Ratings and Specifications

Ratings

Standard Models with Built-in Operation Indicators

Operating Coil, Single-pole and Double-pole Models

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Powerconsumption$(V A, W)$
		50 Hz	60Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30% min.*2	110% of rated voltage	$\begin{aligned} & \text { Approx. } 1.0 \\ & \text { to } 1.2 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	53.8	46	180	0.69	1.3				
	50	25.7	22	788	3.22	5.66				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				$\begin{aligned} & \text { Approx. } 0.9 \\ & \text { to } 1.1 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	6	150		40	0.16	0.33		10\% min.*2		Approx. 0.9
	12	75		160	0.73	1.37				
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

3 poles

Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60Hz		Armature OFF	Armature ON				
	12	159	134	24	0.12	0.21	80\% max.*1	30\% min.*2	110% of rated voltage	$\begin{aligned} & \text { Approx. } 1.6 \\ & \text { to } 2.0 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	80	67	100	0.44	0.79				
	100/110	14.1/16	12.4/13.7	2,300	10.5	18.5				
	200/220	9.0/10.0	7.7/8.5	8,650	34.8	59.5				
	12			107	0.45	0.98				
	24			410	1.89	3.87				
	48			1,700	8.53	13.9		10\% min.		. 1.4
	100/110			8,500	29.6	54.3				

4 poles

Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	$\begin{aligned} & \text { Power } \\ & \text { consumption } \\ & \text { (VA, W) } \end{aligned}$
		50 Hz	60Hz		Armature OFF	Armature ON				
	12	199	170	20	0.1	0.17	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.95 to 2.5 (at 60 Hz)
AC	24	93.6	80	78	0.38	0.67				
	100/110	22.5/25.5	19/21.8	1,800	10.5	17.3				
	200/220	11.5/13.1	9.8/11.2	6,700	33.1	57.9				
	12			100	0.39	0.84				
DC	24			350	1.41	2.91		10\% min*2		
DC	48			1,600	6.39	13.6		10\% min.		Approx.
	100/110			6,900	32.0	63.7				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only. (at 60 Hz)
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value (at a coil temperature of $+23^{\circ} \mathrm{C}$).
*2. The actual values are $30 \% \mathrm{~min}$. for AC and $10 \% \mathrm{~min}$. for DC. To ensure release, use a value that is lower than the specified value.

Refer to List of Certified Models for a list of models that are certified for safety standards and the Electrical Appliances and Material Safety Act.

Classification Item Load	1 pole		Double-, 3-, and 4-pole models		Bifurcated contacts	
	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Contact type	Single				Bifurcated	
Contact materials	Ag alloy				Ag	
Rated load	$\begin{aligned} & 15 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ & 15 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 10 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ 7 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ & 10 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 7.5 A at } 110 \text { VAC } \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	4 A at 110 VAC 4 A at 24 VDC
Rated carry current	15 A		10 A		7 A	
Maximum contact voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Maximum contact current	15 A	15 A	10 A	10 A	7 A	7 A

	Type	Single-pole and double-pole models (standard models and bifurcated contact models)
Item	Single-pole, double-pole models (models with built-in operation indicators, models with built-in diodes, and models with built-in CR circuits), 3-pole and 4-pole models	
Ambient operating temperature	(with no icing or condensation)*1	(with no icing or condensation)*2

Note: 1. Some models in the LY1 and LY2 Series have an upper temperature limit of $+40^{\circ} \mathrm{C}$. This limitation is due to the diode junction temperature and the elements used.
2. Refer to the ambient temperature and contact carry current characteristics data on page 5 to 7 for information on operation in temperature conditions that are not described here.
3. When you apply a minimum of 10 A of current to an LY1 when it is used in combination with a PTF08A, PTF08A E , or PT08, connect each of the following terminal pairs: (1) to (2), (3) to (4), and (5) to (6).
*1. If the carry current is 4 A or less, the usable ambient temperature range is -25 to $70^{\circ} \mathrm{C}$.
*2. If the flowing current is 4 A or less, the usable ambient temperature range is -25 to $55^{\circ} \mathrm{C}$.

Characteristics

Item Type		Standard models, models with built-in operation indicators, models with built-in CR circuits, and models with built-in diodes	Bifurcated contacts
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.	
Operating time*2		25 ms max.	
Release time*2		25 ms max.	
Maximum operating frequency	Mechanical	18,000 operations/h	
	Rated load	1,800 operations/h	
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
	Between contacts of different polarity		
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min.	(switching frequency: 18,000 operations/h)
	Electrical*4	1-, 3-, 4-pole: 200,000 operations min. 2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)	2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)
Failure rate P	ue (reference value)*5	100 mA at 5 VDC	10 mA at 5 VDC
Weight		1-pole and 2-pole: $40 \mathrm{~g}, 3$-pole: Approx	$50 \mathrm{~g}, 4$-pole: Approx. 70 g

Note: The values at the left are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
2. Measurement conditions: With rated operating power applied, not including contact bounce.
*3. Ambient temperaturement conditions: For 500 VDC applied to the
same location as for dielectric strength measurement.
$* 4$. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute

Endurance Under Real Loads (Reference Only)

Loadtype	LY1, 100 VAC			LY2, 100 VAC			LY4, 100 VAC		
	Conditions	Operating frequency	$\begin{aligned} & \text { Electrical life } \\ & (\times 10,000 \\ & \text { operations min.) } \end{aligned}$	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min.) } \end{gathered}$	Conditions	Operating frequency	$\begin{aligned} & \text { Electrical life } \\ & (\times 10,000 \\ & \text { operations min. }) \end{aligned}$
AC motor	$400 \mathrm{~W}, 100 \mathrm{VAC}$ singlephase with 35 -A inrush current, 7-A current flow	ON for 10 s , OFF for 50 s	5	$200 \mathrm{~W}, 100 \mathrm{VAC}$ singlephase with 25-A inrush current, 5-A current flow	ON for 10 s , OFF for 50 s	20	200 W, 200 VAC threephase with 5-A inrush current, 1-A current flow	ON for 10 s,	50
							750 W, 200 VAC threephase with 18-A inrush current, 3.5 -A current flow		7
AC lamp	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	10	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	8	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	5
	500 W, 100 VAC with 78-A inrush current, 5A current flow		2.5						
Capacitor$(2,000 \mu \mathrm{~F})$	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 6 s	10	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	1	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	0.5
				24 VDC with 20-A inrush current, 1-A current flow		15	24 VDC with 20-A inrush current, 1-A current flow	ON for 1 s , OFF for 2 s	20
AC solenoid	50 VA with 2.5-A inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	150	50 VA with 2.5-A inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	100	50 VA with 2.5-A inrush current, 0.25-A current flow	$\begin{aligned} & \text { ON for } 1 \mathrm{~s}, \\ & \text { OFF for } 2 \mathrm{~s} \end{aligned}$	100
	100 VA with $5-\mathrm{A}$ inrush current, $0.5-\mathrm{A}$ current flow		80	100 VA with 5 -A inrush current, 0.5-A current flow		50	100 VA with $5-\mathrm{A}$ inrush current, 0.5-A current flow		50

