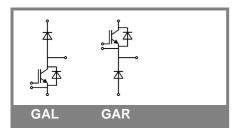


SEMITOP® 2

IGBT Module

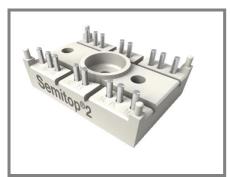
SK60GAL123 SK60GAR123


Preliminary Data

Features

- Compact design
- One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- V_{ce,sat} with positive coefficient Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units			
IGBT				'		
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 125 ^{\circ}\text{C}$		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	58	Α		
		T _s = 80 °C	40	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse [Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	33	Α		
		T _s = 80 °C	23	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	110	Α		
Freewhe	eling Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	57	Α		
		T _{case} = 80 °C	38	Α		
I _{FRM}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	Α		
Module						
$I_{t(RMS)}$				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V_{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		26		mΩ
		T _j = 125°C		38		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				3,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF
C _{res}				0,22		nF
Q_G	V _{GE} =0 20 V			285		nC
t _{d(on)}				70		ns
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		90		ns
E _{on}	D = 22.0	I _{Cnom} = 50A		9,9 460		mJ
$egin{aligned} t_{ ext{d(off)}} \ t_{ ext{f}} \end{aligned}$	$R_{Goff} = 22 \Omega$	T _j = 125 °C V _{GE} =±15V		460 30		ns ns
E _{off}		GE =:01		5,3		mJ
R _{th(j-s)}	per IGBT				0,6	K/W

SK60GAL123

SEMITOP® 2

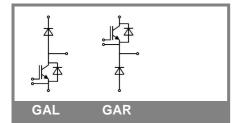
IGBT Module

SK60GAL123 SK60GAR123

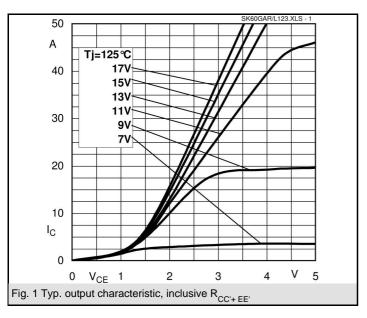
Preliminary Data

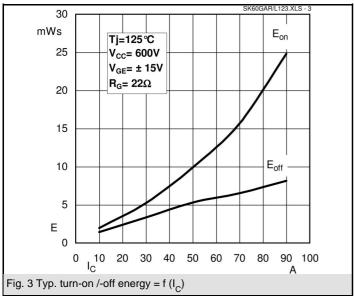
Features

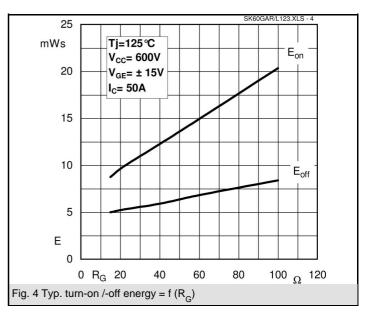
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- V_{ce,sat} with positive coefficient
- Low tail current with low temperature dependence

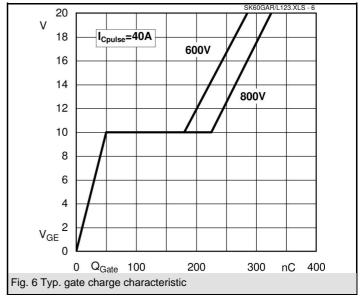

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

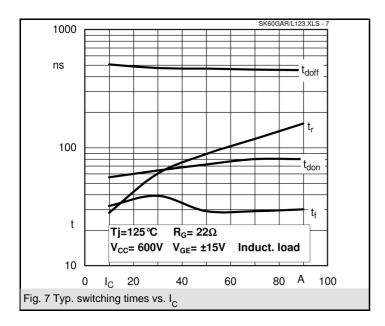

Characteristics								
Symbol	Conditions	I	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 10 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		80		mΩ		
I _{RRM}	I _{Fnom} = 10 A	T _j = 125 °C		12		Α		
Q_{rr}	di/dt = -300 A/µs			1,8		μC		
E _{rr}	V _{CC} = 600V			0,4		mJ		
$R_{th(j-s)D}$	per diode				2,1	K/W		
	Freewheeling Diode							
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{chiplev.}$		1	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev}$		1,8		V		
V_{F0}		T _j = 125 °C		1	1,2	٧		
r _F		T _j = 125 °C		18	22	V		
I _{RRM}	I _{Fnom} = 50 A	T _i = 125 °C		40		Α		
Q_{rr}	di/dt = -800 A/µs	,		8		μC		
E _{rr}	V _R =600V			2,3		mJ		
R _{th(j-s)FD}	per diode				0,9	K/W		
M _s	to heat sink M1				2	Nm		
w				21		g		

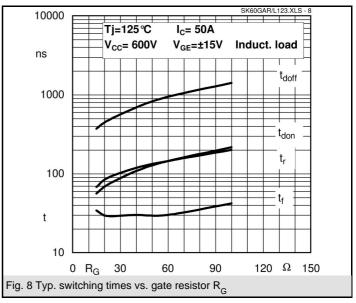

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

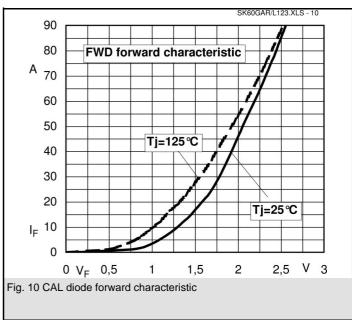

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

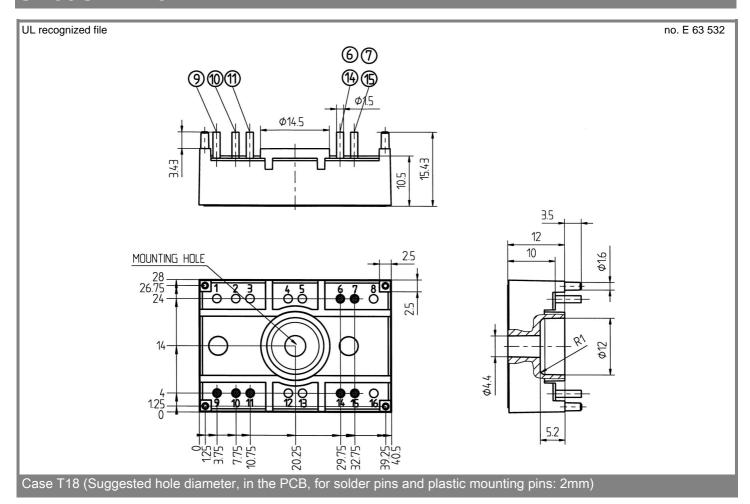


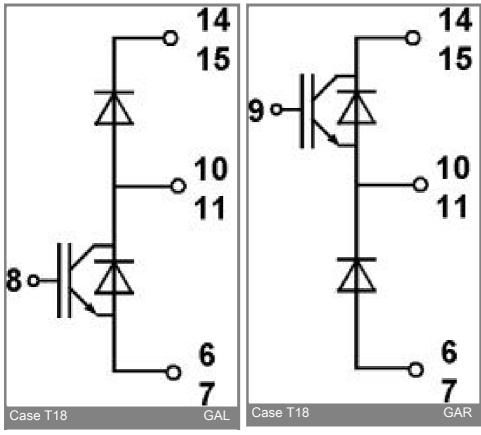
SK60GAL123










SK60GAL123

