The user manual describes all items concerning the operation of this CNC system in detail as much as possible. However, it's impractical to give particular descriptions for all unnecessary and/or unavailable operations on the motor due to the limit of the manual, specific operations of the product and other causes. Therefore, the operations not specified in this manual may be considered impossible or unallowable. This manual is the property of GSK CNC Equipment Co., Ltd. All rights reserved. It is against the law for any organization or individual to publish or reprint this manual without the express written permission of GSK CNC Equipment Co., Ltd. and the latter reserves the right to ascertain their legal liability. # Company profile GSK—GSK CNC Equipment Co,. Ltd is the largest production and marketing enterprise of the CNC system in China currently. It is the Numerical Control industrial base of South China, and the undertaking enterprise of the 863 national main project Industrialization Support Technology for Medium Numerical Control System as well as one of the 20 basic equipment manufacture enterprises in Guangdong province. It has been taking up the research and development, design and the manufacture of machine CNC system (CNC device, drive unit and servo motor) in recent 10 years. Now it has developed into a large high-tech enterprise integrated with research, education, industry and trade by enhancing the popularization and trade of CNC machine tools. There are more than 1400 staffs in this company that involves 4 doctors, more than 50 graduate students and 500 engineers and more than 50 among them are qualified with senior technical post titles. The high performance-cost ratio products of GSK are popularized in China and Southeast Asia. And the market occupation of GSK's product dominates first and the turnout and sale ranks the top in internal industry for successive 7 years from the year 2000 to 2006, which makes it the largest CNC manufacture base throughout China. The main products provided by our company includes the NC equipments and devices such as GSK series turning machine, milling machine, machining center CNC system, DA98, DA98A, DA98B, DA98D series full digital stepper motor drive device, DY3 series compound stepper driver device, DF3 series response stepper motor driver device, GSK SJT series AC servo motors, CT-L NC slider and so on. The current national standard (and international standard), industry standard, as well as the enterprise standard (or enterprise internal standard) as a supplementary, are completely implemented in our production process. The capability of abundant technology development and complete production and quality system qualified by us will undoubtedly ensure the reliable product to serve our customers. 24~48 hours technological support and service can be easily and promptly provided by our complete service mechanism and tens of service offices distributed in provinces around China and abroad. The pursuit of "excellent product and superexcellent service" has made the GSK what it is now, and we will spare no efforts to continue to consummate this South China NC industry base and enhance our national NC industry by our managerial concept of "century enterprise, golden brand". # Technological Spot Service You can ask for spot service if you have the problems that can't be solved by telephone. We will send the engineers authorized to your place to resolve the technological problems for you. # Foreword #### Dear user, It's our pleasure for your patronage and purchase of this GSK GSK218M CNC system made by GSK CNC Equipment Co., Ltd. The manual is "Connection and PLC Manual". Accident may occur by improper connection and operation! This system can only be operated by authorized and qualified personnel. Please carefully read this manual before usage! This manual is reserved by final user. All specifications and designs herein are subject to change without further notice. We are full of heartfelt gratitude to you for supporting us in the use of GSK's products. # Warning and precautions #### Warning, notice and explanation This manual contains the precautions to protect user and machine. The precautions are classified as warning and notice by safety, and supplementary information is regarded as explanation. Read the warnings, notes and explanations carefully before operation. #### Warning User may be hurted or equipment can be damaged if operations and steps are not observed. #### **Notice** Equipment may be damaged if operation instructions or steps are not observed by user. #### **Explanation** It is used for the supplementary information except for warning and notice. Copy right is reserved. # Contents | /(| OLUME ONE PROGRAMMING | | 12 | |----|---|------------|------| | | 1 SEQUENCE PROGRAM CREATING PROCESS | 1, | 13 | | | 1.1 GSK218M PLC specification | | | | | 1.2 What is a sequence program | | | | | 1.3 Establishment of interface specifications (step 1) | | | | | 1.4 Establishment of ladder diagram (step 2) | | | | | 1.5 Sequence program check (step 3) | | | | 4 | 2 SEQUENCE PROGRAM | | 15 | | | 2.1 Execution process of sequence program | 9/7 | 15 | | | 2.2 Repetitive cycel | | | | | 2.3 Priority of execution(1 st level, and 2 nd level) | | | | | 2.4 Sequence program structure | | | | | 2.5 Processing I/O (input/output) signals | | | | | 2.5.1 Input signal processing | | | | | 2.5.2 Output singal processing | <u>, }</u> | 20 | | | 2.5.3 Syncrhonous processing short pulse signal | | | | | 2.5.4 Difference o fstate of signals between 1 st level and 2 nd leve | | | | | 2.6 Interlocking | | | | 4 | | THA I S | | | • | 3.1 Addresses from Machine tool to PLC (X) | 4 | | | | 3.1.1 Assignment of IO module X address | | | | | 3.1.2 Assignment of MDI panel X address | | | | | 3.1.2 Assignment of MDI paner X address | | | | | | | | | | 3.2.1 Assignment of IO module Y address | | | | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 1. | 1/10 | | | 3.3 Address (G) from PLC to CNC | | | | | 3.4 Address (F) from CNC to PLC | | | | | 3.5 Internal relay address (R) | | 29 | | | 3.6 Address of keep relay (K) | | | | | 3.7 Addresses(A) for message selection displayed on CRT | | | | | 3.8 Address of meter (C) | | 30 | | | 3.9 Meter preset address(DC) | | | | | 3.10 Timer addresses (T) | | | | | 3.11 Addresses of timer preset value (DT) | | | | | 3.12 Address of data table (D) | A. C. | | | | 3.13 Lable address (L) | | | | | 3.14 Subprogram numbers (P) | | 31 | | 4 | 4 PLC Basic Instruction | 24. | 32 | | | 4.1 RD, RD.NOT, WRT, WRT.NOT | | 33 | | | 4.2 AND, AND.NOT instructions | M. | 33 | | | 4.3 OR, OR.NOT instructions | | 34 | | | 4.4 OR. STK instruction | | | | | 70 | GSK218W C | | 14.00 | 14- | | |-------|--|---------------------
--|-------|-----------------|----------| | | AND.STK instruction. | | | | | | | 5 PLC | C FUNCTIONAL IN | | | | V-10- | | | 5.1 | END1 (1 st level seq | | | | | | | 5.2 | END2 (2 nd level see | quence program e | end) | | | 3 | | 5.3 | CALL (call subprog | | | | | | | 5.4 | SP (Subprogram) | | | | | | | 5.5 | SPE (subprogram e | | | | | | | 5.6 | SET (set) | | | | | | | 5.7 | RST (reset) | | | | | | | 5.8 | JMPB (label jump) | | | | | 4 | | 5.9 | LBL (Label) | | | | | | | 5.10 | TMR (timer) | | | | | | | 5.11 | CTR (binary counte | ər) | | | | 4 | | 5.12 | . / 9 | | | | | | | 5.13 | COD (binary code | conversion) | | | \$ ⁵ | 4 | | 5.14 | COM (common line | control) | 'ath'. | | | 4 | | 5.15 | COME (common lin | e control end) | 24 | 4, | | 4 | | 5.16 | ROT (Binary rotation | on control) | | | | 4 | | 5.17 | SFT (shift register) |) | | | | 5 | | 5.18 | | check) | | D., | W. War. | 4 | | 5.19 | | check) | 100 July | | Marie Comment | 5 | | 5.20 | COMP (binary com | | 17.70 | | 1/- | | | 5.21 | COIN (concidence | | | | | | | 5.22 | | | | | | | | 5.23 | | 5.71 | | | | | | 5.24 | 200 | | | | | | | 5.25 | ADD (addition) | u 00u/01/2 | alito | ••••• | aldio, | 4 | | | SUB (binary subtra | action) | 190 | | <u> </u> | | | 5.27 | la company of the com | | | | | | | 5.28 | ORF (logical or) | | | | | | | 5.29 | | | | | | | | | EOR (exclusive or) |) 27/4 | · · | | 20/2 | ٠٠ | | 5.30 | EUR (exclusive of) | , | | K | | | | 6 LAD | DER WRITING LI | MIT | | | | 66 | | VOLB | ME TWO FI | UNCTION | | eld; | -) | 6 | | VOLUI | ME IAAO E | DINCTION | | | | | | 1 Con | TROLLED AXIS. | | | | | 68 | | 1.1 | NTROLLED AXIS . Outputting of mover | ntn state of an axi | s | To x | Mrs.x | <i>t</i> | | 1.2 | Servo ready signal | | | | | | | 1.3 | Servo OFF signal | | | | | | | 1.4 | Mirror image | | | | | | | 7-3 | Position switch | | 42, | 44, | | 124 | | | | | | | | | | | PARATION FOR C | JPEKATION | ••••• | 72.3 | 13.9 | / 4 | | 2.1 | Emergency stop | | | | | | | ~ ~ | CNC ready signal | | | | | 7 | | 2.2 | 0110 | | | | | 7 | | 2.2 | CNC overtravel sign | nal | | | 3 | | | 2.5 Machine ready signal | | | | |---|----------------|-------|-------| | 2.6 Interlock activation | 7/20 | | 77.00 | | 2.7 Mode selection | | | 78 | | 2.8 Status output signal | | | | | 2.9 VRDY OFF alarm ignore signal | | | 79 | | 2.10 Abnormal load check | | | 79 | | MANUAL OPERATION | North Comments | | 81 | | 3.1 JOG feed/incremental feed | W _O | | 81 | | 3.2 MPG(Handwheel) feed | | "May. | 82 | | 3.3 MPG interruption | | | 83 | | REFERENCE POINT RETURN | a di | , g | 84 | | 4.1 Manual reference point return | | | | | AUTOMATIC OPERATION | | | | | X 1" | 3/ 1/- | 35.3 | | | 5.1 Cycle start/feed hold | | | | | 5.2 Reset | | | | | 5.3 Testing a program | | | | | 5.3.1 Machine tool lock | | | | | 5.3.2 Dry run | | | | | 5.3.3 Single block | | | | | 5.4 Optional block skip | | | | | 5.5 Program restart | | | - | | INTERPOLATION FUNCTION | | | | | 6.1 Thread cutting | | | 98 | | FEEDRATE CONTROL | | | 99 | | 7.1 Rapid traverse rate | | | 99 | | 7.2 Advanced preview control | | | | | 7.3 In-position check | | | | | 7.4 Error detect | | | 101 | | 7.5 Override | 10/8 | | 102 | | 7.5.1 Rapid traverse override | Wag. | "GET. | 102 | | 7.5.2 Feedrate override | 7/0, | 76, | 102 | | 7.5.3 Override cancel | | VVV | | | MISCELLANEOUS FUNCTION (M, S | | | | | 8.1 Miscellaneous function | | | | | ° 8, | | | | | 30 | ~3 <i>2</i> /4 | ~92A | 109 | | AO. AO. | vO. | VO. | | | SPINDLE SPEED FUNCTION | | | | | 9.1 Spindle speed control mode | | | | | 9.1.1 Gear spindle | | | | | | 9. | | 114 | | 9.1.2 Analog spindle | | 10.7 | 115 | | 9.1.2 Analog spindle | | | | | 9.2 Spindle speed arrival signal9.3 Constant surface speed control | | | 116 | | 9.2 Spindle speed arrival signal | | | 116 | | | OOL FUNCTION | Ole, | (4) | * KAL | 119 | |---|--|--------------------|-------------------|--|--------------------------| | 10.1 | T instruction execution | ng tool change | 110 | ************************************** | 11 | | | Tool life management | | | | | | 11. P | ROGRAMMNG INST | RUCITON | May. | Neg. | 123 | | 11.1 | | | | | | | 11.2 | Canned cycle | 743.5. | | | 120 | | 11.3 | | | | | | | 11.4 | | | | | | | 12 Di | SPLAY/SET | (O, | "/ ₍₂₎ | ^N (Q), | 129 | | 12.1 | | | | 24, | | | 12.2 | | | | | | | 12.3 | Help function | | | | 12 | | 12.4 | Operation hour and p | arts count display | | | 12 | | 12.5 | Memory protection k | ey | | | 13 | | 13 M | EASUREMENT | Ġ. | | .N. ^(C) | 132 | | 13.1 | | | | 20, | | | 13.2 | • | | | | | | | NDIX | 160 | 16.6 | 16°5. | 12/ | | APPE | al list (During order of a | atalus a Sili | 7/3/01 | - Cara | 134 | | | | | | | | | VOLU | ME THREE O | PERATION | | <u> </u> | 137 | | 444 | , un | | | West, | No. | | _ 1 PL(| C INTERFACE DISP | | | | 138 | | 0 1.1 | | | | | | | | | | | | 13 | | 1.2 | INFO interface display | | | | 13 | | 1.2
1.2 | INFO interface display | y | | | 13
13 | | 1.2
1.2
1.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. | y | 70 | | 131313 | | 1.2
1.2
1.2
1.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface | y | | | 13131313 | | 1.2
1.2
1.2
1.2
1.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface | y | | | 1313131313 | | 1.2
1.2
1.2
1.2
1.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING | OPERATION | | | 131313131314 | | 1.2
1.2
1.2
1.2
1.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING General | OPERATION | | | 1313131314142 | | 1.2
1.2
1.2
1.2
1.2
2 PL(| INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING General Basic instruction(B. IN | OPERATION | | | 13131313141414 | | 1.2
1.2
1.2
1.2
1.2
2 PL(
2.1 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING General Basic instruction(B. IN Operations of ladder | OPERATION | | | 1313131314141414 | | 1.2
1.2
1.2
1.2
1.2
2 PL(
2.1
2.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction | OPERATION | | | 131313131414141414 | | 1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING (General Basic instruction(B. IN Operations of ladder Function instruction Instruction list | OPERATION | | | 13131313141414141414 | | 1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3
2.4 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface 2.3 PLCPAR interface 2.4 PLCGND interface C PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction | OPERATION | | Market 1908 to Clark Hard | 13131313141414141414 | | 1.2
1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3
2.4
2.5
2.6
2.7 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR
interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING (General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step | OPERATION | | | 1313131414141414141414 | | 1.2
1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3
2.4
2.5
2.6
2.7 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING (General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step | OPERATION | | | 1313131414141414141414 | | 1.2
1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3
2.4
2.5
2.6
2.7 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING (General | OPERATION | NG | | 131313131414141414141415 | | 1.2
1.2
1.2
1.2
1.2
2 PLO
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3 PLO | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step C ADDRESS, PARA Counter | OPERATION | NG | | 13131314141414141515 | | 1.2
1.2
1.2
1.2
2 PL(
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3 PL(
3.1 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.5 PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step C ADDRESS, PARA Counter Timer Data list | OPERATION | NG | | 13131314141414151515 | | 1.2
1.2
1.2
1.2
2 PLO
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3 PLO
3.1
3.2 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step C ADDRESS, PARA Counter Data list Keep relay | OPERATION | NG | | | | 1.2 1.2 1.2 1.2 1.2 2 PL(2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 PL(3.1 3.2 3.3 3.4 3.5 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING (General | OPERATION WST) | NG | | | | 1.2 1.2 1.2 1.2 1.2 2 PL(2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 PL(3.1 3.2 3.3 3.4 3.5 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING (General | OPERATION WST) | NG | | 131313 | | 1.2 1.2 1.2 1.2 1.2 2 PL(2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 PL(3.1 3.2 3.3 3.4 3.5 | INFO interface display 2.1 INFO interface 2.2 PLCGRA interface. 2.3 PLCPAR interface 2.4 PLCGND interface 2.4 PLCGND interface 2.6 PROGRAMMING General Basic instruction(B. IN Operations of ladder Function instruction Instruction list Edit instruction step C ADDRESS, PARA Counter Data list Keep relay | OPERATION WST) | NG | | | | SYSTEM STRUCTURE AND INSTALL | | | | |---|------------------|-----------|-------| | 1 System composition | | | | | 2 System installtion & connection | | | | | 3 CNC system installation dimension | | | 159 | | EVICE CONNECTION | | | 162 | | 1 CNC external connection | | | | | 2.2.1 System interface | | | | | 2.2.2 Interface signal list | 7/0, | 70, | 163 | | 2.2.3 Signal specification | | | | | 2.2.4 Cable connection | | | | | .3 RS232 standard serial interface | | | | | 4 MPG(handwheel), hand unit connection | | | 167 | | 2.4.1 Interface signal list | | | | | 2.4.2 Interface signal | 100 | 100 | 167 | | 5 Spindle unit connection | | | 168 | | 2.5.1 Interface signal list | | | | | 2.5.2 Interface signal: | 4. | 4. | -4. | | 6 Power supply interface | \$ | <u>, </u> | 168 | | MACHINE CONTROL I/O INTERFACE | | | | | .1 Interface signal list | | | | | 2 Input interface | '92 ₀ | | 160 | | 3.2.1 Input interface method | | | 109 | | 3.2.2 Input signal interface definition | ~ | ~ | | | 3 Output signal | | | | | 3.3.1 Output interface method | | | | | 3.3.2 Ouput signal interface definition | | | | | DEBUGGING MACHINE | | | | | | | | | | 1 Debug preparation | | | | | 2 System power on | | | | | 3 Emergency stop and limit | | | | | 4 Gear ratio adjustment | | | | | 5 Backlash compensation | | | | | 6 Parameter for servo | | | | | 7 Machine pitch compensation | | 1. | -7. | | 8 Debugging parameters | | | | | 4.8.1 Machine zero return | | | | | 4.9 Input/output signal control of spindle CV | | | | | 4.10 Spindle automatic gear change control | | | | | 4.11 External cycle start and feed hold | | | | | 4.12 Cooling, lubricant and chip removal co | "/ " | 2/4 | F7 | | 4.13 Parameters of axis control | | | | | 4.14 Parameter for coordinate system | | | | | 4.15 Parameter for feedrate | | | | | 4.16 Parameters for MDI, display and servo. | | | | | 4.16 Parameters of MDI, display and edit | | | 191 | | | 10 | 77/2 | 77.20 | | 194 | 707 | | compensation | eters for tool | 4.17 Parame | |-----|---------------------------|---------------------|---------------------|----------------|---------------| | 196 | | Hou. | | | APPENDIX: | | 190 | 92, | <u> </u> | ching with ladder | K218M mate | Guide for GSI | | 196 | W _L | ol magazine | atching with turret | f GSK218M m | 1. Notices of | | 196 | d register | auxiliary relay and | of PMC IO addre | and definition | 2. Allocation | | 218 | with turret tool magazine | System matching v | e of GSK 218M C | d maintenanc | 3. Usage and | | 223 | with turret tool magazine | C System matching | ent of GSK218M C | ogram stateme | 4. Macro pro | | | auto" | auto, | autor. | | alifor. | | 6, | | | | | (Apr | # **1 Sequence Program Creating Process** # 1.1 GSK218M PLC specification Specifications of GSK218M PLC are as follows: | Specification | GSK218M PLC | |---|---| | Programming method language | Ladder | | Number of ladder level | 2 | | 1 st level execution period | 8ms | | Mean processing time of basic instruction | 10µs | | Program capacity | 4700 step | | Instruction | Basic instruction +function instruction | | Internal relay (R) | 0~511 byte | | PLC message request (A) | 0~31 byte | | Keepmemory | , g. d. | | * Timer (T) | 0~127 byte | | * Meter (C) | 0~127 byte | | * Data table (D) | 0~255 byte | | * Keep relay (K) | 0~63 byte | | * Meter preset value data register (DC) | 0~127 byte | | * Timer preset value data register (DT) | 0~127 byte | | Subprogram (P) | 0~99 | | Label (L) | 0~99 | | I/O module (X) | 'Reg | | (Y) | 0~63 byte | | 1, 1, | 0~47 byte | # 1.2 What is a sequence program A sequence program is a programm for sequence control of machine tools and other systems. The program is converted into a format to enable CPU execute encoding and arithmetic processing, and stored into RAM. CPU reads out instructions of the program stored into the memory at the high-speed every instruction and execute the program by arithmetic operation. The sequence program is written firstly from ladder. ### GGSK218M CNC System Connection and PLC Manual # 1.3 Establishment of interface specifications (step 1) After deciding the control object specification and calculate the number of input/output signal points, creat the interface specification. For input/output interface signals, see Chapter 4. ### 1.4 Establishment of ladder diagram (step 2) Express the control operations decided by 218M ladder diagram. For the timer, meter, etc, which cannot be expressed with the functional instructions. The edited ladder should be converted into the corresponding PLC instruction to store. # 1.5 Sequence program check (step 3) The sequence program can be checked in two ways: - 1) Check by simulator - Instead of the machine, connect a simulator (consisting of lamps and switchs). Switch ON/OFF stands for the input signal state of machine, lamp ON/OFF for the output signal state. - 2) Actual operation debugging Debug sequence program through operating the machine. Do measures against the unexpected affairs before debugging. # 2 Sequence Program Since PLC sequence control handled by software and operates on principle difference from a general relay circuit, the sequence control method must be fully understood in order to design PLC sequence program. # 2.1 Execution process of sequence program In general relay control circuit, each relay operates at approximately the same time, in the figure below for example, when relay A operatre, the relay D and E operate at approximately the same time(when contacts B and C are off)., In PLC sequence control, each relay of circuit operates sequenctially. When relay A operates, relay D operates, then relay E(see the below figure). Thus each relay operates in sequence which can be written as a ladder diagram. (programmed sequence). Fig. 2.1(a) circuit example Fig.(b) and (c) illustrate operations varying from the relay circuit to PLC program. Fig. 2.1(c) ### GGSK218M CNC System Connection and PLC Manual (1) Relay circuit In Fig. (A) and (B), the operations are the same. Turning on A turns on B and C. Turning on C turns off B. (2) 218M PLC program In Fig.(B), as in the relay circuit, turning on A turns on B and C, and after one cycle of the PLC sequence, turns off B. But in Fig.(C), turning on A turns on C, but does not turn on B. # 2.2 Repetitive cycel The sequence program is executed from the beginning of coding to the end of coding of the ladder diagram in the sequence written. When the sequence program ends, the program starts over form the beginning. This is called repetitive operation. The execution time from the beginning to the end of the ladder diagram is called the sequence processing time. The shorter the process time is, the better the signal
response becomes. # 2.3 Priority of execution(1st level, and 2nd level) GSK218M PLC consists of two parts: 1st level sequence part, 2nd level sequence part. They have different execution period. The 1st level sequence part operates every 4ms, which can operate the short pulse signal with high-speed response). The 2nd level sequence part operates every 4*n ms. Here n is a dividing number for the 2nd level sequence part. The 2nd level sequence part is divided into n part, and every part is executed every 4ms 218M PLC is solely executed in PLC-AVR single unit, and the second 2ms of every 4ms is the communication time of CNC reading or writing PLC data. After the last 2nd level sequence part (division n) is executed, the sequence program is executed again from the beginning. Thus, when the dividing number is n, the cycle of execution is 4*n ms. The 1st level sequence operates every 4ms, and the 2nd level sequence every 4*n ms. If the steps of the 1st level sequence is increased, the steps of the 2nd level sequence operating within 4ms becomes less, thereby increasing the dividing number and making the processing time longer. Therefore, it is desirable to program so as to reduce the 1st level sequence to a minimum. # 2.4 Sequence program structure With the conventional PLC, a ladder program is described sequentially. By employing a ladder language that allows structured programming, the following benefits are derived: - 1. A program can be understood and developed easily - 2. A program error can be found easily. ### GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual 3. When an operation error occurs, the cause can be found easily. Three major structured programming capabilities are supported: ### 1) Subprogram A subprogram can consist of a ladder sequence as the processing unit. ### 2) Nesting Ladder subprograms established are combined to structure a ladder sequence. #### 3) Conditional branch The main program loops and checks whether conditions are satisfied. If a condition is satisfied, the corresponding subprogram is executed. If the condition is not satisfied, the subprogram is skipped. # 2.5 Processing I/O (input/output) signals ### Input signal processing: #### Output signal processing: ### GGSK218M CNC System Connection and PLC Manual #### 2.5.1 Input signal processing #### (1) Input memory of NC The input signals from NC are loaded in memory of NC and are transferred to the PLC at intervals of 4ms. Since the 1st level sequence part directly refer to these signal and process operations. #### (2) Input signal memory to machine tool The input signal memory stores signals transferred from the machine tool at intervals of 2ms period. Since the 1st level sequence part directly refer to these signal and process operations. #### (3) 2nd level inpt signal memory The 2nd level input signal memory is also called as 2nd level synchronous input signal memory. The stoed signals are processed by the 2nd level sequence part. State of the signals set this memory cynchronizes with that of 2nd level sequence part. Input memory Signals from NC and machine tool are transferred to the 2nd level input signal memory only at the beginning of execution of the 2nd level sequence part. Therefore, the state of the 2nd level synchronous input signal memory does not change from the beginning to end of the execution of the 2nd level sequence part. ### 2.5.2 Output singal processing #### (1) NC output memory The output signals are transferred form the PLC to the NC output memory at intervals of 4ms. #### (2) Output signals to machine tool Output signal to the machine tool from PLC output signal memory to the machine tool. #### Note: The state of the NC input memory, NC output memory, input signals from machine, input/output memory signals to machine can be checked by using the PC self-diagnosis function. The self-diagnosis number specified is the address number used by the sequence program. #### 2.5.3 Syncrhonous processing short pulse signal 1st level sequence part is used for processing the short pulse signal. But when it is less than 4ms, namely, when 1st level sequence is executed, the state of input signal may change as follows: When A=0, and B1=1, A becomes 1, at this time, the next line of ladder is executed, B2=1. B1 and B2 are also 1. B1 and B2 are not 1 simultaneously after the signal A is processed synchronously by the medium relay. # 2.5.4 Difference o fstate of signals between 1st level and 2nd level The state of the same input signal may be different in the 1st level and 2nd level sequences. That is, at 1st level, processing is performed using input signal memory and at 2nd level, processing is performed using the 2nd level synchrounous input signal memory. Therefore, it is possible for a 2nd level sequence execution at the worst, compared with a 1st level input signal. This must be kept in mind when writing the sequence program. When the processing is 1st 4ms, A=1, and B=1 after 1st sequence part is executed. At the same time, 2nd sequence part is started to execute A=1 is stored to the 2nd sequence part and the 1st division of 2nd sequence part is executed. When the processing is 2nd 4ms, A=0, and B=0 after 1st sequence part is executed. And then 2nd division of 2nd sequence part is executed, at this time, A is still 1. So C=1. # 2.6 Interlocking So, B and C are different. Interlocking is externally important in sequence control safety. Interlocking with the sequence program is necessary. However, interlocking with the end of the electric circuit in the machine tool magnetics cabinet must not be forgotten. Even though logically interlocked with the sequence program (softward), the interlock will not work when trouble occurs in the hardware used to execute the sequence program. Therefore, always provide an interlock inside the machine tool magnetics cabinet panel to ensure operator safety and to protect the machine from damage. ### 3 Address An address shows a signal location. Addresses include input/output signals with respect to the machine, the input/output signals with respect to the CNC, the internal relays, the meters, the keep relays, and data table. Each address consists of an address number and a bit number. Its serial number regulations are as follows: Address regulations: The address comprises the address type, address number and the bit number in the format as shown below: <u>X 000</u>. <u>6</u> Type Address number Bit number Tpye: including X, Y, R, F, G K, A, D, C, P, L, T Address number: decimal serial number stands for one byte. Bit number: octal serial number, $0\sim7$ stands for $0\sim7$ bit of byte of front address number #### 218M PLC address type is as follows: | Character | Signal descrition | Length | |---------------------|------------------------------|---------| | Х | Machine tool→PLC(64 byte) | INT8U | | Υ | PLC→machine tool (64 byte) | INT8U | | F.S | CNC→PLC(64 byte) | INT8U | | G | PLC→CNC(64 byte) | INT8U | | R | Internal relay(512 byte) | INT8U | | D | Data register (0∼255) | . (J)°° | | DC | Counter preset data register | and . | | С | Meter (0∼127) | - | | A | PLC message request signal | INT8U | | , 35 ⁴ T | Timer (0~127) | 2 | | DT | Timer preset data register | , tot | | K | Keep relay (64 byte) | INT8U | # 3.1 Addresses from Machine tool to PLC (X) X addresses of GSK218M PLC are divided into two: - 1. X addresses are assigned to IO input interface of XS43, XS44 and XS45. - 2. X addresses are assigned to the input press keys on MDI panel. ### 3.1.1 Assignment of IO module X address The addresses are from X0 to X5. Its type is INT8U, 48 types. They are assigned to three IO input interface of XS 43, XS44 and XS45. The signal specification of X addresses can be customed by customer according to the actual operation. X addresses are used to connect the machine tool with the ladder. For the initial definition of input address, see Connection. ### 3.1.2 Assignment of MDI panel X address The addresses are from X20 to X30, 11bytes. They correspond to the press keys on MDI panel, and their signal definitions cannot be changed by user. Addresses and press keys are as follows: | Input key on operator panel | PLC address | |-----------------------------|-------------| | Edit mode | X20.0 | | Auto mode | X20.1 | | MDI mode | X20.2 | | Machine zero return mode | X20.3 | | Single step mode | X20.4 | | Manual mode | X20.5 | | MPG mode | X20.6 | | DNC mode | X20.7 | | Skip | X21.0 | | Single block | X21.1 | | Dry run | X21.2 | | Miscellaneous(M, S, T) lock | X21.3 | | Machine lock | X21.4 | | Selection stop | X21.5 | | Program restart | X21.6 | | Spindle CW | X22.0 | | Spindle stop | X22.1 | | Spindle CCW | X22.2 | | Spindle negative override | X22.3 | | Spindle override cancel | X22.4 | | Spindle positive override | X22.5 | | Spindle jog | X22.6 | | Lubrication | X23.0 | | Cooling | X23.1 | | Chip removal | X23.2 | | Cycle start | X23.6 | | Feed hold | X23.7 | | Feedrate positive override | X24.0 | | 750° | | ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual | | VIV | |----------------------------|-------| | Feedrate override cancel | X24.1 | | Feedrate negative override | X24.2 | | Rapid | X24.7 | | Rapid F0 / 0.001 | X26.0 | | Rapid 25% / 0.01 | X26.1 | | Rapid 50% / 0.1 | X26.2 | | Rapid 100% / 1 | X26.3 | | Manual feed axis +X | X27.0 | | Manual feed axis +Y | X27.1 | | Manual feed axis +Z | X27.2 | | Manual feed axis +Th4 | X27.3 | | USER1 | X27.4 | | Manual feed axis -X | X28.0 | | Manual feed axis -Y | X28.1 | | Manual feed axis -Z | X28.2 | | Manual feed axis -Th4 | X28.3 | | USER2 | X28.4 | | USER3 | X28.7 | | Spindle orientation | X29.0 | | Tool magazine zero return | X29.1 | | Tool clamp/ release | X29.2 | | Tool magazine CW | X29.3 | | Tool magazine CCW | X29.4 | | tool infeed | X29.5 | | tool retraction | X29.6 | | Tool change manipulator | X29.7 | | Overtravel release | X30.0 | | | | # 3.2 Address (Y) from PLC to machine tool Y addresses of GSK218M PLC are divided into
two: - 1. Y addresses are assigned to IO input interface of XS40, XS41 and XS42. - 2. Y addresses are assigned to the indicators on MDI panel. ### 3.2.1 Assignment of IO module Y address a) The addresses are from Y0 to Y5. Its type is INT8U, 48 types. They are assigned to three IO input interface of XS40, XS41 and XS42. The signal specification of Y addresses can be customized by customer according to the actual operation. Y addresses are used to connect the machine tool with the ladder. For the initial definition of input address, see Connection. # 3.2.2 Assignment of IO module Y address The addresses are from Y12 to Y19, 8 bytes. They correspond to the indicators on MDI panel, and their signal definitions cannot be changed by user. Addresses and indicators are as follows: | Edit key indicator Auto key indicator Y12.1 MDI key indicator Y12.2 Machine zero return indicator Y12.3 Single step key indicator Y12.4 Manual key indicator Y12.5 MPG key indicator Y12.6 DNC key indicator Y13.0 Spindle CW indicator Y13.1 Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.6 DEF indicator Single block indicator Y14.0 Single block indicator Y14.1 Dry run indicator Wiscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Cooling indicator P16.2 O.01/25% indicator Y16.3 1/100% indicator Y17.1 PY indicator Y16.5 +X indicator Y17.1 | Output key on operator panel | PLC address | |--|---------------------------------------|-------------| | MDI key indicator Machine zero return indicator Y12.3 Single step key indicator Y12.4 Manual key indicator Y12.5 MPG key indicator Y12.6 DNC key indicator Y12.7 Spindle CW indicator Y13.0 Spindle CW indicator Y13.1 Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.7 Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Y14.2 Miscellaneous(M, S, T) lock indicator Y14.4 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.5 +X indicator Y17.0 | Edit key indicator | Y12.0 | | Machine zero return indicator Single step key indicator Manual key indicator Manual key indicator MPG key indicator DNC key indicator Spindle CW indicator Spindle CW indicator Spindle override cancel indicator Y13.0 Spindle override cancel indicator Y13.1 Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.6 DEF indicator Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Y14.2 Miscellaneous(M, S, T) lock indicator Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y16.3 Feedrate override cancel indicator Y16.1 0.001/F0 indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | Auto key indicator | Y12.1 | | Single step key indicator Manual key indicator MPG key indicator DNC key indicator Spindle CW indicator Spindle CCW indicator Spindle override cancel indicator Y13.0 Spindle override cancel indicator Y13.1 Spindle override cancel indicator X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.6 DEF indicator Skip indicator Single block indicator Y14.0 Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator V16.1 0.001/F0 indicator V16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | MDI key indicator | Y12.2 | | Manual key indicator MPG key indicator PY12.6 DNC key indicator Spindle CW indicator Spindle CCW indicator Spindle override cancel indicator Y13.1 Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator PY13.7 Skip indicator Single block indicator Y14.0 Single block indicator Y14.1 Dry run indicator Machine tool lock indicator Machine tool lock indicator V14.3 Machine tool lamp indicator Lubrication indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.3 Feedrate override cancel indicator Rapid switch indicator V16.1 0.001/F0 indicator V16.2 0.01/25% indicator V16.5 +X indicator Y17.0 | Machine zero return indicator | Y12.3 | | MPG key indicator DNC key indicator Spindle CW indicator Spindle CCW indicator Spindle override cancel indicator Y13.1 Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.6 DEF indicator Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Y14.2 Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y16.3 Feedrate override cancel indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.5 +X indicator Y17.0 | Single step key indicator | Y12.4 | | DNC key indicator Spindle CW indicator Spindle CCW indicator Spindle override cancel indicator X machine zero return indicator Y13.2 X machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.6 DEF indicator Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Machine tool lock indicator W14.3 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.2 Chip removal indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 1/100% indicator Y16.5 +X indicator Y17.0 | Manual key indicator | Y12.5 | | Spindle CW indicator Spindle CCW indicator Spindle override cancel indicator X machine zero return indicator Y13.2 X machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator Y13.6 DEF indicator Single block indicator Y14.0 Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y16.1 Rapid switch indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | MPG key indicator | Y12.6 | | Spindle CCW indicator Spindle override cancel indicator Y13.2 X machine zero return indicator Y13.3 Y machine zero return indicator Y13.4 Z machine zero return indicator Y13.5 TH4 machine zero indicator P13.7 Skip indicator Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y16.2 O.01/F0 indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | DNC key indicator | Y12.7 | | Spindle override cancel indicator X machine zero return indicator Y 13.3 Y machine zero return indicator Y 13.4 Z machine zero return indicator Y 13.5 TH4 machine zero indicator Y 13.6 DEF indicator Skip indicator Y 14.0 Single block indicator Y 14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Y 14.3 Machine tool lock indicator Y 14.4 Machine tool lamp indicator Y 15.0 Lubrication indicator Y 15.1 Cooling indicator Y 15.2 Chip removal indicator Y 15.3 Feedrate override cancel indicator Y 16.1 0.001/F0 indicator V 16.2 0.01/25% indicator Y 16.3 0.1/50% indicator Y 16.5 +X indicator Y 17.0 | Spindle CW indicator | Y13.0 | | X machine zero
return indicator Y machine zero return indicator Y machine zero return indicator X machine zero return indicator Y machine zero return indicator Y machine zero return indicator Y machine zero indicator Y machine zero indicator Y machine zero indicator Y machine zero indicator Y machine tool lock indicator Y machine tool lock indicator Y machine tool lock indicator Y machine tool lamp indicator Y machine tool lock indicator Y machine zero return indicator Y machine zero return indicator Y machine zero indica | Spindle CCW indicator | Y13.1 | | Y machine zero return indicator Z machine zero return indicator Y13.5 TH4 machine zero indicator DEF indicator Skip indicator Single block indicator Y14.0 Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator V16.1 0.001/F0 indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | Spindle override cancel indicator | Y13.2 | | Z machine zero return indicator TH4 machine zero indicator V13.6 DEF indicator Skip indicator Single block indicator V14.0 Single block indicator V14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Machine tool lock indicator V14.4 Machine tool lamp indicator Lubrication indicator V15.1 Cooling indicator Chip removal indicator V15.3 Feedrate override cancel indicator V16.1 0.001/F0 indicator V16.2 0.01/25% indicator V16.4 1/100% indicator V17.0 | X machine zero return indicator | Y13.3 | | TH4 machine zero indicator Y13.6 DEF indicator Y13.7 Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Y14.2 Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y16.5 | Y machine zero return indicator | Y13.4 | | DEF indicator Skip indicator Y14.0 Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.5 +X indicator Y17.0 | Z machine zero return indicator | Y13.5 | | Skip indicator Single block indicator Y14.1 Dry run indicator Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.1 0.001/F0 indicator Y16.2 0.1/50% indicator Y16.5 +X indicator Y17.0 | TH4 machine zero indicator | Y13.6 | | Single block indicator Dry run indicator Miscellaneous(M, S, T) lock indicator Machine tool lock indicator Machine tool lamp indicator Lubrication indicator Cooling indicator Chip removal indicator Rapid switch indicator 716.1 0.001/F0 indicator 716.2 0.1/50% indicator Y16.4 1/100% indicator Y17.0 | DEF indicator | Y13.7 | | Dry run indicator Y14.2 Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Skip indicator | Y14.0 | | Miscellaneous(M, S, T) lock indicator Y14.3 Machine tool lock indicator Y14.4 Machine tool lamp indicator Y15.0 Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Single block indicator | Y14.1 | | Machine tool lock indicator Machine tool lamp indicator Lubrication indicator Cooling indicator Chip removal indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Rapid switch indicator V16.1 0.001/F0 indicator V16.2 0.01/25% indicator V16.3 0.1/50% indicator Y16.4 1/100% indicator Y17.0 | Dry run indicator | Y14.2 | | Machine tool lamp indicator Lubrication indicator Cooling indicator Chip removal indicator Y15.2 Chip removal indicator Feedrate override cancel indicator Rapid switch indicator V16.1 0.001/F0 indicator V16.2 0.01/25% indicator V16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Miscellaneous(M, S, T) lock indicator | Y14.3 | | Lubrication indicator Y15.1 Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Machine tool lock indicator | Y14.4 | | Cooling indicator Y15.2 Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Machine tool lamp indicator | Y15.0 | | Chip removal indicator Y15.3 Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Lubrication indicator | Y15.1 | | Feedrate override cancel indicator Y16.0 Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Cooling indicator | Y15.2 | | Rapid switch indicator Y16.1 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Chip removal indicator | Y15.3 | | 0.001/F0 indicator Y16.2 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Feedrate override cancel indicator | Y16.0 | | 0.01/25% indicator Y16.3 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | Rapid switch indicator | Y16.1 | | 0.1/50% indicator Y16.4 1/100% indicator Y16.5 +X indicator Y17.0 | 0.001/F0 indicator | Y16.2 | | 1/100% indicator Y16.5
+X indicator Y17.0 | 0.01/25% indicator | Y16.3 | | +X indicator Y17.0 | 0.1/50% indicator | Y16.4 | | (0) | 1/100% indicator | Y16.5 | | +Y indicator Y17.1 | +X indicator | Y17.0 | | | +Y indicator | Y17.1 | ### GG与K 「当州数控 GSK218M CNC System Connection and PLC Manual | +Z indicator | Y17.2 | |-------------------------------------|-------| | +TH4 indicator | Y17.3 | | USER1 indicator | Y17.4 | | -X indicator | Y18.0 | | -Y indicator | Y18.1 | | -A indicator | Y18.2 | | -TH4 indicator | Y18.3 | | USER2 key indicator | Y18.4 | | Overtravel completion indicator | Y19.0 | | Feed hold indicator | Y19.1 | | Cycle start indicator | Y19.2 | | Tool magazine zero return indicator | Y19.3 | # 3.3 Address (G) from PLC to CNC Addresses are from G0 to G63. Tpye: INT8U, 64 bytes. For signals, see Volume Function. Key signals on the operator panel | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | |-------------------------------|---|--| | Key signal on operator panel | PLC address | | | Edit mode | G20.0 | | | Auto mode | G20.1 | | | MDI mode | G20.2 | | | Machine zero return mode | G20.3 | | | Single step mode | G20.4 | | | Manual mode | G20.5 | | | MPG mode | G20.6 | | | DNC mode | G20.7 | | | Skip | G21.0 | | | Single block | G21.1 | | | Dry run | G21.2 | | | Miscellaneous (M,S, T) lock | G21.3 | | | Machine tool lock | G21.4 | | | Selection stop | G21.5 | | | Program restart | G21.6 | | | Spindle CW | G22.0 | | | Spindle stop | G22.1 | | | Spindle CCW | G22.2 | | | Spindle negative override | G22.3 | | | Spindle override cancel G22.4 | | | | Spindle positive override | G22.5 | | | Spindle jog | G22.6 | | ### GGSK218M CNC System Connection and PLC Manual | Lubrication | G23.0 | |----------------------------|-------| | Cooling | G23.1 | | Chip removal | G23.2 | | Cycle start | G23.6 | | Feed hold | G23.7 | | Feedrate positive override | G24.0 | | Feedrate override cancel | G24.1 | | Feedrate negative override | G24.2 | | Rapid switch | G24.7 | | Rapid Fo | G25.0 | | Rapid 25% | G25.1 | | Rapid 50% | G25.2 | | Rapid 100% | G25.3 | | Incremental step 0.001 | G26.0 | | Incremental step 0.01 | G261 | | Incremental step 0.1 | G26.2 | | Incremental step 1 | G26.3 | | Manual feed axis +X | G27.0 | | Manual feed axis +Y | G27.1 | | Manual feed axis +Z | G27.2 | | Manual feed axis +Th4 | G27.3 | | Manual feed axis -X | G28.0 | | Manual feed axis -Y | G28.1 | | Manual feed axis -Z | G28.2 | | Manual feed axis -Th4 | G28.3 | | Spindle orientation | G29.0 | | Tool magazine zero return | G29.1 | | Tool clamp/release | G29.2 | | Tool magazine CW | G29.3 | | Tool magazine CCW | G29.4 | | Tool infeed | G29.5 | | Tool retraction | G29.6 | | Tool change manipulator | G29.7 | | Overtravel release | G30.0 | | 100 | 110° | # 3.4 Address (F) from CNC to PLC Addresses are from F0 to F63. Tpye: INT8U, 64 bytes. For signals, see Volume Function. # 3.5 Internal relay address (R) The address area is cleared to zero when the power is turned on. Type: INT8U, with 512 bytes. # 3.6 Address of keep relay (K) The area is used as keep relays and PMC parameters. In each modal, the following number of bytes can be used. Since this area is nonbolatile, the content of the memory do not disappear even when the power is turned off. Type: INT8U, with 64 bytes. # 3.7 Addresses(A) for message selection displayed on CRT The address area is cleared to zero when the power is turned on. Type: INT8U, with 32 bytes. ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual ### 3.8
Address of meter (C) The area is used as storing current counting value in meter. The address area is cleared to zero when the power is turned on. Type: 128 addresses. # 3.9 Meter preset address(DC). The address area is used to store the meter preset value. Since this area is nonvolatile, the content of the memory do not disappear even when the power is turned off. Type: 128 addresses. ### 3.10 Timer addresses (T) The area is used as storing current counting value in timer. The initial data is the preset value when the system is turned off. When preset value is 0, the current data is preset value. Type: 128 addresses. # 3.11 Addresses of timer preset value (DT) The address area is used as storing preset value. Since this area is nonvolatile, the content of the memory do not disappear even when the power is turned off. Type: 128 addresses. ### GGSK218M CNC System Connection and PLC Manual ### 3.12 Address of data table (D) The content of the memory do not disappear even when the power is turned off. Tpye: 256 addresses. D240 \sim 247 are for tool magazine. # 3.13 Lable address (L) Label addresses are used to specify jump destination labels and LBL labels in JMPB instructions. Range: $0\sim99$ # 3.14 Subprogram numbers (P) Subprogram numbers are used to specify jump destintion subprogram labels and SP instruction subprogram labels in CALL instruction. Range: 0~99 # 4 PLC Basic Instruction Designing a sequence program begins with writing a ladder diagram. The ladder diagram is written using relay contact symbols and functional instruction code. Logic written in the ladder diagram is entered as a sequence program in the Programmer. There are two sequence program entry methods. One is the entery method with the mnemonic language(PLC instructions such as RD, AND, OR). The other is the relay symbols of the ladder diagram. When the relay symbol method is used, the ladder diagram format can be used and programming can be performed without understanding the PLC instruction format. Actually, however, the sequence program entered by the relay symbol method is also internally converted into the instruction corresponding to the PLC instruction. The basic instructions are often used when the sequence program is designed, and thet execute one-bit operation. GSK218M basic instructions are as follows: | Instruction | Function | | | | |-------------|---|--|--|--| | white RD | Shifts left the conten by one bit in register and sets the state of a specified signal in ST0. | | | | | RD.NOT | Shifts left the content by one bit in register and sets the logic state of a specified signal in ST0. | | | | | WRT | Outputs the results of logic operation to a specified address. | | | | | WRT.NOT | Inverts the results of logical operations and output it to a specified address. | | | | | AND | Induces a logical product. | | | | | AND.NOT | Inverts the state of a specified signal and induces a logical product. | | | | | OR | Indues a logical sum. | | | | | OR.NOT | Inverts the state of a specified signal and induces a logical sum. | | | | | ORSTK | Sets the logical sum of ST0 and ST1, and shifts the stack register right by one bit. | | | | | AND.STK | Sets the logical product of ST0 and ST1, and shifts the stack register right by one bit. | | | | # 4.1 RD, RD.NOT, WRT, WRT.NOT #### Instructions and functions | Instruction | Function | |-------------|---| | RD HOTEL | Shifts left the conten by one bit in register and sets the state of a specified signal in ST0. | | RD.NOT | Shifts left the content by one bit in register and sets the logic state of a specified signal in ST0. | | WRT | Outputs the results of logic operation to a specified address. | | WRT.NOT | Inverts the results of logical operations and output it to a specified address. | #### Instruction specifications: - WRT, WRT. NOT are the output relay, internal relay instructions. They cannot be used to input relay. - The parallel WRT instruction can be continuously used many times. #### Programming # 4.2 AND, AND.NOT instructions #### Instructions and functions | Instruction | Function where | |-------------|---| | AND | Induces a logical product. | | AND.NOT | Inverts the state of a specified signal | | JOS. | and induces a logical product. | #### Instruction specifications: AND, AND NOT can connect with one contact in serial. The serial contact numbers are not limited and they can be used many times. #### **Programming** # 4.3 OR, OR.NOT instructions Instructions and functions | Instruction | Function | |-------------|---| | OR | Indues a logical sum. | | OR.NOT | Inverts the state of a specified signal | | any. | and induces a logical sum. | Instruction specification: - OR, OR_NOT can connect with one contact in parallel. - OR, OR.NOT begins from their step, which can connect with the froementioned step in parallel. ### Programming: # 4.4 OR. STK instruction Instruction and function: | Instruction | Function | | | |-------------|---|--|--| | OR. STK | Sets the logical sum of ST0 and ST1, and shifts the | | | | THE STATES | stack register right by one bit. | | | Instruction specification: OR.STK a sole instruction without other address. #### Programming RD X002.1 AND.NOT X002.2 RD.NOT F100.3 AND F100.6 OR.STK RD R022.1 WRT Y003.7 As the above figure, there are three branch circuit 1, 2, 3 from left bus to the node N1, among which 1, 2 is circuit block in series; when there is the serial circuit block in the parallel from the bus to node or between nodes, the following branch end uses RD instruction except for the first branch. The branch 3 is not serial circuit block to use OR instruction. OR.STK and AND.STK are instructions without operation components, indicating the OR, AND relationship between circuit blocks. ### 4.5 AND.STK instruction #### Instruction and function | Instruction | Function | 1900 | (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(| |-------------|---|--------|--| | AND.STK | nu. | 11/11, | | | , à | Sets the logical produstack register right by | | and shifts the | #### Instruction specification - When the branch loop (parallel loop block) is connected to the previous loop in series, use AND.STK instruction. The starting point of branch uses RD, RD.NOT instruction, after the parallel loop block ends, AND,STK instruction is connected to previous loop in series. - AND.STK a sole instruction without other address. #### Programming RD X002.1 OR.NOT F100.3 OR.NOT X011.0 RD R100.0 AND.NOT R100.3 RD G003.3 AND R009.7 RD ← (1) AND.STK ← (2) WRT Y003.7 As the above figure and instruction list, (1)RD reports the circuit block in series is connected parallely; (2)AND.STK reports the block ① and ② are connected in series. ## **5 PLC Functional Instructions** Basic instructions such as controlling operations of machine tool are difficult to program, therefore, functional instructions are available to facilitate programming. 218M functional instruction as follows: | | XO. | XO. XO. | | | | | | | |--------------------|-------------|------------------------------|--|--|--|--|--|--| | No. | Instruction | Processing | | | | | | | | 1 | END1 | End of a first-level ladder | | | | | | | | | | program | | | | | | | | 2 | END2 | End of a second-level ladder | | | | | | | | Wild, | CALL | program | | | | | | | | 3 | CALL | Calling subprogram | | | | | | | | 4 | SP | Subprogram | | | | | | | | 5 | SPE | End of subprogram | | | | | | | | 6 | SET | Set | | | | | | | | 16 ¹⁶ 7 | RST | Reset | | | | | | | | 8 | JMPB | Lable jump | | | | | | | | 9 | LBL | Label | | | | | | | | 10 | TMR | Timer | | | | | | | | 11 | CTR | Binary meter | | | | | | | | 12 | DEC NO. | Binary decoding | | | | | | | | 13 | COD | Binary code conversion | | | | | | | | 14 | COM | Common line control | | | | | | | | 15 | COME | End of common line control | | | | | | | | 16 | ROT | Binary rotation control | | | | | | | | M17 | SFT | Register shift | | | | | | | | 18 | DIFU | Rising edge check | | | | | | | | 19 | DIFD | Failing edge check | | | | | | | | 20 | COMP | Binary comparison | | | | | | | | 21 | COIN | Coincidence check | | | | | | | | 22 | MOVN | Transfer of an arbitrary | | | | | | | | Mic | HOILIG. | number of bytes | | | | | | | | 23 | XMOV | Indexed data transfer | | | | | | | | 24 | DSCH | Binary data search | | | | | | | | 25 | ADD | Binary addition | | | | | | | | 26 | SUB | Binary subtraction | | | | | | | | 5-7, | | | | | | | | | | 28 | ORF CONTROL | Logical Add | |----|-------------|------------------| | 29 | NOT | Logical Negation | | 30 | EOR | Exclusive OR | #### END1 (1st level sequence program end) 5.1 ### Function: Must be spedifies once in a sequence program, either at the end of the 1st level sequence, or at the beginning of the 2nd level sequence when there is no 1st level sequence. It can write 100 steps. Format: ## 5.2 #### **Function** Specify at the end of 2nd level sequence. Format: ## CALL (call subprogram) #### **Function** Call a specified subprogram. CALL has the following additional functions: - More than one call instructions can call the same subprogram. - Calling instruction can be nested. - Cannot call subprogram in 1st level sequence program. - Subprogram must be written after END2. #### Control condition: ACT=0, execute the next instruction behind CALL. ACT=1, call subprogram which number is specified. #### Parameter: Subprogram: specifies the subprogram number of a subprogram to be coded following this instruction. Range: $0\sim99$. ## 5.4 SP (Subprogram) #### Function: The SP functional instruction is used to create a subprogram. A subprogram number is specified as a
subprogram name. SP is use with the SPE functional instruction to specify the subprogram range. #### Note: - 1. A subprogram must be written after END2. - 2. Another subprogram cannot be nested into a subprogram. #### Format: #### Parameter: Subprogram number: specifies the subprogram label of a subprogram to be coded following this instruction. Range: $0\sim99$. ## 5.5 SPE (subprogram end) #### Function: - * it is used to specify the range of subprogram when SPE is used with the S P. - * the control will return to the main program which called the subprogram when the instruction is executed. - * the subprogram is written after END2. #### Format: ## Example: ## 5.6 SET (set) #### **Function:** Set to 1 for the specified address. Format: #### Control condition: ACT=0, add.b keep invariably. ACT=1, add.b set to1. #### Parameter: Add.b: set element address bit can be the output coil, Add= Y, G, R, K, A. ## 5.7 RST (reset) #### **Function:** Set to 0 for the specified address. Format: Control condition: ACT=0, add.b keep invariably. ACT=1, add.b set to1. #### Parameter: Add.b: reset element address bit can be the output coil, Add= Y, G, R, K, A. ## 5.8 JMPB (label jump) #### Function: The JUMP functional instruction transfer control to a Ladder immediately after the lable set in a Ladder program. JMPB has the following additional functions: - * More than one jump instruction can be coded for the same label. - * Jumped END1 and END2 are forbidden. - * Jump instructions can transfer control freely before and after the instruction withinthe program unit in which the instruction is coded. - * Jump can be executed. #### Format: #### Control conditions: ACT=0: The next instruction after the JMPB instruction is executed. ACT=1: Control is transferred to the Ladder immediately after the specified label. #### Parameter: Lx: specifies the label of the jump destination. A value from 0 to 99 can be specified. ## 5.9 LBL (Label) #### Function: The LBL functional instruction specifies a label in a ladder program. It specifies the jump destination for JMPB functional instruction. Note: one Lx label is only specified one time with LBL. Otherwise, the system alarms. Format: #### Parameter: Lx: specifies the label of the jump destination. Label number range: $0\sim99$ Example: ## 5.10 TMR (timer) #### **Function:** This is an on-delay timer. Format: Control condition: ACT=0: turns off the timer relay. ACT=1: initiates the timer. i.e. timing from 0. Detailed functions: #### Parameter: TIMER : timer serial number is named with xxx which are numbers (0 \sim 127). #### **Output:** W: output coil. W=1 when the output reaches the preset value. W=0 when the output does not reach the preset value. #### Note: The setting time is every 4ms for the timer. The timer can be set via **【TMR】** in **【PLCPAR】**. ## 5.11 CTR (binary counter) #### Function: The data in the counter are binary and their functions are as follows: 1) Preset counter Preset the count. It outputs a singal when the preset count is reached. 2) Ring counter Upon reaching the preset count, returns to the initial value by issuing another counter signal. 3) Up/down counter The cunt can be either up or down. 4) Selection of initial value Its initial value is 0 or 1. ### Format: #### Control condition: Specifies the initial value(CN0): CN0=0: begins the value of the counter with 0. CN0=1 begins the value of the counter with 1. Specify up or down counter (UPDOWN): UPDOWN=1: Up counter UPDOWN=0: Down counter Reset (RST): RST=0: release reset. RST=1: enable reset. When W=0, the interated value is reset to the initial value. RST is set to 1 only when reset is required. Count signal(ACT): ACT=1: count is made by catching the rise of ACT. ACT=0: counter does not operate. W does not change. #### Parameter: METER: specifies the counter serial number with xxx which are numbers (0 \sim 127). #### Output: W: coil output. W=1 when the counter reaches the preset value. Note: When the counter is rise edge to count, and the conter number is duplicated,or falls outside the valid range, the operation will be unpredictable. The timer can be set via **【TMR】** in **【PLCPAR】** ## 5.12 DEC (binary decode) #### **Function:** DEC can decode binary code data. Outputs 1 when the eight-digit BCD signal is equal to a specified number, and 0 when not. It is mainly used to decode M or T function. #### Format: #### Control condition: ACT=0: resets all the output data bit. ACT=1: decode data. Results of processing is set in the output data address. #### Parameter: length : Set the size of code data to the 1st digit of the parameter. 0001: code data is in binary format of 1 byte length.0002: code data is in binary format of 2 byte length. S1 : code data address. Specifies an address at which code data is stored. S2 : number specification decode designation. Specifies the first of the 8 continuous numbers to be decoded. S3 : decode result address. Specifies an address where the decodedresult shall be output. A one-byte area is necessary in the memory for the output. #### **Example:** DEC 1 F10 8 R4 When ACT=1 and F10=8, R4=0000,0001; When ACT=1 and F10=9, R4=0000,0010; When ACT=1 and F10=15, R4=1000,0000; ## 5.13 COD (binary code conversion) #### **Function:** COD instruction automatically creates a table with corresponding size used for user inputting conversion table data when it inputs the data capacity. Each table has 10 lattices and if it is not divided by 10, count the lattices by its quotient adding 1, but its capacity data does not change. #### Format: #### Control conditions: Reset (RST): RST=0: do not reset. RST=1: reset error output W. Activate instruction (ACT): ACT=0: do not execute COD. ACT=1: execute COD. Take value of "Conversion input data address(S1)" as the table number of conversion table, take out of 1 conversion data which corresponds to the table number from the conversion table, output the output address used for the conversion data (S2). #### Parameter: Length1: designates binary numerial size in the conversion table. - 1: Numerical data is binary 1-byte data. - 2: Numerical data is binary 2-byte data. - length2: Number of conversion table data. 100 data can be made. 100 bytes when designating 1 byte format, and 100 words when 2 byte format. All number is at most 512 bytes in COD conversion table. - 1: 2 bytes - 2: 4 bytes - 3: 8 bytes - 4: 16 bytes - 5: 32 bytes - 6: 64 bytes - 7: 128 bytes - 8: 256 bytes - S1: Data in the conversion data table can be taken out by specifying the table number. The address specifying the table number is called conversion input data address, and 1-byte memor is required from the specified address. - S2: Conversion data output address. Memory of the byte length specified in the format designation is necessary from the specified address. #### Output: If there are any abnormality when executing the CODB instruction, W=1, and error will be output. Note: Size of the conversion data table is maximum 256. This conversion data table is programmed between the parameter conversion data output address of this instruction and the error output(W). ## 5.14 COM (common line control) #### **Function:** This function can be used for specifying the number of coil only on the PMC-SB/SC. If the common line end instruction is not specified, the system will alarm. #### Format: #### Control condition: ACT=0: The specified number of coils or the coils within the region specified are unconditionally turned off (W=0). ACT=1: No processing is performed. #### Note: - 1. In the range specified with a COM instruction, no additional COM instructin can be specified. - 2. the coil for WRT.NOT in the range specified with a COM instruction is unditionally set to 1 when COM ACT=0. - 3. do not use the function block between COM and COME, otherwise, the system will alarm. # 5.15 COME (common line control end) #### **Function:** The instruction reports the division in the region specification of the common line control instruction (COM). This instruction cannot be used alone. It must be used together with the COM instruction. #### Format: ## 5.16 ROT (Binary rotation control) #### Function: Controls rotors, such as the toolpost, rotary table, etc., and is used for the following functions. - 1. Selection of the rotation direction via the shorter path. - Calculation of the number of steps between the current position and the goal position; calculation of the position on position before the goal to the number of steps up to one position before the goal. - Calculation of the position one position before the goal or of the number of steps up to one position before the goal. #### Format: #### Control conditions: Specify the starting number of the rotor(CN0): CNO=0: begins the number of the position of the rotor with 0. CNO=1: begins the number of the position of the rotor with 1. Select the rotation direction via the shorter path or not: (DIR): DIR=0: no direction is selected. The direction of rotation is only forward. DIR=1: selected. The direction of rotation is forward/backward. Specify the operating conditions (POS): POS=0: calculate the goal position. POS=1: calculates the position one position before the goal position. Specify the position or the number of steps(INC): INC=0: calculates the number of the position. If the position one position before the goal position is to be calculated, specify INC=0 and POS=1. INC=1: calculates the number of steps. If the difference between the current position and the goal position is to be calculated, specify INC=1 and POS=0. #### Execution instruction (ACT): ACT= 0: the ROT instruction is not executed. W does not change. ACT = 1: executed. Normally, set ACT=0. If the operation results are required,set ACT=1. #### Parameter: S1 : specify the rotor indexing number. specify the address storing the current position. specify the address storing the goal position(or instruction value), for example the address storing the CNC output T code. set: calculate the
nuber of steps for the rotor to rotate, the number of steps up to the position one position before, or the position before the goal. When the calculating result is to be used, always check that ACT=1. #### Output: W: The direction of rotation for control of rotation via the shorter path is output to W. When W=0, the direction is forward (FOR) when 1, reverse (REV). The definition of FOR and REV is shown in the following figure. If the number given to the rotor is ascending, the rotation is FOR; if descending, REV. The address of W can be determinded arbitrarily. When, however, the result of W is to be used, always check that ACT=1. #### Example: Rotor rotation direction: Perform the short path rotation, and calculate the postion number of previous one position of goal position. Current position number S2=1, position number of rotation graduation S1=12, RNO=1, DIR=1 POS=1, INC=0: When S3=10 goal position is A, and ACT=1, S4=11, W=1. When S3=8 goal position is B, and ACT=1, S4=9, W=1. When S3=5 goal position is C, and ACT=1, S4=4, W=0. When S3=3 goal position is D, and ACT=1, S4=2, W=0. ## 5.17 SFT (shift register) #### Function: The instruction shifts 1-byte (8-bit) data by a bit to the left or right. Note that W=1 whendata "1" is shifted from the left extremity (bit 8) in left shift or from the right extremity (bit 0) in right shift. #### Format: #### **Control conditions:** Shift direction specification (DIR) DIR=0: Left shift DIR=1: Right shift Condition specification (CONT) CONT=0: do not cycle shift CONT=1: cycle shift Reset (RST) The shifted out data(W=1) is reset (W=0). RST=0: W is not reset. RST=1: W is reset (W=0). Actuation signal (ACT) ACT=0: do not execute SFT instruction. ACT=1:shifting processing is done when ACT=1. For shifting one bit only, execute an instructin when ACT=1, and then, set ACT to 0. #### Parameters: sets shift data addresses. These designated addresses require a continuous 1-byte memory for shift data. Length: a 4-bit number, and its definition is as follows: L: range: 0~8. A: bit parameter. A=0: When ACT=1 is shifting, the shift period is one bit. A=1: ACT is taken as pulse signal, it is 1 from 0, shift one bit. #### **Output:** W : W=0: "1" was not shifted out because of the shift operation. W=1: "1" was shifted out because of the shift operation. ## 5.18 DIFU (rising edge check) #### Function: The DIFU instruction sets the output signal to 1 for one scanning cycle on a rising edge of the input signal. #### Format: #### **Control condition:** Input signal: On a rising edge $(0\rightarrow 1)$ of the input signal, the output signal is set to 1. Output signal: The output signal level remains at 1 for one scanning cycle of the ladder level where this functional instruction is operating. ### Parameter: Rising edge number **Parameter:** L :rising edge number, range 0~255. Another DIFU instruction or DIFD instruction in the ladder uses the same number, the system will alarm. ### Operation: ## 5.19 DIFD (falling edge check) #### **Function:** The DIFD instruction set the output signal to 1 for one scanning period on a falling edge of the input signal. #### Format: #### **Control conditions:** Input signal: on a falling edge $(1\rightarrow 0)$ of the input signal, the output signal is set to 1. Output signal: the output signal level remains at 1 for one scanning period of the ladder level where this functional instruction is operating. #### Parameter: L : rising edge number, range 0~255. Another DIFU instruction or DIFD instructin in the ladder uses the same number, the system will alarm. ## Operation: ## **5.20** COMP (binary comparison) #### Function: Compares binary values. Specifies enough byte to store input data and comparison data in the memory. #### Format: #### **Control conditions:** ACT=0: The COMP instruction is not executed. W does not alter. ACT=1: The COMP instruction is executed. #### Parameter: Length: specification format(constant or address) and data length(1 or 2 bytes) for the input data. S1, S2: content of comparison source 1 and comparison source 2. It can be constant and also be address number. Address number: R, X, Y, F, G, K, A, D, T, C. ## Output: W=0: input data>comparison data W=1: input data ≤comparison data ## 5.21 COIN (concidence check) #### **Function:** Checks whether the input value and comparison value coincide. #### Format: #### **Control conditions:** ACT=0, the COIN instruction is not executed. W does not change. ACT=1, the COIN instruction is executed. #### Parameter: Length: specification format(constant or address) and data length(1 or 2 bytes) for the input data. - S1 : The input data can be specified as either a constant or an address storing it. - S2 : address storing of comparison data #### **Output:** W : W=0: input value≠comparison value W=1: input value=comparison value ## 5.22 MOVN (transfer of data) #### Function: The MOVN instruction transfers data from source address and a specified binary data to a specified destination address. #### Format: #### **Control condition:** ACT=0: No data is transferred. ACT=1: The byte of specified number is transferred. #### Parameter: Length: transferred byte number. S1: stating byte of address or constant of source data. Selecting transfer format according to S1: - S1 is constant: if S2 is single byte address, S1 in byte unit is copied to address corresponding to Length byte which takes S2 as the initial; if S2 is in word unit, it is copied in word address; - S1 is address: S1 and S2 transmit the data in byte in spit if S1 and S2 address classifications are matched. S2 : starting byte of destination address. #### Example: - 1.When S1 is the constant 5 and S2 is R60, R60=00000101,R61=00000101 - 2.When S1 is the constant 5 and S2 is D60, D60=1285 - 3. When S1 is the constant 500 and S2 is D60, D60=62708 - 4.When S1 is the constant D50 and S2 is D60, D60=D50 ## 5.23 XMOV (Binary index data transfer) #### **Function:** This function instructs reading and rewriting of data in the data. The number of data(table capacity) in the data table can be specified by specifying the address, thus allowing change in table capacity even after writing the sequence program in the ROM. #### Format: #### **Control condition:** Specify the reading ro rewriting (RW) RW=0: data is read from the data table. RW=1: data is written in the data table. Reset (RST) RST=0: release reset. RST=1: reset W=0. Execution instruction (ACT): ACT=0 : The XMOV instruction is not executed. W does not change. ACT=1 : The XMOV instruction is executed. #### Parameter: Length: Specify the data long. 1: 1-byte long data. 2: 2-byte long data. : Storage address of number of data table elements. The address is used to store the data number of data table, its byte should correspond to the length specified in Length format specification, and the effective range of number of data table element is as follows with the byte length which set in Length1 format. 1 byte length: 1 to 255. 2 byte length: 1to 32767 (Actually, set a value below the size of the D area. Sets head address in the data table. The memory of (byte length)X (number of data table elements). S3 : Input/output data storage address. In case of the reading, set the addressofthe memory which stores a reading result a writing result. The memory with the byte length which set in Length format specification is necessary. storage address. Set the address of the memory in which an index value is stored. The memory with the byte length set in Length format specification is necessary. When setting an index value above the value to set in S1 storage address of nmber of data table elements, it causes an error ouput W=1. Actually, the number of data table elements does not exceed 255. #### **Output:** The index value set in Index storage address exceeds the value set in S1, W=1, the reading or writing of the data table isn't executed. W=0, No error. W=1, Error found. ## 5.24 DSCH (binary data search) #### **Function:** The DSCH instruction is used to search the binary data in data table. The number of data (table capacity) in the data table can be specified by specifying the address. Thus allowing change in table capacity even after writing the sequence program in the ROM. #### Format: Reset (RST) RST=0: Release reset. RST=1: Reset. W=0. Activation instruction (ACT): ACT=0 : Do not execute DSCH instruction, W does not change. ACT=1: Execute DSCH instructin. If the search data is found, table number wherethe data is stored will be output. If the search data is not found, W becomes 1. #### Parameter: Length: Specifies data length 1: 1-byte long data. 2: 2-byte long data. storage address of number of data in data table. This address requires memory of number of byte according to the format designation. Number of data in the table is n+1(head number in the table is 0 and the last number is n). S2 : Data table head address. S3 : Search data input address. S4 : Search result output address. After searching, if search data is found, thetable number where the data is stored will be output. the searched table number is output in this search result output address. This address requires memory of number of byte according to the format designation. #### Output: W=0, Search data found. W=1, Search data not found. ## 5.25 ADD (addition) #### Function: This instruction performs binary addition between 1-, 2-byte data. In the operation result register, operation data is set besides the numberical data representing the operation results. The required number of bytes is necessary to store each augend, the added, and the operation output data. #### Format: #### **Control conditions:** Reset (RST): RST=0: Release reset. RST=1: Reset. W=1. Activation instruction (ACT): ACT=0: Do not execute ADD. W does not change. ACT=1: Execute ADD. #### Parameter: Length: Specifies data length(1 or 2 bytes) and the format for the addend(constant or address). S1 : Augend address. S2 : Addend data specification determines the format of
the addend. S3 : Specify the address to contain the result of output operation. #### **Output:** W=0: Operation correct. W=1: Operation incorrect. When W=1, the result of addition exceeds the specified data length. ## 5.26 SUB (binary subtraction) #### Function: This instruction executes the subtraction operation in the binary format of 1 or 2 bytes. In the operation result register, operation data is set besides the numberical data representing the operation. A required number of bytes is necessary to store the subtrahend, and the result. #### Format: #### Control conditions: Reset (RST): RST=0: Release reset. RST=1: Reset. W=0. Activation instruction (ACT): ACT=0 : Do not execute SUB. W does not change. ACT=1: Execute SUB. #### Parameter: Length: Specifies data length(1 or 2 bytes) and the format for the subtrahend(constant or address). S1 : Address containing the minend. S2 : Specification determines the Length. S3 : Specifies the address to contain the result of operation. #### Output: W=0: Operation correct. W=1: Operation incorrect. When W=1, the result of subtraction exceeds the specified data length. ## 5.27 ANDF (logical and) #### **Function:** The ANDF instruction ANDFs the contents of address A with a constant(or the contents of address B), and stores the result at address C. #### Format: #### **Control conditions:** ACT=0: The ANDF instructin is not executed. ACT=1: The ANDF instruction is executed. #### Parameter: Length: Specify a data length (1 or 2 bytes), and an input data format(constant or addressspecification). - S1 : Input data to be ANDFed. The data that is held starting at this address and hasthe data length specified in Length format specification is treated as input data. - selected in specification, the data that is held starting at this address and has the data length specified in Length format specification is treated as input data. so says and to store the result of an ANDF operation. The result of and ANDF operation is stored starting at this address, and has the data length specified in Length format specification. ### Example:: When address A and address B hold the following data: | Address A | 1 | 1 | ONTRE | 0 | 0 | Ough | 1 | 1 | |-----------|---|------------------|-------|---|------|------|---|------| | Address B | 0 | 1 ⁽¹⁾ | 0 | 1 | 0.00 | 1 | 0 | 1,45 | The result of the ANDF operation is as follows: | | | 40 | 20 | | | | | |-----------|---|------|----|---|------|---|----| | Address C | _ | 1 00 | ^ | _ | 182 | 0 | 4 | | ~30° | U | 1 0 | U | U | 20.0 | U | ١. | ## 5.28 ORF (logical or) #### Function:: The ORF instruction ORFs the contents of address A with a constant (or the contents of address B),and stores the result at address C. #### Format: #### Control conditions: ACT=0: The ORF instruction is not executed. ACT=1: The ORF instruction is executed. #### Parameter: Length: Specify a data length(1 or 2 bytes), and an input data format(constant or addressspecification). S1 : Specify the input data to ORed. The data that is held starting at this address and has the data length specified in Length format specification is treated as input data. so : Input data to be ORed with. When address specification is selected in formatspecification, the data that is held starting at this address and has the data length specified in Length format specification is treated as input data. S3 : Address used to store the result of an ORF operation. The result of an ORF operation is stored starting at this address, and has the data length specified in format specification. ### **Example:** When address A and address B hold the following data: | Address A | 1 | 1 | 13016 | 0 | 0 | 0 | 1 | 1 | |-------------------------------|---|-------|--------|---|------|------|---|------| | *OLL | | | °0'L'. | | | ×01. | | | | Address B | 0 | 1,000 | 0 | 1 | 0,80 | 1 | 0 | 1 8 | | ANDF operates are as follows: | | | | | nun. | | | Ann. | ## 5.29 NOT (logical not) Address C #### Function: The NOT instruction inverts each bit of the contents of address A, and stores the result at address B. #### Format: #### **Control condition:** ACT=0: The NOT instruction is not executed. ACT=1: The NOT instruction is executed. #### Parameter: Length : Specifies a data length(1 or 2 bytes). - S1 : Input data to be inverted bit by bit. The data that is held starting at this address and has the data length specified in Length format specification is treated as input data. - S2 : Address used to output the result of a NOT operation. The result of a NOT operation is stored starting at this address. And has the data length specified in Length format specification. ### Example: When address A holds the following data: | | | | | | | | | 100 | |-----------|---|---|---|---|---|---|---|-----| | Address A | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | The result of the NOT operation is as follows: Address B 0 0 0 1 1 1 0 0 ## 5.30 EOR (exclusive or) #### **Function:** The EOR instruction exclusive-Ors the contens of address A with a constant(or the contents of address B), and stores the result at address C. #### Format: #### **Control conditions:** ACT=0: The EOR instruction is not executed ACT=1: The EOR instruction is executed. #### Parameter: Length: Specify a data length (1 or 2 bytes) and an input data format(constant or address specification). - S1 : Input data to be exclusive-ORed. The data that is held starting at this addressand has the data length specified in Lengh format specification is treated as input data. - selected selected selected report that specification, the data that is held starting at this address and has the data length specified in Length format specification is treated as input data. - S3 : Address used to store the result of an exclusive EOR operation. The result of an exclusive EOR operation is stored starting at this address, and has the data length specified in Length format specification. #### Example: When address A and B hold the following data: Address A 1 1 1 0 0 0 1 1 Address B 0 1 0 1 0 1 0 1 The result of the exclusive EOR operation is as follows: Address C 1 0 1 1 0 1 1 0 ## **6 Ladder Writing Limit** - 1. Sequence program must have END1 and END2 which are taken as the end marks of 1st level and 2nd level sequence part, and END1 must be before END2. - 2. They only support the parallel output and do not support the multi-level output. - 3. The result output address in all basic instructions and output function instruction are not set the following addresses: - (1) Counter preset address DC, timer preset address DT. - (2) K0~K5 address are occupied by the system. - (3) G63, R255 address are occupied by the system. - (4) X address on IO input interface and CNC→PLC F address. The followings are the phrasing error, and the system will alarm. ## 1 Controlled Axis ## 1.1 Outputting of movemtn state of an axis General The movement state of each axis can be output to the PLC. Signal Axis moving signals #### MV1~MV4 (F017#0~F017#3) [Classfication] Output signal [Function] These signals indicate that a controlled axis is moving. MV1: X is moving. MV2: Y is moving. MV3: Z is moving. MV4: A is moving. [Output conditions] The signals become 1 when: The corresponding axis has started moving. The signals become 0 when: The corresponding axis has stopped moving. ## Axis moving direction signals #### MVD1~MVD4 (F019#0~F019#3) [Classfication] Output signal [Function] These signals indicate the movement direction of controlled axis. MV1: movement direction of X. MV2: movement direction of Y. MV3: movement direction of Z. MV4: movement direction of A. [Output conditions] When parameter 0003#1~~0003#4 is 1: "1" indicates the corresponding axes are negatively moving, "0" indicates the corresponding axes are positively moving. When parameter 0003#1~~0003#4 is 0: "0" indicates the corresponding axes are negatively moving, "1" ndicates the corresponding axes are positively moving. #### Caution: These signals maintain their condition during a stop, indicating the direction of the axes' movment before stopping. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | 1 # 1 | #0 | |------|-----|-------|------|---------|------|------|-------|------| | F017 | ny. | | ere, | N. | MV4 | MV3 | MV2 | MV1 | | F019 | | AKO.D | | Arail 1 | MVD4 | MVD3 | MVD2 | MVD1 | ## 1.2 Servo ready signal #### Singal servo ready signal SA (F000#6) [Classfication] Output signal [Function] After the servo is ready, SA signal becomes 1. For the axis with absorption brake, release the brake when outputting the signal, execute the brake when the system does not output the signal. #### Signal address | | #7 | #6 | # 5 | #4 | #3 | #2 | #1 | #0 | |------|-----|------|-----|-----|-----|-----------------|-------------------------|---------| | F000 | 11. | SA 🚜 | 14. | n'i | 27. | N th | <i>t</i> ₂ . | and and | ## 1.3 Servo OFF signal #### General Place the controlled axes in the servo off state, stop the current to the servo mtor, which disables position control. However, the position check feature functions continuously, so the current position is not lost. These signals are used to prevent the servo motors from overloading when the tools on the axes are mechnically clamped under certain maching, or to move the machine by driving the motors by mechanical MPG. #### Signal servo OFF signal SVF1-SVF4<G014> [Classfication] Input signal [Function] Select whether to place each axis in the servo off state. These signals are provided for the controlled axes on a single axis basis. Anumber appended to a signal represents a controlled axis number. #### **SVF**x 1 □ □ 1st axis servo OFF 2□□2nd axis servo OFF 3□□3rd axis servo OFF [Operation] These signals put the axes for which the signals are 1 in the servo off state(the current to the servo motor is stopped). This disables position control. However, the position detectin feature continues to function, so the current position is not lost. ### Signal address | _{alt} o ^{rne} #7 | #6 #5 | #4 | #3 | #2 | J. # 1 | #0 |
------------------------------------|--------|----------|------|------|--------|------| | G014 | "Hido, | "141:QDC | SVF4 | SVF3 | SVF2 | SVF1 | #### Caution: - 1. In general, interlock is applied to an axis while the servo off signal for that axis is 1. - 2. When one of these signals becomes 1, the servo motor is turned off. The mechanical clamp is done by using the auxiliary function. Set the timing for the auxiliary function, mechanical clamp and servo off signals as shown in the diagram below. The clamp instruction auxiliary function should be executed only after the distribution end signal(DEN) becomes 1. #### 1.4 Mirror image #### General Mirror image can be applied to each axis, either by signals or by parameter(setting input is acceptable). All movement directions are reversed during automatic operation along axes to which a mirror image is applied. However, the following directions are not reversed: - 1. Direction of manual operation and direction of movement, from the intermediate position to the reference point during automatic reference point return. - 2. Approach direction for single direction positioning (G60) and shift direction for boring cycles (G76 and G87). #### Signal Mirror image signal #### MI1-MI4<G010> [Classfication] Input signal [Function] Apply mirror image to the specified axes. [Operation] Apply mirro image to those axes for which the signals are 1. These signals are provide for the controlled axes on a one-to-one basis. A number appended to a signal represents the controlled axis number. #### MI x - 1: 1st axis mirror image □□ - 2: 2nd axis mirror image □□ - 3: 3rd axis mirror image □ □ The mirror image signal becomes 1 when: - a) During offset cancel; - b) When the CNC is in the automatic operation stop state and not in the feed hold state. #### Mirror image check signal #### MMI1-MMI4<F020> [Classfication] Output signal [Function] These signals indicate the mirror image condition of each axis. The mirror image is set by taking the logical sum of the signal from the MDI panel and the input signal of the machine tool, then relaying the information to the ## GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual machine tool. These signal are provided for every controlled axis. The numeral in the signal name indicates the relevant control axis number. #### MMI x - 1: 1st axis mirror image. □ - 2□2nd axis mirror image.□ - 3□3rd axis mirror image. □ #### [Output state] The signals are 1 when: - Mirror image signal Min of the corresponding axis is "1". - Mirror image signal of the corresponding axis is turned on by setting data from the MDI panel. #### The signals are 0 when: Mirror image signal Min of the corresponding axis is "1" and the setting of mirror image in the control unit is turned off. #### Signal address | USI CHE | #7 _{[[d]} [4] | #6 #5 | #4 #3 | #2 | #1 | #0 | |---------|------------------------|------------|-------|------|------|------| | G010 | .162 <u>11</u> 0. | , dignific | MT4 | MT3 | MT2 | MT1 | | F020 | nna, | nned) | MMT4 | MMT3 | MMT2 | MMT1 | #### Parameter | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|------|-------|------|------|------|----|------|-----| | 0001 | the. | MIRZ4 | MIRZ | MIRY | MIRX | | 1220 | 14. | The following parameter can be set at "Setting screen". [Data type] bit axis Mirror image for MIRx each axis - 0: Mirror image is invalid. - 1: Mirror image is valid. #### Warning: - 1. When programmable mirror image and ordinary mirror image are specified at the same time, programmable mirror image is applied first. - 2. No programmable mirror image affects mirror image check signal MMI1~MMI4<F020>. #### Caution: Even when the mirror image is applied, instructions which do not actuate mirror image (such as automatic reference point return and manual operation) do not affect mirror image check signals MMI1~MMI4. #### GG与K 「当代数控 GSK218M CNC System Connection and PLC Manual Note: When the mirror image is used and mirror image instruction is not executed(automatic reference point return and manual operation), the mirror image check signal MMI1~MMI4 are not influenced. #### 1.5 Position switch **General** Position switch signals can be output to the PMC which the machine coordinates alogn a controlled axes are within a specified ranges. #### Signal position switch signal PSW01-PSW05 <F014#0 ~ #4> #### [Classfication] Output signal [Function] Indicates that the machine coordinates along the controlled axes specified by parameters. Up to 16 position switch signals can be output. (Using 11 or more position switches requires setting the ESP parameter.) [Output conditions] The signals are 1 when: The machine coordinate along the controlled axes are within the specified range. These signals are 0 when: The machine coordinate along the controlled axis are not within the specified range. | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-------------|----|-------|-------|-------|-------|-------| | F014 | | Calcy Co. X | | PSW05 | PSW04 | PSW03 | PSW02 | PSW01 | ## **2 Preparation for Operation** ## 2.1 Emergency stop **General** If you press Emergency Stop button on the machine operator's panel, the machine movement stops in a moment. The button is locked when it is pressed, Although it varies with the machine too builder, the button can usually be unlocked by twisting it. #### Signal Emergency stop signal *ESP (X001.4 G001.0) [Classfication] Input signal [Function] Activating an emergency stop signal stops the machine instantly. [Operation] When the emergency stop *ESP becomes 0, the emergency stop is applied to the machine and the CNC is reset. #### Signal address | Sigh | #7 | (# 6 | #5 | #4 | #3 | # 2 | #1 | #0 | | |------|----------------|-------|---------|------|---------|-----|-------------------|------|-------| | X001 | "Palit | 0, | Najito. | *ESP | doalito | | dbalito. | | | | | No. of St. Co. | | Made | | MANIE | | u _{nu} , | 7 | N. N. | | G001 | | 9 | | 8 | | 6 | | *ESP | | ## 2.2 CNC ready signal **General** When the CNC is turned on and become ready for operation, the CNC ready signal is set to 1. Signal CNC ready signal MA (F001#7) [Classfication] Output signal #### GG与K 厂 州数控 GSK218M CNC System Connection and PLC Manual [Function] The CNC ready signal indicates that the CNC is ready. [Output conditions] When the CNC is turned on and becomes ready for operation, the signal is set to 1. Normally, it takes several seconds to establish this state after the power is turned on. If a system alarm is issued, the signal is set to 0. The signal remains set to 1, however, when an emergency stop or a similar operation is performed. #### **Address** | a di | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|----|----|-----|----|----|----|----| | F001 | MA | 7, | Ž | ye. | 23 | y. | .3 | y. | ## 2.3 CNC overtravel signal #### General When the tool tries to move beyond the stroke end set by the machine tool limit switch, the tool decelerates and stops as a result of tripping the limit switch, and an Over TRAVEL is displayed. The signal can be output with an alarm. #### Signal Overtravel signal +L1~+L4(G12#0~G12#3) -L1~-L4(G13#0~G13#3) [Classfication] Input signal [Function] Indicates that the control axis has reached its stroke limit. There are individual signals for each direction in every control axis. The + /- in the singal name indicate the direction and the number corresponds to the control axis. [Operations] "0": the controlled unit operates as follows: Automatic operation: If even one axis overtravel signal becomes, all axes are decelerated to stop, an alarm is given and operation is halted. Manual operation: Only the axis whose overtravel signal has becomed 0 is decelerated to a stop, and the axis an be moved in the opposite direction. Once the axis overtravel signal has becomed 0, the axis direction is registered. Even if the signal returns to 1, it is not possible to move that axis in that direction until the alarm is cleared. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-----------------|-----|-----|------|-----|-----|-----|-----| | G012 | ⁽ C) | n'n | ig. | , nh | +L4 | +L3 | +L2 | +L1 | | G013 | | 12 | | , , | -L4 | -L3 | -L2 | -L1 | ## 2.4 Alarm signal General When an alarm is triggered in the CNC, the alarm is displayed on the screen, and the alarm signal is set to 1. If the voltage level of the memory backup battery falls to below a specified level while the CNC is turned off, the battery alarm signal is set to #### Signal Alarm signal #### AL (F001#0) [Classfication] Output signal [Function] Alarm signal reports CNC is in an alarm state as follows: - a) TH alarm - b) TV alarm - c) P/S alarm - d) Overtravel alarm - e) Overheat alarm - f) Servo alarm [Output conditions] These alarm signal is set to 1 when: ——The CNC is placed in the alarm state. These alarm signals is set to 0 when: ——The alarm has been released by resetting the CNC. | 201 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-----|----|----------|----|----|----|----| | F001 | | STO | 5 | STATE OF | 2 | 27 | | AL | ## 2.5 Machine ready signal General report the machine has been the ready state. Signal machine ready signal MRDY (G009#4) [Classfication] Input signal [Function] Must input the signal when CNC automatically runs. [Operation] MRDY signal becomes 1 without the alarm signal. ## 2.6 Interlock activation General These signals disable machine movement along axes. When any of these signals is activated during movement, tool movement is decelerated, and then stopped. All axes interlock signal *IT1~*IT4(G015#0~G015#3) [Classfication] Input signal [Function] This singal is used to inhibit the machine from moving. The number at the end of each signal name denotes the number of the corresponding controlled axis. | *IT1 | No. X axis interlock | |------|----------------------| | *IT2 | No. Y axis interlock | | *IT3 | No. Z axis interlock | | *IT4 | No. A axis interlock | [Operation] a) In manual operation: The movement of an
interlocked axis is inhibited, but the other axes are movable. If an axis is interlocked during movement, its stops after being decelerated, and it starts moving again when it is released from interlock. #### b) In automatic operation If an axis is interlocked while its movement is being commanded(the move amount is not 0, inclusive of the tool offset), movement in all axes is prevented. If a moving axis is interlocked, all axes stop moving after being #### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual decelerated, and they start moving again when interlock is released. This function is also effective during dry run. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |-------|--------------------|----------|----------|-------|------|--------|------|-------| | G009 | | 148.D | | MRDY | | Mrs. G | | Mary. | | Chiga | | KOLU, O. | 8 | Ollia | , có | 60 | 70% | 0 | | G015 | "iq ₂ , | , | .41.dbab | | *IT4 | *IT3 | *IT2 | *IT1 | #### 2.7 Mode selection Signal mode check signal F003#0~F003#7 [Classfication] Output signal [Function] Report the current selected operation mode Signal address | | #7 | #6 | # 5 | #4 | #3 | #2 | #1 | #0 | |------|------|------|------|------|------|----|----|------| | F003 | MZRO | MEDT | MMEM | MRMT | MMDI | MJ | МН | MINC | ## 2.8 Status output signal #### Signal Rapid traversing signal RPDO (F002#1) [Classfication] Output signal [Function] This signal indicates that a move instruction is being executed at the rapid traverse. [Output conditions:] - 1: indicates an axis starts moving after rapid traverse has been selected; - 0: indicates that an axis starts moving after a federate other than rapid traverse has veen selected. This holds true for both automatic and manual operation modes. #### **Cutting feed signal** CUT (F002#6) [Classfication] Output signal [Function] These signals indicate that the cutting feed is being performed by #### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual automatic operation. [Output conditions] These signals are 1 when: When cutting feed is being performed by automatic operation(cutting feed for linear interpolation, circular interpolation, helical interpolation, thread cutting, skip cutting, or cutting in canned cycle). #### Note: Do not output the signal in the state of feed hold. Output the signal during the interlock or the feedrate override is set to 0. #### Signal address | 72 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-----|----|-------|----|----|------|----| | F002 | | CUT | | 13.01 | | 30 | RPDO | 20 | ## 2.9 VRDY OFF alarm ignore signal #### General The German VDE safety standard requires that the motor be deactivated when the safety guard is opened. By using the VRDY OFF alarm ignore signal, however, the CNC can be restarted without resetting, even if the safety guard has been opened. #### Signal All-axis VRDY OFF alarm ignore signal IGNVRY<G009#3> [Classfication] Input signal [Function] Disables the check of servo alarm VRDY OFF. [Operation] When the signal is set to logical 1, the control unit operates as follows: Even when the servo amplifier ready signal goes off, the control unit, however, sets ervo ready signal SA to 0. The SA signal can remain set to 0. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1,0 | #0 | | |------|----------|----|---------|----|--------|----|---------|----|---| | G009 | "MAI'GP. | | "MAIGD. | | IGNVRY | | HAI. OD | | 3 | #### 2.10 Abnormal load check General Machine collision, defective, and damaged tools cause a large load torque on the #### GGSK218M CNC System Connection and PLC Manual servo and spindle motors, compared with normal rapid traverse or cutting feed. This function detects the load torque on the motors and sends this value as an estimated load torque to the PMC. If the detected load torque value is abnormally great compared with the value specified in the parameter, the function stops the servo motor as early as possible or reverses the motor by an appropriate value specified in a parameter, in order to minimize possible damage to the machine. (The function to reverse motors is effective only for servo motors.) Abnormal load check function is divided as follows: #### (1) Estimated load torque function The CNC is always calculating the estimated load torque for the motor(excluding acceleration/deceleration torque). The estimated load torque output function enables the PMC to read the calculated torque using the window function. #### (2) Abnormal load check alarm function This function stopss motors or reverses them by an amount specified in a parameter, causing the CNC to output an alarm, whenever the load torque obtained by the estimated load torque output function is greater than the value specified in a parameter. (The function to reverse motors is effective only for servo motors.) Use the abnormal load check function parameter (ABDSW) and abnormal load. The check ignores the signal IUDD1—IUDD4 to make the abnormal load check function of one axis is enabled or disabled. Signal: Servo axis abnormal load detected signal ABTQSV<F015#0> [Classfication] Output signal [Function] Report PMC that the abnormal load on a servo axis was detected. [Output conditions] These signals are 1 when: An abnormal load is detected for a servo axis, Cs axis, spindle positioning axis, or spindle axis during rigid tapping. Spindle abnormal load detected signal ABTSP<F015#1> [Classfication] Output signal [Function] Report PMC that the abnormal load on the spindle has been detected. #### [Output conditions] These signals are 1 as follows: The abnormal load was detected on the spindle in the speed contro mode. | | #7 #6 | #5 #4 | #3 #2 | #1,50 | #0 | |------|--------|----------|-------|-------|-------| | F015 | MAIGH. | Maj. Col | 80 | ABTSP | ABTQS | ## **3 Manual Operation** ## 3.1 JOG feed/incremental feed #### General JOG feed In JOG mode, setting a feed axis and direction selection bit to 1 on the machine operator's panel moves the machine along the selected axis in the selected direction. Incremental feed In cremental feed mode, setting a feed axis and direction selection bit to 1 on the machine operator's panel moves the machine one step along the selected axis in the selected direction. The minimum distance the machine moves, is the least input increment. The step can be 10, 100, or 1000 times the least input increment. The only difference between JOG feed and incremental feed is the method of selecting the feed distance. In JOG feed, the machine continues to be fed while the following signals selecting the feed axis and direction are 1: +J1, -J1, +J2, -J2, +J3, -J3, etc. In incremental feed, the machine is fed by one step. Using JOG feedrate override dial can regulate JOG feedrate. The step distance can be selected by MPG feed movement distance $G026 \# 0 \sim G026 \# 3$. Signal Feed axis and direction selection signal +J1~+J4 (G27#0~G27#3) -J1~-J4 (G28#0~G28#3) [Classfication] Input signal [Function] In JOG feed or Incremental feed mode, select the required feed axis and direction. +/- in the signal name indicates the feed direction, the number corresponds to the controlled axis. #### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual [Operation] When the sigal is set to 1, the control unit operate as follows: When JOG feed or incremental feed is allowed, the control unit moves the specified axis in the specified direction. When the signal is set to 1 in JOG feed, the control unit continues to feed tha axis while the signal is set to 1. In incremental feed, the control unit feeds the requested axis by the step distance which is specified by the manual handle feed move distance selection signal, then the axis stops. Even if the signal si set to 0 while the axis is being fed, the contol unit does not stop moving. To feed the axis again set the signal to 0, then to 1 again. Manual rapid traverse selection signal #### RT (G024#7) [Classfication] Input signal [Function] Select the rapid traverse rate in JOG feed or incremental feed mode. [Use] When the signal becomes 1, the control unit operates as follows: - The control unit executes the jog feed or incremental feed at a rapid traverse rate. The rapid traverse override is validated. - When the signal is switched from 1 to 0 or vice versa in jog feed or incremental feed, the feedrate is decelerated until it reaches zero, then increased to the specified value. During acceleration and deceleration, the feed axis and direction selection signal can be kept 1. #### Signal address | Thomas | #7 | # 6 | #5 | #4 | #3 | #2 | #1,50 | #0 | |--------|--------|-------|-----------|------|--------------|-------|----------|--| | G024 | RT | | 'Idpanio, | | 'Apanio, | | aparico, | | | G027 | Trage. | 75 | By. | N. | + J 4 | +J3 % | +J2 | +J1 4 ¹ 4 ¹ 4 ¹ | | G028 | | 440.D | × | No.0 | -J4 | ₀—J3 | -J2 | ² —J1 | ## 3.2 MPG(Handwheel) feed General In MPG feed mode, the machine moves by rotaing the manual pulse generator (MPG). Select the axis along which the machine moves with the MPG feed axis selection signal. ## GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual Signal (G027#0~G027#3) [Classfication] Input signal [Function] Select the MPG feed axis Signal MPG/Incremental select signal (G026#0~G026#3) [Classfication] Input signal [Function] When the signal selects the MPG feed, MPG generates the movement distance of every pulse which also can select the movement distance per step of incremental feed. ## 3.3 MPG interruption #### General Rotating MPG during automatic operation can increase the distance traveled by the amount corresponding to the MPG feed. The axis to which the MPG interrupt is applied is selected using the manual MPG interrupt axis select signal. #### Signal MPG interrupt axis selection signal HS1IA-HS1ID<G004#0-#3> #### [Classfication] Input signal [Function] These signals select an axis to which the manual MPG interrupts is applied. There are three sets of
signals, each corresponding to a MPG (up to two). Each set consists of 4 signals A, B, C, and D. The number in each signal name corresponds to the number of MPG. #### HS 1 IA - 1 Select the axis for which MPG No. 1. - 2 Select the axis for which MPG No. 2. The correspondence between the code signals A, B, C, D and the selected feed axis is similar to the correspondence of MPG feed axis select signals. See 3.2 MPG Feed. #### Signal address | | #7,000 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|---------|----|----------|----|-------|-------|-------|-------| | G004 | 4.[dbgr | | 'M'idhor | | HS1ID | HS1IC | HS1IB | HS1IA | #### Warning: The distance traveled by MPG interruption is determined accordint to the amount by which the MPG is turned and the MPG override ($\times 1$, 10, $\times m$, $\times n$). Since the movement is not accelerated or decelerated, it is very dangerous to use a large override value for MPG interruption. #### Note: General - 1. MPG interrupt cannot be used in MPG feed mode. - 2. MPG interruption is disabled when the machine tool is locked or interlocked. ## **4 Reference Point Return** ## 4.1 Manual reference point return 4 . 4 In manual reference point return mode, the machine tool move in the specified direction by setting the position parameter N0: 7#3~#7 to execute the reference point return. The selected axis on the panel reports the axis to execute the machine zero return, which is not related to the move direction of axis. #### The following signals are related to the manual reference point return: | Office, Office, | Manual reference point return | |--|-------------------------------| | Selection of reference point return | MREF | | Reference point return deceleration signal | DECX,DECY,DECZ,DECA | | Reference point return completion signal | ZP1,P2, ,ZP3,ZP4 | | Creating reference point signal | ZRF1,ZRF2,ZRF3,ZRF4 | Signal Manual reference point return selection check signal MREF (F004#5) [Classfication] Output signal [Function] The signal indicates the manual reference point return had been selected once. [Output conditions] When the signal becomes 1: * The manual reference point return had been selected. When the signal becomes 0: * The selection of manual reference point return has terminated. #### Reference point return end signals ZP1~ZP4(F016#0~F016#3) [Classfication] Output signal [Function] These signals report that the machine tool is at the reference point on a controlled axis. These signals correspond separately to all axes. ZP1 No. X axis reference point return end signal. #### GGSK218M CNC System Connection and PLC Manual | ZP2 | No. Y axis reference point return end signal. | Calelli. | |-----|--|----------| | ZP3 | No. Z axis reference point return completion signal. | altor. | | ZP4 | No. A axis reference point return completion signal. | (gb) | [Output conditions] When these signals becomes 1: - Manual reference point return is completed and the current position is in the in-position area. - The automatic reference point return(G28) is completed and the current position is in the in-position area. - The reference point return check is completed and the current position is in the in-position area. When the signal becomes 0: - The machine tool moves from the reference point. - The emergency stop signal appears. - The servo alarm appears. #### Reference point return deceleration signal #### DECX (X01#0) DECY (X01#1) DECZ (X01#2) DECA (X01#3) [Classfication] Input signal [Function] These signals decelerate the feedrate for manual reference point return to a low feedrate. #### Reference point return deceleration signal check #### DECX (G017#0) DECY (G017#1) DECZ (G017#2) DECA (G017#3) [Classfication] Input signal [Function] These signals decelerate the feedrate for manual reference point return to a low feedrate. #### Reference point establishment signal #### ZRF1~ZRF4(F060#0~F060#3) [Classfication] Output signal [Function] These signals report the system that the reference point has been established. These signals correspond separately to all-axis. | ZRF1 | No. X axis reference point establishment signal | |------|---| | ZRF2 | No. Y axis reference point establishment signal | | ZRF3 | No. Z axis reference point establishment signal | | ZRF4 | No. A axis reference point establishment signal | [Output conditions] These signals become 1 when: The reference point has been established after manual reference ## GGSK218M CNC System Connection and PLC Manual point return. When the reference point is established using the absolute-position detector at initial power-on. These signals become 0 when: • The reference point is lost. #### Signal address #7 0004 | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |-----------|-----------------|---------|------------|---------|------------|------|-------------|------| | X001 | " May Co. | | AND SOLVER | and a | DECA | DECZ | DECY | DECX | | F004 | | 2 | MREF | 9 | |) | 6 | | | F016 | ₂₀ 5 | 9 Chro | *OLUSIC | 10. | ZP4 | ZP3 | ZP2 | ZP1 | | F060 | Thy igh | | "Midpe | h. | ZRF4 | ZRF3 | ZRF2 | ZRF1 | | G017 | 20 | | 2 | 7, | DECA | DECZ | DECY | DECX | | ,atyka.pi | arameter | Picko G | tomati | Kai, C. | *Olustyka! | 5, | *OLUSIANS'D | ×C | #4 ## [Data Classfication] bit #6 #5 JAX Number of axes controlled simultaneously in JOG feed, manual rapid traverse and manual reference point return. #3 #2 #1 #0 JAX 0: multi-axis 1: single axis | SPATE. | #7 #6 | #5 #4 | #3 | #2 | #1 | #0 | |--------|--------|--------|---------|----|------|------| | 0006 | NI CHO | automo | altorne | | Chic | ZRNx | [Data type] bit-axis **ZRN**x When a instruction specifying the movement(except for G28) is issued in automatic operation(MEM, RMT or MDI) before referencing is completed. 1: An alarm is generated (P/S alarm 224). 0: No alarm is generated. **Note:** When the parameter is changed, the power supply must be turned off before operation and then is turned on again. | 143.0, | #7 | #6 | #5 | £ 4 | #3 # | 2 #1 | #0 | |--------|--------|------|------|------|------|----------|----| | 0007 | ZMI5 🦽 | ZMI4 | ZMIz | ZMIy | ZMIX | TOU. SEL | × | #### GG与K 「当州数控 GSK218M CNC System Connection and PLC Manual [Data Classfication] bit-axis ZMI Direction of reference point return 0: positive direction 1: negative direction | 29 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-------|-----|----|--------|-----|-------|----| | 0009 | -8 | Self. | Tak | 1 | -Match | ZCL | Maldh | | [Data Classfication] Bit ZCL Local coordinate system after the manual reference point return is executed. - 0: The local coordinate system is not canceled. - 1: The local coordinate system is canceled. **Note:** After setting the parameter, the power supply must be turned off, and the parameter will take effect after restart. ## **5 Automatic Operation** ## 5.1 Cycle start/feed hold #### General Start of automatic When automatic operation start signal ST is set to 1 then 0 while the CNC Operation(cycle start) is in memory mode, DNC operation mode or MDI mode, the CNC enters the automatic operation start state then starts operating. The signal ST is ignored as follows: When the CNC is in other modes except for MEM, RMT or MDI mode. - 2. When the feed hold signal (SP) is set to 0. - 3. The emergency stop signal (ESP) is set to 0. - 4. When the external reset signal (ERS) is set to 1. - 5. When <RESET> on MDI panel is pressed. - When CNC is in the state of alarm. - 7. When the automatic operation is started. - 8. When the program restart signal (SRN) is set to 1. - 9. When CNC is searching one sequence number. The CNC enters the feed hold state and stops operation in automatic operation as follows: In automatic operation, the CNC enters the feed hold and stops running as follows: - 1. When the feed hold signal (SP) is set to 0. - 2. When the mode is changed to manual operation mode. In automatic operation, the CNC enters the feed hold and stops running as follows: - The single block instruction is end when the single block is running. - 2. MDI operation is completed. - CNC alarms. - 4. The single block instruction is end after the mode is changed to others or Eidt mode. In automatic operation, the CNC enters the reset and stops running as follows: - 1. When the emergency stop signal (ESP) is set to 0. - 2. When the external reset signal (ERS) is 1. - 3. When <RESET> on MDI panel is pressed. #### * Halt of automatic operation (Feed hold) When the feed hold signal SP is set to 0 in automatic operation, the CNC enters the feed hold state and stops operation. At the same time, cycle start lamp signal STL is set to 0 and feed hold lamp signal SPL is set to 1. Re-setting signal SP to 1 in itself will not restart automatic operation. To restart automatic operation, first set signal SP to 1, then set signal ST to 1 and to 0. When signal SP is set to during the execution of a block containing only the M, S, T function, signal STL is immediately set to 0, signal SPL is set to 1, and the CNC enters the feed hold state. If the FIN signal is subsequently set from the PMC, the CNC executes processing up until the end of the block that has been halted. Upon the completion of that block, signal SPL is set to 0 (signal STL remains set to 0) and the CNC enters the automatic operation stop state. #### 1. Thread cutting In the thread cutting, when the signal SP is set to 0, CNC enters the feed pasue after the signal SP is set to 0. In G92 (thread cutting cycle), SP signal is set to 0, SPL signal immediately becomes 1 but the operation is continuously executed till the tool retraction is completed after the thread cutting. In G32(thread cutting), SP signal is set to 0, SPL signal immediately becomes 1 but the operation is continuously executed till the non thread cutting block is completed after the thread cutting blok. #### 2. Tapping in canned cycle In G84 (canned
cycle tapping) SP signal is set to 0, SPL signal immediately becomes 1. But the operation is continuously executed till the tool returns to the starting point or R point after the tapping is completed. #### 3. A macro instruction is being executed Operation stops after the currently executing macro instruction has been completed. #### GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual #### Signal Cycle start signal ST (G023#6) [Tpye] Input signal [Function] Start the automatic operation. [Operation] When signal ST is set to 1 then 0 in automatic operation(Auto), DNC and MDI mode, the CNC enters the cycle start state and starts operations. In Auto, DNC and MDI mode #### Feed hold signal SP (G023#7) [Classfication] Input signal [Function] Halt the automatic operation [Operation] In Auto mode, SP signal is set 0, CNC enters the feed hold and stops running. When SP signal is set to 0, the automatic operation does not start. #### Cycle start lamp signal STL (F000#5) [Classfication] Output signal [Function] The signal reports PLC that the automatic operation start is entered. [Output conditions] The signal is set to 1 or 0, which is determined by CNC state as Fig. 5.1. #### Feed hold lamp signal SPL (F000#4) ## GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual [Classfication] Output signal [Function] The signal reports PLC that the feed hold is entered. [Output conditions] The signal is set to 1 or 0, which is determined by CNC state as Fig. 5.1. #### **Automatic operation signal** #### OP (F000#7) [Classfication] Output signal [Funciton] The signal reports PLC that the automatic operation is entered. [Output conditions] The signal is set to 1 or 0, which is determined by CNC state as Fig. 5.1. | dpattori | Cycle start lamp | Feed hold lamp SPL | Automatic operation lamp OP | |------------------------------|------------------|--------------------|-----------------------------| | Cycle start | _1 ² | 0 | it in | | Feed hold | 0 | 1 | 1 | | Automatic operation stopping | O STANDED | 0 ATHARI | 0 (14/10.1) | | Reset | 0 10/11 | 0 5000 | 0 1011 | Table 5.1 #### Signal address | | #7 | #6 | # 5 | #4 | #3 | #2 | #150 | #0 | | |------|----|---------|---------|-----|-------|-----|--------|--------|---| | G023 | SP | ST | "nui;Or | | NATO, | | "Ayio" | | ļ | | | A. | | 4. | | - | | | | 7 | | F000 | OP | 19/2°6. | STL | SPL | | 45. | | Thois. |] | #### 5.2 Reset #### General CNC is reset and enters the reset state. - 1. When the emergency signal (ESP) is set to 0. - 2. When the external reset signal (ERS) is set to 1. - 3. When <RESET> on MDI panel is pressed. When the CNC is reset, the resetting signal RST is output to the PMC. The resetting signal RST is set to 0 when the resetting signal output time, set by No. 203, has elapsed after the above conditions have been released. RST=T_{reset} (Reset processing time) +parameter setting value by No. 203 # GSK218M CNC System Connection and PLC Manual Reset processing Treset Value set by No.203 When the CNC is reset in automatic operation, the automatic operation is stopped and tool movement along the controlled axis is decelerated and stopped. When the CNC is reset during the execution of the M, S, T function, signal MF, SF or TF is set to 0 within 16ms. ## Signal External reset signal ERS (G016#0) [Classfication] Input signal [Function] Reset CNC [Operation] When the reset signal ERS is set to 1, CNC enters the reset state. The reset signal RST becomes 1 after CNC is reset. Rset signal RST (F001#1) [Classfication] Output signal [Function] The signal reports PLC that CNC is reset. [Output conditions] The signal is set to 1 when: 1: When the emergency stop signal (ESP) is set to 0. 2: When the external reset signal (ERS) is set to 1. 3: When <RESET> on MDI panel is pressed. The signal is set to 0 when: When the reset signal output time set by No. 71# is completed after the above are released and CNC is reset. | 0.01 | #7 | #6 | # 5 | #4 | #3 | #2 | #1 | #0 | |------|----------|----|--------------------|----|---------|------|---------|-----| | G016 | - Ollugi | 35 | "Waji | 1 | ornati | | Main | ERS | | | . Salar | | :031112 | | .ballic | | :031112 | | | F001 | 24/0 | z' | 14. _{(O.} | 3 | 4,0 | in a | RST | in. | ## 5.3 Testing a program General Before machining is started, the automatic running check can be executed. It checks whether the established program can operate the machine as desired. This check can be accomplished by running the machine or view the position display change without running the machine. #### 5.3.1 Machine tool lock **General** The change of the position display can be monitored without moving the machine. When all-axis machine lock signal MLK, or each-axis machine lock signals MLK1~MLK4 are set to 1, output pulses to the servo motors are stopped in manual or automatic operation. The instructions are distributed, however, updating the absolute and relative coordinates. The operator can therefore check if the instructions are correct by monitoring the position display. #### Signal all-axis machine lock signal MLK1~MLK4(G011#0~G011#3) [Classfication] Input signal [Function] Place the corresponding controlled axes in the machine lock state. The signal number corresponds to the number of the controlled axis. | MLK 1 | No. X axis machine tool lock | ann, | |-------|------------------------------|--------| | MLK 2 | No. Y axis machine tool lock | | | MLK 3 | No. Z axis machine tool lock | ~₩2, | | MLK 4 | No. A axis machine tool lock | "OWGE" | [Operation] When these signals are set to 1, pulse are not output to the servo motors for the corresponding axes in manual or automatic operation mode. All-axis machine lock check signal #### MMLK (F004#1) [Classfication] Output signal [Function] The signal reports PLC of the state of all-axis machine tool lock signal. [Output condition] When the signal is set to 1, all-axis machine tool lock signal is set When the signal is set to 0, all axes machine tool lock signals are # GSK218M CNC System Connection and PLC Manual set to 0. ## Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|---------|--------|----------|---------|----------|------|---------|------| | F004 | | "ICHO" | | Elfais. | | to's | MMLK | 5.2 | | | balifor | | baldon | | baldonia | | balloff | | | G011 | "Aylo | | " Taylor | 3 | MLK4 | MLK3 | MLK2 | MLK1 | #### 5.3.2 Dry run #### General Dry run is valid only for automatic operation. The machine moves at a constant feedrate regardless of the feedrate specified in the program. The feedrate is set by P0096. This function is used to check the movement of the machine without a workpiece. #### Signal Dry run signal DRN (G021#2) [Classfication] Input signal [Function] Enables dry run. [Operation] When the signal is set to 1, the machine tool moves at the feedrate specified for dry run. When the signal is 0, the machine tool normally moves. #### Caution:: When the dry run signal is changed from 0 to 1 or 1 to 0 during the movement of the machine, the feedrate of the macine is first decelerated to 0 before being accelerated to the specified feedrate. #### Dry run check signal #### MDRN (F002#7) [Classfication] Output signal [Function] The signal reports PLC of the state of dry run signal. [Operation] These signals are set to 1 as follows: ——When the dry run signal DRN is set to 1. These signals are set to 0 as follows: ——When the dry run signal DRN is 0. ## GSK218M CNC System Connection and PLC Manual #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|------|---------|-----|-------|------|---------|-------|------| | G021 | Tr. | | Na. | F. | 4 | DRN MAN | | Try, | | 6 | | 6. | | 6 | | 9 | | 9 | | F002 | MDRN | Call Ha | 2 | ig Ko | nati | Lo. | USI H | p | #### 5.3.3 Single block #### General The single block operation is valid in automatic operation mode (Auto mode). When the single block signal (SBK) is set to 1 during automatic operation, the CNC enters the automatic operation stop state after executing the current block. In subsequent automatic operation, the CNC enters the automatic operation stop state after executing each block in the program. When the single block signal (SBK) is set to 0, normal automatic operation is stored. #### Signal Single block signal #### SBK (G021#1) [Classfication] Input signal [Function] Enables single block operation. [Operation] Execute the single block when the signal is set to1. Execute the normal operation when the signal is set to 0. #### Single block check signal #### MSBK (F004#3) [Classfication] Output signal [Function] The signal reports PLC of the state of single block signal. [Operation] The signal is set to 1 as follows: ——When the single block signal SBK is set to 1. The signal is set to 0 as follows: ——When the single block signal SBK is set to 0. #### Note: #### 1. Operations in thread cutting When the SBK signal becomes 1 in thread cutting, the operation stops after the first non-thead cutting signal after thread cutting instruction. #### 2. Operation in canned cycle When the SBK signal becomes 1 during canned cycle operation, the operation stops at each positioning, approach, drilling and retraction instead of the end of the #### GGSK プー州数控 GSK218M CNC System Connection and PLC Manual block. The SPL singal becomes 1 while the STL signal becomes 0, showing that the end of the block has not been reached. When the execution of one block is completed, the STL and SPL signals becomes 0 and the operation is stopped. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-----------|----|----------|----|----------|----|-----|----| | G021 | (Apgrille | | 'Aparica | | (q)galas | | SBK | | | 1474 | 7. | in | 27. | 52 | 14. | 2 | NA. | 2 | | F004 | | 7 | | 7 | MSBK | 7 | | 7 | ## 5.4 Optional block skip General When a slash followed by a number is specified at the head of a block, and optional block skip signal BDT is set to 1 during automatic operation, the block is ignored. Signal Skip optional block
signal BDT (G021#0) [Classfication] Input signal [Function] Select whether a block with "/" is neglected. [Operation] During automatic operation, when BDT is 1, the block with "/" is neglected. The program is normally executed when BDT is 0. #### Optional block skip check signal MBDT (F004#0) [Classfication] Output signal [Function] The signal reports PMC of the state of skip optional block BDT. | | #7,50 | #6 | #5,,,, | #4 | #3 | #2 | #1 | #0 | | |------|------------|------|----------|-------|-------|------|------|------|---| | G021 | "HAY. (D). | | "M";(Q), | | 24/CD | 33 | ,[C] | BDT | 8 | | | 14 | | 10 | 4, | | 10 | | 10 | | | F004 | | 13.9 | | 10.01 | | 13.5 | J. | MBDT | | #### 5.5 Program restart #### General A program may be restarted at a block by specifying the sequence number of the block, after automatic operation is stopped because of a broken tool or for holidays. There are two types of restart method as follows: P: restart after a tool is broken down Q: restart after holidays #### Signal Program restart signal SRN<G021#6> [Classfication] Input signal [Function] Select the program restart [Operation] When the program restart signal is set to 1 to search for the sequence numer of the block to be restarted, the CRT screen changeds to the program restart screen. When the program restart signal is set to 0, and automatic operation is activated, the macine moves backe to the machining restart point at dry run speed along the axes one by one. When the machine moves to the restart point, machining restarts. ## Signal during program restart #### SRNMV<F002#4> [Classfication] Output signal [Function] Report the program is started. [Output conditions] The signal becomes 1 when: —After CRT screen is switched to the restart screen, the program restarting signal is set to 0. The signal becomes 0 when :: -The program restart sequence ends(all controlled axes of machine tool moves to the restart point). | | 7 # 7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-------|---------|----|------|----|----------|-----|-------| | G021 | U. | SNR | E. | | E. | | 360 | 1,7 | | | | - 2 | | 9 | | | | 9 | | F002 | | at Harr | | SRNM | | 812/40.x | | 19ton | ## **6 Interpolation Function** ## 6.1 Thread cutting #### 6.1.1 Thread cutting General Tool movement can be synchronized with spindle rotation when cutting threads. The spindle speed is continuously read through the postion coder attached to the spindle. Then, it is converted to a cutting federate(feed per minute) to feed the tool. During general, thread cutting is repeated along the same tool path during rought cutting through finish cutting for a screw. Since thread cutting starts when the postion coder mounted on the spindle outputs a 1-turn signal, threading is started at a fixed point and the tool path on the workpiece is unchanged for repeated thread cutting. Note that the spindle speed must remaduring constant from rought cutting through finish cutting. If not, incorrect thread lead will occur. #### Signal Thread cutting signal #### THRD<F002#3> [Function] This signal indicates that thread cutting is during progress. [Output conditions] The signal is "1" when: - ·During thread cutting mode - ·Thread cutting cycle mode The signal is "0" when: · Neither thread cutting mode nor thead cutting cycle mode. | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|----|----|----|------|----|----|----| | F002 | | | 49 | , | THRD | , | | | ## **7 Feedrate Control** ## 7.1 Rapid traverse rate #### . General A rapid traverse rate is set for each axis by P0088~0092, so no rapid traverse rate need be programmed. The following overrides can be applied to a rapid traverse rate with the rapid traverse override signal: F0, 25%, 50%, 100%. F0: it is set by the data parameter P0093. #### Signal Rapid traversing signal RPDO (F002#1) [Classfication] Output signal [Function] This signal indicates that a move instruction is executed at rapid traverse. [Output conditions] 1: indicates that an axis starts moving after rapid traverse has been selected. 0: indicates that an axis starts moving after a feedrate other than rapid traverse has been selected. This hold true for both automatic and manual operation modes. #### Note: - The rapid traverse during automatic operation includes all rapid traverses during canned cycle positioning, automatic reference point return, etc., as well as the move instruction G00. the manual rapid traverse also includes the rapid traverse during reference point return. - 2. Once rapid traverse has been selected, this signal remains "1", including during a stop, until another feedrate has been selected and movment is started. #### Signal address | 8 | #7 #6 | #5 #4 | #3 #2 | #1 #0 | |------|---------|--------|-------|-------| | F002 | (9)3/11 | dhalle | dpane | RPDO | ## 7.2 Advanced preview control #### General This function is designed for high-speed precise machining. With this function, the delay due to acceleration/deceleration and the delay during the servo system which ## GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual increase with the feedrate can be suppressed. The tool can then follow specified path accurately and errors during the machining profile can be reduced. This funcitno becomes effective when advanced preview control mode as follows: - (1) Linear acceleration/deceleration before interpolation for cutting feed - (2) Automatic corner deceleration function Signal Advanced preview control mode signal G08MD<F013#0> [Classfication] Output signal [Function] Inform that the control is during the advanced preview control mode. [Output conditions] The signal is "1" when: ·During advanced preview control mode The signal is "0" when: ·It is not during advanced preview control mode #### Signal address | 1K3'5. | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |--------|------|----|-------------------|-----|-----|-----|---------|-------| | F013 | 1100 | 0, | Jio ^{ff} | Ø., | TOR | 800 | , itorr | G08MD | ## 7.3 In-position check #### General Whether the position of the servo motor is withduring a specified range is checked. If the in-position check function is enabled, the CNC checks the position during deceleration. If the position is found to exceed the specified range, the CNC does not execute the next block. #### Signal In-position signal INP1~INP4<F018> [Classfication] Output function [Function] These signals indicate that the control axes are set to the in-position condition. They are provided for each control axis, and the number during the signal name corresponds to the control axis number. #### I N Px 1----1st axis is set to the in-position condition 2---2nd axis is set to the in-position condition 3----3rd axis is set to the in-position condition 4----4th axis is set to the in-position condition [Output conditions] These signal become "1" when: #### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual The servo error of the corresponding control axis is withduring the specified allowance. These signals become "0" when: The servo erro of the corresponding control axis exceeds the specified allowance. #### Signal address | ig _{lo} | #7 #6 | #5 #4 | #3 #2 | #1 #0 | |------------------|--------|--------|-----------|-----------| | F018 | "SINO" | "SHOP" | INP4 INP3 | INP2 INP1 | #### 7.4 Error detect # General Generally, the CNC does not zero the feedrate at the interface of two block during cutting feed. If the error detect signal is used, it is possible to specify that a block not be started until the acceleration/deceleration of the previous block has been completed. ## Signal Error detect signal SMZ <G009#2> [Classfication] Input signal [Function] If the signal is set to 1, the control unit operates as follows: At the interface of two blocks during cutting feed, the control unit waits until the acceleration/deceleration of the first block has been completed. The setting of the SMZ signal determines whether, at the interface of two cutting blocks, the control unit waits until the acceleration/deceleration of the previous block has been completed. | Sign | al address | | alle | | | | alite | | |------|------------|----|------|-------------|---|-----|-------|----| | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | F009 | ang. | -3 | THE. | | 1 | SMZ | 11/2 | 7 | #### 7.5 Override #### 7.5.1 Rapid traverse override **General** F0, 25%, 50%, 100% can be used for the rapid traverse rate. F0 is set by P093. Feedrate Actual federate is obtained by multiplying the rapid traverse rate preset by parameter P088~092 by the override value determined by this signal, whether during automatic or manual operation(including manual reference point return). F0 It is set by P093. Signal Rapid traverse override signal Rapid F0 (G025#0) Rapid F25% (G025#1) Rapid **F50%** (**G025**#**2**) Rapid F100% (G025#3) [Classfication] Input signal [Function] These signals are for rapid traverse rate override. #### 7.5.2 Feedrate override **General** A programmed feedrate can be reduced or increased by a percentage selected by the override dial. This feature is used to check a program. For example, when a feedrate of 100 mm/mduring is specified during the program, setting the override dial to 50% move the tool at 50 mm/min. **Signal** Feedrate positive override signal (G24#0) Feedrate negative override signal (G24#2) [Classfication] Input signal [Function] Cutting feedrate override signal. 16 steps (0%~150%). #### GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual [Operation] Actual feedrate is obtained by multiplying the specified speed by the override value selected by this signal. #### 7.5.3 Override cancel General The override cancel signal fixes the feedrate override to 100%. Signal Override cancel signal OVC (G024#1) [Classfication] Input signal [Function] The feedrate override is fixed to 100%. [Operation] When the signal is 1, CNC operates as follows: - The feedrate override is fixed to
100% irrespective of the feedrate override signal. - Rapid traverse override and spindle speed override are not affected. | | # 7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | |------|-----|----|-----|----|------|----|-----|----|---| | G024 | 27 | 7 | 127 | , | VII. | | ovc | | - | ## 8 Miscellaneous Function (M, S, T function) #### 8.1 Miscellaneous function General * miscellaneous function (M code) When up to 8-bit numbers after the address M is specified, the code signal and strobe signal are transmitted to the machine which use these signals to start or cut off its relative functions. #### Basic procedure The following signals are used for the following functions. | Function | Program | - NOI | ıtput signal | -7 ₅₀ ., | Completion | | |------------------------|---------|-------------|------------------|--------------------------------|------------|--| | . unwight the fi | address | Code signal | Strobe
signal | Distribution completion signal | signal | | | Miscellaneous function | M | M** | MF | DEN | FIN | | | Spindle function | S | S00~S31 | TF | Sights. | atha. | | | Tool function | Т | T00~T31 | BF 3 | Par. | - Itoria | | Each function uses different program addresses and different signals, but they all input and output signals during the same way, as described below. (A sample prodedure for the miscellaneous function is described below. The procedures for the spindle speed function, tool function, and secondary miscellaneous function, are obtained simply by substituting S, T, or B during place of M). - Suppose that MXXX is specified during a program: If XXX is not specified, CNC alarms. - After M00~M399 is transmitted to machine interface, thestrobe signal MF is set to 1. The code signal is the binary representation of the programmed value XXX. If a move, dwell, spindle speed, or other function is specified during the same block as the miscellaneous function, the execution of the other function is started when the code signal of the miscellaneous function is transmitted. - (3) When the strobe signal is set to 1, the PLC reads the code signal and performs the corresponding operation. - (4) To execute an operation after the completion of the move, dwell or other function specified during the block, wait until distribution end signal DEN is set to 1. - (5) Upon completion of the operation, the PLC set completion signal FDURING to 1. The completion signal is used by the miscellaneous function, spindle speed function, tool function. If any of these functions are executed simultaneously, the completion signal must be set to 1 upon completion of all the function. - (6) If the completion signal remains set to 1 for a long time, the CNC sets the strobe signals #### GGSK218M CNC System Connection and PLC Manual to 0 and reports that the completion signal has been received. - (7) When the strobe signal is 0, the FDURING signal is set to 0. - (8) When the FDURING signal is 0, all code signals are set to 0 and all sequence operations of miscellaneous function is completed. - (9) CNC executes the next block when other instruction has been completed during the same block. - 1. When the tool function is executed, the programmed tool number is transmitted S code, T code. - 2. When the spindle speed function, tool function is executed, the code signal is maintained until a new code for the corresponding function is specified. Time sequence is as follows: There is one miscellaneous function during a block. Move instruction and the miscellaneous function during the same block. Execution of a miscellaneous function without waiting for move instruction completion: ## **GSK218M CNC System Connection and PLC Manual** Move instruction and a miscellaneous function during the same block. Execution of a miscellaneous function after move instruction completion: Miscellaneous function strobe signal MFEFD (F007#0) [Classfication] Output signal These signals report PLC the specification of miscellaneous function. [Function] [Output conditions] For relative output conditions and procedure, see Basic Procedure. #### Note: - 1. The following miscellaneous functions are only processed during CNC: they are not output when programmed. - M98, M99, M198 - M codes for calling subprograms - M codes for callduring customer macro programs - 2. Decode signals as weel as the code signals and strobe signal are output for the miscellaneous function listed below. M00, M01, M02, M30 M00∼M39 with binary output to M code. For example: M5 corresponds to 00000000, 00000000, 00000000, 00000101 M decode signal DM00 (F009#7) DM01 (F009#6) DM02 (F009#5) ## GGSK218M CNC System Connection and PLC Manual DM30 (F009#4) [Classfication] Output signal [Function] These signals report particular miscellaneous function s are specified. The mistcellaneous functions during a instruction program correspond to output signals as reportd below. | | Instruction | Output signal | |---|-------------|---------------| | Ò | M00 | DM00 | | | M01 | DM01 | | | M02 | DM02 | | | M30 | DM30 | [Output conditions] A decode M signal is 1 when: • The corresponding miscellaneous function is specified, and any move instructions and dwell instructions specified during the same block are completed. These signals are not output when the end signal of the miscellaneous function is returned before completion of such move instructions and dwell instructions. A decode M signal is 0 when: - FDURING signal becomes 1. - Reset. Spindle speed code signal \$00~\$31 (F022~F025) Spindle speed strobe signal TF (F007#2) [Classfication] Output signal [Function] These signals report the spindle speed functions have been specified. [Output conditions] For the output conditions and procedure, see Basic Procedure. Output with S code of analog spindle. Note: Binary S00~S31outputs to S code. For example, S4 corresponds to 00000000, 00000000, 00000000, 00000100 Tool function code signal T00~T31 (F026~F029) Tool function strobe signal BF (F007#3) [Classfication] Output signal [Function] These signals report that tool function have been specified. ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual [Output conditions] For the output conditions and procedure, see Basic Procedure. Note: Binary T00~T31 outputs to T code. For example, T corresponds to 00000000, 00000000, 00000000, 00000011. ### Miscellaneous function completion signal #### FIN (G000#0) [Classfication] Input signal [Function] The signal reports the completion of miscellaneous function, spindle speed function and tool function. [Operation] When the signal becomes 1, for the control unit operation and procedure, see Basic Procedure. #### Warning Only one end signal is used for all functions above. The end signal must go "1" after all function are completed. #### Distribution end signal #### **DEN (F001#3)** [Classfication] Output signal [Function] The signal reports that all instructions are completed except those miscellaneous functions, spindle speed function, tool functions are contained during the same block and have been tramsmitted to PLC. They also report that the end signal from the PLC is being waited. [Output conditions] DEN signal is 1 with the following conditions: Waiting for the completion of miscellaneous functions, spindle speed functions, tool functions and all other instructions during the same block are completed. DEN signal is 0 when: The execution of one block is completed. ### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----------|-----------|--------|---|------------|-----|-------------------|-----| | G000 | alidhah. | | Midpag | | "ilipan | | igh _{an} | FIN | | F001 | V. | 7 | | 24 | DEN | 200 | | 22 | | F007 | | EN CO. P. | Ž | 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | TF (M) | SF | " The | MF | | F009 | DM00 | DM01 | DM02 | DM30 | "idpanion, | 9 | edparter, | | | F030 | M07 | M06 | M05 | M04 | M03 | M02 | M01 | M00 | | F031 | M15 | M14 | M13 | M12 | M11 | M10 | M09 | M08 | | F032 | M23 | M22 | M21 | M20 | M19 | M18 | M17 | M16 | | <u></u> @ G | 5K [~: | 州数控 | GSK2 | 18M CNC | System | Connecti | on and P | LC Manual | |--------------------|---------|-----|------|---------|-------------|----------|----------|-----------| | F033 | M31 | M30 | M29 | M28 | M27 | M26 | M25 | M24 | | | . (dp.) | | 1900 | | . 650 | | (A) | | | F022 | S07 | S06 | S05 | S04 | S03 | S02 | S01 | S00 | | F023 | S15 | S14 | S13 | S12 | S11 | S10 | S09 | S08 | | F024 | S23 | S22 | S21 | S20 | S19 | S18 | S17 | S16 | | F025 | S31 | S30 | S29 | S28 | S27 | S26 | S25 | S24 | | F026 | T07 | T06 | T05 | T04 | T03 | T02 | T01 | Т00 | | F027 | T15 | T14 | T13 | T12 | T11 HOLLING | T10 | T09 | T08 | | F028 | T23 | T22 | T21 | T20 | T19 | T18 | T17 | T16 | | F029 | T31 | T30 | T29 | T28 | T27 | T26 | T25 | T24 | ### 8.2 Auxiliary function lock **General** Inhibits execution of a specified M, S, and T function. That is, code signals and strobe signals are not issued. This function is used to check a program. Signal Auxiliary function lock signal AFL (G021#3) [Classfication] Input signal [Function] The signal selects the auxiliary function lock, i.e., the signal disables the execution of the specified M, S, T function. [Operation] When the signal becomes 1, the control unit functions are as follows: - 1. The control unit does not execute M, S, and T functions. That is, the control unit stops the output of code signals and strobe signals. - If this signal becomes "1" after code signal output, the output operation is executed during the ordinary manner until its completion(that is, until the FDURING signal is received, and the strobe signal becomes to "0".) - 3. Among the miscellaneous function, M00,M01, M02 and M30 are executed even when this signal is "1". All code signals, strobe signals, decode signals are output during the ordinary manner. - 4. Even when this signal is "1", M98 and M99 are executed during the ### GG与K 厂 州数控 GSK218M CNC System Connection and PLC Manual control unit without
outputting their execution results are executed during the ordinary manner. ### Waring Even when this signal is "1", spindle analog output or spindle serial output is executed. ### **Auxiliary function lock check signal** MAFL (F004#4) [Classfication] Output signal [Function] The signal reports the state of auxiliary function lock signal AFL [Output conditions] When the signal is 1, the auxiliary function lock signal AFL is1. When the signal is 0, the auxiliary function lock signal AFL is 0. ### Signal address | | 27, | #7 | #6 | # 5 | #4 | #3 | #2 | #1 | #0 | |------|-----|-------|------|---------|-------|--------|-------|--------|-------| | G021 | | | 13.0 | | 13.01 | AFL | 10.01 | | 10.01 | | d. | | | 201 | | 200 | | 201 | | 201 | | F004 | | ~ajto | | walito! | MAFL | ~altic | | ~altic | , | ### 8.3 High-speed M/S/T interface #### General To accelerate M/S/T/B function execution, the high-speed M/S/T/B interface has simplified the transfer of the strobe and completion signals of the M/S/T/B function. High-speed strobe signal and completion signal. Take M function as example. The method of spindle speed function(S code), tool function (T code) and 2nd miscellaneous function (B code) are the same as M function. #### Basic procedure: (1) Suppose that the following program is shown: Mxx; Myy; (2) In response to an M command, the CNC system sends out the code signals M00~M31. The CNC system inverts the logical level of the strobe signal MF, that is, from "0" to "1", or from "1" to "0". (3) CNC oversets the strobe signal: when the logic level and the optional singal of miscellaneous function completion signal are the same one, CNC confirms PMC processing is ended. During general mode, when CNC has detected FDURING signal rise edge ("0" to "1") and it receives the ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual completion signal FDURING down edge ("1" to "0"), the operation is ended. For the new mode, when CNC has detected the skip of one completion signal, it confirms the operation is ended. Besides, for the general mode, M/S/T/B function have one common completion signal(FIN), but for the new mode, they have different endsignal, the completion signal of M, S, T, B function are separately MFIN, SFIN, TFDURING and BFIN. High-speed interface is also used for many M instructions of one block, and the interface provides sole completion signal for every M code, separately calling MFIN, MFIN2 and MFIN3. The transmission time sequence of many M code signals during one block is the same that of one M code signal during one block. The high-speed interface is also used for external operation function. Besides, the exclusive external operation EFD and completion signal EFIN. The receiving and transmission of the signals are the same that of optional singal and completion signal of miscellaneous function. ## Signal 1st M function completion signal #### MFIN1<G000#1> [Classfication] Input signal [Function] Reports that the execution of a miscellaneous function using the high-speed M/S/T/B interface is completed. [Operation] For the operation and procedure of the control unit, see Basic #### Procedure.. # Spindle function completion signal SFIN<G000#4> [Classfication] Input signal [Function] Reports that the execution of a spindle speed function using the high-speed M/S/T/B interface is completed. [Operation] For the operation and procedure of the control unit, see Basic #### Procedure. # Tool function completion signal TFIN<G000#5> [Classfication] Input sigal [Function] Reports that the execution of a tool function using the high-speed M/S/T/B interface is completed. ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual [Operation] For the operation and procedure of the control unit, see Basic Procedure. 2^{nd,} 3rd M completion signals MFIN2, MFIN3 <G000#2, #3> [O] [O] [O] [Classfication] Input signal [Function] Report that the execution of 2nd/3rd M function using the high-speed M/S/T/B interface is completed. [Operation] For the operation and procedure of the control unit, see Basic Procedure. # 9 Spindle Speed Function ### 9.1 Spindle speed control mode #### General For 218M system, the spindle is divided into gear spindle and analog spindle: - 1. During gear spindle mode, CNC changes S code to switch value to output to the spindle to control the spindle speed. - 2. During analog spindle, changes S code to analog value to output to the spindle to control the spindle speed. CNC CNC transmits SIMSPL signal to report PLC the current CNC the mode of controlling spindle. ### Spindle enable signal #### ENB<F001#4> The output singal related to the spindle control is the spindle enable signal ENB. When non-zero instruction outputs to the spindle, ENB singal is logic 1; if the instruction is 0, ENB signal becomes 0. When the analog spindle is used and the instruction to the spindle is 0 (analog voltage), the spindle motor will rotates with the low speed because there is the drift voltage for the spindle speed amplifier. And so, the ENB signal can be used to completely stop motor. | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|---------|-----|----|-----|-----|--------|----|-------| | F004 | . A. C. | 28. | × | ENB | .33 | No. 5. | 2 | X2.5. | ### 9.1.1 Gear spindle General Although the S instruction contains the spindle speed, the object that is actually controlled is the spindle motor. Therefore, the CNC must have some provision to detect the gear stage between the speed and spindle motor. #### Signal Spindle speed code signal S00~S31 (F022~F025) Spindle speed strobe signal TF (F007#2) [Classfication] Output signal [Function] These signals report the actually specified the spindle speed function. [Output conditions] For the output conditions and procedure, see **Basic**Procedure. Use the S code of analog spindle to output. Note: $S00 \sim S31$ output to S code with the binary. For example, S4 corresponds to 00000000, 00000000, 00000000 and 00000100 ### 9.1.2 Analog spindle General The analog spindle is defined that the spindle speed is controlled by the analog voltage value from CNC. So, CNC changes S code into the analog voltage value to output to the spindle of machine tool to control the spindle speed. - 1. The actual output analog voltage value equals to the S value controlled by the spindle multiplying the spindle override. - 2. CNC still reports the speed by S00~S31 signal but SF signal does not output. Signal Spindle positive override signal (G22#5) Spindle negative override signal (G22#3) Spindle override cancel signal OVC (G22#4) [Classfication] Input signal [Function] The signal specifies the S override change controlled by spindle. Note: The spindle override function is invalid as follows: Tapping cycle Thread cutting #### Gear change process: Although S instructions the spindle speed, the actual is to control the spindle motor. So, CNC needs to confirm the corresponding relation between the spindle motor and gear. Like S instruction selection, CNC selects the gear according to the previously defined gear speed range by parameter to report PMC to select the corresponding the gear by using the gear change select signal (GR3, GR2, GR1). At the same time, CNC outputs the spindle motor speed according to the selected gear. CNC outputs the instruction correspoinded to the spindle (GR1, GR2, GR3 output) speed by specifying $S0\sim S99999$ during MDI mode. 2 or 3 speed gear (GR1, GR2, GR3) is set by $No.246\sim 248$ to simultaneously output to the gear select signal. When the gear select signal is changed, CNC simultaneously output SF signal). Specification of gear change signal is as follows: | | No. 2 gear | No. 3 gear | Remark | | | | |-----|------------|------------|---------------------|--|--|--| | GR1 | R1 Low Low | | Low: low gear | | | | | GR2 | R2 High Me | | Medium: middle gear | | | | | GR3 | antion. | High | High: high gear | | | | When the instruction voltage is 10V, the low gear spindle speed is A (parameter No.246) (min_{-1}) . When the instruction voltage is 10V, the high gear spindle speed is B (parameter No.247) (min_{-1}) (middle gear during 3^{rd} gear). When the instruction voltage is 10V, the high gear spindle speed is Ac (parameter No.248) $(3^{rd}$ gear). ### GG与K 厂 州数控 GSK218M CNC System Connection and PLC Manual S and spindle motor speed instruction the voltage $(0\sim10V)$ and gear select signal. (GR1, GR2, GR3) is as the above figure. Signal: Gear select signal GR1,GR2,GR3 <F034#0~#2> [Classfication] Output signal [Function] These signals report PMC the selected gear. [Output conditions] For the definition of these signals, see Gear change Mode. ### Gear change select signal (input) GR1,GR2,GR3<G002#0~#2> [Classfication] Input signal [Function] These signals report CNC the current selected gear. [Output conditions] For the definition of these signals, see Gear change Mode. #### GEAR<G002#4> [Classfication] Input signal [Function] These signals report CNC in-position of the current selected gear. [Output conditions] For the definition of these signals, see Gear change Mode. ### 9.2 Spindle speed arrival signal #### General The spindle spee arrival signal SAR is an input signal used as a condition for the CNC to start cutting feed. This signal is used generally when cutting feed should be started after the spindle reaches the specified speed. During this case, a sensor is used to check the spindle speed. The detected speed is sent to the CNC via the PLC. When the above operation si performed continuously using the PC ladder, however, cutting feed may be started based on the SAR signal indicating the previous spindle state(spindle speed before change), if the spindle speed change instruction and the cutting feed instruction are issued at the same time. #### Signal Spindle speed arrival signal SAR (G003#0) [Classfication] Input signal [Function] SAR signal controls the starting of cutting feed. i.e., when the signal is 0, CNC starts the cutting feed. [Operation]
Generally, the signal is used for reporting CNC the spindle arrives the specified speed. So, the signal is set to 1 after the spindle actual speed arrives the the specified value. CNC detects the SAR signal as follows: 1. CNC executes the check after the rapid traverse is switched into the cutting feed and before 1st feed (traverse instruction) block is distributed and when the feed block is read and its time is set by the parameter No. 72. - 2. After the S code is commanded and before the 1st feed block is distributed, CNC check wait time is the same that of the above. - When S code and the feed traverse during the same block are commanded, CNC detects SAR signal during the feed fixed time.When SAR signal is 1, the feed starts. ### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-------|-----|------|-----|-----|-----|----------|-----| | G003 | 'sgo, | Tr. | 1900 | Th. | 90° | .44 | <u> </u> | SAR | ### 9.3 Constant surface speed control #### General With the spindle serial output or analog output function, specifying the surface speed (m/mduring or feet/min) directly during an S instruction makes it possible to change the spindle output continuously so as to maintaduring a constant surface speed at a programmed point. (For the rapid traverse instruction, however, the surface speed for the end point is output at the beginning of rapid traverse.) Whether or not constant surface speed control is performed is selected by G code. G96: execute the constant surface speed control, S is m/mduring or feet/mduring during G96. G97: do not execute the constant surface speed control, S is r/mduring during G97. #### Signal contanst surface speed signal CSS<F002#2> ### GG与K 厂 州数控 GSK218M CNC System Connection and PLC Manual [Classfication] Output signal [Function] The signal reports the constant surface speed control is executed. [Output conditions] "1" reports the constant surface speed control (G96) is executed, and "0" reports it is not executed. #### Signal address | | #7 | #6 | # 5 1124 | #4 | #3 | #2 | #1 | #0 | |------|---------|----|----------|----|----------|-----|----------|----| | F002 | 'Spalle | | 'Sparito | | (Ipalito | CSS | (Ibalito | | #### **Parameter** | <i>8</i>), | #7 #6 | #5 #4 | #3 #2 | #1 #0 | |-------------|---------|---------|---------|-------| | 0061 | of side | OU. SEA | ornatel | SSC | [Data Classfication] Bit SSC defines whether the constant surface speed control is executed: 0: No 1: Yes **Note:** When the parameter is changed, the power supply must be cut off before continuous operation. ### 9.4 Rigid tapping #### General During a tapping cycle, synchronous control is applied to the tapping operation of a tapping axis and the operation of the spindle. Namely, during rigid tapping (G74, G84), CNC needs to detect the rotation direction signal of spindle to confirm the cutting feed direction and machining process. ### Procedure: Spindle rotating \rightarrow Z tool infeed tapping \rightarrow transmit M05 to spindle \rightarrow wait for spindle to completely stop \rightarrow transmit CCW instruction \rightarrow starting point of Z tool retraction \rightarrow spindle stops rotating So, to realize the rigid tapping, the corresponding ladder must be written to report the rotation direction of CNC external spindle. ### Signal rigid tapping signal RGTATP (G003#1) [Classfication] Output signal [Function] Report to PLC that CNC is during the rigid tapping mode. [Output conditions] RGTAP 1: the current CNC is during the rigid tapping mode. 0: the current CNC is not during the rigid tapping mode. | | ©G5K 「☆州数控 | | | GSK218M CNC System C | | | Connection and PLC Manua | | | | |----|------------|-------|----|----------------------|------|--------|--------------------------|----------------------|--------|--| | S. | Signal ac | dress | | Nat Me | | Watch. | | Ngigh. | | | | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | ³ (0) # 0 | - 2 | | | | 2 | (0) | | 7/20 | 14.5 | 8 | RGTAP | | 14,100 | | Signal G003 Spindle rotation direction RGSPM, RGSPP ⟨F012#1, #0⟩ (Classfication) Output (Function) Report to PMC that the spindle is CW/CCW during rigid tapping. Spidnle during rigid tapping: RGSPP: 1: clockwise rotation (CW) 0: non clockwise. RGSPW: 1: counterclockwise (CCW) 0: non counterclockwise. (Output conditions) During rigid tapping, these signals are output when the spindle is rotating, and they are not output as follows: These signals are not output, for example, when the spindle is being positioned to a hole position, or a dwell operation is during progress at the bottom of a hole position, or a dwell operation is during progress at the bottom of a hole or at an R point. These signals are not output during the feed hold state or single block stop state. When the spindle is placed during the interlock stope state, machine lock state, or Z-axis ignore state, however, the spindle is not regarded as having stopped; these signals are output. These signals are valid only during rigid tapping mode. During normal spindle control, these signals are not output; both RGSPP and RGSPM are set to "0". ### Signal address | 3, | #7 #6 | #5 #4 | #3 #2 | #1 | #0 | |------|-------|---------|----------|-------|-------| | G012 | 1960 | "OLUMA" | "Olligo, | RGSPW | RGSPP | ### **10 Tool Function** ### 10.1 T instruction executing tool change During Auto and MDI mode, the T instruction is specified to execute the tool change. CNC interprets T instruction to transmit it to the specified tool selection number and strobe signal to wait for PLC to complete the tool change. ### 10.2 Tool life management #### General When tools are classified into several groups, average tool life (No. of uses or time) is designated for each group. Whenever a tool is used, the usage time is subtracted from the tool life; when the tool life expires, the next tool during the group is selected. The tool sequence withduring a group is arranged during advance. The end of a tool's life is reported by tool change signal TLCH or individual tool change signal TLCHI. Tool change signal TLCH is set to 1 at the end of the life of the last tool of a group. Individual tool change signal TLCHI is set to 1 at the end of the life of the current tool. ### Signal Tool change signal TLCH<F064#0> [Classfication] Output signal [Function] Report the end of the life of the last tool of a group. [Output conditions] The signal is set to 1 when: ·The life of the last tool of a group ends, after tool change has been performed each time the end of the life of each tool during a group is detected. The signal is set to "0" when: ·Tool change reset is completed for all groups during which no available tools remain. #### Note: The TLCH signal turns to "1" when the CNC is reset by M02 or M30, for instance after the tool life, based on the frequency of times used, is reached. When tool life is specified by usage time, TLCH turns to "1" when the tool life limit is reached. The signal will change during machine operation, but machining will continue unitl the end of the program. #### Individual tool change signal TLCHI<F064#2> [Classfication] Output signal [Function] The signal reports the current tool life ends. [Output signal] The signal is set to "1" as follows: ·The current tool life end has been detected. The signal is set to "0" as follows: ·after individual tool change reset signal is executed. # Tool change reset signal TLRST<G007#2> [Classfication] Input signal [Function] Clear all executable data including life count of the group, *, and @. To clear the data, specify a group number by tool group number select signal after replacing the worn-out tools that are displayed on the CRT. The data can also be cleared from the MDI. [Operation] When the signal is set to 1, the control unit operates are as follows: · Clear all executable data including life count of the group. If the same group tool is specified after the machining is resumed, 1st tool during the group should be selected. **Note:** When the automatic operation signal OP is "0", the tool change reset signal TLRST is valid. # Individual tool change signal & reset signal TLRST1<G007#1> [Classfication] Input signal [Function] Individual tool change signal TLCHI is set to 0.. [Operation] When the signal is "1", the control unit operates as follows: Individual tool change signal is set to "0". **Note: 1.** These signals are valid when the tool life management is performed on the basis of the tool life calculated during terms of time or cutting length. 2. Individual tool change signal TLCHI is not cleared by reset. #### New tool select signal #### TLNW<F064#1> [Classfication] Input signal [Function] Report a new tool during some group is selected. The signal can be used during some occasion. For example, a compensation value is to be measured automatically when a new tool is selected. The new tool select signal is issued at the same time as TF(tool function strobe signal). [Output conditions] The signal is "1" when: ·A new tool during some group is selected The signal is "0" when: ·The completion signal is "1". ### Tool group number select signal TL01~TL128<G006#0~#7> [Classfication] Input signal [Function] The tool group select signal must be used when TLRST or TLSKKP ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual signals are input. TL01 \sim 1 28 the tool group number is given during advance. [Operation] A specified tool group is selected. ### Tool skip signal #### TLSKP<G007#0> [Classfication] Input signal [Function] A tool which has not reached its lifespan may be changed by one of two methods: (i) Designate the group number for the tool by tool group number select signal then turn the tool skip signal. When TLSKP turns to "1", the next T-code instruction will pass over the current tool during the group for which the skip was designated, and select the next tool. (ii) The group number is not specified, TLSKP signal becomes "1" and the machine skips to the next tool during the group
currently during use. Either of these methods is set using parameter. Tool life is counted from zero. When the TLSKP signal is "1" and the last tool during the group is being used, the TLCH signal turns to "1". [Operation] When the signal is set to "1", the control unit operates as follows: ·Selects the next tool during the group for which a skip is specified with the next T code. ·Suppose that the current tool during some group. #### Caution: The cycle start lamp signal (STL) and feed hold lamp signal (SPL) must both be "0" before the TLSKP signal is input. #### Tool life count value override signal [Classfication] Input signal [Function] If the parameter is set, the override is added to the life count (time). When the signal is set to "0", the override is valid. There is one override value for 10 binary codes. The override of valid life count value is the total of valid override value. The override value is specified during the increment of 0.1 and its range is $0\sim99.9$. Override value = $$\sum_{i=0}^{9} \{2^i \times V_i\}$$ | ◎GSK 广州数控 | GSK218M | CNC System | Connection and PLC I | Vlanual | |---------------|---------|-------------------|--|---------| | 2814 | *TLV0 | × 0.1 | Stale Ville | | | "TiOU" | *TLV1 | × 0.2 | , Jilon | | | (Apa | *TLV2 | × 0.4 | , char | , (B) | | and, | *TLV3 | × 0.8 | and. | "TILLY. | | 4 | *TLV4 | × 1.6 | 4 | 4 | | , d) | *TLV5 | × 3.2 | , p | | | "ILAKO | *TLV6 | × 12.8 | HAPP'S AND | | | NOTTH NOT THE | *TLV7 | × 25.6 | in Holling | | | (lpa) | *TLV8 | × 51.2 | dian | | | "My" | *TLV9 | | MAI. | MAIL | (For example) When \pm TLV7, \pm TLV6 and TLV3 are set to 0, the override value is counted as follows: 12.8 \pm 6.4 \pm 0.8 \pm 20.0, the life count value multiplies 20.0. [Operation] The actual cutting time is counted and it multiplies the override value of these signals to get the time, which is taken as the basis of tool life management. ### Signal address | 3 | | 90 | -8 | | 200 | | - 200 | | |------|--------|----------|----------|-------|--------|-------|--------|-------| | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | F064 | ***!QQ | | Wildpag. | | Midpar | TLCHI | TLNW | TLCH | | | Th. | - 1 | 20 | -32 | | The. | | 11/1 | | G006 | TL128 | TL64 | TL32 | TL016 | TL08 | TL04 | TL02 | TL01 | | | | - Ø, | | - Ô, | | - Ø, | _ | Ó. | | G007 | 6 | The Tree | ~~~ | *TLV1 | *TLV0 | TLRST | TLRST1 | TLSKP | | | ¥0, | | ,0, | | ×0, | | ¥0, | | | G008 | *TLV9 | *TLV8 | *TLV7 | *TLV6 | *TLV5 | *TLV4 | *TLV3 | *TLV2 | # 11. Programmng Instruciton ### 11.1 Custom macro program **General** Although subprograms are useful for repeating the same operation, the custom macro function also allows use of variables, arithmetic and logic operations, and conditional branches for easy development of general programs. A machining program can call a custom macro with a simple instruction, just like a subprogram. This reports some function programmed by macro program can be taken as the general function. i.e., the program can be written by the data variable (variable data or unkown data. For example, the custom program can be used for technology. # Signal Custom macro program input signal UI000~UI015 (G054, G055) [Classfication] Input signal [Function] The signals do not provide any functions for the control unit. These signals which are taken as one of system variable is read by macro program, used for the interface signal between macro program and PLC. The system variable corresponding to these signals are as follows: | Signal | Address | Variable | |--------|---------|----------| | UI000 | G54#0 | #1000 | | UI001 | G54#1 | #1001 | | UI002 | G54#2 | #1002 | | UI003 | G54#3 | #1003 | | UI004 | G54#4 | #1004 | | Û1005 | G54#5 | #1005 | | UI006 | G54#6 | #1006 | |--------|-------|-------| | UI007 | G54#7 | #1007 | | UI008 | G55#0 | #1008 | | UI009 | G55#1 | #1009 | | UI010 | G55#2 | #1010 | | UI011 | G55#3 | #1011 | | UI012 | G55#4 | #1012 | | UI013 | G55#5 | #1013 | | UI014 | G55#6 | #1014 | | UI015 | G55#7 | #1015 | | UI000~ | G54, | #1032 | | UI015 | G55 | 1.00 | Note: #1032 is variable with 16-bit as follows: #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |-------|-------|-------|-------|-------|-------|-------|-------|-------| | #1032 | UI007 | UI006 | UI005 | UI004 | UI003 | UI002 | UI001 | UI000 | | 90, | | 20, | | 20. | 120 | | 72, | | | #1032 | UI015 | UI014 | UI013 | UI012 | UI011 | UI010 | UI009 | UI008 | Custom macro program output signal UO000~UO015 (F054~F055) UO100~UO131 (F056~F059) [Classfication] Output signal [Function] The signals do not provide any functions for the control unit. These signals which are taken as one of system variable are read/written by macro program, used for the interface signal between macro program and PLC. The system variable corresponding to these signals are as follows: | Signal | Address | Variable | |--------|---------|----------| | UO000 | F54#0 | #1100 | | UO001 | F54#1 | #1101 | | UO002 | F54#2 | #1102 | | UO003 | F54#3 | #1103 | | UO004 | F54#4 | #1104 | | UO005 | F54#5 | #1105 | | UO006 | F54#6 | #1106 | | UO007 | F54#7 | #1107 | | UO008 | F55#0 | #1108 | | UO009 | F55#1 | #1109 | | UO010 | F55#2 | #1110 | | UO011 | F55#3 | #1111 | | UO012 | F55#4 | #1112 | | UO013 | F55#5 | #1113 | | UO014 | F55#6 | #1114 | | UO015 | F55#7 | #1115 | | UO000~ | F54, | #1132 | | UO015 | F55 | Olligt, | | UO100~ | F56~F59 | #1133 | | UO115 | 41.07 | 144. O. | ## Note: # 1132 is a variable with 16-bit. #1133 is a variable with 32-bit. ### Composition is as follows: | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |----------|-------|-------|-------|-------|--------|----------|-------|-------| | #1132 | UO007 | UO006 | UO005 | UO004 | UO003 | UO002 | UO001 | UO000 | | 36 | 1 | MA | | et. |) | The same | M | | | #1132 | UO015 | UO014 | UO013 | UO012 | UO011 | UO010 | UO009 | UO008 | | Physical | | 90,00 | 1900 | | (a)Dia | • | (A) | 900 | | #1133 | UO107 | UO106 | UO105 | UO104 | UO103 | UO102 | UO101 | UO100 | | #1133 | UO115 | UO114 | UO113 | UO112 | UO111 | UO110 | UO109 | UO108 | | 35 | ٦ | 200 | | 100 m | | (C) | 2007 | | | #1133 | UO123 | UO122 | UO121 | UO120 | UO119 | UO118 | UO117 | UO116 | | 196, | | 25. | .20. | | .82 | | .20. | 76. | | #1133 | UO131 | UO130 | UO129 | UO128 | UO127 | UO126 | UO125 | UO124 | ### 11.2 Canned cycle #### General Canned cycles make it easier for the programmer to create programs. With a canned cycle, a frequently-used machining operation can be specified during a signgle block with a G function; without canned cycles, normally more than one block is required. During addition, the use of canned cycles can shorten the program to save memory. One canned cycle consists of a sequence of six operations: Operation 1: Positioning a hole Operation 2: Rapid traverse up to R level Operation 3: Hole machining Operation 4: Operation at the bottom of a hole Operation 5: Retraction to point R level Operation 6: Rapid traverse up to the initial point Operation sequence of canned cycle is as follows: The following canned cycles require spindle control: Reverse tapping cycle G74) Fine boring cycle G76) Tapping cycle G84 Boring cycle G86 Back boring cycle G87 Boring cycle G88 For spindle control, the following normal miscellaneous functions are used: See the description of the miscellaneous functions. M03: CW spindle rotation M04: CCW spindle rotation M05: Spindle stop M19: Spindle orientation When the rotation direction of the spindle is to be switched from one direction to the other (for example, when M04 is output during M03 operation), a parameter can be specified whether to send M05 at the time switching). Tapping signal During the tapping cycle, output the tapping signal. When the tapping cycle G code is valid, CNC also outputs the tapping signal. Override During the tapping, the cutting feedrate override is always set to 100%. Feed hold During the tapping, the traverse does not stop immediately when the feed hold is pressed down. But it stops when the tool returns to R level. Dry run TDR (parameter 12#5) defines if the dry run is valid during the tapping. ### Signal Tapping signal TAP<F001#5> [Classfication] Output signal [Function] The signal reports CNC is during tapping mode. [Output conditions] The signal is 1: —CNC is during the tapping cycle mode G74, G84. −CNC is during the tapping cycle mode G63. the signal is set to 0: CNC is not tapping cycle and tapping mode. -The reset or emergency stop signal is input. ### Signal address: | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-----------|-----|-------|-------|------|----|----------------| | F001 | | Jr. 2. 1. | TAP | D TAP | is in | 10.4 | 2 | Ø _X | ### 11.3 Metric/Inch conversion General Either inch or metric input can be selected by G code. ### Signal Inch input signal INCH<F002#0> [Classfication] Output signal [Function] This signal reports that inch input mode is active. [Output conditions] "1" reports that the inch input mode (G20) is during progress, and "0" reports that metric input mode (G21) is during progress. This signal changes to the corresponding state when modes are switched using the setting data display on the MDI panel. ### Signal address | 2 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-------|-----|------|-----|--------|----|-------|------| | F002 | .57 K | >.× | 29/3 | >.x | 25/1/2 | × | " The | INCH | #### **Parameter** | 44 | #7 | #6 #5 | #24 # 3 | #2 | #1 #0 | |------|----|-------|---------|-----|-------| | 0000 | | 34 | 100 | INI | 100 | [Data Classfication] Bit INI Unit of input: 0: mm 1: inch Note: When this parameter is set, the power must be turned off before operation is continued. ### 11.4 Small hole peck drilling cycle #### General During peck drilling, the tool enters and retracts from hole based on an overload torque check signal (skip signal) until the designed hole depth is reached. The spindle speed and cutting feedrate are changed on each entry of the hole.
The cycle is realized by: - *X and Y axis positioning - *Positioning at point R along the Z axis - *Cutting along the Z axis (first time, depth of cut Q, incremental) ### Signal small hole peck drilling signal PECK2<F013#5> [Classfication] Output signal [Function] The signal reports if the small hole peck drilling is executed. [Output conditions] When this signal becomes "1", the control unit operates as follows: - 1. Retracts the tool from Z point to R point /initial level after the tool executes the hole positioning alogn the non drilling axis. - 2. The signal is not 1 during the hole positioning. ### Signal address: | | 7 #7 | #6 | ± 5 | #4 | # 3 | #2 | _M ,07 # 1 | #0 | |------|------|----|-----|-------|-----|-----|----------------------|----| | F013 | U. | 49 | 2, | PECK2 | | 44, | | My | ## 12 Display/Set ### 12.1 Clock Function General Time is displayed during the hour/nimute/secod format on set screen The custom macro system variable can be used to read the time. Time reportation can be read and written. ### 12.2 Displaying operation history General This function displays a history of the key stroke and signal operations, performed by the CNC operator, when a failure or CNC alarm occurs. ### 12.3 Help function General The help function displays on the screen detailed reportation about alarms issued during the CNC and about CNC operations. The screen displays detailed information about the alarms and how to recover from them. The detailed information is displayed only for a limited number of P/S alarms. These alarms are often misunderstood and are rather difficult to understand. # 12.4 Operation hour and parts count display General This function displays the integrated power-on time, the integrated cycle operation time, the integrated cutting time and timer (started by an input signal from PMC) on the screen. The integrated cycle operation time, the integrated cutting time and timer can be altered and preset, During addition to the above, this function displays the count of the total number of parts machined, the number of parts required and the number of completed parts on the screen. Each time M02, M30 or a parameter set M code is executed, the count of the total number of parts machined and the number of parts compelted is incremented by 1. If the count of the number of parts machined reaches the number of parts required, a signal is output to the PMC side. It is possible for the operator to change and preset the number of parts required and the number of parts completed. Signal Target part count reached signal PRTSF <F061#1> [Classfication] Outptu signal [Function] Reports to the PMC that the specified number of parts have been machined. [Output conditions] The PRTSF signal is set to when: Machining of the specified number of parts has been completed. ### GG与K 厂 州数控 GSK218M CNC System Connection and PLC Manual When the required number parts are zero, this signal is not set. The PRTSF signal is set to 0 when: - Maching of the specified number of parts has not yet been completed. - The system is reset. # General-purpose integrating counter start signal TMRON <G009#0> [Classfication] Input signal [Function] The CNC has a counter which is started by an input signal from the PMC. Additionally, there are counters for counting the automatic operation time and counting cutting time. The count for these counters can be displayed on the screen. The count can be preset by the operator pressing MDI key. [Operation] When the signal is set to 1, the counter starts counting. #### Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|-----|-------|---------|----|-----------|-----|-------|------| | F061 | | | | / | | À | PRTSF | , | | | | 0.3 | | | | aX. | 0 | 7.7 | | G009 | - C | E. C. | all the | 30 | Olligity) | | Migh | TMRO | ### 12.5 Memory protection key #### General A key called the data protection key is used to prevent part programs, offset values, parameters, and setting data from being registered, modified, or deleted erroneously. ### Signal Memory protection signal KEY1 \sim KEY4<G005#0 \sim #3> [Classfication] Input signal [Function] Enables the changing of the memory contents from the MDI panel. Four signals are provided. The operations that can be performed on the contents of memory by each signal vary depending on the setting of parameter. When KEY=0 KEY1: Enables the input of tool compensation values and the workpiece zero point offset values, and workpiece coordinate systems shift amount. KEY2: Enables the input of setting data and macro variables and tool life management data. KEY3: Enables program loading and editing. KEY4: Enables PMC data(counter data tables) When KEY=1 KEY1: Enables program loading and editing, as well as the input of PMC parameters. KEY2 to KEY4: Not used. GG与K Г°州数控 GSK218M CNC System Connection and PLC Manual [Operation] When a signal is set to 0, the associated operations are disabled. When a signal is set to 1, the associated operations are enabled. Signal address | | #7 | #6 | #5 | #4 | #3 | #2 | #1 | # 10 | |------|---------|----|--------|----|------|------|------|------| | G005 | Markey. | | 2 Holy | | KEY4 | KEY3 | KEY2 | KEY1 | 131 ### 13 Measurement ### 13.1 Skip function ### General Linear interpolation can be commanded by specifying axial following the G31 instruction, like G01. If an external skip signal is input during the execution of this instruction, execution of the instruction is halted and the next block is executed. The skip function is used when the end of machining is not programmed but specified with a signal from the machine, for example, during grinding. It is used also for measuring the dimensions of a workpiece. The coordinate values when the skip signal is turned on can be used during a custom macro because they are stored during the custom macro system variable #5061 \sim #5068, as follows: #5061 1st axis coordinate value #5062 2nd axis coordinate value #5063 3rd axis coordinate value #### Signal Skip signal SKIP <X002#4> SKIPP <G001#1> [Classfication] Input signal [Function] This signal terminates skip cutting. That is, the position where a skip signal turns to "1" during a block containing G31 is stored during a custom macro variable, and the move instruction of the block is terminated at the same time. [Operation] When a skip signal turns to "1", the control unit works as described #### below. - When a block contains a skip cutting instruction G31, the control unit reads and stores the current position of the specified axis at that time. The control unit stops the axis, then cancels the remaining distance that the block was supposed to be moved. - The skip signal is monitored not for a rising edge, but for its state. So, if a skip signal continues to be "1", a skip condition is assumed to be satisfied immediately when the next skip cutting is specified. #### Note: - 1. The skip signal width requires at least 10ms. - The CNC directly reads the skip signal SKIP <X002#4>; the PMC is no longer requires to process the signal. - 3. If the skip function G31 is not used, the PMC can use the signal terminal SKIP <X002#4> corresponding to the skip signal as a general purpose input signal. #### Signal address | | ¹⁰⁰¹ #7 | #6 | # 5 | #4 | #3 | #2 | 10000#1 | #0 | |------|--------------------|-------|-----|--------------------|----|---------|---------|---------| | X002 | | na na | Ö | SKIP ³² | 8 | , and h | P | " Tru's | | G001 | aliton | alton | autor | SKIPP | | |------|--------|-------|-------|-------|--| | | V-V | 100 | 1/2/0 | V-V | | ### 13.2 Torque limit skip ### General Sepcifying a move instruction after G31 P99 (or G31 P98) with a motor torque limit set (for example, specifying a torque limit on the PMC screen) allows the same cutting feed as that specified with G01 to be performed. While the tool is moved with a motor torque limit set during cutting feed, skip is performed when a signal indicating that the motor torque limit has been reached is input as a result of an operation such as pushing somethind agaist the motor. #### Basic operations When the motor torque limit is reached or the SKIP signal <X002#4> is input during the execution of G31 P99, the execution of the next block starts without executing the remaining portion of the move instruction. When the motor torque limit is reached during the execution of G31 P98, the execution of the next block starts without executing the remaining portion of the move instruction. When no torque limit is specified before executing G31 P99 or P98, the move instruction is executed without performing the skip operation. For G31 P99 and P98, the coordinate, indicating the position to which the tool is to be positioned after skip, is stored during the system variable of the custom macro. ### Signal Torque limit reached signals #### TRQL1 to TRQL4 <F021> [Classfication] Output signal [Function] Reports that the torque limit has been reached. [Output conditions] Set to "1" when: - •The torque limit has been reached for the corresponding axis. Set to "0" when: - •The torque limit has not been reached for the corresponding axis. Number 1 to 4 report the corresponding axis numbers. ### Signal address | n, | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | |------|----|-------|----|-----|-------|-------|-------|-------| | F021 | N. | ,.[i] | 73 | ,9, | TRQL4 | TRQL3 | TRQL2 | TRQL1 | #### Note: - 1. Specify a torque limit before G31 P99/P98. If G31 P99/P98 is executed with no torque limit specified, the move instruction is executed without a skip operation. - 2. When G31 P99 is specified, the SKIP signal causes a skip operation. However, avoid using the high-speed skip operation. - 3. Before specifying G31 P99/P98, cancel tool-tip radius compensation with G40. - 4. Set the SKF bit(bit 7 of parameter No.6200) to 0 to disable the dry run, override, and automatic acceleration/deceleration functions for the G31 skip instruction. # **Appendix** # Signal list (During order of address) # F signal |
Address | Signal name | Symbol | Reference item | |---------|---|----------|----------------| | F000#4 | Feed hold alarm signal | SPL | 5.1 | | F000#5 | Cycle start alarm signal | STL | 5.1 | | F000#6 | Servo ready completion signal | SA | 2.2 | | F000#7 | Automatic operation signal | OP | 5.1 | | F001#0 | Alarm signal | AL Š | 2.4 | | F001#1 | Resetting signal | RST | 5.2 | | F001#3 | Distribution completion signal | DEN | 8.1 | | F001#4 | Spindle enable signal | ENB A | 9.3 | | F001#5 | Tapping signal | TAP | 11.2 | | F001#6 | Cancellign rigid tapping signal | D TAP | 11.2 | | F002#0 | Inch input signal | INCH | 11.3 | | F002#1 | Rapid traversing signal | RPDO (M) | 2.8 | | F002#2 | Constant surface speed signal | CSS | 9.3 | | F002#3 | Thread cutting signal | THRD | 6.4 | | F002#4 | Program start signal | SRNMV | 5.5 | | F002#6 | Cuuting feed signal | CUT | 2.8 | | F002#7 | Dry run check signal | MDRN | 5.3.2 | | F003#0 | Incremental feed select check signal | MINC | 2.7 | | F003#1 | MPG feed select check signal | MH 🔊 🤄 | 2.7 | | F003#2 | JOG feed select check signal | MJ | 2.7 | | F003#3 | Manual data input select check signal | MMDI | 2.7 | | F003#4 | DNC operation selection confirm signal | MRMT | 2.7 | | F003#5 | Automatic operation select check signal | MMEM | 2.7 (A) | | F003#6 | Memory edit select check signal | MEDT | 2.7 | | F003#7 | Machine zero return select check signal | MZRO | 2.7 | | F004#0 | Skip optional block check signal | MBDT | 5.4 | | F004#1 | All-axis machine lock check signal | MMLK | 5.3.1 | | F004#3 | Single block check signal | MSBK | 5.3.3 | | E004#4 | Auxilian function look signal | MAEL | 0.2.3 | |--------------------|---------------------------------------|----------------------|--------------------| | F004#4 | Auxiliary function lock signal | MAFL | 8.2 | | F004#5 | Manual reference point return check | MREF | <u>4</u> .1 | | F007#0 | Miscellaneous function strobe signal | MFEFD | 8.1 | | F007#2 | Spindle speed function strob signal | TF (I) | 8.1 | | F007#3 | Tool function strob signal | BF | 8.1 | | F009#4 | Decode M signal | DM30 | , č | | F009#5 | May, May, | DM02 | " My | | F009#6 | | DM01 | 8.1 | | F009#7 | ž <u>ž</u> | DM00 | 9.0 | | F012#0 | Spindle rotation direction signal | RGSPP | 21/1/2 | | F012#1 | , itoffile | RGSPM | 9.4 | | F013#0 | Advanced preview control mode signal | G08MD | 7.2 | | F013#5 | Small-diameter peck drilling | PECK2 | 11.4 | | <i>b</i> | during process signal | 6 | 9 | | F014#0 F014#1 | Position switch signal | PSW01 PSW10 | 1.5 | | F015#0 | Servo axis abnormal load | ABTQSV | 2.10 | | | detected signal | | g _{Dr} | | F015#1 | Spindle abnormal load detected signal | ABTSP | 2.10 | | F016 | Reference point return end signal | ZP1 ZP5 | 4.1 | | F017 | Axis moving direction signal | MV1 MV5 | 1.1 | | F018 | Arrival signal | INP1 INP5 | 7.3 | | F019 | Axis moving direction signal | MVD1 MVD5 | 1.1 | | F020 | Mirror image check signal | MMI1 MMI5 | 1.4 | | F021 | Torque limit reached signal | TRQL1 TRQL4 | 13.2 | | F022 F025 | Spindle speed code signal | S00 S31 | 9.1.1 | | S0(F022.0),S1(F022 | 2.1),S2 (F022.2),S3(F022.3),S4(F0 | 22.4),S5(F022.5),S6(| F022.6),S7(F022.7) | | T00 T31 | Tool function code signal | T00 T31 | 8.1 | | F030、31、62、63 | Miscellaneous function code signal | M** | 8.1 www. | | M03(F030.0).M04(F | 030.1),M05(F030.2), | <u> </u> | <u> </u> | | () | 031.1),M10(F031.2),M11(F031.3), | M32(F031.4).M33(F0 | 31.5).M00(F031.7) | | -02-1 | F062.1) ,M19(F062.2) ,M21(F062.3 | -071 | | | , | F062.7) ,M45(F063.0) ,M50(F063.1 | | 100 | | F034#0 #2 | Gear select signal | GR1,GR2,GR3 | 9.1.2 | | F054,F055 | Customer marco program | U000 U015 | 21112 | | F056 F059 | output signal | U100 U131 | 11.1 | | F060 | Referece point stablishment signal | ZRF1 ZRF5 | 4.1 | | E061#1 | | PRTSF | 12.4 | | F061#1 | Required parts reach signal | PERIOF | V1Z.4 | | F064#0 | Tool change signal | TLCH | 10.3 | |--------|-------------------------------|-------|-------| | F064#1 | New tool select signal | TLNW | 10.3 | | F06 | Individual tool change signal | TLCHI | 10.3 | | THE. | und und | nu. | nous. | | 4#2 | | | | ## G signal | Address | Signal name | Symbol | Reference
item | |-------------------------|--|------------------------|-------------------| | G000#0 | Miscellaneous function completion signal | FIN | 8.1 | | G000#1 | 1 st M function completion signal | MFIN1 | 8.1 | | G000#2 | 2 nd M function completion signal | MFIN2 | 8.1 | | G000#3 | 3 rd M function completion signal | MFIN3 | 8.1 | | G000#4 | Spindle function completion signal | SFIN | 8.1 | | G000#5 | Tool function completion signal | TFIN July | 8.1 | | G001#0 | Emergency stop signal | *ESP | 2.1 | | G001#1 | Skip signal | SKIPP | 13.1 | | G001#2 | Interlock signal | *IT | 2.6 | | G001#3 | Reset signal | RST | 5.2 | | G002#0 #2 | Gear select signal (input) | GR1,GR2, GR3 | 9.1.2 | | G002#4 | Gear change completion signal | GEAR | 9.1.2 | | G003#0 | Spindel speed arrival signal | SAR | 9.1.2 | | G003#1 | Ridig tapping signal | RGTAP | 9.4 | | G004#0 #4 | MPG halt select signal | HS1IA HS1ID | 3.3 | | G005#0 #3 | Memory protection signal | KEY1 KEY4 | 12.5 | | G006#0 #7 | Tool group number select signal | TL0 TL128 | 10.3 | | G007#0 | Tool skip signal | TLSKP | 10.3 | | G007#1 | Individual tool change signal | TLRST1 | 10.3 | | G007#2 | Tool change reset signal | TLRST | 10.3 | | G007#3 #4,
G008#0 #7 | Tool life count override signal | *TLV0 *TLV9 | 10.3 | | G009#0 | General integrated counter start signal | TMR ON | 12.4 | | G009#1 | Customer marco program halt signal | UINT ME | 11.1 | | G009#2 | Error detect signal | SMZ | 7.4 | | G009#3 | Each-axis VRDY OFF alarm ignore signal | IGNVRY | 2.9 | | G009#4 | Machine ready completion signal | MRDY | 2.5 | | G010#0 #4 | Mirror image signal | MT1 MT5 | 1.4 | | G011#0 #4 | Each-axis machine tool lock signal | MLK1 MLK5 | 5.3.1 | | G012#0 #4
G013#0 #4 | Overtravel signal | *+L1 *+L5
*-L1 *-L5 | 2.3 | | G014#0 #4 | Servo off signal | SVF1 SVF5 | 1.3 | | G015#0 #4 | Each axis interlock signal | *IT1 *IT5 | 2.6 | | G016#0 | External reset signal | ERS | 5.2 | | G017#0 #4 | Zero return deceleration signal check | Thy | 4.1 | # 1 PLC Interface Display ### 1.1 Automatic operation when GSK218M PLC power on When PMC includes the enabled sequence program, it starts immediately the automatic operation by the setting of the keep relay after power on. PMC screen are not needed to display every power-on to execute the sequence program. Note: The keys during < > are the panel; the ones in 【 】 are the soft keys; 【 】 is the interface corresponding the current soft key; ◆ reports there is the sub-menu during the menu; all operations during PCL are executed during MDI mode and only view and search can be executed during other modes. ### 1.2 INFO interface display #### 1.2.1 INFO interface Press <INFO> key on the panel to enter the default INFOR interface as Fig. 1-2-1. If the **【INFO】** soft key has not found on the below of the screen, the bit parameter No: No: 26#6=1 can be defined to set the key on the PMC interface, and then <**INFO**> is pressed to enter INFO interface. There is the version number of GSK218M, modification data, PLC I/O interface definition state and so on on INFO interface. Fig. 1-2-1 4 soft keys on the below of the screw are 4 kind of information display interface of PMC. #### 1.2.2 PLCGRA interface Press **[PLCGRA]** to enter **PLCGRA** interface or define the bit parameter N0: 26#6=1 to press **<INFO>** key on the PMC interface to enter **PLCGRA** interface as Fig.1-2-2. Fig. 1- 2- 2 Contents and operations on PLCGRA interface: Line: current line position specified by the cursor during the ladder RUN: operation state of ladder Diagram: ladder program Data/serial number: displaying input data. The serial number appears by pressing **SEARCH>** on the panel to search the data. The CNC returns to the data displaying interface after press **CANCEL>**. MEA: Commentaries of element positioned by the cursor MDI mode: current operation mode(note: the ladder can be modified only during MDI mode). Press the Page Up/Page Down, four Direction keys to seach, view and modify the elements. #### 1.2.3 PLCPAR interface Press **[PLCGRA]** to enter **PLCPAR** interface or define the bit parameter N0: 26#6=1 to press **INFO**> key on the PMC interface to enter **PLCPAR** interface as Fig.1-2-3. ### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual | PLCPa | ra | "OUgr, | , tornar | RUN | |-------|--------|-----------|--------------|-------| | | N0. | ADDRESS | CURRENT | SET X | | | 0000 | C000 | 00000 | 00001 | | | 0001 | C001 | 00000 | 00001 | | | 0002 | C002 | 00000 | 00001 | | . 6 | 0003 | C003 | 00000 | 00001 | | | 0004 | C004 | 00000 | 00001 | | | 0005 | C005 | 00000 | 00001 | | | 0006 | C006 | 00000 | 00001 | | | 0007 | C007 | 00000 | 00001 | | | 8000 | C008 | 00000 | 00001 | | | 0009 | C009 | 00000 | 00001 | | | 0010 | C010 | 00000 | 00001 | | 12.01 | 0011 | C011 | 00000 | 00001 | | 3 | | Caldy. | T. Bird | MDI | | [I | NFO] [| ◆PLCGRA】【 | ◆PLCPAR】【PLC | DGN 】 | Fig. 1- 2- 3 Contents and operations on PLCPAR interface: RUN: operation state of ladder NO: parameter serial number ADDRESS: parameter address CURRENT: current value of parameter SET: preset value of parameter Data/serial number: displaying input data. The serial number appears by pressing <SEARCH> on the panel to search the data. The CNC returns to the data displaying interface after press <CANCEL>. MDI mode: current operation mode(note: the relative parameter of PLCPAR can be modified only during MDI mode). Press the Page Up/Page Down, four Direction keys to seach, view and modify the elements. ### 1.2.4 PLCGND interface Press **[PLCGDN]** to enter PLCGND interface or define the bit parameter N0: 26#6=1 to press **INFO**> key on the PMC interface to enter PLCGDN interface as Fig.1-2-4. ###
GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual | ſ | DI CDCM | | Mar. | | | 100 | - | Т | IIN - | |---|---------|--------|---------------|-------|--------|--------|-------|------|-------| | 1 | PLCDGN | . 35 | | | | 101 | | 7 | RUN | | | ADDR | N. 7 | N. 6 | N. 5 | N. 4 | N. 3 | N. 2 | N. 1 | N. 0 | | | F000 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | F001 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | F002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | F003 | 0 | 0 8 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | F004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | F005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | F006 | 036 | 0 | 0 | 0 | 300 | 0 | 0 | 0 | | | F007 | Ø0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | | | F008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | F009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | F010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | F011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 序号 | | alde | | | - 350 | | | | | | | 28 | | | | 40r | | MDI | - 30 | | | [INF | .070,[| ♦ PLCG | RA] [| ◆ PLCP | AR] [| PLCDG | | 7097 | | L | - | (9) | | | (0) | | LECDO | | 9. | Fig. 1-2-4 Contents and operations on PLCGDN interface: RUN: operation state of ladder ADDR:: address of diagnosis number $N.0 {\sim} N.7$: bit number state of diagnosis address. 1: the signal is connected; 0: the signal is not connected. CURRENT: current value of parameter SET: preset value of parameter Data/serial number: displaying input data. The serial number appears by pressing <SEARCH> on the panel to search the data. The CNC returns to the data displaying interface after press <CANCEL>. MDI mode: current operation mode. Press the Page Up/Page Down, four Direction keys to seach the corresponding diagnosis number. # **2 PLC Programming Operation** ### 2.1 General GSK218M CNC PLC operations are performed during the corresponding interfaces. There are maduring two interfaces: 1. PLCGRA interface include: basic instruction, function instruction and instruction list. Press **[PLCGRA]** to enter PLCGRA interface as Fig. 1-2-2. Press agaduring **[PLCGRA]** to enter PLCGRA interface as Fig. 2-2-1. | PLCGR | A MANAGE | Ln: 000/429 | RUN | |---------|-------------------------|----------------------|----------| | X001.4 | 20, | 114, | G001. 0 | | X000.0 | <u> </u> | À | G012.0 | | X000. 1 | "The state of | "Mar | G012. 1 | | X000. 2 | *OUGH, | *Ollige, | G012. 2 | | X000. 3 | 'Illan | ' Programme | G012. 3 | | X000. 4 | "Ing. | "Hay. | G013. 0 | | X000.5 | | | G013. 1 | | X000.6 | 100 | 13.5 | G013. 2 | | X000. 7 | Majel. | Vaga, | G013. 3 | | X001.0 | G020. 0 G020. 4 G020. 5 | G020. 6 | G017. 0 | | DATA | "HHIO | MEA Emergency switch | MDI | | [• | B. INST] [F. INST] [< | ◆REPERT】【◆EDIT】 | RETURN] | Fig. 2- 1- 1 **2. PLCRAR** interface includes CTR, TMR, DATA, KPAR. **PLCRAR** interface includes: CTR, TMR, DATA, KPAR. Press 【 PLCRAR 】 to enter PLCRAR interface as Fig. 1-2-3. Press agaduring 【 PLCRAR 】 to enter PLCRAR interface as Fig. 2-2-2. | PLCPa | ra | "HOLUST", | | Hornar, | RUN | |-------------------------------------|-------------------|-----------|---------|----------|-----| | 5 | N0. | ADDRESS | CURRENT | SET | | | | 0000 | C000 | 00000 | 00001 | 2. | | | 0001 | C001 | 00000 | 00001 | 20, | | | 0002 | C002 | 00000 | 00001 | | | | 0003 | C003 | 00000 | 00001 | | | "This | 0004 | C004 | 00000 | 00001 | | | Mar. | 0005 | C005 | 00000 | 00001 | | | 70. | 0006 | C006 | 00000 | 00001 | | | 0 | 0007 | C007 | 00000 | 00001 | | | | 0008 | C008 | 00000 | 00001 | | | | 0009 | C009 | 00000 | 00001 | 270 | | | 0010 | C010 | 00000 | 00001 | | | | 0011 | C011 | 00000 | 00001 | | | No. O. A. | | Ugley. | | WI MI | Ι | | Ji ^{on} [<mark>C</mark> 1 | <mark>[R</mark>] | TMR DATA | KPAR] | 【RETURN】 | | Fig. 2-1-2 # 2.2 Basic instruction(B. INST) Press **[B. INST]** during Fig. 2-1-2 to enter the basic instruction operation interface as Fig.2-2-1 | 0 | 750 | 560 | | |-------------|-------------------|----------------------|---------| | PLCGRA | | Ln: 000/429 | RUN | | X001. 4 | 27, | 17 | G001. 0 | | X000. 0 | | à | G012.0 | | X000. 1 | × | No. | G012. 1 | | X000. 2 | , office | , office. | G012. 2 | | X000. 3 | (g)g) | igp _{an} | G012. 3 | | X000. 4 | "HAY. | Nun, | G013. 0 | | X000. 5 | | | G013. 1 | | X000.6 | | 10.01 NO | G013. 2 | | X000. 7 | Way. | A. Watch. | G013. 3 | | X001.0 G020 | . 0 G020. 4 G020. | 5 G020.6 | G017. 0 | | DATA | "41 Ch. | MEA:Emergency switch | | | | Mr. | May | MDI | | | <u> </u> | (-()) $(-())$ RETURN | II ▶ 1 | Fig. 2-2-1 Press **【▶** I to display other basic instructions as Fig. 2-2-2. | PLCGRA | Ln: 000/429 | RUN | |-------------------------|-----------------------|------------| | X001. 4 | Name. | G001.0 | | X000. 0 | 'M'(O) | G012.0 | | X000. 1 | 77. | G012. 1 | | X000. 2 | 6 6 | G012. 2 | | X000. 3 | 9.7/F.o. | G012. 3 | | X000. 4 | , illore, c | G013. 0 | | X000. 5 | (A) | G013. 1 | | X000. 6 | May. | G013. 2 | | X000. 7 | | G013. 3 | | X001.0 G020.0 G020.4 G0 | 020.5 G020.6 | G017. 0 | | DATA | MEA: Emergency switch | O . | | | I 【≫I】 【RETU | MDI
RN] | Fig. 2-2-2 The basic instrucitns are divided into 7 kind of graphic display: 【 ⊢ 】 : normally open contact 【 → 】 : normally close contact **I**—() **]** : output coil (_o()): output coil reverse [___]: horizontal conductive line []: vertical conductive line deleting vertical conductive line Auxiliary soft key: 【 ▶ 】: Page Down 【 ◀ 】: Page Up 【 Esc 】 return to the up menu. # 2.3 Operations of ladder Add element: position the cursor to the required, press the corresponding menu to input the element name, press <ENTER> to confirm the addition after it is displayed behind the data. If the current position has element, the new element will replace the previous one. - Insert element: position the cursor to the required, press <INSERT> to insert empty position, and then add the new element as the above method. The cursor can insert orderly. (Note: ensure the indicator above <CTRL> key is OFF when inserting element.) - Delete element: press <**DELETE**> to delete the current element and the following one will orderly move forward(Note: ensure the indicator above <**CTRL**> key is OFF when deleting element.) - Add vertical conductive line: press \[\bigcup_{\text{\conductive}} \] to add one vertical conductive line under the lower-right of current cursor position. - Add horizontal conductive line: press [____] to add one horizontal conductive line before the cursor position, if the current position has element, the horizontal conductive line replace the element. - Insert line: position the cursor to the any line of target line, press <CTRL>, and then press <INSERT> after the indicator above <CTRL> is ON, insert the blank line at the place above of the specified line by cursor, and the sequent line will orderly move down one line. - Delete line: position the cursor to the target line, press <CTRL>, and then press <DELETE> to delete the current line after the indicator above <CTRL> is ON, and the sequent line will orderly move up one line. - Delete block: position the cursor to the initial position which will be deleted, press <L> and input the address number of target block's coil, and last press <ALT>. - Copy block: position the cursor to the block head(first contact of left busbar) which will be copied, press <M> and input the block end(address number of coil of right busbar), and last press <ALT>. - Copy block: position the cursor to the block head(first contact of left busbar) which will be copied, press <T> and input the block end(address number of coil of right busbar), and last press <ALT>. - Paste block: position the cursor to the any line of target line, press <F>, and then press <ALT>. ## GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual Save: press < STORE > to save the modified ladder. Ladder programming example: - 1. position the cursor to the initial position of programming, press — and there is normally-open contact symbol at the cursor position, directly input the element name X1.4 and press <ENTER> and X001.4 appears at the current cursor position. - 3. position the cursor to the initial position of next line, press 【 →/- 】, there is there is normally-open contact symbol at the cursor position, directly input the element name X2.4 and press <ENTER> and X002.4 appears at the current cursor position. - 4. right move the cursor, press [____], and draw a horizontal conductive line at the current cursor position. - 5. up move the cursor, press **[**], and draw a vertical conductive at the current cursor position. - 6. press **I**—() **J** and the system automatic create the ouput coil, namely the necessary horizontal conductive line. Directly input the element name G1.0, press **ENTER**> and G001.0 appears at the current cursor position. The programmed ladder is as Fig. 2-3-1: Fig. 2-3-1 Ladder example Note: The green element in the ladder is turned on no matter that it is normally-open and normally-closed or outputs the coil, and the white indicates it is turned off (owing to the printing, the dark stands it is turned off, and the light stands it is turned on.) #### 2.4 Function instruction Press **[B. INST]** during Fig. 2-1-1 to enter the basic instruction operation interface as Fig. 2-4-1. #### GGSK プー州数控 GSK218M CNC System Connection and PLC Manual Fig. 2-4-1 There are 30 PLC function instructions during the function instruction list. For the format and use of function instruction, see Programming. #### 2.5 Instruction list Press **[INSTRUCTION LIST]** during PLCGRA interface as Fig.2-1-1 to enter the operation interface of instruction classification as Fig. 2-5-1. | PLCREP | ER | | Step: 0000 | 0/1263 | RUN | |--------|---------|-----------|------------|--------|---------------| | '92, | N0. | REPER | | 8 | 300 | | MA | 0000 | RD | X001.4 | | | | 27, | 0001 | WRT | G001.0 | 27. | | | | 0002 | RD | X000.0 | | | | | 0003 | WRT | G012.0 | | | | | 0004 | RD | X000.2 | | "Sight | | | 0005 | WRT | G012.1 | | KOLL | | | 0006 | RD 💉 | X000.4 | | | | | 0007 | WRT | G012.2 | | | | 272, | 8000 |
RD | X000.6 | 212, | | | | 0009 | WRT | G012.3 | | | | | 0010 | RD | X000.1 | | | | | 0011 | WRT | G013.0 | | 29/r | | | | | | | | | DATA | | | | -4 | WD T | | 【 CO1 | NVERT] | [DOWN] [S | TOP] | | MDI
ETURN] | Fig. 2-5-1 Contents and operations of instruction list interface: Step: the step number and total step number of current ladder run RUN: operation state of ladder Data/serial number: displaying input data. The serial number appears by pressing **SEARCH**> on the panel to search the data. The CNC returns to the data displaying interface after press **SEARCH**>. MDI mode: current operation mode. 【CHANGE】: ladder is changed into instruction list. 【DOWNLOAD】: the instruction list is downloaded to CNC to automatically operation the PLC ladder. [STOP]: stop ladder running. [Esc]: return to the up menu. Press the Page Up/Page Down, four Direction keys to search and position, view the instruction list address. #### 2.6 Edit instruction | PLCGRA | Ln: 000/429 | RUN | |----------------------|--------------------------|---------| | X001. 4 | | G001. 0 | | X000. 0 | Y3'5, Y3'5, | G012. 0 | | X000.1 | 2, (90) | G012. 1 | | X000. 2 | Salito. | G012. 2 | | X000. 3 | "M'(Q, | G012. 3 | | X000. 4 | 27 | G013. 0 | | X000. 5 | <u>a</u> | G013. 1 | | X000.6 | 34 | G013. 2 | | X000. 7 | allon. | G013. 3 | | X001.0 G020.0 G020.4 | G020. 5 G020. 6 | G017. 0 | | DATA | MEA Emergency switch | May. | | | | MDI | | 【COPY】 【PAST | E 】 【DEL】【REPLASE】【RETUI | RN 🕽 | Contents and operations on instruction list interface: LINE: displaying the current position of cursor and total line number of ladder RUN: operation state of ladder Data/serial number: displaying input data. The serial number appears by pressing **SEARCH**> on the panel to search the data. The CNC returns to the data displaying interface after press **SEARCH**>. MDI mode: current operation mode. 【COPY】 : after inputting G12.1, press it and the ladder between the cursor and G12.1 can be copied. [PASTE] : paste the copied ladder. 【DELETE】 : after inputting G12.1, press it and the ladder between the cursor and G12.1 can be deleted. (CHANGE) : input the signal address needed to change, and press the key, the system prompts if the address is changed or all addresses are changed. Y: YES; N: NOT; A: ALL Press the Page Up/Page Down, four Direction keys to search and position, view the instruction list address. ## 2.7 PLC operation step PLC operation step: - 1. During PLCPAR interface, press 【KPAR】 to enter the viewing and setting interface of keep relay, operate PLC by modifying the related bit of K000, K001. (setting K000.0 to 1 can modify the ladder after saving). For the definition of related bit, see Function, Appendix A.1. - 2. During PLCGRA interface, operate PCL to complete PLC programming. Press <SAVE>, the data field prompts "SAVE SUCCEEDED!". The corresponding PMC alarms during saving when PLC is mistaken, please check PLC program. - 3. During PLCGRA interface, press **<CHANGE>**, the data field prompts "CHANGING......", and "CHANGE SUCCEEDED!". The ladder is changed into instruction list to download to CNC to automatically operation the system. # 3 PLC Address, Parameter Setting During PLC, the addresses and parameters of counter, timer, data list, keep relay are used, viewing and setting must be during the corresponding interface. During PLCPAR interface, press **[PLCPAR]** to enter PLC address, parameter setting interface as Fig. 3-1, including counter, timer, data list, keep relay and so on, used for viewing and setting the addresses, parameter and data list. | | | e/2 | 7/4 | | |------------|------|------------|--------------|----------| | PLCPa | ra | 27, | No. | RUN | | | N0. | ADDRESS | CURRENT | SET | | | 0000 | C000 | 00000 | 00001 | | 200 | 0001 | C001 | 00000 | 00001 | | NIC. | 0002 | C002 | 00000 | 00001 | | 900 | 0003 | C003 | 00000 | 00001 | | | 0004 | C004 | 00000 | 00001 | | | 0005 | C005 | 00000 | 00001 | | | 0006 | C006 | .00000 | 00001 | | | 0007 | C007 | 00000 | 00001 | | | 0008 | C008 | 00000 | 00001 | | W. | 0009 | C009 | 00000 | 00001 | | Will. | 0010 | C010 | 00000 | 00001 | | 900 | 0011 | C011 | 00000 | 00001 | | | | 44, | | | | _ | _ | 27. | 20, | MDI | | (C | TR] | 【TMR】 【DAT | `A 】 【KPAR】【 | RETURN] | | | | | | | Fig. 3- ′ ## 3.1 Counter Press [CTR] during Fig. 3-1 to enter the view and the setting interface of counter as Fig. 3-1-1. | | | 227 | | 223 | |----------|-------|-----------|-----------|----------| | PLCP | ara | Morris | , Hold | RUN | | | N0. | ADDRESS | CURRENT | SET | | | 0000 | C000 | 00000 | 00001 | | | 0001 | C001 | 00000 | 00001 | | | 0002 | C002 | 00000 | 00001 | | 18.S | 0003 | C003 | 00000 | 00001 | | The same | 0004 | C004 | 00000 | 00001 | | | 0005 | C005 | 00000 | 00001 | | | 0006 | C006 | 00000 | 00001 | | | 0007 | C007 | 00000 | 00001 | | | 0008 | C008 | 00000 | 00001 | | | 0009 | C009 | 00000 | 00001 | | | 0010 | C010 | 00000 | 00001 | | 38. | 0011 | C011 | 00000 | 00001 | | 7/2 | | Tatyle. | | MDI | | ľ | CTR] | TMR] [DAT | A] [KPAR] | (RETURN) | | | | | 169 | | Fig. 3- 1- 1 Contents and operations on counter interface: OPERATION: operation state of ladder. No. : counter number, cannot be changed. ADDRESS: counter address, cannot be changed. CURRENT: counter current value, cannot be changed. SET : counter preset value, can be changed during MDI mode. Data/serial number: displaying input data. The serial number appears by pressing <SEARCH> on the panel to search the data. The CNC returns to the data displaying interface after press <CANCEL>. MDI mode: current operation mode. **(Esc)**: return to the up menu. Press **<CHANGE>** to download the setting value to operation the CNC. When the change is completed, the system displays: CTR Downloaded OK!, when the change is not completed, the system displays: Can't download! (Note: press 【CHANGE】 after modification to save the modification and operation the CNC. Press the Page Up/Page Down, four Direction keys to search and position, view or modify the counter address. #### 3.2 Timer Press [TMR] during Fig. 3-1 to enter the view and the setting interface of counter as Fig. 3-2-1. | CPara | | | | RUN | |-------|---|---|---|---| | N0. | ADDRESS | CURRENT | SET | | | 0000 | T000 | 00000 | 00100 | | | 0001 | T001 | 00000 | 00100 | | | 0002 | T002 | 00000 | 00100 | 1000 | | 0003 | T003 | 00000 | 00100 | 710 | | 0004 | T004 | 00000 | 00100 | U. | | 0005 | T005 | 00000 | 00100 | | | 0006 | T006 | 00000 | 00100 | | | 0007 | T007 | 00000 | 00100 | | | 0008 | T008 | 00000 | 00100 | | | 0009 | T009 | 00000 | 00100 | | | 0010 | T010 | 00000 | 00100 | | | 0011 | T011 | 00000 | 00100 | "4'¿O. | | 200 | | " Mayor | | Tales. | | - | | | M | DΙ | | 【CTR】 | 【TMR】 【DA | TA] 【KPAR】 | [RETURN] | l | | | N0.
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 | N0. ADDRESS 0000 T000 0001 T001 0002 T002 0003 T003 0004 T004 0005 T005 0006 T006 0007 T007 0008 T008 0009 T009 0010 T010 0011 T011 | N0. ADDRESS CURRENT 0000 T000 00000 0001 T001 00000 0002 T002 00000 0003 T003 00000 0004 T004 00000 0005 T005 00000 0006 T006 00000 0007 T007 00000 0008 T008 00000 0009 T009 00000 0010 T010 00000 0011 T011 00000 | NO. ADDRESS CURRENT SET 0000 T000 00000 00100 0001 T001 00000 00100 0002 T002 00000 00100 0003 T003 00000 00100 0004 T004 00000 00100 0005 T005 00000 00100 0006 T006 00000 00100 0007 T007 00000 00100 0008 T008 00000 00100 0009 T009 00000 00100 0010 T010 00000 00100 0011 T011 00000 00100 | Fig. 3-2-1 Contents and operations on counter interface: #### GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual OPERATION : operation state of ladder. No. : counter number, cannot be changed. ADDRESS: counter address, cannot be changed. CURRENT: counter current value, cannot be changed. SET : counter preset value, can be changed during MDI mode. Data/serial number: displaying input data. The serial number appears by pressing <SEARCH> on the panel to search the data. The CNC returns to the data displaying interface after press <CANCEL>. MDI mode: current operation mode. [Esc]: return to the up menu. Press < CHANGE > to download the setting value to operation the CNC. When the change is completed, the system displays: CTR Downloaded OK!, when the change is not completed, the system displays: Can't download! (Note:
press 【CHANGE】 after modification to save the modification and operation the CNC. Press the Page Up/Page Down, four Direction keys to search and position, view or modify the counter address. #### 3.3 Data list Press [DATA] during Fig. 3-1 to enter the view and the setting interface of counter as Fig. 3-3-1. | | | . () | | | 7 | . (9) | | |-----|------------|-----------|---------------------|-------------|----------|-----------|---| | ΡI | CPa | ıra | | Andry. | | RUN | | | | N0. | ADDRESS | DATA | N0. | ADDRESS | DATA | | | | 000 | D000 | 00000 | 012 | D012 | 00000 | | | to | 001 | D001 | 00000 | 013 | D013 | 00000 | | | 3 7 | 002 | D002 | 00000 | 014 | D014 | 00000 | | | | 003 | D003 | 00000 | 015 | D015 | 00000 | Š | | | 004 | D004 | 00000 | 016 | D016 | 00000 | - | | | 005 | D005 | 00000 | 017 | D017 | 00000 | | | | 006 | D006 | 00000 | 018 | D018 | 00000 | | | | 007 | D007 | 00000 | 019 | D019 | 00000 | | | | 008 | D008 | 00000 | 020 | D020 | 00000 | | | 140 | 009 | D009 | 00000 | 021 | D021 | 00000 | | | | 010 | D010 | 00000 | 022 | D022 | 00000 | | | | 011 | D011 | 00000 | 023 | D023 | 00000 | Š | | | | | | 6, | | , dp; | 7 | | | | " Ly' | | | | MDI | | | | (C | TR] [TMR] | 【 <mark>DATA</mark> | 1 [1 | KPAR】【返回 | 1 1 1/2 1 | | Fig. 3-3-1 Contents and operations on data list interface: OPERATION : operation state of ladder. ## GG与K 「分別数控 GSK218M CNC System Connection and PLC Manual No. : data list number, cannot be changed. ADDRESS: data list address, cannot be changed. DATA: data list setting value, can be changed during MDI mode. Data/serial number: displaying input data. The serial number appears by pressing <SEARCH> on the panel to search the data. The CNC returns to the data displaying interface after press <CANCEL>. MDI mode: current operation mode. **[Esc]**: return to the up menu. Press **CHANGE**> to download the setting value to operation the CNC. When the change is completed, the system displays: CTR Downloaded OK!, when the change is not completed, the system displays: Can't download! (Note: press 【CHANGE】 after modification to save the modification and operation the CNC Press the Page Up/Page Down, four Direction keys to search and position, view or modify the data list address. ## 3.4 Keep relay **Press [KPAR]** during Fig. 3-1 to enter the view and the setting interface of counter as Fig. 3-4-1. | ΡI | CPara | 190gg | | | | | | | RUN | 82 | |---------------|-------|--------|-----|------|-------|-----|-------------------|---------------|------|----| | | ADDR | N.7 | N.6 | N.5 | N.4 | N.3 | N.2 | N.1 | N.0 | | | | K000 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | | | K001 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | | | 9.S. | K002 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | | | | K003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | K004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .6 | | | K005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | K006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,00 | | | | K007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | K008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | _ | K009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 9.S. | K010 | 0 | 0 | 0 | 0 | 0 | 0,0 | S.0 | 0 | | | | K011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | D | ATA | ж(| | | | ×C | | | | 6 | | | | | | | | | | | MDI | | | | CTR |)
) | TMR | T DA | ATA] | KP. | <mark>AR</mark> 】 | T RETU | RN L | | | $\overline{}$ | | | | | | | | | | | ⊦ıg. 3- 4- 1 Contents and operations on keep relay interface: : RNU: operation state of ladder. ADDR: keep relay address. N.0~N.7: bit number state of keep relay address. 1: After the CNC is turned off, the address keeps the state which is before power-off. 0: after the CNC is turned off, the address resets to the default state. Data/serial number: displaying input data. The serial number appears by pressing **SEARCH**> on the panel to search the data. The CNC returns to the data displaying interface after press **CANCEL**>. MDI mode: current operation mode. [Esc] : return to the up menu. Press < CHANGE > to download the setting value to operation the CNC. When the change is completed, the system displays: KPAR Downloaded OK!, when the change is not completed, the system displays: Can't download! (Note: press **【CHANGE】** after modification to save the modification and operation the CNC. K000~~K005 is taken up by the CNC. For its definition, see Function, Appendex A.1 Press the Page Up/Page Down, four Direction keys to search and position, view or modify the data list address. # 3.5 F address corresponded to M function In Fig.3-1, press 【▶】 to enter the next page, press 【MDEC】 to enter the search and setting interface of F address corresponded to M function as Fig. 3-5-1: | MCode | eDEC(MOO- | -M97~F026-F033) | | RUN | |-------------|-------------------------|------------------|------------|-------| | | MCODE | MEANING | ADDR | | | | M00 | Program Stop | F031.7 | | | . 2.2 | M01 | Optional Stop | F030.4 | | | 3/2 | M02 | End of Program | F030.5 | | | | M03 | Spindle forward | F030.0 | | | | M04 | Spindle backward | F030.1 | | | | M05 | Spindle stop | F030.2 | . (g) | | | M06 | Auto change tool | F030.3 | | | | M07 | STNANDBY | F***.* | | | | M08 | Coolant on | F031.0 | | | . 2.9 | M09 | Coolant off | F031.1 | | | H. | M10 | A axis Clamp | F031.2 | | | | M11 | A axis Release | F031.3 | | | | | | MDI | | | 【◆ 】 | I 【 <mark>MDEC</mark> 】 | | 【 RETURN 】 | Ay is | Fig. 3-5-1 Content and operation of F address corresponded to M function: MCodeDEC: MDEC interface. MOO-M97: setting range of M function command. #### ◎匠与K厂州数控 GSK218M CNC System **Connection and PLC Manual** F026-F033: setting range of F address. RUN: run status of ladder. MCODE: **MEANING:** M function explanation. F address can be modified in MDI mode by inputting one which is ADDR: higher than the terminal user password, and the modified is valid after the system restarts. M function number. MDI mode: current operation mode. [Esc]: escape from the upper menu. **【▲】**: enter the upper menu. After modification, the system "Alarm", prompting "Power OFF", and the setting is value after the system restarts. In PLC program, there is M function setting, and after the address is modified, the corresponding ladder should be modified to avoid the unexpected operation of machine tool. Search or modify F address corresponded to M by PageUp/PageDown and four direction keys on the operator panel. # 1 System Structure and Installation # 1.1 System composition GSK218M CNC system mainly consists of the following units as Fig. 1.1. - (1) GSK218M CNC system - (2) Additional operator panel(optional) - (3) Stepper driver(number AC servo driver) - (4) Stepper motor(servo motor) - (5) AC transformer Fig. 1.1 # 1.2 System installtion & connection Firstly, check if the CNC system, driver, motor, and photoelectric encoder are ready, intact and matched. The CNC system must be fixed stably, and there is some space around the system to ensure the air circulates, and the heat radiates. The installation position of CNC system must be convenient to the operation and avoid the postion of processing chip and cooling. The high/low voltage should be separated. The power supplies of CNC system and driver are provided by transformer, which are separated from the machine high voltage. All kind of signal line should be far from AC contactor to avoid the interference. The photoelectric encoder, limit signal and emergency stop signal should be directly connected to the CNC system. The power supply must be strictly grounded. All kind of plug and bolt must be fixed stably, and forbide the signal connector is ON/OFF after the CNC system is turned on. The system panel cannot be damaged by hard thing and sharp weapon when the CNC system is installed; the CNC system should be carried down to avoid dirtying the system panel. There is no the source of high voltage, magnetic field around the CNC system, and the system should be far from the imflammable, explosive substance and all sort of dangerous thing. # 1.3 CNC system installation dimension #### 1. Front view 州数控 **GSK218M CNC System Connection and PLC Manual** 4. Back view 0 4444 www.idfaltomatkad **8** XS2 **_** GND OUTPUT1 OUTPUT2 OUTPUT3 (1) VDD5V SPINDLE +12V RS232 MPG REMOTE MPG IOGND +240 XS21 XS45 XS32 XS41 XS43 XS44 161, white the state of sta # **2 Device Connection** # 2.1 CNC external connection # 2.2 Connection between system and driver Interfaces to driver include XS30 $(X \ axis)$, XS31 $(Y \ axis)$, XS32 $(Z \ axis)$, XS33 $(4^{TH} \ axis)$. # 2.2.1 System interface ## 2.2.2 Interface signal list XS30: DB15 female (X axis) | 4 -1 | YOD. | 1 | | |------|-------|----------|-------| | 700 | XCP+ | 9 | XCP- | | 2 | XDIR+ | <u> </u> | 4. | | 3 | XPC | 10 | XDIR- | | | | 11 | O V | | 4 | +24V | 12 | +5V | | 5 | XDALM | | | | 6 | 7/10 | 13 | +5V | | | -00° | 14 | 0 V | | 7 | XEN | 15 | OV | | 8 | OV | 10 | U V | XS31: DB15 female (Y axis) | 1 | 1 VCD+ | | 710 | |---|-------------|----------------------------|---| | 1 | | 9 | YCP- | | | | 10 | YDIR- | | 3 | ~ 3. | 11 | OV | | 4 | +24V | | +5V | | 5 | YDALM | | +5V | | 6 | | | | | 7 | YEN | - | OV. | | 8 | 0 V | 15 | OV | | | 5
6
7 | 3 YPC 4 +24V 5 YDALM 6 YEN | 2 YDIR+ 10
3 YPC 11
4 +24V 12
5 YDALM 13
6 14
7 YEN 15 | XS32: DB15 female (Z axis) | 1 | ZCP+ | 9 | ZCP- | |------|--------|----|----------| | 2 | ZDIR+ | | 97. | | 3 | ZPC | 10 | ZDIR- | | 4 | +24V | 11 | 0 V | | | | 12 | +5V | | 5 | ZDALM | 13 | +5V | | 6 | -01/10 | 14 | OV N | | 7 | ZEN | | | | 8 | OV | 15 | 0 V | | - 19 | | | The same | XS33: DB15 female (4TH aixs) | 100 | 4CD+ |] | all a | |-----|-------|----|--------| | 8 | 4CP+ | 9 | 4CP- | | 2 | 4DIR+ | _ | 47. | | 3 | 4PC | 10 | 4DIR- | | | | 11 | OV | | 4 | +24V | 12 | +5V | | 5 | 4DALM | | 74 | | 6 | 100 | 13 | +5V | | 0 | 6/ | 14 | OV | | .70 | 4EN | | OV | | 8 | O V | 15 | (O-0) | | | | | Lat. | # 2.2.3 Signal specification 1) Pulse motion instruction signal XCP+, XCP-, YCP+,
YCP-, ZCP+, ZCP-, 4CP+, 4CP- are instruction pulse signals, XDIR+, XDIR-, YDIR+, YDIR-, ZDIR+, ZDIR-, 4DIR+, 4DIR- are motion direction signal, and they are differential signals. Connection is as follows: Fig. 2-2-3-1 #### 2) Driver alarm signal ALM (input) The receiving method of signal at the CNC side is as follows. The parameter 019bit0 set if the driver fault is the low level "0" or the high level. Fig. 2-2-3-2 The enabled level to the CNC can be set by customer if the low or the high is enabled. But the driver must provide the signal as follows: # CNC ready completion signal EN(contact output) CNC CNC ready has been completed when the contact is closed. When CNC has detected the alarm, the contact signal is OFF. #### 4) Referece point return with signal PC The receiving method of signal at the CNC side is as follows. Fig. 2-2-3-4 Wave of PC signal provided by customer is as follows: Fig. 2-2-3-5 5) Connection method of one proximity switch as the deceleration switch and zero return switch. Fig. 2-2-3-6 #### 2.2.4 Cable connection #### 1. Cable for 218M connecting with DY3 series driver | 47.4 | | | 27, | 27. | | 201 | |---------------------------------|---------|----|-------|-------|------------|----------| | XS30, 31, 3 | 32, 33 | | 4. | 4 | DY3 series | s driver | | Signal | Pin | .5 | 10.01 | | Signal | Pin | | nCP+ | T. D.C. | | | | nCP+ | 1 | | nCP- | 9 | | | 1000 | nCP- | 9 | | nDIR+ | 2 | | | 74:02 | nDIR+ | 2 | | nDIR- | 10 | | | 21,2 | nDIR- | 10 | | nEN | 7 | 9 | | | EN- | 11 | | +5V | 12 | | | | EN+ | 3 | | nDALM | 5 | | | 1 ~3 | RDY1 | 6 | | 01 ⁷ (₂₀ | 11 | | | 7/900 | RDY2 | 14 | | | | | | | | | #### 2. Cable for 218M connecting with DA98 series servo driver #### 2.3 RS232 standard serial interface GSK218M CNC system can communicate with the general-purpose PC (must match with 218M communication software) by RS232-C. Its connection is as follows: Connection of cable is as follows: # 2.4 MPG(handwheel), hand unit connection #### 2.4.1 Interface signal list The 218M CNC system can be matched with MPG or hand unit. When it is matched with MPG, the MPG signal is connected to XS21 interface; with hand unit, the MPG signal of hand unit is connected to XS21 interface and other signals are connected to XS22. XS21: DB9 female | 1 | +5V | | - 5 | |---|---------|---|-------| | 1 | 77- 101 | 6 | VCOM | | 2 | HA+ | | V COM | | | | 7 | HA — | | 3 | HB+ | - | .00 | | | DOD4 | 8 | HB— | | 4 | ESP1 | q | ECDO | | 5 | 0V 👋 | 9 | ESP2 | | Э | 01 | | | | | | | | XS22: DB9 female | The | LEV | 420 | | | | |-----|------|-----------|-------|--|--| | 71 | +5V | 6 | НХ | | | | 2 | HY | U | 11/ | | | | ٦ | 111 | -7 | HZ. | | | | 3 | HU o | <u>\$</u> | 112 | | | | _ | 110 | 8 | H*1 | | | | 4 | H*10 | | | | | | _ | 011 | 9 | H*100 | | | | 5 | OV | | 0 | | | #### 2.4.2 Interface signal HA+, HA-, HB+, HB-: MPG pulse signal; ESP1, ESP2: hand unit emergency stop signal; HX, HY, HZ, HU: are separately axis select signal of X, Y, Z, 4TH. H*1, H*10, H*100: are separately the override of MPG pulse equivalent; VCOM: hand uint common terminal. # 2.5 Spindle unit connection #### 2.5.1 Interface signal list The CNC interface is DB15 male and its pduring definition is as follows: XS23: DB15 male | | 1 | SCOM | | 277.2 | |---|-----|--------|-----|-------| | | 2 | 10. | 9 | SVC | | | 0 | 9. | 10 | A+ | | × | 3 | A- | 11 | B+ | | | 4 | B- | 12 | Z+ | | | 5 | Z- | -25 | | | | 6 | +5V | 13 | SDALM | | | | | 14 | | | | 7 | AxisEN | 15 | +24V | | | 8, | COM | 10 | 1241 | | | -33 |) | ı | | ## 2.5.2 Interface signal: - (1) A+, A-, B+, B-, Z+, Z-: pulse signal of spindle encode; - (2) SVC: spindle analog voltage signal; - (3) SCOM: spindle analog power signal ground; - (4) SDALM: spindle alarm input signal; - (5) AxisEN: spindle enable signal. # 2.6 Power supply interface The input voltage of the CNC has two groups: +5V, +24V, among which +5V is for the CNC internal system, and +24V for external interface. The power supply interface is as follows: | 9 | GND2 | |----------------|----------| | 8 | GND2 | | ₀ 7 | | | 6 | +5∀ | | 5 | +5∀ | | 4 | . N. (O) | | 3 | GND1 | | <u></u> 2 | | | 1 | +24₹ | # 3 Machine Control I/O Interface # 3.1 Interface signal list XS40: DB25 female | 1 | D000 | 20, | | |--------------|------|-----|------| | <u> </u> | | 14 | DO01 | | 2 | D002 | 15 | D003 | | 3 | COM | 16 | +24V | | 4 | +24V | | | | 5 | D005 | 17 | D004 | | - | | 18 | D006 | | 6 | D007 | 19 | COM | | 7 | +24V | - | 700 | | 8 | D008 | 20 | +24V | | <u> </u> | | 21 | D009 | | 9 | D010 | 22 | DO11 | | 10 | COM | | | | 11 | +24V | 23 | +24V | | | 7/4 | 24 | D012 | | 12 | D013 | 25 | D014 | | 13 | D015 | | 0 | XS41: DB25 female | _ | | | | |-----|---------|-----|------| | 1 | D016 | 1.4 | D017 | | 2 | D018 | 14 | D017 | | 3 | | 15 | D019 | | 3 | COM | 16 | +24V | | 4 | +24V | 17 | D020 | | 5 | DO21 | | D020 | | 6 | D023 | 18 | D022 | | _ | - A. C. | 19 | COM | | 7.3 | +24V | 20 | +24V | | 8 | D024 | | | | 9 | D026 | 21 | D025 | | _ | | 22 | D027 | | 10 | COM | 23 | +24V | | 11 | +24V | | [6]. | | 12 | D029 | 24 | D028 | | | | 25 | D030 | | 13 | D031 | | | XS42: DB25 female | 1 | D032 | | | |----------|-------|-----|-------| | \vdash | 72 | 14 | D033 | | 2 | D034 | 15 | D035 | | 3 | COM | | | | 4 | +24V | 16 | +24V | | _ | | 17 | D036 | | 5 | D037 | 18 | D038 | | 6 | D039 | 19 | COM | | 7 | +24V | -70 | 00111 | | 8 | D040 | 20 | +24V | | _ | - 20- | 21 | D041 | | 9 | D042 | 22 | D043 | | 10 | COM | | 2010 | | 11 | +24V | 23 | +24V | | | | 24 | D044 | | 12 | D045 | 25 | D046 | | 13 | DO47 | 20 | D010 | | | | | | XS43: DB25 male | 2 IN02 14 IN01 3 COM 15 IN03 4 +24V 17 IN04 5 IN05 18 IN06 6 IN07 7 COM 20 +24V 8 IN08 9 IN10 22 IN11 10 COM 23 COM 11 +24V 24 IN12 12 IN13 25 IN14 | 1 | TMOO | 1 | | |--|----|-------|-----|----------| | 3 COM 15 IN03 4 +24V 16 COM 5 IN05 18 IN06 6 IN07 19 COM 7 COM 20 +24V 8 IN08 21 IN09 9 IN10 22 IN11 10 COM 23 COM 11 +24V 24 IN12 12 IN13 25 IN14 | _ | | 14 | IN01 | | 4 +24V 17 IN04
5 IN05 18 IN06
6 IN07 19 COM
7 COM 20 +24V
9 IN10 22 IN11
10 COM 23 COM
11 +24V 24 IN12
12 IN13 25 IN14 | | 1N02 | 15 | IN03 | | 4 +24V 5 IN05 6 IN07 7 COM 8 IN08 9 IN10 10 COM 11 +24V 12 IN13 25 IN14 | 3 | COM | 16 | COM | | 5 IN05 18 IN06
6 IN07 19 COM
7 COM 20 +24V
9 IN10 21 IN09
9 IN10 22 IN11
10 COM 23 COM
11 +24V 24 IN12
12 IN13 25 IN14 | 4 | +24V | QF. | 0 0 1.12 | | 6 IN07 18 IN06 19 COM 20 +24V 21 IN09 22 IN11 10 COM 23 COM 11 +24V 24 IN12 12 IN13 25 IN14 | _ | TNOE | 17 | IN04 | | 7 COM 20 +24V 21 IN09 9 IN10 22 IN11 10 COM 23 COM 11 +24V 24 IN12 25 IN14 | _ | | 18 | IN06 | | 7 COM 20 +24V
8 IN08 21 IN09
9 IN10 22 IN11
10 COM 23 COM
11 +24V 24 IN12
12 IN13 25 IN14 | 6 | 1N07 | 10 | COM | | 8 IN08 20 +24V
9 IN10 21 IN09
10 COM 22 IN11
11 +24V 23 COM
12 IN13 24 IN12
25 IN14 | 7 | COM | | | | 9 IN10 21 IN09
10 COM 22 IN11
11 +24V 23 COM
11 +24V 24 IN12
12 IN13 25 IN14 | 0 | TMOO | 20 | +24V | | 10 COM 22 IN11
11 +24V 24 IN12
12 IN13 25 IN14 | _ | | 21 | IN09 | | 10 COM
11 +24V
12 IN13 25 IN14 | 9 | 1N10 | 22 | TN11 | | 11 +24V
12 IN13 24 IN12
25 IN14 | 10 | COM | - 3 | D.41114 | | 12 IN13 24 IN12
25 IN14 | 11 | +24V | 23 | COM | | 25 IN14 | | ==:-0 | 24 | IN12 | | 1/01/1 | 12 | IN13 | 25 | TN1/ | | 13 IN15 | 13 | IN15 | 20 | 11114 | XS44: DB25 male | 1 | IN16 | | | |----------|-------|----|--------| | <u> </u> | | 14 | IN17 | | 2 | IN18 | 15 | IN19 | | 3 | COM | 16 | COM | | 4 | +24V | | - 20 | | 5 | TN21 | 17 | IN20 | | 6 | IN23 | 18 | IN22 | | _ | 21,20 | 19 | COM | | 7 | COM | 20 | +24V | | 8 | IN24 | | -1. | | 9 | IN26 | 21 | IN25 | | 10 | COM | 22 | IN27 | | - | | 23 | COM | | 11 | +24V | 24 | IN28 | | 12 | IN29 | | (20)-0 | | 13 | TN31 | 25 | IN30 | | 1.0 | 11101 | | | XS45: DB25 male | | 1 | IN32 | | 4- | |----|----|-------|----|-------| | | _ | | 14 | IN33 | | | 2 | IN34 | 15 | IN35 | | | 3 | COM | 16 | COM | | | 4 | +24V | 17 | IN36 | | ٠, | 5 | IN37 | 18 | IN38 | | S | 6 | IN39 | 19 | COM | | | 7 | COM | 20 | +24V | | | 8 | IN40 | 21 | TN41 | | | 9 | IN42 | | | | | 10 | COM | 22 | IN43 | | | | - 197 | 23 | COM | | | 11 | +24V | 24 | IN44 | | | 12 | IN45 | 25 | IN46 | | Š | 13 | IN47 | | . (0) | Fig. 3-1 XS40, XS41, XS42 are output interfaces (DB25 female), XS43, XS44, XS45 are input interface. # 3.2 Input interface # 3.2.1 Input interface method #### DC input signal A DC input signal A is from the machine to the CNC, and they are from the press key at the machie side, limit switch and contact of relay. a) Contacts at the machine side should meet the following: Contact capacity: over DC30V, 16mA. Leak current between contacts during open circuit: below 1mA(voltage 26.4). Voltage-drop between contacts during closed-circuit: below 2V(current 8.5mA including voltage-drop of cable). b) Signal loop is as Fig 3-2-1-1: Fig. 3-2-1-1 #### 3.2.2 Input signal interface definition Pduring definition of input interface is as follows: # XS43 input 1 | | Pin | Markign Label | | Function | | | |-------|-----|---------------|--|--|--|--| | ্ ই 1 | | IN00 | X0.0 | X-axis positive travel limit switch is enabled when the normally close contact is OFF. | | | | | | X0.1 | X-axis negative travel limit switch is enabled when the normally close contact is OFF. | | | | | | 2 | IN02 | X0.2 | Y-axis positive travel limit switch is enabled when the normally close contact is OFF. | | | | 3.0 | 15 | IN03 | X0.3 | Y-axis negative travel limit switch is enabled when
the ormally close contact is OFF. | | | | | 17 | IN04 | X0.4 | Z-axis positive travel limit switch is enabled when the | | | | | | ~gid | 767 | normally close contact is OFF. | |------|----|------|------|---| | | 5 | IN05 | X0.5 | Z-axis negative travel limit switch is enabled when the normally close contact is OFF. | | | 18 | IN06 | X0.6 | 4-axis positive travel limit switch is enabled when the normally close contact is OFF. | | 3.0 | 6 | IN07 | X0.7 | 4-axis negative travel limit switch is enabled when the normally close contact is OFF. | | | 8 | N08 | X1.0 | X-axis positive travel limit switch is enabled when the normally close contact is OFF. | | | 21 | IN09 | X1.1 | Y-axis zero return deceleration switch is enabled when the normally close contact is OFF. | | 30 | 9 | IN10 | X1.2 | Z-axis zero return deceleration switch is enabled when the normally close contact is OFF. | | | 22 | IN11 | X1.3 | 4-axis zero return deceleration switch is enabled when the normally close contact is OFF. | | | 24 | IN12 | X1.4 | The emergency stop switch is enabled when the normally close contact is OFF. | | 3.01 | 12 | IN13 | X1.5 | The external cycle start is enabled when the normally close contact is OFF. | | | 25 | IN14 | X1.6 | The external feed hold is enabled when the normally close contact is OFF. | | | 13 | IN15 | X1.7 | The press check switch is enabled when the normally close contact is OFF. | # XS44 input 2 | | | "D. | | | | | |------|-----------------------|---------|-------|--|--|--| | | Pin 🚫 | Markign | Label | Function | | | | | 1,111 | IN16 | X2.0 | The lubricant low is enabled when the normally close contact is OFF. | | | | 9.57 | 14 | IN17 | X2.1 | The tool change permission is enable when the normally close contact is OFF. | | | | | 2 | IN18 | X2.2 | -axis zero return deceleration switch is enabled when the normally close contact is OFF. | | | | | 15 | IN19 | X2.3 | -axis zero return deceleration switch is enabled when the normally close contact is OFF. | | | | 3 | 17 | IN20 | X2.4 | Undefined | | | | | 5 | IN21 | X2.5 | The tool release check is enabled when the normally close contact is OFF. | | | | | 18 ₍₄₎ (4) | IN22 | X2.6 | The tool clamp check is enabled when the normally close contact is OFF. | | | | 9 | 6 | IN23 | X2.7 | The spindle overheat is enabled when the normally close contact is OFF. | | | | 7 | 8 | IN24 | X3.0 | Undefined | | | | | 21 | IN25 | X3.1 | Undefined | | | | | 9 🚫 | IN26 | X3.2 | Undefined | | | | GGSK218M CNC System Connection and PLC Man | 965℃厂州数控 | 【控 GSK218M CNC System | Connection and PLC Manua | |--|----------|-----------------------|--------------------------| |--|----------|-----------------------|--------------------------| | V | V V | | 10 | \$10 | | |----|---------------------|------|-----------|------------------|-----------| | 22 | IN27 | X3.3 | Undefined | Caledon Carlotte | | | 24 | 3 [©] IN28 | X3.4 | Undefined | JIIO. | | | 12 | IN29 | X3.5 | Undefined | 1/1/20 | 1900 | | 25 | IN30 | X3.6 | Undefined | nn. | The state | | 13 | IN31 | X3.7 | Undefined | | | ## XS45 input 3 | | Pin | Markign | Label | Function | |-----|------|---------|-------|---| | ~ | 1 | IN32 | X4.0 | Undefined | | 377 | 14 | IN33 | X4.1 | The spindle gear stage 1 completion is enabled when the normally close contact is ON. | | | 2 | IN34 | X4.2 | The spindle gear stage 2 completion is enabled when the normally close contact is ON. | | | 15 | IN35 | X4.3 | The spindle gear stage 3 completion is enabled when the normally close contact is ON. | | 0.0 | 17 | IN36 | X4.4 | Undefined | | | 5 | IN37 | X4.5 | Undefined | | | 18 | IN38 | X4.6 | The spindle speed completion is enabled when the normally close contact is ON. | | | 6 | IN39 | X4.7 | The spindle zero speed check is enabled when the normally close contact is ON. | | 5. | 8 | IN40 | X5.0 | The spindle orientation completion is enabled when the normally close contact is ON. | | | 21 | IN41 | X5.1 | The tool magazine forward completion is enabled when the normally close contact is ON. | | | 9,11 | IN42 | X5.2 | The tool magazine backward completion is enabled when the normally close contact is ON. | | 9.5 | 22 | IN43 | X5.3 | The tool magazine count is enabled when the normally close contact is ON.刀 | | | 24 | IN44 | X5.4 | The tool magazine zero return is enabled when the normally close contact is ON. | | | 12 | IN45 | X5.5 | The tool magazine air source check is enabled when the normally close contact is ON. | | 3 | 25 | IN46 | X5.6 | Undefined | | | 13 | IN47 | X5.7 | The spindle alarm is enabled when the normally close contact is ON. | | | | 0 | ~0 | | # 3.3 Output signal # 3.3.1 Output interface method - a) Output transistor specification: - ① When the output is ON, max. load current, including instantaneous current is below #### GG与K 「→州数控 GSK218M CNC System Connection and PLC Manual 200mA. - ② When the output is ON and the current is 200mA, the saturation voltage is 1.6V and the typical value is 1V. - ③ When the output is OFF, the withstand voltage including instantaneous voltage is below 24+20%. - ④ When the output is OFF, the leak current is below 100μA. - b) Output loop: Fig. 3-3-1-1 The output signals of the CNC are provided by Darlington pipe and Darlington pipe is conducted when the output is enabled. Except for TL-, TL+, SPZD are pulse signals, other outputs are the level signal and their common terminal is 24V. #### 3.3.2 Ouput signal interface definition XS40 output 1 | Pin a | Markign | Label | |---------|---------|-------| | 1 1 | DO00 | Y0.0 | | 14 | DO01 | Y0.1 | | 2 | DO02 | Y0.2 | | 15 | DO03 | Y0.3 | | 17
5 | DO04 | Y0.4 | | | DO05 | Y0.5 | | 18 | DO06 | Y0.6 | | 6 | DO07 | Y0.7 | | 8 | DO08 | Y1.0 | | 21 | DO09 | Y1.1 | | 9 | DO10 | Y1.2 | | 22 | DO11 | Y1.3 | | 24 | DO12 | Y1.4 | | 12 | DO13 | Y1.5 | | 25 | DO14 | Y1.6 | #### GG5K 厂 州数控 ## **GSK218M CNC System Connection and PLC Manual** | 13 | DO15 | Y1.7 | |----|------|------| #### XS41 Output 2 | | 73, | | |--------------------------------|---------|-------| | Pin | Markign | Label | | 1 ; | DO16 | Y2.0 | | 14 | DO17 | Y2.1 | | 2 | DO18 | Y2.2 | | 15 | DO19 | Y2.3 | | <u>a</u> 17 | DO20 | Y2.4 | | 5 | DO21 | Y2.5 | | 18 | DO22 | Y2.6 | | 6 W | DO23 | Y2.7 | | 8 | DO24 | Y3.0 | | 21 | DO25 | Y3.1 | | ⁷ _{1,00} 9 | DO26 | Y3.2 | | 22 | DO27 | Y3.3 | | 24 | DO28 | Y3.4 | | 12 🔎 | DO29 | Y3.5 | | 25 | DO30 | Y3.6 | | 13 | DO31 | Y3.7 | ## XS42 output 3 | Pin 📈 | Markign | Label | |--------------------|---------|-------| | 1,000 | DO32 | Y4.0 | | 14 | DO33 | Y4.1 | | A. C. 2 | DO34 | Y4.2 | | 15 | DO35 | Y4.3 | | 17 | DO36 | Y4.4 | | 5 | DO37 | Y4.5 | | 18 | DO38 | Y4.6 | | 6 | DO39 | Y4.7 | | ²⁴ iO 8 | DO40 | Y5.0 | | 21 | DO41 | Y5.1 | | 9 | DO42 | Y5.2 | | 22 | DO43 | Y5.3 | | 24 | DO44 | Y5.4 | | 12 | DO45 | Y5.5 | | 25 | DO46 | Y5.6 | | 13 | DO47 | Y5.7 | # 4 Debugging Machine The chapter introduces the trial operation methods and steps after GSK218M CNC system is turned on firstly, and the corresponding machine operation can be performed after the following steps are done. ## 4.1 Debug preparation #### GSK218M debug is as follows: - System connection: the correct connection is the basis to successfully debug the system. - PLC debug: it makes the safety functions(emergency stop, hardward limit) and operation functions be effective. - Parameter setting of driver:set the motor type and control mode. - Parameter setting of system: set the control parameter, speed parameter and so on. - Data backup: after the system is debugged, the data including the parameter, the compensation data and PLC program is backuped. #### Notes before debugging GSK218M: - To ensure all cables are connected correctly, please check the polarity of diode of relay, electromagnetic valve. - Check the connection phase sequence of cable with high voltage of motor. - The position cable, encoder feedback cable and motor cable with high voltage of AC servo feed device correspond one by one. - Ensure the analog voltage instruction type received by the spindle. - Ensure all earthing are stably connected. - Ensure the emergency stop button and emergency stop circuit are valid. When the emergency stop button or emergency stop circuit is turned off, the power supply of drive device, spindle drive device can be turned off. - Ensure the voltage and the polarity are correct. - Ensure the specifications of power supply are correct. - Ensure the specifications and the inlet/outlet directions of transformer are correct. - Ensure the inlet/outlet lines of power supply of breakers are correct. ## 4.2 System power on Press the emergency stop button to ensure all air switches during the CNC are turned off. #### GG与K 「一州数控 GSK218M CNC System Connection and PLC Manual - The power air switch during the electric cabinet is turned on. - The air switch or the fuse is connected with DC 24V, and ensure DC24V is normal. - Ensure other power supplies are normal. - GSK218M CNC device is turned on. # 4.3 Emergency stop and limit The CNC has the soft limit function, it should be also adopted with the hardware limit function to get the safe operation, and the travel limit switch during the positive/negative direction of axis is installed. The state of emergency stop signal can be monitored by parameters. During Manual or MPG(handwheel) mode, the CNC can verify the validity of each axis overtravel limit switch, the accuracy of alarm display, and the validity of overtravel release button by slow moving each coordinate axis; when the overtravel occurs or the emergency stop is pressed, the CNC alarms, which can be released by pressing the overtravel releasing to execute the reverse move.
Emergency stop signal *ESP: Parameter diagnosis(machine side input state) | state | "Cho. | 29/20 | "Afro | 27/2 | X1.4 | |---------|-------|---------|-------|-----------|---------| | address | Ç. | *Office | *Of** | NOTIFIE . | | | Pin | | 10210 | 'IDU' | 120 E | XS43.24 | #### Limit signal *+L1~*+L5, *-L1~*-L5: limit signal Parameter diagnosis(machine side input state) | state | 301 | X0.7 | X0.6 | X0.5 | X0.4 | X0.3 | X0.2 | X0.1 | X0.0 | |---------|------|--------|---------|---------|---------|-------------|---------|---------|---------| | address | Page | | | | | <i>></i> | 1000 | | 26. | | Pin 🚜 | - | XS43.6 | XS43.18 | XS43.05 | XS43.17 | XS43.15 | XS43.02 | XS43.14 | XS43.01 | State parameter No.011 | | | | | | | | | 60 | |---|---|----|------|-----|-----|------|------|----| | 0 | 1 | 1. | 13.X | BFA | LZR | 12.7 | 160, | 7 | - **LZR** =1: The travel check is executed during the period from power-on time to the completion of the manual reference point return. - =0: The travel check is not executed during the period from power-on time to the completion of the manual reference point return. - **BFA** =1: The CNC alarms after overtravel when it transmits the overtravel instruction. - =0: The CNC alarms before overtravel when it transmits the overtravel instruction. System parameter number | 0 | 3 1 | G23 | anic. | | aŠ. | Ò, | | "ILO. | | |---|-----|-----|-------|--|-----|----|--|-------|--| **G23** =1: The soft limit function is ON when the power is turned on. =0: The soft limit function is OFF when the power is turned on. Division numerator: command multiplying coefficient (system parameter NO.160, NO.161, NO.162, NO.163, NO.164) Division denominator: command division coefficient (system parameter NO.165, NO.166, NO.167, NO.168, NO.169) P: pulse quantity of input command; G: electronic gear ratio; N: motor rotation rev; C: photoelectric encoder lines/rev, the system C=2500. [Example] When the input instruction pulse is 6000, the servo motor rotates 1 rev. $$G = \frac{N \times C \times 4}{P} = \frac{1 \times 2500 \times 4}{6000} = \frac{5}{3}$$ Data parameter NO. 160 (CMRX) =5, NO.165 (CMDX) =3; The ratio between the system gear and the parameter has the same function that of digital servo gear and parameter. When the system is employed with the digital servo with the electronic gear ratio function, the electronic gear ratio is set to 1:1, which is set to the digital servo. When the CNC is adopted with the stepper driver, it should use the stepper division driver as possible, v and the proper machine driving ratio, and set the electronic gear ratio to 1:1 to adovid the large difference between the numerator and denominator. # 4.5 Backlash compensation Use the gauge, micrometer gauge or laser master gauge to measure the backlash, the backlash compensation must be precise, otherwise it cannot improve the precision of processing and it is suggested that the following methods should be adopted to measure the leading screw backlash instead of MPG(handwheel) or single step: #### Edit program: ``` O0001; N10 G01 G91 X1 F800; N20 X1; N30 X1; N40 X-1; N50 M30. ``` - The backlash error compensation value is set to zero before measuring. - The program runs during Single block mode, and the CNC looks for the measure datum point A after positioning two times, the program runs 1mm and reversly runs 1mm to B point, and the CNC reads the current data. Fig. 4-5-1 backlash measure method Backlash error compensation value= |data recorded by A point –data recorded by B point|; input the operation result to the system parameter No.190. Data A: read the data of gauge at the A point; Data B: read the data of micrometer gauge at the B point; Pulse equivalent: 1 micron - Note: 1. The system parameter NO.195~NO.199 can set the backlash compensation mode and the compensation frequency. - 2. To get the high precision, the backlash must be checked after the machine has been used for 3 months. #### 4.6 Parameter for servo #### System parameter number | 0 | 1 8 | RVC | 2 | RBK | FFR | | | |---|-----|-----|---|-----|-----|--|--| | | | | | | | | | FFR =1: in feedforward control mode, the cutting feed and rapid traverse are enabled. =0: In feedforward control mode, only cutting feed is enabled. **RBK** =1: the cutting feed and the rapid traverse separately executes the backlash. =0: the cutting feed and the rapid traverse does not execute separately the backlash. ## 4.7 Machine pitch compensation #### Setting compensation value - ① The set compensation value is related to the position between the zero and compensation poin, machine move direction and compensation backlash and so on. - 2 The compensation value of compensation point N(N=0,1,2,3,...127) is determined by the machine error between N, N-1. - ③ The machine zero is taken as the compensation originary point, and the set compensation of every axis is taken as the parameter value. - ① Compensable axis: X, Y, Z, 4, 5 axis. Compensation points: 128 points for each axis. - ⑤ Compensation value range: each compensation point $(-7 \sim +7)$ ×compensation override. The input exceeding $-7 \sim +7$ is disabled. - ⑥ The setting method is the same that of input method of system parameter, see Operation. #### Notes for compensation value setting - ① System parameter 216~220: pitch error compensation number of reference point of each axis(setting of compensation zero). - ② System parameter 221~225: compensation points of pitch error compensation of each axis - ③ System parameter 226~230: pitch error compensation backlash of each axis. Execute the compensation with the value when the positive cocompensation value is input; execute the compensation with the absolute value of the value when the negative compensation value is input - ④ System parameter 231~235: pitch error compensation override of each axis. The CNC defaults 0.001. - (5) The compensation is not executed when the input compensation backlash is zero. - ⑥ After the pitch error parameter is set, the CNC is turned on again, and the pitch error parameter is enabled after the machine zero return is executed. - The following is the compensation parameters, taking X axis as example: | Parameter | Setting value | |---|---------------| | NO.216: compensation number of X-axis reference point | 0 | | NO.221: X-axis pitch error compensation points | 128 | | NO.226: X-axis pitch error compensation backlash | , N 10 | | NO.231: X-axis pitch error compensation override | 0.001 | The error compensation takes the machine zero as reference pont. The pitch error compensation is executed when the positive coordinate system of machine zero is moving. The set compensation value during [Pitch compensation X]. The displayed compensation points during compensation list take the set compensation points as the reference, corresponding to the reference point(pitch error origduring 0), the compensation point 1 corresponds to the position which is 10.000 from the reference point, the increment of 10.000 after it is taken as one compensation point, and the compensation value of No.127 compensation point is at 1270.000. So, at the compensation parameter number 0 during [Compensation X], set the comensaption value from 0 to 10.000, and set the compensation value from 10.000 to 20.000 at the compensation point 1. For the compensation point N, the CNC sets the compensation value from N×(compensation backlash) to (N+1)×(compensation backlash). Actually, when the machine moves to +30.000 from the reference point, the compensation value of pitch error is: $$(+7)+(-6)+(+4)=+5$$ Bidirectional compensation setting takes X axis as the example: The error compensation takes the machine zero as the reference point. The pitch error compensation can be executed when the positive/negative coordinate system of machine zero moves **Operation during the positive coordinate:** the first compensation length is No. 000 set compensation value during 【Compensation X】, the second is that of No. 001 and the N is that of No. N-1. **Operation during the negative coordinate:** the first compensation length is No. 1000 set compensation value during 【Compensation X】, the second is that of No. 1001 and the N is that of No. 1000+N-1. | NITO! | Parameter | alto. | Setting value | |----------------------|---------------------------|------------|---------------| | NO.216: compensation | on number of X-axis refe | ence point | 40 | | NO.221: X-axis pitch | error compensation poin | ts M | 128 | | NO.226: X-axis pitch | error compensation during | ng terval | 50 | | NO.231: X-axis pitcl | n error compensation o | verride | 0.001mm | Output the compensation value at the compensation point of corresponding area. The example for the compensation is as follows: Positive pitch compensation (short line drawing): | Number | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 49 | |--------------|----|----|------|----|----|----|-------|----|----|------|----|----|----|----|----| | Compensation | +1 | +2 | -1/2 | -1 | 0 | 0 | 7/1/2 | +1 | +3 | +1 🔻 | 0 | -1 | -2 | -2 | +1 | | vlaue | | | | | | 2 | | | 2 | | | | | | | Negative pitch compensation (long line drawing): | Number | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | |--------------|------|--------------|------|--------|------------|------|------|--------------|------|------|------|------|------|------| | Compensation | -1 | <u> 30</u> 2 | 0 | +2 | <u>∛</u> 1 | 0 | -1 | <u>,√</u> 21 | 0 | 0 | +3 | +3 | -2 | -2 | | vlaue | (90) | > | | . (30) | 0. | | . 60 | 0 | | (6) | 50 | | | 50 | The chapter mainly introduces modifying the position parameters and data parameters of CNC to realize the different funtions. # 4.8 Debugging parameters ## 4.8.1 Machine zero return Signals DECX: X-axis deceleration signal; DECY: Y-axis deceleration signal; DECZ: Z-axis deceleration signal; DEC4: 4th-axis deceleration signal; Parameter
diagnosis(machine side input state) | State address | 37 | MANA! OF | Mary Co. | X1.3 | X1.2 | X1.1 | X1.0 | |---------------|----|----------|----------|---------|---------|---------|---------| | Pin | | | | XS43.15 | XS43.02 | XS43.14 | XS43.01 | - DEC =1: The machine zero return starts to decelerate when the deceleration signal is connected with 24V. - =0: The machine zero return starts to decelerate when the deceleration signal is not connected with 24V. ## State parameter No.007 | 0 0 7 ZMI5 ZMI4 ZMIZ ZMIY ZMIX | | |--------------------------------|--| |--------------------------------|--| **ZMI** =0 : The direction of machine zero return is positive. =1: The direction of machine zero return is negative. # State parameter No.006 | 0 | 0 6 | 270 | 27/60 | JHZx | | 20, | | |---|------|-----|-------|----------------|-----|-----|--| | _ | V.O. | VKO | V.0 | •·· - / | V-0 | | | - JHZx =1: Use the deceleration dogs when the reference point return is executed after the reference point is set. - =0: Do not use the deceleration dogs when the reference point return is executed after the reference point is set. ## GG5K 厂 州数控 # GSK218M CNC System Connection and PLC Manual State parameter No.011 | A-100 | | ~~~ | ~~~ | |-------|-------|------|------| | 0 1 1 | .(35° | 1900 | ZNLK | - **ZNLK** =0 : When the zero return is executed, the direction key is not locked by its self by pressing it continuously. - =1: When the zero return is executed, the direction key is locked, and the zero return runs to the zero to stop after the direction key is pressed one time. Upon "RESET", the zero return immediately stops during the zero return. Data parameter No.099 | 0 9 9 ZRNFL | |-------------| |-------------| ZRNFL: low rate of X, Y, Z-axis reference point return(all axes). Data parameters No.100~No.104 | 12 P2 | 0 | 0 | | X-axis reference point return speed | |-------|-----|---|------|---------------------------------------| | 1 | 0 | 1 | | Y-axis reference point return speed | | 1 | 0 | 2 | 2 | Z-axis reference point return speed | | 1 | 0 | 3 | yes. | 4TH-axis reference point return speed | | 1 | 0 3 | 4 | | 5TH-axis reference point return speed | Speed setting of all-axis reference point return # 4.9 Input/output signal control of spindle CW/CCW ## Signals M03: spindle CCW M04: spindle CW M05: spindle stop ENB: spindle enable SAR: spindle speed arrival ZSPD: spindle zero speed check Parameter diagnosis(machine side output state) | state |] | V1 7 | Y1.6 | " The | -12/2 | -67 | | |---------|------|---------|---------|-------|-------|-------|--| | | | 13.7 | 11.0 | 4 | | 4 | | | address | 2 | | | 2 | 2 | 2 | | | Pin | 16.5 | XS40.13 | XS40.25 | , | .a.P | %P.S. | | Y1.6=spindle CCW signal output; Y1.7= spindle CW signal output. | Pin | | | XS40.05 | | XS40.01 | |---------|---|--------|---------|------|---------| | address | | 250 | 2/2 | 20, | 72, | | state | | "THIS. | Y2.5 | 34.C | Y2.0 | | | _ | | | | | Y2.0=spindle enable; Y2.5=spindle zero speed clamp signal output Parameter diagnosis(machine side input state) # State address Pin XS45.06 XS45.18 GSK218M CNC System Connection and PLC Manual Connection and PLC Manual Connection and PLC Manual Connection and PLC Manual X4.6=spindle speed arrival signal input; X4.7=spindle zero speed check signal input. | Data parameter No.243 | Male | amats | Mats | | |-------------------------------|------------------|-------------------|-----------|------| | 2 4 3 | Salite | Odlic | balle | | | Spindle motor min. clamp sp | eed . | ⁷⁴ ,0, | "IA'O. | 2 | | Data parameter No.244 | | | no. | The. | | 2 4 4 | 6 | 6 | 8 | | | Spindle motor max. clamp sp | peed. | 13/2°. | "Afor | | | Data parameter No.245 | *Ollion | *OTTO | ,tO/No.** | | | 2 4 5 | 600 | (IDA) | (IDS) | | | Time for check spindle spee | d arrival signal | nani | nun' | 4ri | | Data parameter No.257 | | | | | | 2 5 7 | A. | 72/K3., | "Tho." | | | Spindle speed up limit during | g tapping cycle | *Office | *Ollio | | | | | | | | | Data parameter No.258 |) | A1.(O) | M.(O) | | | 2 5 8 | | 22 | 22, | 3/27 | | Spindle speed up limit | | | | | ## Operation time sequence Time sequence of spindle operation is as Fig. 3-3-1: Fig. 3-3-1 Spindle CW time sequence ## Control logic - ① The spindle stops and M05 outputs when CNC is turned on; - ② After M3/M4 is executed, it is enabled and M05 stops output. # 4.10 Spindle automatic gear change control ## Signals Y3.4~Y3.6: Spindle automatic gear shift output signal X4.1~X4.3: Spindle gear change completion signal When CNC selects the spindle frequency conversion control (0 \sim 10V analog voltage output), it can support 4-gear shpindle automatic gear change control and 4-gear change completion check function. | lacktriangle | Signal | diagno | sis | |--------------|--------|--------|-----| | | | | | Parameter diagnosis(machine side output state) | state | Y3.6 | Ŷ Y3.5 | Y3.4 | 3.0 | \L | ,? <u>`</u> | | |---------|---------|---------|---------|-----|---------|-------------|------| | address | all de | | Pier | | A STATE | | , S | | Pin | XS44.25 | XS44.12 | XS44.24 | | "THO! | | 2701 | Y3.4=spindle gear 1 output; Y3.5=spindle gear 2 output; Y3.6=spindle gear 3 output. Parameter diagnosis(machine side input state) | state | 20 | | .01 | | X4.3 | X4.2 | X4.1 | | |---------|---------|------|-----|------|---------|---------|---------|------| | address | Sicher. | 4516 | | Pier | | Sigh. | | Š | | Pin | | 1011 | | 1000 | XS45.15 | XS45.02 | XS45.13 | 1011 | X4.1= spindle gear 1 in-position; X4.2=spindle gear 2 in-position; X4.3=spindle gear 3 in-position. Control parameter State parameter No.001 | 0 | 0 1 | 2010 | Analog | "Ito" | |---|-------|------|---------|-------| | | 77900 | 490 | spindle | | Bit4 =1: It must be set to 1 when the spindle automatic gear change function is performed during the spindle speed analog control mode. =0: Spindle switch value control. Control parameter State parameter | | 7000 | | //· | ~~~ | | |---|------|------|------|-------|--| | 0 | 0 1 | 1900 | (900 | SPT S | | SPT =1: Spindle control: I/O point. =0: Spindle control: frequency conversion or other modes. Data parameter No.246 2 4 6 Corresponding to max. speed of gear 1. Data parameter No.247 Corresponding to max. speed of gear 2. Data parameter No.248 2 4 8 Corresponding to max. speed of gear 3. - Control logic - \odot Upt to 1 of S1 \sim S3 is enabled; - ④ S1~S3 stops output after S0 is executed; (5) When some S** is executed, the corresponding S** output is enabled and kept, and CNC automatically stops other S** output. # 4.11 External cycle start and feed hold ## Signals ST: external automatic cycle start signal has the same function that of automatic cycle start key on the machine panel. *SP: feed hold signal has the same function that of the feed hold key on the machine panel. ## Signal dianosis Parameter diagnosis(machine side output state) | State address | | Mary. | X1.6 | X1.5 | Ang. | 2 | n n | 17. | |---------------|---|-------|---------|---------|------|---|-----|-----| | Pin | 6 | | XS43.25 | XS43.12 | 9 | | 9 | | ## Internal circuit of signal *SP/ST internal circuit is as Fig. 3-5-1: Fig.3-5-1 ## External circuit *SP, ST external circuit is as Fig. 3-5-2. # 4.12 Cooling, lubricant and chip removal control ## Signals M08: cooling ONM32: lubricant ONM35: Chip removal ON ## Signal diagnosis Parameter diagnosis(machine side output state) | State | | 32.5 | 1900 | .8 | Y0.1 | | |---------|-------|------|----------|-----|---------|----| | address | They. | | The same | 414 | | 4 | | Pin | 2, | | 2, | To. | XS40.14 | Z, | Y0.1=cooling switch control Parameter diagnosis(machine side output state) | State | | Ogist | | 40giji | | Y1.2 | Y1.1 | 40000 | |---------|-----|-------|---------|--------|-----|---------|---------|-------| | address | 24/ | -) | and and | 0 | | 2 | 20. | 4.00 | | Pin | 2/2 | | 27 | | 27, | XS40.14 | XS40.14 | | Y1.1=chip removal switch control; Y1.2=lubicant switch control. # Internal circuit is as Fig. 3-6-1: Fig.3-6-1 M08 internal circuit # 4.13 Parameters of axis control ## System parameter number | 0 | 0 | 3 | | DIR5 | DIR4 | DIRZ | DIRY | DIRX | INM | 1 | |---|---|---|--|-------|------|------|------|------|--------|---| | U | U | 3 | | סוועס | DIN4 | DINZ | DIKT | DINA | IIAIAI | ı | **INM** =1: Least instruction increment on the linear axis: inch. =0: Least instruction increment on the linear axis: metric. **DIRX** =1: X-axis feed direction. =0: X-axis feed reverse. **DIRY** =1: Y-axis feed direction. =0: Y-axis feed reverse. **DIRZ** =1: Z-axis feed direction. =0: Z-axis feed reverse. ## System parameter number | 0 1 9 IOV DEC ITX | MALX | |-------------------|------| |-------------------|------| - MALX =1: When the driver alarms, high level is enabled. - =0: When the driver alarms, low level is enabled. - ITX =1: Each-axis lock signal is disabled. - =0: Each-axis lock signal is enabled. ## System parameter number | 8 | 0 | 0 | 4 | IDG | 16.5 | XIK | AZR | SFD | DLZ | JAX | ĺ | |---|---|---|---|-----|------|-----|-----|-----|-----|-------|---| | | | | | | | | | 100 | | and a | ı | - JAX =1: Simultaneous controlled axis during JOG, manual rapid, manual reference point mode: 3. - =0: Simultaneous controlled axis during JOG, manual rapid, manual reference point mode: 1. - **DLZ** =1: Function for setting the reference point without dogs: enabled. - =0: Function for setting the reference point without dogs:disabled. - **AZR** =1: When the reference point is not set, G28: alarm. - =0: When the reference point is not set, G28: use dogs. - XIK =1: Non-linear positioning aixs is interlocked: all-axis stops moving. - =0: Non-linear positioning aixs is interlocked: interlock. ## 4.14 Parameter for coordinate system System parameter number | 0 | 0 | 9 | | AWK | 2 | ZCL | | |---|---|---|--------|------|---|-----|-----| | | | |
2, | (O), | | , , | (O) | - **ZCL** =1: The local coordinate system is canceled when the manual reference point return is performed. - =0: The
local coordinate system is canceled when the manual reference point return is not performed. ## 4.15 Parameter for feedrate System parameter number | | | • | 47 | | | | 47 | | | |---|---|---|----|-----|-----|-----|----|-----|-------| | 0 | 1 | 2 | 20 | RDR | TDR | RFO | 4 | LRP | RPD 4 | **RPD** =1: Manual rapid traverse during the period from power-on time to the completion of the reference point return is enabled. =0: Manual rapid traverse during the period from power-on time to the completion of the reference point return is disabled. **LRP** =1: The positioning(G00) interpolation is performed with the linear. =0: The positioning(G00) interpolation is performed with the non-linear. **RFO** =1: The machine tool stops moving when the feedrate override is F0 during rapid traverse. =0: The machine tool does not stop moving when the feedrate override is F0 during rapid traverse. **TDR** =1: The dry run is enabled during the tapping. =0: The dry run is disabled during the tapping. RDR =1: The dry run is enabled. =0: The dry run is disabled. ## System parameter number | 0 | 1 4 | 27 | | 27 | | 27 | DLF | HFC | |---|-----|----|--|----|--|----|-----|-----| |---|-----|----|--|----|--|----|-----|-----| - **DLF** =1: Reference point return is executed at manual rapid traverse rate after a reference point is set. - Reference point return is executed at rapid traverse rate after a reference point is set. | 0086 | Dry run speed | 9 | 6 | 0 | |------|---------------|---|---|---| | | | | | | Set range: 0~9999.9999 | 0087 | The cutting feedrate during Auto mode when | "My O | |------|--|-------| | 1. | power-on. | 1, | Set range: 0~9999.9999 | | | 337 | 337 | |------|------------------------------|------|------| | 0088 | X-axis rapid operation speed | 'Ran | 5000 | Set range: 0~9999.9999 | | 10 | 10. | 10. | | |------|------------------------|----------|--|------| | 0089 | Y-axis rapid operation | on speed | STATE OF THE | 5000 | Set range: 0~9999.9999 | 0090 | Z-axis rapid operation speed | 5000 | |------|------------------------------|------| | | | | Set range: 0~9999.9999 # ◎GSK 广州数控 GSK218M CNC System Connection and PLC Manual 0091 4TH-axis rapid operation speed 5000 Set range:0~9999.9999 0092 5TH-axis rapid operation speed 5000 Set range: 0~9999.9999 0093 All-axis rapid operation override F0 speed (all axes) 30 Set range: 0~9999.9999 0094 Max. feedrate(all axes) 8000 Set range: 0~9999.9999 0095 Min. feedrate(all axes) Set range:0~9999.9999 Max. control speed during predict control mode(all 6000 0096 axes) Set range: 0~9999.9999 Min. control speed during predict control mode(all 0097 00 axes) Set range:: 0~9999.9999 0098 All-axis JOG continuous feedrate 2000 Set range: 0~9999.9999 0099 Reference point return speed (all axes) 10 Set range: 0~9999.99990~9999.9999 0100 2000 X-axis reference point return speed Set range: | 0101 | Y-axis reference point return speed | Waga, | 2000 | |------|-------------------------------------|-------|------| |------|-------------------------------------|-------|------| Set range: 0~9999.9999 | 0102 | Z-axis reference point return speed | 2000 | |------|-------------------------------------|------| | | | | Set range: 0~9999.9999 | 0103 | 4TH-axis reference point return speed | 2000 | |------|--|------| | 150 | The state of s | 29 | Set range: 0~9999.9999 | | A3v1 | AV. | A2v1 | A/V 1 | |------|----------------|----------------------|------|-------| | 0104 | 5TH-axis refer | ence point return sp | eed | 2000 | Set range: 0~9999.9999 ## 4.16 Parameters for MDI, display and servo System parameter number | 0 1 8 RVCS RE | K FFR | |---------------|-------| |---------------|-------| **FFR** =1: Feed-forward control is enabled for cutting feed and rapid traverse. =0: Feed-forward control is enabled for cutting feed only. **RBK** =1: Backlash compensation applied separately for cutting feed and rapid traverse is performed. 0: Backlash compensation applied separately for cutting feed and rapid traverse is not performed. ## 4.16 Parameters of MDI, display and edit System parameter number | 0 | 2 | 0 | 24 | COR | 27 | 74 | 17 | |---|---|---|----|-----|----|----|----| | | | | | | | | | COR =1: Display: color. =0: Display: monochrome. System parameter number | • | | • | | | | | | | | |----|---|---|-----|-----|-----|-----|-----|------|-------| | .0 | 2 | 2 | DAC | DAL | DRC | DRL | PPD | 1724 | MCN 3 | **MCN** =1: The machine position is diplayed according to the unit of input. =0: The machine position is diplayed regardless of the unit of input. **PPD** =1: The relative position display is preset when a coordinate system is set. - =0: The relative position display is not preset when a coordinate system is set. - **DRL** =1: The relative position display takes into account the the tool length compensation. - =0: The relative position display does not take into account the the tool length compensation. - **DRC** =1: The relative position display takes into account the tool nose radius compensation. - =0: The relative position display does not take into account the tool nose radius compensation. - **DAL** =1: The absolute position display takes into account the tool length compensation. - =0: The absolute position display does not take into account the tool length compensation. - **DAC** =1: The absolute position display takes into account the tool nose radius compensation. - =0: The absolute position display does not take into account the tool nose radius compensation. ## System parameter number | MDL POSM | SUK | DNC | NAM | |----------|-----|-----|-----| |----------|-----|-----|-----| - **NAM** =1: Program list displays program number and program name. - =0: Program list displays program number. - **DNC** =1: Upon reset, the program display for DNC operation is cleared. - =0: Upon reset, the program display for DNC operation is not cleared. -
SUK =1: The program list is displayed during order of program number. - =0: The program list is displayed during order of logging time. - **POSM** =1: The modal state on the program position screen is displayed. - =0: The modal state on the program position screen is not displayed. - **MDL** =1: The modal state on the program display screen is displayed. - =0: The modal state on the program display screen is not displayed. #### System parameter number | 0 2 4 RHD NPA | SGD | SPS SVS | ; | |---------------|-----|---------|---| |---------------|-----|---------|---| - **NPA** =1: It is switched to the alarm screen when CNC alarms. - =0: It is not switched to the alarm screen when CNC alarms. - **RHD** =1: The MPG halt relative position displaye is changed. =0: The MPG halt relative position displaye is not changed. | | | | | _ | |-------|-----|---------|-------------|---| | 0 2 9 | MCM | IWZ WZO | MCV GOF WOF | | - **WOF** =1: The tool offset value by MDI key input is disabled. - =0: The tool offset value by MDI key input is not disabled. - **GOF** =1: The tool geometric offset value by MDI key input is disabled. - =0: The tool geometric offset value by MDI key input is not disabled. - MCV =1: Macro variable setting by MDI input is disabled. - =0: Macro variable setting by MDI input is not disabled. - WZO =1: Setting a workpiece zero point offset value by MDI key input is disabled. - =0: Setting a workpiece zero point offset value by MDI key input is not disabled. - IWZ =1: Setting a workpiece zero point offset value by MDI key input during halt state is disabled. - =0: Setting a workpiece zero point offset value by MDI key input during halt state is not disabled. - MCM =1: The setting of custom macros by MDI key operation is enabled only during the MDImode - =0: The setting of custom macros by MDI key operation is enabled regardless of the mode. ## System parameter number | 0 | 2 | 8 | | MCL | MER | MEE | MKP | 26. | | TOLL | | |---|---|---|--|-----|-----|-----|-----|-----|--|------|--| |---|---|---|--|-----|-----|-----|-----|-----|--|------|--| - **MKP** =1: The written program is cleared when M02, M30 or is executed in MDI mode. - =0: The written program is not cleared when M02, M30 or is executed in MDI mode. - **MEE** =1: The program is not edited during operation in MDI mode. - =0: The program can be edited during operation in MDI mode. - **MER** =1: The program can be edited during operation execution in MDI mode. - =0: The executed program is not deleted when the last has been executed in MDI mode. - MCL =1: Upon the reset key, the written program is deleted during MDI mode. - =0: Upon the reset key, the written program is not deleted during MDI mode. ## System parameter number | 0 | 3 | 0 | | ABS | MAB | | DPI | |---|---|---|--|-----|-----|--|-----| - **DPI** =1: The decimal point during programming is omitted: mm,sec. - =0: The decimal point during programming is omitted: mduring setting unit. - **MAB** =1: Use parameters to set the absolute or relative during MDI mode. - =0: Use G90/G91 to set the absolute or relative during MDI mode. - ABS =1: The instruction is absolute during MDI mode. - =0: The instruction is relative during MDI mode. ## 4.17 Parameters for tool compensation ## System parameter number | 0 | 3 | 9 | 27,24 | EVO | EVR | OFH | TLB | TLC 4 | |---|---|---|-------|-----|-----|-----|-----|-------| | _ | _ | _ | | | | • | | | - TLC =1: Tool length compensation: B - =0: Tool length compensation: A - **TLB** =1: Tool length compensation axis: axis perpendicular to plane specification. - =0: Always Z aixs irrespective of plane spedification. - **OFH** =1: Specifies the tool length compensation, tool compensation and tool offset. - =0: Specifies the tool length compensation, tool compensation and tool offset. - **EVR** =1: Enables the change, starting from that block where buffering is nex performed. - =0: Enables the change, starting from that block where the next block is specified. - **EVO** =1: A block to be buffered next and subsequent blocks becomes valid. - =0: A block specifying the next becomes valid. ## System parameter number | 0 4 0 ODI LVK CCN SUV | CCN SUV SU | CCN | 7 | | 2 | LVK | ODI | | 0 | 4 | 0 | |-----------------------|------------|-----|---|--|---|-----|-----|--|---|---|---| |-----------------------|------------|-----|---|--|---|-----|-----|--|---|---|---| - **SUP** =1: Start up during tool nose radius compensation : B - =0: Start up during tool nose radius compensation: A - **SUV** =1: G40,G41,G42: perpendicular - =0: G40,G41,G42: standard - **CCN** =1: The tool nose radius compensation vector is cancelled when G28 is during movement to an intermediate position. - =0: The tool nose radius compensation vector is not cancelled when G28 is during movement to an intermediate position. - LVK =1: Clear the tool length offset value by reset. - =0: Do not celar the tool length offset value by reset. - **ODI** =1: A tool nose radius compensation amount is set by diameter. - =0: A tool nose radius compensation amount is set by radius. #### System parameter number | 100 | (0) | - CO | | | | X0 | | | |-----|-----|--------|--------|-------|----|----|-----|--| | 0 4 | 1 | CNC CN | l1 G39 | 71.07 | 45 | 2 | OIM | | - **OIM** =1: When the unit is switched between the inch and metric systems, the automatic tool offset value conversion is performed. - =0: When the unit is switched between the inch and metric systems, the automatic tool offset value conversion is not performed. - **G39** =1: The corner rounding function is enabled during radius compensation mode. - =0: The corner rounding function is disabled during radius compensation mode. - CN1 =1: The tool nose radius compensation (C) is executed the halt check. - =0: The tool nose radius compensation(C) is not executed the halt check. # Appendix: # Guide for GSK218M matching with ladder - 1. Notices of GSK218M matching with turret tool magazine - (1) Install wiring according to the ladder. - (2) Set PMC parameters correctly to ensure that the ladder matches with the machine tool when the ladder is used - (3) The machine tool has special control requirements. When the program is added to the ladder, the persons responsible for modification should be master the electric and PMC method, and the ladder. - (4) The ladder is only suitable for general CNC milling machine and the machining center with the turret tool magazine, otherwise, other machine tools may result in the unexpected accidence. - (5) The ladder is referred, and the ladder is different for the different machine tool. - 2. Allocation and definition of PMC IO address, auxiliary relay and register Table 1 Input signal interface definition | Address | Definition | Contact selection | Remark | |---------|--|--------------------------|--------| | X0000 | X axis positive travel limit signal | Normally closed conatact | | | X0001 | X axis negative travel limit signal | Normally closed conatact | | | X0002 | Y axis positive travel limit signal | Normally closed conatact | 21/ | | X0003 | Y axis negative travel limit signal | Normally closed conatact | 12, | | X0004 | Z axis positive travel limit signal | Normally closed conatact | 2 | | X0005 | Z axis negative travel limit signal | Normally closed conatact | for. | | X0006 | Th4 axis positive travel limit signal | Normally closed conatact | | | X0007 | Th4 axis negative travel limit signal | Normally closed conatact | | | X0010 | X axis zero return deceleration signal | Normally closed conatact | -11.5° | | X0011 | Y axis zero return deceleration signal | Normally closed conatact | N. | | X0012 | Z axis zero return deceleration signal | Normally closed conatact | | | X0013 | Th4 axis zero return deceleration signal | Normally closed conatact | Fa.X | | X0014 | Emergency stop switch | Normally closed conatact | | | X0015 | External cycle start | Normally open conatact | ,(| | X0016 | External feed hold | Normally open conatact | an, | | X0017 | Undefined | 7 | 120 | | X0020 | Undefined | . 0 | 9 | | X0021 | Skip signal | Normally open conatact | to. | | X0022 | Undefined | HOLLE HOLLE | | | X0023 | Undefined | No. | .(| | | 510 | | 51' <i>0</i> = = ===: | | |-------
--|--|-----------------------|--------------| | X0024 | External clamping/releasing tool control | Normally open conatact | 8 | | | X0025 | Releasing tool check | Normally open conatact | | | | X0026 | Clamping tool check | Normally open conatact | | (<) | | X0027 | Undefined | N. N. S. | | Wala. | | X0030 | Undefined | | | | | X0031 | Undefined | 190 | 18.0 | | | X0032 | Undefined | Valed. Val. | | | | X0033 | Undefined | alto! alto! | | | | X0034 | Undefined | R. M. | | (4) | | X0035 | Undefined | New Services | | Myla. | | X0036 | Undefined | | | | | X0037 | Undefined | 19'0 | 13.9 | | | X0040 | Undefined | 791/L 792 | | | | X0041 | Spindle gear-1 in-position | Normally open conatact | | | | X0042 | Spindle gear-2 in-position | Normally open conatact | | | | X0043 | Spindle gear-3 in-position | Normally open conatact | | Mara. | | X0044 | Undefined | | | | | X0045 | Undefined | 18.0 | .3.9 | | | X0046 | Spindle speed arrival | Normally closed contact | 3 | | | X0047 | Spindle zero speed arrival | Normally closed contact | | | | X0050 | Spindle orientation in-position | Normally closed contact | | . 6 | | X0051 | Tool magazine forward in-position | Determined by the paramter | | The state of | | X0052 | Tool magazine backward in-position | Determined by the paramter | | | | X0053 | Tool magazine CCW/CW in-position | Determined by the paramter | 3.2 | | | X0054 | Tool magazine zero return in-position | Determined by the paramter | | | | X0055 | Undefined | "Tiple" "Tiple" | | | | X0056 | Undefined | B. B. | | | | X0057 | Undefined | " The | | "Then. | | X0060 | External MPG X axis selection | Normally open conatact | | | | X0061 | External MPG Y axis selection | Normally open conatact | 20 | | | X0062 | External MPG Z axis selection | Normally open conatact | | | | X0063 | External MPG A axis selection | Normally open conatact | | | | X0064 | External MPG step 0.001 | Normally open conatact | | . 40 | | X0065 | External MPG step 0.01 | Normally open conatact | | They. | | X0066 | External MPG step 0.1 | Normally open conatact | | | | X0067 | External emergency stop | Normally closed contact | 25 | | | | National Control of the t | Name: | - | | ## Note: - (1) Refer to Volume Four about PMC input (X) connection method. - (2) Contact selection: normally open contact and normally closed contact. The contact is determined to be normally open or normally closed, - (3) When the ladder is used, the user can add the new function for the undefined input. Table 2 Output signal interface definition | Address | HOLLIN | Definition | 0/1/1 | Remark | |---------|----------------------|-------------|-------|--------| | Y0000 | Z axis holding brake | 'Agg, 'Agg, | | .% | | Y0001 | Cooling | Nat Harris | |-------|--|-------------------| | Y0002 | Tool releasing/clamping | 300. | | Y0003 | Undefined | . 189 | | Y0004 | Spindel brake | THY. | | Y0005 | Spindel impulse | | | Y0006 | Red alarm light | 2.01 | | Y0007 | Yelloe alarm light | 29.74 | | Y0010 | Green alarm light | 300 | | Y0011 | Chip removal control | 190 | | Y0012 | Lubrication control | THE. | | Y0013 | Machine light control | | | Y0014 | Undefined | 201 | | Y0015 | Spindle blowing | 29.04 | | Y0016 | Undefined | 40°C | | Y0017 | Undefined | 190 | | Y0020 | Spindle enabling | Thu, | | Y0021 | Spindle orientation | 7 | | Y0022 | Spindle CCW | | | Y0023 | Spindle CW | ajelle. | | Y0024 | Undefined | 3000 | | Y0025 | Undefined | . 190 | | Y0026 | Undefined | "Hy | | Y0027 | Undefined | | | Y0030 | Tool magazine CCW | 18.0 | | Y0031 | Tool magazine CW | VSICHE. | | Y0032 | Tool magazine forward | 2011 | | Y0033 | Tool magazine backward | . John | | Y0034 | Spindle gear 1(frequency conversion\IO point control) | un. | | Y0035 | Spindle gear 2(frequency conversion\IO point control) | | | Y0036 | Spindle gear 3(frequency conversion\IO point control) | . a.D | | Y0037 | Spindle gear 4(frequency conversion\IO point control)) | Sight. | | Y0040 | Undefined | 30°C | | Y0041 | Undefined | (1)00 | | Y0042 | Undefined | "unu. | | Y0043 | Undefined | | | Y0044 | Undefined | . a.Q | | Y0045 | Undefined | Sight. | | Y0046 | Undefined | 200 | | Y0047 | Undefined | '9 ₀ , | | Y0050 | Undefined | "The | | Y0051 | Undefined | | | Y0052 | Undefined | | | Y0053 | Undefined | Sight. | | Y0054 | Undefined | \$0°C. | | | | | | Y0055 | Undefined | Tatal. | Later Control of the | |-------|-------------|--------|---| | Y0056 | Undefined | i. | | | Y0057 | Undefined 0 | 7900 | (9) | # Note: - (1) Refer to *Volume Four* about PMC input (X) connection method. - (2) When the ladder is used, the user can add the new function for the undefined input. Table 3 KAPA address definition | Address | Definition | Status 0 | Status1 | Setting value by customer | |---------|--|---|----------------|---------------------------| | K0000 | Permit PLC parameter to be modified | No
permission | Permissi
on | Ko'j | | K0001 | Permit PLC signal to be debugged | No
permission | Permissi
on | .8 | | K0002 | All Y signals are cleared after PLC enters the debugging mode. | Not clearing | Clearing | nun. | | K0003 | Permit A address information to be edited | No
permission | Permission | Mo'th | | K0004 | Permit K address information to be edited | No
permission | Permission | .8 | | K0005 | Permit X address information to be modified | No
permission | Permission | halay. | | K0006 | Permit Y address information to be modified | No permission | Permission | M2(2) | | K0007 | Permit the instruction table to be operated | No
permission | Permission | 20 | | K0010 | Permit the tool magazine to be used | No
permission | Permission | nnic | | K0011 | Reversed | d' | | d) | | K0012 | Reversed
| 28/1/20 | Š | Hr. | | K0013 | Reversed | 0/ | alton | | | K0014 | Reversed | | H.[d]D | ⁷⁷ 10 | | K0015 | Reversed | - | 12, | My, | | K0016 | Reversed | 2 | | 3 | | K0017 | Reversed | 2817Hz | , Š | 14. | | K0020 | Reversed | 0. | - ALCO | | | K0021 | Reversed | | '41'(Q)' | 41/0 | | K0022 | Reversed | - | 19 | 20,00 | | K0023 | Reversed | 29 | | 2.01 | | K0024 | Reversed | N. S. | A. O. | 3 | | K0025 | Reversed | | "Ipgito", | ~~~ | | K0026 | Reversed | Taldia. | , Š | 3 | |-------|--|-----------|----------|-------------------------------| | K0027 | Reversed | 6 | ~alito! | × | | K0030 | Reversed | | 44.00 | ,1 th .(5) | | K0031 | Reversed | | | 120 | | K0032 | Reversed | 13.9 | | J. 0. 0. | | K0033 | Reversed | March | ar di | 3 | | K0034 | Reversed | | ibalic | .20 | | K0035 | Reversed | | "Anyi | , card ! | | K0036 | Reversed | | | - 22 | | K0037 | Reversed | "Ka'b, | | Ha'S, | | K0040 | Whether the spindle uses the gear control(I/O point) | No | Yes | | | K0041 | If the manual reference point controls one axis | Many axes | 1 axis | nonto | | K0042 | Reversed | 6 | | 9 | | K0043 | Reversed | The. | Š | Ho. | | K0044 | Reversed | 0.C. | alton. | | | K0045 | Reversed | | "4'.QQ. | | | K0046 | Reversed | 4 | 120 | 220 | | K0047 | Reversed | , à | | 3 | | K0050 | Whether the machine tool has external handwheel(MPG) | No | Yes | 100 | | K0051 | Whether the machine tool has external cycle Start function | No | Yes | aratile de | | K0052 | Whether the system enters the debugging | No | Yes | 12 | | K0053 | mode Reversed | No gl | | 170 g) | | K0053 | Reversed | Elega, | - A | 8 | | K0054 | Reversed | | . dlante | | | K0056 | Reversed | | May 1 | n _i n _i | | K0057 | Reversed | | | , | | K0060 | X axis limit switch selection | 2 PCS | 1 PCS | 16.5, | | K0061 | Y axis limit switch selection | 2 PCS | 1 PCS | , | | K0062 | Z axis limit switch selection | 2 PCS | 1 PCS | 1/9/ | | K0063 | 4TH axis limit switch selection | 2 PCS | 1 PCS | 2012 | | K0064 | Reversed | 3 | | 9 | | K0065 | Reversed | 2/1/2. | , ŏ | 10.2 | | K0066 | Reversed | SC1. | autorre | | | | 1900 1900 1900 1900 1900 1900 1900 1900 | | | | | K0067 | Reversed | Catchia | | * | |-------|--|-----------------|-----------------|--| | K0070 | X axis limit alarm reverse | 5 | -aliot | | | K0071 | Y axis limit alarm reverse | | '14'iQ | -14/10) | | K0072 | Z axis limit alarm reverse | | 100 | 10, | | K0073 | 4TH axis limit alarm reverse | 13.0 | | (3.9) | | K0074 | Reversed | Capp | C. O. | 3 | | K0075 | Reversed | D' | 103/10 | 20 | | K0076 | Reversed | | NA, C. | "I'II'O. | | K0077 | Reversed | | | -69 | | K0080 | Whether the 4 TH axis is used | No | Yes | 12.D | | K0081 | The tool clamping/releasing control selection | External button | Button on panel | | | K0082 | Whether the tool clamping/releasing device is used | Yes | No | Man ig. | | K0083 | Whether the automatic lubricating control is used | Yes | No | 140.jg | | K0084 | Reversed | Males | OUG |) | | K0085 | Reversed | | 'Ipane | .89 | | K0086 | Reversed | | 122/2 | " In | | K0087 | Reversed | | | | | K0090 | Reversed | 740°C | | Ko'S. | | K0091 | Reversed | Olige. | *OUG | 7 | | K0092 | Reversed | | (Ip) | . 30 | | K0093 | Reversed | | 12/4 | non, | | K0094 | Reversed | 2 | | | | K0095 | Reversed | Max. | × | Kary | | K0096 | Reversed | 2000 | 10000 | | | K0097 | Reversed | | 71/qp.g | 1/1/2 | | K0100 | The tool magazine rotation in-position modeselection | No reaction | Reaction | n _n | | K0101 | Whether the tool magazine has the zero switch | No | Yes | 140.5, | | K0102 | The tool magazine zero return contact selection | Normal open | Normal close | 7.92 | | K0103 | The tool magazine infeed tool contact selection | Normal open | Normal close | m | | K0104 | The tool magazine tool retraction contact selection | Normal open | Normal close | Mr. G | | K0105 | The tool counting switch contact selection | Normal | Normal | - | | | That, That, | open | close | 3 | |-------|---|---------------------|--|---------| | K0106 | Whether the tool origin point setting is enabled | Disabled | Enabled | | | K0107 | Whether the tool magazine enters the regulation mode | No | Yes | ann!O | | K0110 | Whether the manual tool clamping/releasing prompts the tool number which corresponds to the spindle | Yes | No | 40.D | | K0111 | Whether the manual operation returns the tool change position | No | Yes | 7/90 | | K0112 | Reversed | | The state of s | 22 | | K0113 | Reversed | 8 | | 8 | | K0114 | Reversed | 92/ ₁₀ × | č | Ho. | | K0115 | Reversed | 200 | - JiOrri | | | K0116 | Reversed | | "iQo | , 1, 1d | | K0117 | Reversed | | New York | 27/20 | ## KAPA use notes: - 1. When the system normally runs, K0000, K0001, K0002, K0003, K0004, K0005, K0006, K0007, K0052, K0107 must be 0, otherwise there may be the unexpected accidence. - 2. The modified K0010 is valid when the system is started agine, when K0010=0(i.e. the tool magazine is not used) - 3. When K0010=1(i.e. the tool magazine is enabled), K0082 setting is disabled. - 4. When K0082=0(i.e. the tool clamping/releasing device is used), K0081 setting is disabled. - 5. K0060 setting: When two travel limit switches on X axis have been installed (the positive limit switch connects with X0.0, the negative limit switch connects with X 0.1), K0060 set to 0 is enabled, and K0070 setting is disabled. When one travel limit switch on X axis is installed (connecting with X0.0) k0060 set to 1 is enabled, When the system alarms or X axis moves in the negative direction to the limit, the system alarms for the positive direction, when the K0080 is modified, the alarm reverses, namely, the error alarm is regulated. The settings of K0061 and K0071 on Y axis, K0062 and K0072 on Z axis, K0063 and K0073 on the 4^{TH} axis are the same that of X axis. - 6. When K0083=0, the lubricating ON/OFF time is controlled by the system, i.e. by regulating CTR101(lubricating OFF time: default: minute) and CTR102(lubricating ON time: default: second), when K0083=1, the lubricating is not controlled by the system. - 7. K0052=1, all alarm interlocks are released, and the system enters the debugging mode which is used when the system is being tested, when the system run normally, the parameter is set to 0, otherwise, there may be the unexpected accidence. 8. K0100, K0101, K0102, K0103, K0104, K0105, K0106, K0107, K0110, K0111 Table 4 PLC external alarm definition | PMC alarm number | A address | Alarm content | |------------------|-----------|--| | 1200 | A0000 | Air pressure check abnormal | | 1201 | A0001 | Lubricating check abnormal | | 1202 | A0002 | Lubricating motor check abnormal | | 1203 | A0003 | Cooling motor check abnormal | | 1204 | A0004 | Chip removal motor check abnormal | | 1205 | A0005 | Pressure oil pump check abnormal | | 1206 | A0006 | Spindle cooling unit check abnormal | | 1207 | A0007 | Machine tool light check abnormal | | 1208 | A0010 | Machine tool control box | | 1209 | A0011 | Machine tool bed temperature check abnormal | | 1210 | A0012 | Machine tool vibration check abnormal | | 1211 (Kalloff) | A0013 | Pressure oil temperature check abnormal | | 1212 | A0014 | Oil pressure low | | 1213 | A0015 | Machine not ready | | 1214 | A0016 | Reversed | | 1215 | A0017 | Reversed | | 1216 | A0020 | Do not rotate the spindle when the tool releases | | 1217 | A0021 | The tool cannot release when the spindle rotates | | 1218 | A0022 | Confirm the tool number when the tool magazine stops normally | | 1219 | A0023 | The spindle cannot rotate when the tool magazine is the infeed tool position | | 1220 | A0024 | Spindle tool clamping abnormal | | 1221
Kallurra | A0025 | Spindle tool releasing check abnormal | #### ◎GSK 广州数控 GSK218M CNC System **Connection and PLC Manual** 1222 Spindle unit temperature check A0026 abnormal 1223 A0027 Spindle speed check abnormal 1224 A0030 Spindle motor enabling check abnormal 1225 A0031 Spindle orientation in-position check abnormal A0032 1226 Spindle gear change abnormal 1227 A0033 The tool magazine canot rotate when it is not in the origin point 1228 A0034 The tool magazine cannot execute the cycle start in the infeed tool position A0035 1229 Set spindle tool number 1230 A0036 The tool change cannot be executed when the spindle tool releases 1231 A0037 The tool change cannot be executed when the magazine is in the retraction position 1232 A0040 The tool magazine rotation in-position check abnormal 1233 A0041 When the tool > magazine rotates, the motor check is abnormal 1234 A0042 The program stops run when the tool magazine is in the infeed position 1235 A0043 The tool magazine in-position check abnormal A0044 1236 The tool magazine zero return check abnormal It needs to execute the zero 1237 A0045 return when the tool magazine position lose 1238 A0046 The infeed in-position check abnormal 1239 A0047 The retraction in-position check abnormal 1240 A0050 The tool magazine executes the zero return because of the abnormal A0051 1241 The tool magazine infeed check abnormal #### ◎GSK ┌~ 州数控 GSK218M CNC System **Connection and PLC Manual** 1242 The tool magazine retraction A0052 check abnormal 1243 A0053 The tool magazine zero position setting is valid 1244 A0054 Stop the abnormal tool change 1245 A0055 There is no T number or there is the repetitive tool nubmer 1246 The infeed tool cannot be A0056 executed because it is not in tool change position The tool magazine does not 1247 A0057 execute the infeed because the spindle does not perform the positioning 1248 A0060 The tool magazine does not execute the retraction when the tool is released The spindle with the tool does 1249 A0061 not execute the infeed tool 1250 A0062 The spindle and the current tool number of tool magazine does not execute the infeed tool A0063 Please cut off 1251 1252 A0064 The tool clamps 1253 A0065 Debug the tool magazine carefully The system does not execute 1254 A0066 The cycle start when the tool magazine is in the debugging mode 1255 A0067 The clamped tool cannot return to the origin position 1256 A0070 The clamped tool cannot return to the tool change position 1257 A0071 The spindle cannot return to the tool exchange position 1258 A0072 The tool magazine cannot return to the tool change position 1259 A0073 Reversed 1260 A0074 The cycle start cannot be executed when returning to the tool change position executed manually | 1261 | A0075 | The retraction cannot be | |-------|-------------|---------------------------------| | alto! | auton auton | executed in the origin position | | 1262 | A0076 | Exceed the safety position | | 1263 | A0077 | The cycle start cannot be | | | | executed in the debugging | | , d | 200 | mode | ## PLC alarm diagnosis: Alarm information: 1200 the air pressure check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1201 the lubricant check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1202 the lubricating motor check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1203 the cooling motor check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1204 the chip removal check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1205 the pressure oil pump motor check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1206 the spindle cooling unit check is abnormal Fault cause: defined by customer Troubleshooting: no Alarm information: 1207 the machine light check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 120 the machine control box temperature check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1209 the machine bed temperature check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1210 the machine vibrivation frequency check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1211 pressure oil temperature check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1212 the oil pressure is low. Fault cause: defined by customer Troubleshooting: no Alarm information: 1213 the machine is not ready. Fault cause: defined by customer Troubleshooting: no Alarm information: 1214 reserved Fault cause: Troubleshooting: Alarm information: 1215 reversed Fault cause: Troubleshooting: Alarm information: 1216 do not rotate the spindle when the tool releases. Fault cause: execute the spindle rotating when the tool releases: in Manual mode, press the spindle CCW, CW, JOG, POSITIION, or execute M03,M04, M19 in AUTO mode, the spindle will rotate. Troubleshooting: in Manual mode, press"CLAMP/RELEASE", and the tool is clamped (i.e. Y2=0) to check whether the tool clamp check switch is 1, when it is 1, the rotating spindle does not appear alarm. Alarm information: 1217 the tool does not release when the spindle rotates. Fault cause: the tool release instruction is executed when the spindle rotates. Troubleshooting: when the spindle stops, the tool release instruction is executed to avoid the alarm. Alarm information: 1218 confirm the tool number again because the tool magazine abnormally stops. Fault cause: M6 is executed when the tool magazine rotates, the alarm appears, or press"RESET", the alarm appears. Troubleshooting: 1. the tool magazine executes the zero return. 2. set the spindle tool number and tool magazine number again. Alarm information: 1219 the spindle cannot rotate when the tool magainze is in the infeed position Fault cause: the spindle rotation is executed when the tool magazine does not retract to the in-position. Troubleshooting: execute the tool magazine returning to the retraction position (whether the tool magazine has returned to the retraction position by X5.2. Alarm information: 1220 the clamped tool corresponding to the spindle is abnormal. Fault cause: when the tool is clamped(i.e.Y0.2=0), the tool magazine clamp check switch (X2.6) is not closed during the time set by T010. Troubleshooting: 1. check whether the tool magazine clamp check switch is normal. 2. check whether Y0.2 outputs. 3. regulate again T010 time. Alarm information: 1221 the released tool corresponding to the spindle is abnormal. Fault cause: when the tool is clamped(i.e.Y0.2=1), the tool magazine clamp check switch (X2.5) is not closed during the time set by T009. Troubleshooting: 1. check whether the tool magazine release check switch is normal. 2. check whether Y0.2 outputs. 3. regulate again T009 time. Alarm information: 1222 the spindle unit temperature check is abnormal Fault cause: defined by customer Troubleshooting: no Alarm information: 1223 the spindle speed is abnormal Fault cause: defined by customer Troubleshooting: no Alarm information: 1224 the spindle motor enabling check is abnormal. Fault cause: defined by customer Troubleshooting: no Alarm information: 1224 the spindle motor enabling check is abnormal. Fault cause: when the tool is clamped(i.e.Y2.1=1), the tool magazine clamp check switch (X2.5) is not closed during the time set by T013. Troubleshooting: 1. the spindle driver or spindle encoder is normal. 2. check whether Y2.1 outputs. 3. regulate again T013 time. Alarm information: 1226 the spindle gear change is abnormal Fault cause: defined by customer Troubleshooting: no Alarm information: 1227 the tool magazine which is not in the origin point cannot rotate. Fault cause: the tool magazine is not in the retraction position and Z axis is not in the origin point, or press "MAG. CCW" or "MAG. CW", the alarm appears. Troubleshooting: the tool magazine returns the retraction position or Z axis returns to the origin point. Alarm information: 1228 the tool magazine cannot execute the cycle start when it is in the infeed position Fault cause: when the tool magazine is not in the retraction position, or press "CYCLE START", the alarm appears. Troubleshooting: the tool magazine returns the retraction position Alarm information: 1229 please set the spindle tool number Fault cause: press "CLAMP/RELEASE" when the tool number is 0, which causes the alarm appears. Troubleshooting: the alarm only prompts the tool cannot be installed on the spindle but KAPA0110 is modified to shield the alarm when the tool number is 0 Alarm information: 1230 the tool change cannot be executed when the spindle tool is released. Fault cause: when the tool is released(Y0.2=1), M06 or M50 is executed. Troubleshooting: ensure that the spindle is clamped(Y0.2=0). Alarm information: 1231 the tool change cannot be executed when the tool magazine is not in the retraction position. Fault cause: Execute M06 or M50 when the tool magazine is not in the retraction position. Troubleshooting: ensure that the spindle is clamped Alarm information: 1232 the tool magazine rotating in-position check is abnormal Fault cause: defined by customer Troubleshooting: no Alarm information: 1233 the motor check is abnormal when the tool magazine rotates Fault cause: defined by customer Troubleshooting: no Alarm information: 1234 the program stops the run when the tool magazine is in the infeed position. Fault cause: when the program is running, the tool is not in the retraction position, which causes the alarm appears. Troubleshooting: the program is executed when the tool magazine is in the retraction positon. Alarm information: 1235 the tool magazine moving in-position check is abnormal Fault cause: reserved Troubleshooting: Alarm information: 1236 the tool magazine zero return check is abnormal Fault cause:
reserved Troubleshooting: Alarm information: 1237 the tool magazine needs to return to zero because its origin is lost. Fault cause: Troubleshooting: Alarm information: 1238 the infeed in-position check is abnormal Fault cause: Reversed Troubleshooting: Reversed Alarm information: 1239 the retraction in-position check is abnormal. Fault cause: Reversed Troubleshooting: Reversed Alarm information: 1240 the tool magazine needs to return the zero again because it is abnormal. Fault cause: 1. the tool magazine stops the rotation in the time set by T102, the system has checked that the tool magazine count switch9X5.3) abnormally creates the pulse signal. when the tool magazine rotates, the system checks that the tool magazine count switch 0 or 1 exceeds the time set by T103. Troubleshooting: 1. the tool magazine CCW or CW output (Y3.0 Y3.1) is abnormal. - 2. the tool magazine count switch is abnormal. - 3. set T102 T103 value again. Alarm information: 1241 the tool magazine infeed check is abnormal Fault cause: when the tool magazine executes the infeed(i.e. Y3.2=1), the tool magazine infeed check switch (X5.1) has no operation. Troubleshooting: 1. check whether the tool magazine infeed check switch is normal. Alarm information: 1242 the tool magazine retraction check is abnormal Fault cause: the tool magazine executes the retraction in the time set by T105, the tool magazine infeed check switch (X5.2) has no operation. Troubleshooting: 1. check whether the tool magazine infeed check switch is normal. - 2. check whether Y3.3 outputs. - 3. regulate again T105 time Alarm information: 1243 the tool magazine zero setting is enabled. Fault cause: when the tool magazine has no zero return switch(i.e. K0101=0), and K0106=1, the system alarms and prompts the tool magazine zero setting is enabled. Troubleshooting: set K0106 to 0. Alarm information: 1244 the tool change is stopped because of its abnormal run Fault cause: when the tool magazine executes automatically the tool change, the tool change stops because of its abnormal run, which causes the system alarms and prompts there may be the disorder of tool magazine and the spindle tool number Troubleshooting: press"RESET" to clear the alarm. Alarm information: 1245 there is T tool number or repeated tool number in the tool list. Fault cause: there is no tool number specified by T code or there is the repeated tool number specified by T code in the tool list (D001-D099). Troubleshooting: modify the value in the tool list. Alarm information: 1246 the tool magazine cannot execute the tool change because it is not in the tool change position. Fault cause: Z axis is not the tool change position, and the tool magazine infeed is executed. Troubleshooting: execute G91G30Z0 to make Z axis return to the tool change position. Alarm information: 1247 the tool magazine cannot execute the infeed because the spindle does not position. Fault cause: the spindle does not position and the tool magazine infeed is executed. Troubleshooting: position the spindle. Alarm information: 1248 the tool magazine does not execute the retraction when the tool is released. Fault cause: the retraction is executed when the spindle tool is released. Troubleshooting: execute the retraction after the spindle tool is clamped. Alarm information: 1249 the spindle with the tool cannot execute the infeed. Fault cause: the infeed is executed when Z axis is in the origin and the spindle has the tool.(D245 is not 0) Troubleshooting: dismount the tool on the spindle and set D245 to 0. Alarm information: 1250 the infeed cannot be executed because the tool number on the spindle is not the same that of the current tool magazine. Fault cause: Z axis is in the tool change position, and the infeed is executed when the tool number on the spindle is not the same that of the current tool magazine. Troubleshooting: rotate the tool magazine to ensure the tool number on the spindle is the same that of current tool magazine. Alarm information: 1251 please turn off the power supply Fault cause: the modified parameter is enabled after power-off. Troubleshooting: start the system again. Alarm information: 1252 Z axis cannot move because the tool is clamped. Fault cause: when the tool is in the infeed position and the spindle tool is clamped, Z axis moves. Troubleshooting: 1. the tool magazine is in the retraction position. 2. the spindle tool is released. Alarm information: 1253 carefully operate the system because the tool magazine is in the debug mode. Fault cause: When K0107 is set to 1, the system alarms, which prompts the tool magazine enters the debug mode, and which is not related to its other alarms and interlock signal, at this time, we should carefully operate the system, otherwise, there maybe damage the machiney. Troubleshooting: press "RESET". Alarm information: 1254 the system cannot execute the cycle start Fault cause: when K0107 is set to 1, the "CYCLE START" is pressed in AUTO or MDI or DNC mode, which causes the system alarms. Troubleshooting: set K0107 to 0. Alarm information: 1255 the tool cannot return to the orgin point because it is clamped. Fault cause: Z axis is executed to return to the origin point when the tool magazine is in the infeed position and the spindle tool is clamped. Troubleshooting: 1. the tool magazine is in the retraction position. 2. the spindle tool is released. Alarm information: 1256 the tool cannot return the tool change position because it is clamped. Fault cause: Z axis is executed to return to the tool change position when the tool magazine is in the infeed position and the spindle tool is clamped. Troubleshooting: 1. the tool magazine is in the retraction position. 2. the spindle tool is released. Alarm information: 1257 the spindle cannot return the tool chan Fault cause: Z axis is executed to return to the tool change position when the tool magazine is in the infeed position and the spindle is not positioned. Troubleshooting: 1. the tool magazine is in the retraction position. 2. the spindle tool is released. Alarm information: 1258 the tool magazine cannot return to the tool change position because it is abnormal. Fault cause: reserved Troubleshooting: no Alarm information: 1259 reversed Fault cause: Troubleshooting: Alarm information: 1260 the system cannot execute the cycle start because the manual tool change is executed. Fault cause: when K0111 is set to 1(i.e. the manual tool change position return is enabled), the "CYCLE START" is pressed in AUTO or MDI or DNC mode, which causes the system alarms. Troubleshooting: set K0111 to 0. Alarm information: 1261 the tool cannot execute the retraction because it is not in the origin point. Fault cause: the tool magazine retraction is executed when the tool magazine is in the infeed positon and Z axis is not in the origin point. Troubleshooting: the retraction is executed after Z axis returns to the origin point. Alarm information: 1262 exceed the safety position. Fault cause: Z axis exceeds the tool change position when the tool magazine is in the infeed position and Z axis moves. Troubleshooting: move Z axis to the position between the tool change position and origin point. Alarm information: 1263 the system cannot execute the cycle start when it is in the debug mode. Fault cause: reserved Troubleshooting: reserved Table 5 TMR parameter definition | Address | Statement | Initial value | Setting value by | |---------|--|---------------|------------------| | Care, | mar mar | (ms) | customer (ms) | | T0001 | Delay timer for spindle CCW completion | 500 | _ | | T0002 | Delay timer for spindle CW completion | 500 | "Ars. 2" | | T0003 | Delay timer for spindle gear change completion | 500 | C. | | T0004 | Delay timer for spindle positioning completion | 0 11/1/20 | SS | | T0005 | Delay timer for auxiliary function(M.S.T) completion | 0 1111 | nn" | | T0006 | Timer for spindle gear change check | 500 | 16. 'Z' | | T0007 | Delay timer for spindle tool release completion | 0 | (Car) | | T0008 | Delay timer for spindle tool clamp completion | 0 10011 | ć | | T0009 | Time setting for spindle tool release check | 8000 | "My ; | | T0010 | Time setting for spindle tool clamp check | 8000 | | | T0011 | Pulse signal time 1 in 1 second | 500 | "Wo'2, | | T0012 | Pulse signal time 2 in 1 second | 500 | Cir. | | T0013 | Time setting for spindle positioning check time | 8000 | ą č | | T0014 | Time setting for spindle CCW check | 500 | ringh) | | T0015 | Time setting for spindle CW check | 500 | | | T0016 | Time unit setting for lubricating | 60000 | 140.E | | T0017 | Time unit setting for lubricating | 1000 | S.C. | | T0018 | Time setting for spindle positioning delay check | 2000 | | | T0019 | Delay timer for spindle JOG | 2000 | Ard and | | T0100 | Delay time 1 for turret tool magazine manually rotating | 2000 | | | T0101 | Delay time 2 for turret tool magazine manually rotating | 2000 | May, | | T0102 | Delay check time setting for turret tool magazine stopping | 2000 | nnic | | T0103 | Delay check time setting for turret tool magazine rotating | 3000 | ,40.A | | T0104 | Delay check time setting for tool magazine infeed | 10000 | King. | | T0105 | Delay check time setting for turret tool magazine retraction | 10000 | nunit. | | T0106 | Delay timer for turret tool magazine infeed completion | 0 | 16.th | | T0107 | Delay timer for turret tool magazine retraction completion | 0 | Waga, | ## Notes: - 1. PLC pulse signal period is 1s, set T0011 and T0012 to 500. - 2. T016 setting will change C101 unit. For example: C101 unit is 600000ms(i.e. 1m) when T0016 is set to 60000. - 3. T017 setting will change C102 unit. For example: C102 unit is 10000ms(i.e. 1s) when T0017 is set to 10000. Table 6 DATA parameter definition | Definition | Statement | Setting value by customer | |------------|------------------------------|---------------------------| | D000 | Spindle tool number display | Cannot set |
 D001 | No.1 tool number | "ighage, | | D002 | No.2 tool number | m, m, | | 1940:Q | TETHE IT | Og HAB DI | | D098 | No.98 tool number | , tipaito, | | D099 | No.99 tool number | May My | | D100 | Tool magazine capacity | A | | D241 | T code tool number | Cannot set | | D243 | Current tool magazine number | Cannot set | | D245 | Spindle tool number | Wildhog Will | ## Notes: 1. D100 setting value must be less than 100, and must be the same that of CTR100, otherwise, there may be the abnormal. For example: D100=16, the data table D001-D016 is enabled. D100=24, the data table D001-D024 is enabled. - 2. D000 only displays the spindle tool number, the spindle tool number cannot be modified at the D000 but at the D245. - 3. D241 value cannot be modified. - 4. See Chapter 3 about the detailed. Table 7 CTR parameter definition | Address | Statement | Initial value | Setting value by cusotmer | |---------|-----------|---------------|---------------------------| | | | ~~~ | 0 ~~ , | | C100 | Tool magazine capacity setting | 16 | agidl. | |------|---------------------------------------|-------|--------| | C101 | Automatic lubricating OFFtime setting | 30,10 | alto! | | C102 | Automatic lubricating ON time setting | 30 | (3) | ## Notes: 1. CTR100 setting value must be less than 100 and must be the same that of D100, otherwise there may be the abnormal. For example: CTR100 =16, the total tool magazine number is 16. CTR100=24, the total tool magazine number is 24. 2. C101 unit is related to T0016. For example: T0016 is set to 60000, C101 unit is 1m, and C101 is set to 30, the lubricating OFF time is 30ms(minutes). 3. C102 unit is related to T0017 For example: T0017 is set to 1000, C102 unit is 1s, and C102 is set to 10, the lubricating OFF time is 10s. Table 8 M code definition | M code | F signal | Function | Remark A | |--------|----------|---|--| | M00 | F0317 | Program pause | , | | M01 | F0304 | Selection stop | 78.5, | | M02 | F0305 | End of program | California (California California | | M03 | F0300 | Spindle CCW | alico. | | M04 | F0301 | Spindle CW | | | M05 | F0302 | Spindle stop | 44 | | M06 | F0303 | Automatic tool change | | | M08 | F0310 | Cooling ON | 10.Q | | M09 | F0311 | Cooling OFF | Care. | | M10 💥 | F0312 | A axis clamp | Reversed | | M11 | F0313 | A axis release | Reversed | | M16 | F0260 | Spindle release instruction | Reversed | | M17 | F0261 | Spindle clamp instruction | Reversed | | M18 | F-001 | Cancel the spindle exact stop | 10.0 | | M19 | F0262 | Spindle exact stop | Capp. | | M21 | F0263 | Search tool instruction when retraction | alico) | | M22 | F0264 | Search tool instruction when startup the current tool | uni | | M23 | F0265 | Tool magazine forward | | | M24 | F0266 | Tool magazine backward | 18.0 | | M26 | F-001 | Start chip removal lift conveyor | 29/14 | | M27 | F-001 | Close chip removal lift conveyor | altor. | | M29 | F0322 | Rigid tapping instruction | Tales of the second | |-------|-------|---|--| | M30 | F0280 | End of program | alitor. | | M32 | F0314 | Lubricating ON | , | | M33 | F0315 | Lubricating OFF | 727 | | M35 | F-001 | Start spiral chip removal conveyor | | | M36 | F-001 | Close spiral chipo removal conveyor | 18.9 | | M40 | F-001 | X axis image | THE STATE OF S | | M41 💉 | F-001 | Y axis image | a Jion | | M42 | F-001 | Z axis image | 80 | | M43 | F-001 | Cancel image | z _i zi | | M44 | F0267 | Start spindle blow | | | M45 | F0270 | Stop spindle blow | 18 P. | | M50 | F0271 | Start automatic tool change | Vaich. | | M51 💉 | F0272 | End of automatic tool change | a Jion | | M53 | F0273 | Judge whether the tool is correct after the tool change is executed | Reversed | | M55 | F0274 | Judge whether the spindle has the tool | Reversed | Usage and maintenance of GSK 218M CNC System matching with turret tool magazine Tool magazine preparation and use 1. Tool magazine installation and related PLC parameter setting Operation aim: ensure the ladder fit to the allocation of tool magazine A. requirements of the ladder matched with the turret tool magazine to the machine tool: - 1. The machine tool has the spindle tool automatically clamping/releasing device which has the normally open in-position check switch. - 2. The spindle has the positioning function and its positioning angle can be regulated. - 3. The tool magazine capacity must be less than 100. - 4. The tool magazine can execute CCW/CW. - 5. The tool magazine has the count switch, forward in-position check switch, and retraction in-position check switch. - 6. The tool magazine has zero return switch(selection). - B. Wire connection related to tool magazine - 1) Input. | Address | Statement | Remark | | |---------|--|-----------------------|--| | X0024 | External clamp/release control | Selection | | | X0025 | Release check | Normally open contact | | | X0026 | Clamp check | Normally open contact | | | X0050 | 50 Spindle orientation in-position Normally- | | | | alatell. | Day. Day. | contact | | |----------|---------------------------------------|----------------|--| | X0051 | Tool magazine forward in-position | Normal open or | | | 350 | (1900) | normal close | | | X0052 | Tool magazine backward in-position | Normal open or | | | | | normal close | | | X0053 | Tool magazine CCW/CW in-position | Normal open or | | | Sight | aidhe aithe | normal close | | | X0054 | Tool magazine zero return in-position | Selection | | ## 2) . Output: | Address | Statement | Remark | |---------|------------------------|-----------| | Y0002 | Tool release/clamp | 160 | | Y0020 | Spindle enabling | "Olligies | | Y0021 | Spindle orientation | 'Rogar | | Y0030 | Tool magazine CCW | un, | | Y0031 | Tool magazine CW | | | Y0032 | Tool magazine forward | ".Wo.'S | | Y0033
| Tool magazine backward | , NOTTION | C. Tool magazine switch type and rotation in-position mode selection Tool magazine no zero return switch set K0101 to 0 Tool magazine zero return switch set K101 to 1 Tool magazine zero return switch is normal open set K0102 to 0 set K0102 to 1 Tool magazine zero return switch is normal close set K0103 to 0 Tool magazine infeed switch is normal open Tool magazine infeed switch is normal close set K0103 to 1 Tool magazine retraction switch is normal open set K0104 to 0 Tool magazine retraction switch is normal close set K0104 to 1 Tool magazine count switch is normal open set K0105 to 0 Tool magazine count switch is close open set K0105 to 1 Tool magazine rotation in-position A mode set K0100 to 0 set K0100 to 1 Tool magazine rotation in-position B mode ## Note: - 1. K0102 setting is disabled when K0101 is set to 0. - 2. The tool magazine rotation in-position A mode: when the tool magazine rotates the normal stop position, the tool magazine count switch has not responded the block(See Fig. A). - 3. The tool magazine rotation in-position A mode: when the tool magazine rotates the normal stop position, the tool magazine count switch has responded the block(See Fig. B). ## K0101=0 K0102=0 K0103=0 K0104=0 K0105=0 K0100=0 For example: the tool magazine has no zero return switch, all check switches are normal open and the rotation in-position is A mode, the parameter setting is as follows: K0101=0 K0102=0 K0103=0 K0104=0 K0105=0 K0100=0 D. tool magazine capacity setting Input tool magazine capacity in DATA100 and CTR100 ## Notes: - 1. The tool magazine capacity is defined that total tool magazine numbers in the tool magazine. - 2. DATA100 and CTR100 setting values must be less than 100. ## E. Tool number setting: Data talbe D001-D099 separately correspond to the tool magazine number 1-99, and the setting values in the data table D001-D009 separately corresponds to the tool number in the tool magazine number 1-99. D245 is the spindle tool number. ## Notes: - 1. In D001-D099, there is no the same tool number(except for 0), otherwise the system alarms when the tool change is executed. - 2. The tool number setting range meets the requirements set by the parameter 0206, otherwise the system alarm when the T instruction is executed. For example: when the tool magazine capacity is 16: When the tool magazine is set orderly to 1-16 in D1-D16, and T8M6 is executed, the tool change is executed after No. 8 tool magazine number will rotate to the tool change position. When the tool magazine is set orderly to 10, 20, 30...160 in D1-D16, and T80M6 is executed, the tool change is executed after No. 8 tool magazine number will rotate to the tool change position When D1 and D2 are set to 8, and T8M6 is executed, the system alarms. ## F. Time parameter setting related to the tool magazine: | Addresss | Statement | Setting range | Initial value (ms) | |----------|--|---------------------------------------|--------------------| | T0004 | Delay timer for spindle positioning | More than or less than 0 | 0 | | T0007 | Delay timer for spindle tool releasing completion | More than or equal to 0 | 0 | | T0008 | Delay timer for spindle tool clamping completion | More than or equal to 0 | 0 444 | | T0009 | Time setting for spindle tool releasing check | More than releasing tool time | 8000 | | T0010 | Time setting for spindle tool clamping check | More than clamping tool time | 8000 | | T0013 | Time setting for spindle positioning check | More than positioning time | 8000 | | T0018 | Time setting for spindle positioning delay check | Related to the positioning width | 2000 | | T0100 | Delay time 1 for turret tool magazine manually roating | More than rotating one tool selection | 2000 | | T0101 | Delay time 2 for turret tool magazine manually roating | More than rotating one tool selection | 2000 | | T0102 | Delay check time for turret tool magazine stopping | More than rotating one tool selection | 2000 | | T0103 | Delay check time for tool magazine rotating | More than rotating one tool selection | 3000 | | T0104 | Delay check time for turret tool magazine infeed | More than infeed time | 10000 | | T0105 | Delay check time for turret tool magazine retracting | More than retraction time | 10000 | | T0106 | Delay timer for turret tool magazine infeed completion | More than or equal to 0 | O.C. | | T0107 | Delay timer for turret tool magazine retraction completion | More than or equal to 0 | 0 ,,,,,,,, | ## Notes: - 1. The above parameter(TMR) is related to the tool magazine type, the tool magazine speed and other performances. Please refer to the tool magazine performance to properly set the parameter. - 2. when the above parameter (TMR) setting is not proper, the system alams to cause that the tool change is not executed normally. The ladder match with the tool magazine after the above A-F steps are operated, but the tool magazine cannot normally run, the tool magazine executes the CCW, CW, infeed and retraction in Manual mode to check whether each operation of tool magazine is normal through the following No. 2 setting and operation(i.e. 2. Tool magazine manual and zero return operation). Tool magazine manual and zero return operation Operation aim: check whether the each operation of tool magazine is normal. The detailed operation is as follows: A. the tool magazine is enabled. 1. Because the tool magazine is turret, and the following bit parameter must be set. Bit parameter 53.0=1 bit parameter 53.1=0 bit parameter 53.2=0 bit parameter 53.3=0 ## B. Confirming the rotation direction of tool magazine In Manual mode, press "MAG. CCW" and the tool magazine rotates according to the prescribed positive direction of machine tool, press "MAG. CW" and the tool magainze rotates according to the prescribed negative direction of machine tool, otherwise, the tool magazine count will be disorder to cause that the tool change is executed wrongly, which can be resolved by regulating the phase sequence of the motor. ## C. Tool magazine zero return: Tool magazine zero return operation is divided into zero return switch and no zero return switch. - 1. The tool magazine has the zero return switch: press "MAG. ZERO" in "ZERO RETURN" mode, and the zero return is completed when the indicator is light(the light flashing indicates the tool magazine is executing the zero return.) - 2. The tool magazine has no the zero return switch - a. In Manual mode, press "CCW" or "CW" to make the No. tool magazine number rotate to the tool change position. - b. set K0106 to 1 in MDI mode. - c. press "MAG. ZERO" in zero return mode until its indicator is light. - 3. Spindle positioning angle and tool change coordinate position regulation - a. the spindle positioning angle regulation refers to the explanation of spindle driver. - b. Z axis has two positions including origin point and tool change position when the tool magazine executes the tool change. The parameter 0047 must be set to 0 when the tool magazine returns to the origin point, otherwise, there maybe the accidence to damage the machine. We can correctly execute the tool change through the aboved 3 operations. Operating T and M instructions are as follows: TxxM6; it has the same execution effect that of Txx;M6; T0M6; the spindle tool retracts to the tool magazine. Warning: the tool must not be installed on the spindle when the spindle tool number is 0, otherwise, there maybe the accidence when the tool change is executed to damage the machine. Macro program statement of GSK218M CNC System matching with turret tool magazine Macro program statement of GSK218M CNC System matching with turret tool magazine O91001; (program name) G65 H81 P50 Q#1003 R1; (M.S.T and machine are locked, execute N50, end of program) G69 G50 G15 G80; (cancel the related modes) M50; (start the tool change and check its conditions of tool change, if not, the system alarms.) G65 H81 P40 Q#1001 R1; (spindle tool number=T tool number: not execute the tool change but N40, end of program) G65 H81 P20 Q#1000 R1; (spindle tool number=0: the spindle has no tool, execute N20 instead of the retraction tool instruction) M19 G91 G30 Z0; (spindle positioning, return to the cooridinate position of tool change) M21; (retraction-> tool magazine rotating tool magazine forward spindle releasing) N20 M19 G91 G28 Z0; (return to machine's origin point) G65 H81 P30 Q#1002 R1; (T code tool number=0: not execute the tool search but N30) M22; (tool search ->tool magazine rotating tool magazine forward spindle releasing tool) G91 G30 Z0; (return to coordinate point of tool change) N30 M17; (spindle clamping tool) M24; (tool magazine retraction) N40 M51; (end of tool change) N50 M99; (end of program) Add: No.52, 1st . Street, Luochong North Road, Luochongwei, Guangzhou, 510165, China All specifications and designs are subject to change without notice July 2007/Edition 2 Aug. 2007/Printing 2