2. Specifications (relay)

Characteristics	Item		Specifications			
			4 poles	6 poles		
Contact	Contact arrangement		2 Form A 2 Form B 3 Form A 1 Form B	4 Form A 2 Form B	5 Form A 1 Form B	3 Form A 3 Form B
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)			
	Contact material		Au flashed AgSnO_{2} type			
Rating	Nominal switching capacity (resistive load)		6A 250V AC, 6A 30V DC			
	Max. switching power (resistive load)		1,500VA, 180W			
	Max. switching voltage		250 V AC, 125V DC			
	Max. switching current		6 A (Reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$ for temperatures 70 to $85^{\circ} \mathrm{C} 158$ to $185^{\circ} \mathrm{F}$)			
	Min. switching capacity (Reference value)*		1mA 5V DC			
	Nominal operating power		Approx. 360 mW	Approx. 500mW		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.			
	Breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)			
			2,500 Vrms for 1 min . (Detection current: 10 mA); 7-8/9-10 between open contacts	2,500 Vrms for 1 min . (Detection current: 10 mA); 7-8/11-12 between open contacts 9-10/13-14 between open contacts 11-12/13-14 between open contacts		
		Between contact sets	4,000 Vrms for 1 min . (Detection current: 10 mA); 3-4/5-6 between open contacts 3-4/7-8 between open contacts 5-6/9-10 between open contacts	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA); 3-4/5-6 between open contacts 3-4/7-8 between open contacts $5-6 / 9-10$ between open contacts 7-8/9-10 between open contacts		
		Between contact and coil	4,000 Vrms for 1 min (Detection current: 10 mA)			
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20ms (Nominal coil voltage applied to the coil, excluding contact bounce time)			
	Response time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) ${ }^{\text {2 }}$		Max. 8ms (Nominal coil voltage applied to the coil, excluding contact bounce time and without diode)*4			
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal coil voltage applied to the coil, excluding contact bounce time)			
Mechanical characteristics	Shock resistance	Functional	$200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)			
		Destructive	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)			
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$)			
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm			
Expected life	Mechanical		Min. 10^{7} (at 180 times/min.)			
	Electrical		250 V AC 6 A resistive load: Min. 10^{5} (at 20 times/min.)			
			30 V DC 6 A resistive load: Min. 10^{5} (at 20 times/min.)			
			250 V AC 1 A resistive load: Min. 5×10^{5} (at 30 times $/ \mathrm{min}$.)			
			30 V DC 1 A resistive load: Min. 5×10^{5} (at 30 times $/ \mathrm{min}$.)			
			[AC 15] 240 V AC 2 A inductive load: Min. 10^{5} (at 20 times $/ \mathrm{min} ., \cos \varphi=0.3$)			
			[DC 13] 24 V DC 1 A inductive load: Min. 10^{5} (at 20 times/min., L/R = 48 ms)			
Conditions	Conditions for operation, transport and storage ${ }^{\star 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
	Max. operating speed		20 times/min. (at max. rating)			
Unit weight			Approx. 20 g .71 oz	Approx. 23 g .81 oz		

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Response time is the time after the coil voltage turns off until the time when "a" contact turns off.
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES
*4. Response time of built-in diode type is 12 ms or less (excluding contact bounce time when nominal coil voltage is applied to the coil).

REFERENCE DATA

1. Operate/response/release time

Tested sample: SFS4-DC24V (4 Form A 2 Form B), 20pcs. (a contacts: 80, b contacts: 40)

2. Coil temperature rise

Tested sample: SFS4-DC24V (4 Form A 2 Form B) $3 p c s$.
Measured portion: Inside the coil
Ambient temperature: Room temperature
$\left(27^{\circ} \mathrm{C} 80.6^{\circ} \mathrm{F}\right.$), $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3. Malfunctional shock

Tested sample: SFS4-DC24V (4 Form A 2 Form B), $3 p c s$.

4. Max, switching capacity

Other contact gaps when contacts are welded

Sample: SFS4-DC24V (4 Form A 2 Form B)
The table below shows the state of the other contacts.
In case of form "NO" contact weld the coil applied voltage is 0 V .
In case of form "NC" contact weld the coil applied voltage is nominal.

-		State of other contacts					
		3-4 (NC)	5-6 (NC)	7-8 (NO)	9-10 (NO)	11-12 (NO)	13-14 (NO)
Welded contact No.	3-4 (NC)	-		>0.5	>0.5	>0.5	>0.5
	5-6 (NC)		-	>0.5	>0.5	>0.5	>0.5
	7-8 (NO)	>0.5	>0.5	-			
	9-10 (NO)	>0.5	>0.5		,		
	11-12 (NO)	>0.5	>0.5			-	
	13-14 (NO)	>0.5	>0.5				-

>0.5 : contact gap is kept at min. 0.5 mm .020inch
Empty cells: either ON or OFF
Note: Contact gaps are shown at the initial state.
If the contact transfer is caused by load switching, it is necessary to check the actual loading.

