs to be converted, assuming $n=$ max. speed and load inertia $=$ motor inertia.

The resistors can be purchased as individual resistors or incorporated into a complete resistor module.

## Selection Table for Short Circuit Braking Module

（condition：
total inertia $=2 \times$ motor inertia）

## Servodyn Ferrite

| type of motor | resistance $\mathrm{R}_{\mathrm{X}}$［Ohm］ | min．energy ［Ws］＊KB | stock no． <br> Bosch |
| :---: | :---: | :---: | :---: |
| SD－■3．031．030 | 8，2 | 57 | 105－913544 |
| SD－■3．050．030 | 3，3 | 293 | 105－913545 |
| SD－口3．068．030 |  |  |  |
| SD－口3．095．030 |  |  |  |
| SD－■4．070．030 | 5，6 | 261 | 105－913546 |
| SD－口4．092．020 |  |  |  |
| SD－■4．140．020 | 3，3 | 293 | 105－913545 |
| SD－■4．180．020 |  |  |  |
| SD－■4．140．030 |  |  |  |
| SD－■5．250．015 |  |  |  |
| SD－■5．250．020 | 3，3 | 785 | 105－913547 |
| SD－■5．380．012 |  |  |  |
| SD－प5．380．020 |  |  |  |
| SD－■6．480．020 | 1，0 | 4085 | 105－913862 |
| SD－■6．720．020 |  |  |  |
| SD－■6．960．010 |  |  |  |
| SD－■6．960．015 |  |  |  |


| $R_{X}( \pm 10 \%)$ | Each module consists of 3 resistors <br> Individual resistor see above table |
| :--- | :--- |
| max．conn．size | $4 \mathrm{~mm}^{2}$ |
| test voltage | 2500 VAC |
| max．ambient <br> temperature | $55^{\circ} \mathrm{C}$ |
| mounting | snap－on fastening on 35 mm tophat rail to DIN |
| prot．standard | IP 20 |
| dimensioned <br> drawing | see section 4.3 |

＊KB $=$ short－time operation - to be specified when ordering the resistor！

The modules must be mounted in switch cabinets to protection standard IP 54 or IP 44 (dust filters in front of the air inlet and outlet).

The flow of cooling air through the modules, which is directed upwards, must not be impeded by other components or parts of the switch cabinet. To ensure this a clearance of at least 100 mm must be provided above and below the modules.

No minimum clearance is required at the sides.
The air temperature within the cabinet must not exceed $+55^{\circ} \mathrm{C}$. Condensation is not admissible.


### 5.3 Connection Cables

Connection cables which go to the terminal board and the PE connection must be combined in a cable tree and attached to existing holders with the aid of 2 cable binders.

Connection cables going to front plate connectors $\mathrm{X} 1, \mathrm{X} 6, \mathrm{X} 9$ and to diagnostics X31, X7 and to the optimisation module X14 can be routed directly downwards and into a cable channel which must be mounted below the modules (mounting brackets for the channel are supplied).

Flexible Automation

### 5.4 Mounting Instructions Servo Module SM..-T


6. Electrical Connection and Front Plate Designations
6.1 Basic Circuit Drawing SM..-T + VM 60-T



### 6.3 Front Plate Designations SM...T



### 6.4 Connection Servo Module

### 6.4.1 Earth

### 6.4.2 Motor Connection

motor sizes
SD-■3
SD-■4
SD-■5

## * Note:

PIN D (motor star point) must not be connected!

Each servo module (SM) has a connection for the protective earth (power connection, terminal block top right). Protective earth and PE busbar must be connected with a $2.5 \mathrm{~mm}^{2}$ cable for SM 5/10, 10/20, 17/35 and with a $6 \mathrm{~mm}^{2}$ cable for SM 25/50, SM 35/70 and $10 \mathrm{~mm}^{2}$ for SM 50/100.

The connection to the brushless servo motors is made via terminals $\mathrm{U} 2, \mathrm{~V} 2$, W 2 of the associated servo modules. On the motors themeselves the connection is made via plug-in connectors.


* short circuit braking for E.Stop condition


### 6.4.3 DC Link Connection

6.4.4 Circuitry for the Resistors for Fast Discharge of the DC Link

Start-up switching module (Bosch no. 105-913274) Contactors K01 in series, since DC link voltage up to 1000 V .

The DC link voltage for the supply of the servo modules is available on connections $\mathrm{L}+$ and L - of the supply module.


DC link connection for 3 SM modules and 1 KM module
Establish the DC link connection with the busbars and fastening screws supplied in the accessories pack.

The see-through cover for the terminal block and the busbar connections must be replaced afterwards as protection against accidental contact. The right side of the busbar connection (on the right side of the VM, EBM or KM) must also be protected against accidental contact with an additional black plastic cover (supplied in the accessories pack for VM, KM or EBM).


### 6.4.5 Connector X5:

Control Signals from Motor (rotor position encoder and tacho)


Connection cable $\times 5$ encoder: special cabie $10 \times 0.14 \mathrm{~mm}^{2}+4 \times 0.5 \mathrm{~mm}^{2}$, screened. Max. cable length 100 m .
This type of cable is available from Bosch under stock number 070-903499 (by the meter).

### 6.4.6 Terminal Strip X1

* For general fault signal:
all ready contacts of the module combination connected in series (VM; SM; ASM; SPM)

Max. contact load: $24 \mathrm{~V}, 1$ ADC

Ready 1 BTB 1

Ready 2 BTB 2

### 6.4.7 Terminal Strip X6

* Interlocking with K1 (mains and braking contactor) must be provided $\partial$ that the enable signal is switched . Jff during short circuit braking.


A module specific relay contact is closed when:

- there is no excess heat sink temperature
- there is no excess motor temperature.

If a fault occurs the Ready 1 contact opens and the axis is switched off approx. 1 minute later via the internal enable FG I.

A module specific relay contact is closed when there is:

- no PSU fault
- no current loop fault
- no tacho fault
- no commutation fault.

If a fault occurs the Ready 2 relay contact is opened and the internal enable signal $F G I$ is switched off immediately.

Signal Ready 2 must be incorporated into the latching circuit of the mains contactors (see handbook 11 VM ).


## Connector Assignment

X 6 Terminal Strip
X 6.1 GND ..... groundReference potential for measuring outputs.
X6.2 SW1a standardized command outputSingle-pole, short circuit proof, +10 V
X 6.3/4 FG axis enable
Optocoupler input with physical separation. Digital +24 V on $\mathrm{X} 6.3,0 \mathrm{~V}$ onX 6.4; display via green LED "FG" on the front plate.

- If the signal on X6.3 is high against X6.4 and if Ready 1 and Ready 2 are present the output stage and the regulator are enabled.
- A normally open contact of contactors K01 and K02 (mains contactors) and a normally open contact of each short circuit braking contactor must be connected in series with the enable input. This is necessary to ensure that the enable will be switched off during short circuit braking.
- If the axis can be braked or clamped the enable signal FG must be switched off while the brake or clamping is active.
- There are two possible sequences when the enable is switched off see section 7.2.3:
- drive slows down in an uncontrolled manner
- drive brakes with maximum current.
X6.5 SW1-/SW1+ command
Analogue input -10 V to $+10 \mathrm{~V} / 10 \mathrm{kOhm}$
- The command input is designed as a differential input.
- The command connection must always be 2 -pole, i.e. terminals 5 and 6 must both be connected.
- The max. command voltage must be in the range $\pm 7 \mathrm{~V}$ and $\pm 11 \mathrm{~V}$.
- If the signal is routed via an additional terminal or connector the screen must be laid on $\stackrel{\perp}{\equiv}$.
- The reference potential of the command source (for instance CNC) must have 0 V level (connection with 0 V busbar see handbook 11 VM ).
- The differential input is linked to a slope limiting device in order to smooth out the stepped output of an NC (see optimisation of speed regulator section 7.3.3).
X6.7 Inorm actual current value
Measuring output, short circuit proof, $0 \ldots \pm 8 \mathrm{~V} \xlongequal{=}$ unit peak current.


## X6.8 Ta tacho voltage

Measuring output, short circuit proof, $\pm 2.7 \mathrm{~V} / 1000 \mathrm{rpm}$.

### 6.4.8 Connector X8

(Connection Cable X8)

### 6.4.9 Connector X9

### 6.4.10 Terminal Strip X7 for Use with Option Diagnostics Card

An 8-pole cable, ready connected at the left below the front plate of each module on delivery provides the connection to X8 on the next module to the right.

Terminal strip X8 on the module itself will have cable X8 from the next module to the left connected to it (see connection diagram 6.3).
$\mathrm{U}_{\mathrm{N}+} \mathrm{U}_{\mathrm{N}}$
Speed regulator output
Analogue output $0 \ldots \pm 8 \mathrm{~V}$


## X $7.1 \quad$ Reset Input RES

Stored fault signals can be reset via a signal on the reset input ( +24 VDC pulse) or with reset button.

X 7.2 Commutation Fault
LED $K_{\text {F }}$ red, stored
The signal goes from +24 V to low if:

- the tacho plug is not plugged in
- there is a fault on the tacho PCB (electronics) in the motor
- there is a fault with the tacho cable
- there is an incorrect combination of commutation signals.

Red LED lights. Ready 2 (BTB 2) is switched off.
X $7.3 \quad$ Module Fault
LED $\mathbf{M}_{\mathrm{F}}$ red, stored
The signal goes from +24 V to low if:

- the power unit is defective
- the load circuit (motor connection) is short circuited
- the load circuit is interrupted.

Red LED lights. Ready 2 (BTB 2) is switched off.

## X 7.4 Heat Sink Temperature Monitoring LED $\delta_{K}$, yellow

The signal goes from +24 V to low when:

- the heat sink temperature of the power unit exceeds 8 max.

Yellow LED lights. Ready 1 (BTB 1) is switched off and after approx. 1 minute the internal enable is taken away.

## X $7.5 \quad$ Motor Winding Temperature

 Monitoring
## LED 8 m , yellow

The signal goes from +24 V to low when:

- the motor winding temperature reaches $140^{\circ} \mathrm{C}$.

Yellow LED lights. Ready 1 (BTB 1) is switched off and after approx. 1 minute the internal enable is taken away.

X $7.6 \quad$ Speed Monitoring
LED $\mathbf{n}<\mathbf{n x}$, yellow
The signal goes from +24 V at low level when the current speed is smaller than a predetermined speed. (Through a change on the optimisation card this signal can be made to go high only at standstill).

Yellow LED lights when $n<n x$. On how to adjust the speed monitoring see section "Integration" 7.3.7.

X 7.7 Tacho Fault
LED TF, red, stored
The signal goes from +24 V to low when:

- the tacho line is interrupted
- the tacho line is short circuited.

Red LED lights. Ready 2 (BTB 2) is switched off.

## X $7.8 \quad$ Motor Blocked

## LED Ixt, yellow

The signal goes low when the motor receives maximum module current for more than 2 seconds without turning. After this time the current is automatically reduced to $50 \%$ of the maximum current. The drive remains in this condition until the cause of the motor blockage is removed.

Yellow LED lights.
PSU Fault
LED NF, red, stored
This signal goes from +24 V to low if the two supply voltages +15 V and -15 V for the electronics are outside the admissible tolerances.

Red LED lights. Ready 2 (BTB 2) is switched off.

Flexible Automation

The table below shows the current limit values achieved by using different values for resistor R25, which is fitted on soldering terminals, when a digital signal* $(H=+24 \mathrm{~V})$ is supplied to the optimisation card:

| R 25 <br> [kOhm] | reduction <br> to I limit <br> [ $\%$ ] |
| :---: | :---: |
| 51.1 | 90 |
| 23.7 | 67 |
| 16.2 | 50 |
| 12.1 | 33 |
| 8.25 | 10 |

The table below shows the current limit values achieved if a 5.62 kOhm resistor is fitted for R25 and an analogue signal* is supplied to the optimisation card:

| voltage on <br> Med <br> [V]reduction to <br> Ilimit <br> [\%] |  |
| :--- | :--- |
| 2 | 92 |
| 3 | 82 |
| 4 | 72 |
| 5 | 62 |
| 6 | 52 |
| 8 | 32 |
| 10 | 12 |

* $\times 14.4$ : e.g. +10 V X14.3: $0 V$

Differential input with fixed amplification 1:1.
Input signal: 0 to +10 V .

Flexible Automation

### 6.4.14 Connection of Option

## Ramp Generator



Wire the card up according to the above circuit diagram, paying special attention to the command lines!

The required rise and fall times are determined by the value chosen for capacitor C5 on the card.

After evaluation of the operational data according to the example below the capacitance can be derived from the table below

Example
Rise in 5000 msec

$$
\frac{5000 \mathrm{msec}}{10 \mathrm{~V}}=\frac{500 \mathrm{msec}}{\mathrm{~V}}
$$

Command step to 10 V
Required capacitance acc. to table: $0.470 \mu \mathrm{~F}$

The rise ramp for acceleration and braking can be adjusted separately with resistors R24 and R25.

| $\mathrm{C} 5[\mu \mathrm{~F}]$ | operational data $[\mathrm{msec} / \mathrm{V}]$ |  |  |
| :--- | ---: | ---: | ---: |
| 0.01 | 1.1 | $\ldots$ | 11 |
| 0.047 | 6 | $\ldots$ | 60 |
| 0.1 | 11 | $\ldots$ | 110 |
| 0.47 | 60 | $\ldots$ | 600 |
| 1 | 110 | $\ldots .1100$ |  |

### 7.2.3 Preoptimisation of Speed Regulator

All Bosch inverters of the Servodyn range are delivered with the following standard optimisation:

| Function | Position | Unit | Value |
| :---: | :---: | :---: | :---: |
| P-portion speed regulator | R77 | kOhm | 301 |
| I-portion speed regulator | C9 | $\mu \mathrm{F}$ | 0.022 |
| SW $1=0$, DIP switch | S6 |  | OFF |
| Ired current limit, DIP switches | S7, © 3 |  | OFF |
| torque reduction | R25 | kOhm | 5.62 |
| 1:1 amplif. speed reg. | Pl/1:1 |  | switch |
| slope limitation, command | R62 | kOhm | 1 |
| switch off enable (standard) | R68 | Ohm | 0 |
| After switching off enable the drive is slowed down to $\mathrm{n}=0$ with max. current | R69 | Ohm | $\infty$ |

Before starting the integration the tacho voltage must be adjusted roughly.
Depending on the rapid speed the adjustment can be made in 12 steps acc. to the table below via DIP switches S1-S5.

The fine adjustment of the tacho voltage is carried out later with potentiometer $T$ on the front plate of the SM-optimisation card.

| step | nmin <br> $[\mathrm{rpm}]$ | n <br> $[\mathrm{rpm}]$ | nmax <br> $[\mathrm{rpm}]$ | VT <br> $[\mathrm{V}]$ | switch <br> "ON" |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 468 | 550 | 633 | 1.485 | none |
| 2 | 629 | 740 | 851 | 1.998 | S 1 |
| 3 | 837 | 985 | 1133 | 2.659 | S 2 |
| 4 | 999 | 1175 | 1351 | 3.172 | S 1 + S 2 |
| 5 | 1122 | 1320 | 1518 | 3.564 | S 3 |
| 6 | 1284 | 1510 | 1736 | 4.077 | S 1 + S 3 |
| 7 | 1475 | 1740 | 2001 | 4.696 | S 4 |
| 8 | 1640 | 1930 | 2219 | 5.211 | S 1 + S 4 |
| 9 | 1849 | 2175 | 2501 | 5.872 | S 2 + S 4 |
| 10 | 2133 | 2510 | 2886 | 6.777 | S 3 + S 4 |
| 11 | 2663 | 3133 | 3603 | 8.459 | S 1,S2,S3,S4 |
| 12 | 3527 | 4150 | 4773 | 11.205 | S 4 + S 5 |

### 7.2.4 Reduction of the

 Unit Limit Current via DIP SwitchThe DIP switch (S1 ... S7) on the optimisation card is used to reduce the limit current of the unit as shown in the table below:

| switch no. <br> position <br> OFF | ON | I limit <br> $[\%]$ | I stand. <br> $[\mathrm{V}]$ |
| :--- | :--- | :--- | :--- |
| S 7+S 8 | - | 100 | 8 |
| - | S 7 | 88 | 8 |
| - | S 8 | 78 | 8 |
| - | S 7 S S | 70 | 8 |

### 7.3 Integration

### 7.3.1 Power Supply

## Note:

### 7.3.2 Ready

### 7.3.3 Command Adjustment

- Remove fuses for the supply module on the mains side.
- Unplug connector X1 on the supply module.
- Disconnect one coil connection at contactor K01 (see VM connections).
- Switch on power (main switch).
- There must be +24 V present between X 1.6 and X 1.5 of the supply module.

If a simple external +24 V supply with B 6 rectifiers is used an electrolytic capacitor of at least $4700 \mu \mathrm{~F}$ must be connected to the output terminals ( 24 V ).

- Measure the mains voltage at the main fuses with a multimeter. Admissible range: 340 V to 455 V .
- Switch on drive. Contactors K01 and K02 must not pull in!
- Switch off main switch.
- Plug connector X1 in on supply module.
- Reconnect coil connection at K01.
- Switch on main switch.
- Switch on drive.
- K01 and K02 must pull in, for as long as the button is depressed, and they must fall off again when the button is released.
- Switch off main switch.
- Reinsert fuses.
- Switch on main switch, do not give enable signal.
- Switch on drive.
- On the supply modules the green LEDs "Ready 1" (BTB 1) and "Ready 2" (BTB 2) must light.
- K01 and K02 must remain pulled in once the ON button is released

Introduce a command voltage which corresponds to the intended maximum operating voltage on terminals X 6.5 and X 6.6 of the servo module.
Admissible range: $\pm 7 \mathrm{~V}$ to $\pm 11 \mathrm{~V}$.
DIP switch S 6 on the optimisation card must be switched off.

### 7.3.4 Direction of Motor Rotation

### 7.3.5 Speed Adjustment

### 7.3.6 Speed Drift

Adjustment on the SM-optimisation. Use pot. SW 1 on the front plate of the SM-optimisation card to set the voltage on test point "SW 1" (command) to 7.5 V against " $\pm "$ (turn counter-clockwise to achieve higher voltage on test point "SW 1")
Switch on switch 6 (optimisation card).
Slope limitation for command steps with R62. The parameters are the scanning frequency of the NC and the largest command step per scanning interval.

The value of R62 must be determined by trial and error since the quantity "largest command step per scanning interval" is usually not known. R62 is to be increased (resistance decade) to the highest possible value before the tacho voltage starts to show some overshoot. This adjustment must be made after the speed regulator optimisation.
Standard value for $R 62=1 \mathrm{k} \Omega$.
On motors with disk brake the brake must be released before the enable is switched on!

- Switch PI/1:1 (S1) on the regulator card must be set to $1: 1$.
- Set command input to 0 V .
- Switch S6 on the optimisation card must be closed.
- Give enable signal (green LEDs FG and FG I come on).
- Carefully increase command until the axis starts moving.
- Observe the direction of axis rotation! A reversal of the direction of rotation can be effected by swapping the command connections on X6.5 and X6.6.
- Switch off enable signal.
- Set switch PI/1 : 1 (S1) to PI.
- Give enable signal.
- Introduce exactly $50 \%$ of the intended max. command on X6.5 and X6.6.
- Measure the speed (if possible with a manual revolution counter).
- Use pot. T (optimisation card) to set the speed to exactly $50 \%$ of the max. speed (clockwise turning $-->$ higher speed).
- If it is not possible to measure the speed with a separate revolution counter it can be approximated by measuring the tacho voltage. At test point " $T$ " there is a voltage of $2.7 \mathrm{mV} / \mathrm{rpm} \pm 5 \%$ available, i.e. at a speed of 1000 rpm the tacho voltage is approx. 2.7 V (for range SE-B2: ... mV/rpm).
- Command input to $0 \vee$ and short circuiting of terminals X6.5 and X6.6.
- The motor drift can then be reduced to a minimum with pot. OFFSET (optimisation card).


## Note:

It is usually not possible to eliminate the drift altogether without the positional servo loop being active.

- Undo the short circuiting of terminals X6.5 and X6.6 and switch DIP switch S6 back ON.


### 7.3.7 Speed Monitoring (with Option Diagnostics)

7.3.8 Speed Regulator Optimisation

Speed recognition or monitoring via diagnostics output ( $n<n x$ ) and LED.

- Determination of the recognition speed by selection of the value for R4 on the speed regulator optimisation card according to the following formula:

$n^{\prime}=\frac{n x}{n \text { rapid }}$

$$
\begin{array}{ll}
\mathrm{nx}= & \text { recognition speed } \\
\text { nrapid }= & \text { rapid speed }
\end{array}
$$

Standard value for R4 $=10 \mathrm{kOhm}=1500 \mathrm{rpm}$ with nrapid $=3000 \mathrm{rpm}$.

- Definition of the speed recognition function as standstill display by fitting $\mathrm{R} 72=0$ Ohm on the optimisation card.

In 90\% of all applications the standard optimisation of the speed regulator ( $\mathrm{R} 77=301 \mathrm{kOhm}, \mathrm{C} 9=22 \mathrm{nF}$ ) is suitable for machine tool axes. Should problems arise the optimisation can be checked as follows:

- Switch off main switch.
- Connect an RC decade instead of R77 and C9.

Starting values: $\mathrm{R}=301 \mathrm{kOhm} ; \mathrm{C}=22 \mathrm{nF}$.

- Connect an oscilloscope to test point "UN+".
- Switch on main switch and drive. Give enable signal.
- Introduce a command step as a function.

The time constant should lie approx. $10 \%$ below the time constant excepted during future operation.
Example:
Planned KV factor: $\quad K V=1$
Time constant:
$\mathrm{Tm}=60 \mathrm{msec}$
Set the command for the optimisation to $T=55 \mathrm{msec}$.

- Select the level of the command signal so that the speed regulator (test point "UN+") operates just below the limit (the limit lies around 8 V ).
- The regulator output signal on test point "UN+" can be influenced by changing R77 (P-portion) and C9 (l-portion) as illustrated in the following diagrams:

If the P-portion is too large or the I-portion too small the speed regulator becomes unstable:


The instability is mainly a result of the excessive tacho ripple.
If the $p$-portion is too small the speed regulator is also unstable, but at a very low frequency.

$U_{N}$
Speed
Regulator Output

If the 1 -portion is too large the speed regulator is stable, but its response is sluggish due to the resulting high time constant in conjunction with a low P -amplification.

$U_{N}$
Speed
Regulator
Output

When the speed regulator is adjusted correctly the signal will look as foollows:


Once the required values have been determined solder the appropriate components in for R17 and C9.

Derivative Action
For special cases an additional derivative action can be achieved with C13.

## BOSCH

Flexible Automation

### 7.3.9 Adaption to the Positional Servo Loop

Note: Additional active filter at the tacho input.
If R75 is made 0 Ohm an active filter can be connected, which will improve the stability of the servo loop for motors with large inertia in most cases.

- Connect command source
- Switch on drive, give enable signal.
- Introduce command " 0 V ".
- Adjust the lag (following error) to "0" with the appropriate potentiometer on the control (on some types of CNC this is cone via parameter input!)
- Drive the axis at a defined feedrate (such as $1 \mathrm{~m} / \mathrm{min}$ ) and measure the resulting lag. The lag depends on the $\mathrm{K}_{\mathrm{V}}$-factor and the axis velocity
$L A G=\frac{v}{K v}=[\mathrm{mm}]$
$\mathrm{v}=$ axis velocity [ $\mathrm{m} / \mathrm{min}$ ]
$K_{V}=K_{V}$ factor $\left[10^{3} / \mathrm{min}\right]$
$\mathrm{LAG}=\operatorname{lag}[\mathrm{mm}]$

Example:
$\mathrm{V}=1 \frac{\mathrm{~m}}{\mathrm{~min}}$
$\mathrm{Kv}=1,2 \frac{10^{3}}{\mathrm{~min}}$

LAG $=\frac{v}{\mathrm{Kv}}=\frac{1}{1,2}=0,83 \mathrm{~mm}$

The lag must be set on the CNC with the appropriate potentiometer or by parameter input.

### 7.4 Component Layout



Optimisation card
(047830-402303)

## 7.5 circuit drawing




## Kursübersicht

■＝Inhaltsschwerpunkte
$\square=$ Sonstige Inhalte

| sdukt－ Gruppe | Kurz－ <br> Zeichen | Bosch－Produkt | Kursthema | 号 | 产 | ｜c｜c |  |  | 范 |  | $\begin{aligned} & \text { Det. } \\ & \text { s.S. } \end{aligned}$ | Tage Dauer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Numerische Steuerungen | A3－P | CNC Alpha 3 | Bedienen，Progr． | $\square$ | $\square$ | $\square$ |  |  |  |  | － | 5 |
|  | A2－P | CNC Alpha 2 | Bedienen，Progr． | $\square$ | $\square$ | $\square$ |  |  |  |  | － | 5 |
|  | A2／3－C | CNC Alpha $2 / 3$ | CPC－Progr． |  | $\square$ | $\square$ |  |  |  |  | － | 5 |
|  | M8／5－B | CNC micro 8／5 | Bedienen | $\square$ | ■ | $\square$ |  |  |  |  | 6 | 5 |
|  | M8／5－W | CNC micro 8／5 | Wartung |  |  |  |  | $\square$ | － | $\square$ | 6 | 10 |
|  | CC－GL | CC 100 | NC－Basiskurs | $\square$ | $\square$ | $\square$ |  |  |  | $\square$ | 7 | 5 |
|  | CC 100－B | CC 100 | Bedienen，Progr． | $\square$ | $\square$ | $\square$ |  |  |  |  | 8 | 5 |
|  | CC 100－1 | CC 100 | Inbetriebnahme | $\square$ |  |  |  | $\square$ |  | $\square$ | 8 | 5 |
|  | CC 100T－B | CC 100T（Drehen） | Bedienen，Progr． | $\square$ | $\square$ | $\square$ |  |  |  |  | 9 | 5 |
|  | CC 100T－1 | CC－OOT（Drehen） | Inbetriebnahme | $\square$ |  |  |  | $\square$ |  | $\square$ | 9 | 5 |
|  | CC 200－B | CC 200 （Drenen） | Bedienen，Progr． | $\square$ | $\pm$ | $\square$ |  |  |  |  | 10 | 5 |
|  | CC 200－C | こここここ Drehen） | Progr．in CPL |  | こ | $\square$ |  |  |  |  | 11 | 5 |
|  | CC 200： | 20 200 Drenen | Indetriebnahme | $\square$ |  |  |  | $\square$ |  | $\square$ | 10 | 5 |
|  | CC 3ここE | CC 300 | Bedienen．Progr． | ＝ | $\square$ | $\square$ |  |  |  |  | 11 | 5 |
|  | CC 300－C | CC 300 | Progr．in CPL |  | $\square$ | $\square$ |  |  |  |  | 11 | 5 |
|  | CC 300－11 | CC 300 | Inbetriebn．（Teil 1） | $\square$ | $\square$ | $\square$ |  | $\square$ | $\square$ | － | 12 | 10 |
|  | CC 300－12 | CC 300 | Inbetriebn．（Teil 2） |  |  |  | $\square$ | $\square$ |  | $\square$ | 12 | 5 |
| Roboter－ Steuerungen | R1－B | rho 1 | Bedienen | $\square$ | $\square$ |  |  |  |  |  | 13 | 2 |
|  | R1－1 | tho 1 | Bed．，Inbetriebn． | $\square$ | E | $\square$ |  | $\square$ |  | $\square$ | 13 | 5 |
|  | R－OP | tho 2，rho 1 | Offline－Progr． | $\square$ | $\square$ | $\square$ | $\square$ |  |  |  | 14 | 5 |
|  | R2－1 | rho 2 | Inbetriebnahme |  | ■ |  | $\square$ | $\square$ | $\square$ | $\square$ | 14 | 5 |
| SchweiB－ Steuerungen | PS 2000 | Schweißsteuerung | Bedienen | $\square$ | $\square$ | $\square$ |  |  |  |  |  | 3 |
|  |  | PS 2000 | Bedienen，Insthlt． | $\square$ | $\square$ | $\square$ |  | $\square$ |  | $\square$ | 15 | 5 |
|  | E81 | Ezrweißsteuerung | Bedienen | $\square$ | $\square$ | $\square$ |  |  |  |  |  | 2 |
|  |  | E \％ 1 mit KSR | Bedienen，Insthlt． | $\square$ | $\square$ | $\square$ |  |  |  | $\square$ | 15 | 5 |
| Speicher－ ogrammier－ <br> Tare Steuerungen | PC－GL | SこS－Familie | SPS－Basiskurs | $\square$ |  | $\square$ | $\square$ |  |  | $\square$ | 18 | 4 |
|  | CL 100 | CL 100 mit PG3 | Programmieren | $\square$ |  | $\square$ | $\square$ | $\square$ |  | $\square$ | 18 | 5 |
|  | PC 400－P | $=2.200 \mathrm{~m} . \mathrm{PG} 3$ | Projektieren | $\square$ |  | $\square$ | $\square$ |  |  |  | 19 | 5 |
|  | PC 400－1 | FC $400 / 600 \mathrm{~m}$. PG3 | Instandhaltung | $\square$ |  | $\square$ |  | $\square$ |  | $\square$ | 19 | 5 |
|  | CL 300－P1 | C－ $320 \mathrm{mit} \mathrm{PG4}$ | Projektieren | $\square$ |  | $\square$ | $\square$ |  |  |  | 20 | 5 |
|  | CL 300－P2 | CL 300 mit PG4 | Aufbaukurs | $\square$ |  | $\square$ | － |  |  |  | 20 | 5 |
|  | CL 300－1 | C． 300 mit PG4 | Instandhaltung | $\square$ |  | $\square$ |  | $\square$ |  | $\square$ | 21 | 10 |
|  | PC 600－P1 | PC 500 mit PG4 | Basiskurs（Teil 1） | $\square$ |  | $\square$ | $\square$ |  |  |  | 22 | 5 |
|  | PC 600－P2 | PCEこう mit PG4 | Aufbaukurs（Teil 2） | $\square$ |  | $\square$ | $\square$ |  |  |  | 22 | 5 |
|  | PC 600－P3 | PC $600 \mathrm{mit} \mathrm{PG4}$ | Diagnose（Teil 3） | $\square$ |  | $\square$ | $\square$ |  | $\square$ |  | 23 | 4 |
|  | PC 600－1 | PC 600 mit PG3 | Instandhaltung | $\square$ |  | $\square$ |  | $\square$ | $\square$ | $\square$ | 23 | 10 |
|  | PG 4－W | PG4 | Bedienen，Progr． | $\square$ | $\square$ | $\square$ |  |  |  |  | 24 | 3 |
|  | PU 400 | PU 400 | Instandhaltung |  | $\square$ | $\square$ |  |  |  | $\square$ | 24 | 3 |
| Servo－ antriebe | GA－GL | Servoantriebe | Basiskurs |  |  |  | $\square$ | $\square$ |  |  | 25 | 3 |
|  | SD－SY | Servodyn | Systemkurs | $\square$ |  |  | $\square$ | $\square$ |  | $\square$ | 25 | 3 |
|  | SD－C | Servodyn C | Inbetriebnahme | $\square$ |  |  | $\square$ | $\square$ |  | $\square$ | 26 | 2 |
|  | SD－T | Servodyn T | Inbetriebnahme | $\square$ |  |  | $\square$ | $\square$ |  | $\square$ | 26 | 3 |
|  | SD－V | Servodyn，ASM | Inbetriebnahme | － |  |  |  | $\square$ |  | $\square$ | － | 2 |

## Nähere Informationen：

Robert Bosch GmbH，Schulungszentrum，Postfach 1162， 6120 Erbach／Odenwald，Telefon 06062 ／78－0

