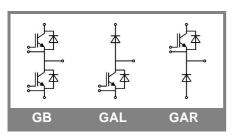


SEMITRANS[®] 3

IGBT Modules


SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)

Typical Applications*

- AC inverter drives
- UPS

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specifie					
Symbol Conditions		Values		Units	
IGBT					
V _{CES}	T _j = 25 °C T _i = 150 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	200	А	
		T _{case} = 85 °C	180	А	
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse	Diode				
I _F	T _j = 150 °C	T _{case} = 25 °C	200	А	
		T _{case} = 80 °C	130	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	А	
Freewhe	eeling Diode	·			
I _F	T _j = 150 °C	T _{case} = 25 °C	260	A	
		T _{case} = 80 °C	180	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	А	
Module		·			
I _{t(RMS)}			500	А	
T _{vj}			- 40 + 150 (125)	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _c =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 6 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C T _i = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		7,33	9,33	mΩ
		T _j = 125°C		10	12,66	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				10	13	nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,5	2	nF
C _{res}				0,8	1,2	nF
Q _G	V _{GE} = -8V - +20V			1500		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				220	400	ns
t,	R _{Gon} = 5,6 Ω	V _{CC} = 600V		100	200	ns
Ė _{on}		I _C = 150A		24		mJ
^L d(off)	R _{Goff} = 5,6 Ω	T _j = 125 °C		600	800	ns
t _f		V _{GE} = -15V		70	100	ns
E _{off}				17		mJ
R _{th(j-c)}	per IGBT				0,09	K/W

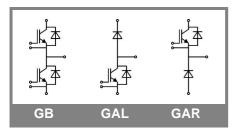
SEMITRANS[®] 3

IGBT Modules

SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications*

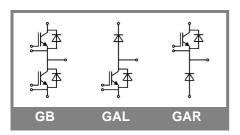
- AC inverter drives
- UPS

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V
		$T_j = 125 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,8		V
V _{F0}				1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		6	8,7	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _F = 150 A	T _j = 125 °C		90		А
Q _{rr}	di/dt = 1500 A/µs			8		μC
E _{rr}	V_{GE} = -15 V; V_{cc} = 600V			6,6		mJ
R _{th(j-c)D}	per diode				0,25	K/W
Freewhee	eling Diode					•
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.} T _j = 25 °C		1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		4,5	6,5	V
		T _j = 125 °C				V
I _{RRM}	I _F = 200 A	T _j = 125 °C		120		А
Q _{rr}	di/dt = 2000 A/µs			11		μC
E _{rr}	V_{GE} = 0 V; V_{CC} = 600 V					mJ
R _{th(j-c)FD}	per diode				0,18	K/W
Module						-
L _{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6, M4		2,5		5	Nm
w					325	g

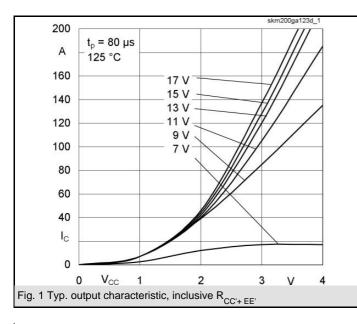
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

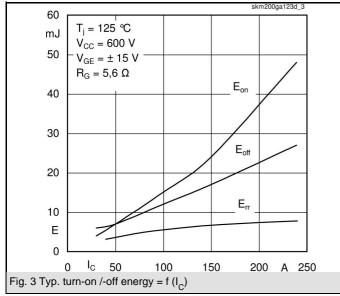
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

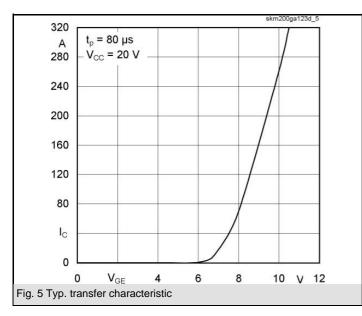
IGBT Modules

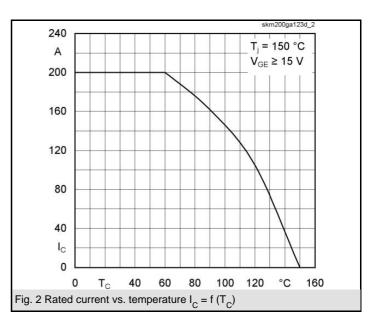

SKM 200GB123D
SKM 200GAL123D
SKM 200GAR123D

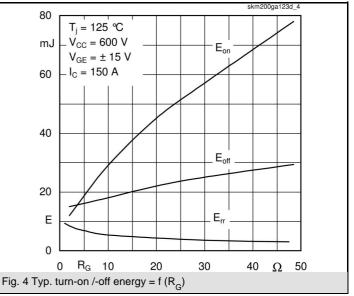
Features
i catules


- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Technology
 Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications*


- AC inverter drives
- UPS




Z _{th} Symbol	Conditions	Values	Units
	oonanono	Faidoo	onito
Z R _i	i = 1	59	mk/W
R _i	i = 1 i = 2		
R _i		23	mk/W
R _i	i = 3	6,8	mk/W
R _i	i = 4	1,2	mk/W
tau _i	i = 1	0,03	S
tau _i	i = 2	0,0087	S
tau _i	i = 3	0,002	S
tau _i	i = 4	0,0002	s
Z Ri th(j-c)D	-		
R _i	i = 1	170	mk/W
R _i	i = 2	66	mk/W
R _i	i = 3	12	mk/W
R _i	i = 4	2	mk/W
tau _i	i = 1	0,0348	S
taui	i = 2	0,0072	s
tau _i	i = 3	0,077	s
tau _i	i = 4	0,0002	s

