Altivar 38 Telemecanique

User's manual

Variable speed controllers for asynchronous motors,

Schneider
 3 Electric

Altivar 38

When the drive is powered up, the power components and some of the control components are connected to the line supply. It is extremely dangerous to touch them. The drive cover must be kept closed.

After the ALTIVAR has been switched off and the green LED has gone out, wait for 3 to 10 minutes before working on the equipment. This is the time required for the capacitors to discharge.

The motor can be stopped during operation by inhibiting run commands or the speed reference while the drive remains powered up. If personnel safety requires prevention of sudden restarts, this electronic locking system is not sufficient: fit a cut-off on the power circuit.

The drive is fitted with safety devices which, in the event of a fault, can shut down the drive and consequently the motor. The motor itself may be stopped by a mechanical blockage. Finally, voltage variations, especially line supply failures, can also cause shutdowns.

If the cause of the shutdown disappears, there is a risk of restarting which may endanger certain machines or installations, especially those which must conform to safety regulations.

In this case the user must take precautions against the possibility of restarts, in particular by using a low speed detector to cut off power to the drive if the motor performs an unprogrammed shutdown.

Equipment should be designed in accordance with the specifications laid down in the IEC standards.
As a rule, the drive power supply must be disconnected before any operation on either the electrical or mechanical parts of the installation or machine.

The products and equipment described in this document may be changed or modified at any time, either from a technical point of view or in the way they are operated. Their description can in no way be considered contractual.

The Altivar 38 must be considered as a component: it is neither a machine nor a device ready for use in accordance with European directives (machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets these standards.

The drive must be installed and set up in accordance with both international and national standards. Bringing the device into conformity is the responsibility of the systems integrator who must observe the EMC directive among others within the European Union.

The specifications contained in this document must be applied in order to comply with the essential requirements of the EMC directive.

Contents

Preliminary Recommendations 68
Selecting a Drive with Heatsink 69
Available Torque 70
Technical Specifications 71
Dimensions - Fan output 73
Mounting and Temperature Conditions 74
Removing the IP 41 Protective Blanking Cover 76
Mounting in a Wall-fixing or Floor-standing Enclosure 77
Access to Terminals - Power Terminals 78
Control Terminals 80
Electromagnetic Compatibility - Wiring 81
Wiring Recommendations, Use 83
Connection Diagrams 84
Keypad operation 87
Access to Menus 88
Access to Menus - Programming Principle 89
Macro-Configurations 90
Display Menu 91
Adjust Menu 92
Drive Menu 95
Control Menu 98
I/O Menu 101
Configurable I/O Application Functions 105
Fault Menu 114
Files Menu 116
Communication and Application Menus / Return to factory settings 118
Operation - Maintenance - Spares and Repairs 119
Faults - causes - remedies 120
Record of configuration and adjustments 123
Summary of menus 125
Index 128

Preliminary Recommendations

Acceptance

Check that the drive reference printed on the label is the same as that on the delivery note corresponding to the purchase order.

Remove the Altivar 38 from its packaging and check that it has not been damaged in transit.

Handling and storage

To ensure the drive is protected before installation, handle and store the device in its packaging.

Handling on installation

The Altivar 38 range comprises 9 sizes of device, with various weights and dimensions.
Small drives can be removed from their packaging and installed without a handling device.
A hoist must be used with large drives; for this reason they are supplied with 4 handling "lugs". The precautions described below must be observed:

Selecting a Drive with Heatsink

Three-phase supply voltage: $380 . . .460 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

Line current at 400 V	Isc prospective line	Motor power (2)	Nominal current (In)	Max.transient current (3)	Power dissipated at nominal load (4)	Reference	Weight
(kA	kW	A	A	W		
3.1	5	0.75	2.1	2.3	55	ATV38HU18N4	3.8
5.4	5	1.5	3.7	4.1	65	ATV38HU29N4	3.8
7.3	5	2.2	5.4	6	105	ATV38HU41N4	3.8
10	5	3	7.1	7.8	145	ATV38HU54N4	6.9
12.3	5	4	9.5	10.5	180	ATV38HU72N4	6.9
16.3	5	5.5	11.8	13	220	ATV38HU90N4	6.9
24.3	22	7.5	16	17.6	230	ATV38HD12N4	13
33.5	22	11	22	24.2	340	ATV38HD16N4	13
43.2	22	15	30	33	410	ATV38HD23N4	15
42	22	18.5	37	41	670	ATV38HD25N4(X)	34
49	22	22	44	49	750	ATV38HD28N4(X)	34
65	22	30	60	66	925	ATV38HD33N4(X)	34
79	22	37	72	80	1040	ATV38HD46N4(X)	34
95	22	45	85	94	1045	ATV38HD54N4(X)	57
118	22	55	105	116	1265	ATV38HD64N4(X)	57
158	22	75	138	152	1730	ATV38HD79N44(X)	57
$156(1)$	22	90	173	190	2250	ATV38HC10N4X	49
$191(1)$	22	110	211	232	2750	ATV38HC13N4X	75
$229(1)$	22	132	253	278	3300	ATV38HC15N4X	77
$279(1)$	22	160	300	330	4000	ATV38HC19N4X	77
$347(1)$	22	200	370	407	5000	ATV38HC23N4X	159
$384(1)$	22	220	407	448	5500	ATV38HC25N4X	166
$433(1)$	22	250	450	495	6250	ATV38HC28N4X	168
$485(1)$	22	280	503	553	7000	ATV38HC31N4X	168
$536(1)$	22	315	564	620	7875	ATV38HC33N4X	168

(4) Current values given with an additional line choke.
(5) These power levels are for a maximum switching frequency of 2 or 4 kHz , depending on the rating, and continuous operation. Switching frequencies are detailed in the section on "Technical Specifications".
Using the ATV38 with a higher switching frequency:

- For continuous operation derate by one power rating, for example:

ATV38HU18N4 for 0.37 kW - ATV38HD12N4 for 5.5 kW .

- If no power derating is applied, do not exceed the following operating conditions:

Cumulative running time 36 s maximum per 60 s cycle (load factor 60%).
(6) For 60 seconds.
(7) These power levels are given for the maximum permissible switching frequency in continuous operation (2 or 4 kHz , depending on the rating).
(8) For ATV38HU18N4 to D79N4: the Altivar 38 is fitted with an integral EMC filter.

For ATV38HD25N4(X) to D79N4(X): add X to the reference to receive an Altivar 38 without integral EMC filter.
For ATV38HC10N4X to C33N4X: the Altivar 38 is not fitted with an integral EMC filter. Optional external filters are available.

Available Torque

Torque characteristics:

- Variable torque applications:

1 Self-cooled motor: permanent useful torque
2 Force-cooled motor: permanent useful torque
3 Transient overtorque for max. 60 seconds.
4 Torque at overspeed with constant power

Available overtorque:

Variable torque applications:

- 110% of the nominal motor torque for 60 seconds.

Continuous operation

For self-cooled motors, cooling is linked to the motor speed. Derating therefore occurs at speeds of less than half the nominal speed.

Overspeed operation

As the voltage can no longer change with the frequency, induction in the motor is reduced which results in a reduction in torque. Check with the manufacturer that the motor can operate at overspeed.

Note: With a special motor, the nominal and maximum frequencies can be adjusted between 10 and 500 Hz using the operator terminal or PowerSuite tools.

Environment

	ATV38 HU18N4 to ATV38HD23N4	ATV38 HD25N4(X) to ATV38HC33N4X
Degree of protection	IP21 and IP41 on upper part (conforming to EN 50178)	ATV38HD25N4(X) to ATV38HD79N4(X) drives: IP21 and IP41 on upper part (conforming to EN 50178) ATV38HC10N4X to ATV38HC33N4X drives: - IP00 on underside (requires addition of protection against direct contact by personnel) - IP20 on other sides
Vibration resistance	Conforming to IEC 68-2-6: 1.5 mm peak from 2 to 13 Hz 1 gn from 13 to 200 Hz	ATV38HD25N4(X) to ATV38HD79N4(X) drives: Conforming to IEC 68-2-6: 1.5 mm peak from 2 to 13 Hz 1 gn from 13 to 200 Hz ATV38HC10N4X to ATV38HC33N4X drives: 0.6 gn from 10 to 55 Hz
Maximum ambient pollution	ATV38HU18N4 to ATV38 HD23N4 drives: Degree 2 conforming to IEC 664-1 and EN 50718	ATV38HD25N4(X) to ATV38HD79N4(X) drives: - Degree 3 conforming to UL508C ATV38HC10N4X to ATV38 HC33N4X drives: Degree 2 conforming to IEC 664-1 and EN 50718
Maximum relative humidity	93% without condensation or dripping water, conforming to IEC 68-2-3	
Ambient temperature around the unit	Storage: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ Operation: ATV38HU18N4 to ATV38HU90N4 drives: - $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ without derating - up to $+60^{\circ} \mathrm{C}$ with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$ ATV38HD12N4 to ATV38HD23N4 drives: - $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ without derating - up to $+50^{\circ} \mathrm{C}$ with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$	Storage: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ Operation: ATV38HD25N4(X) to ATV38HD79N4(X) drives: - $-10{ }^{\circ} \mathrm{C}$ to $+40{ }^{\circ} \mathrm{C}$ without derating - up to $+60^{\circ} \mathrm{C}$ with the ventilation kit with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ ATV38HC10N4X to ATV38HC33N4X drives: - $-10^{\circ} \mathrm{C}$ to $+40{ }^{\circ} \mathrm{C}$ without derating - up to $+50^{\circ} \mathrm{C}$ with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$
Maximum operating altitude	1000 m without derating (above this, derate the current by 1% per additional 100 m)	
Operating position	Vertical	

Electrical characteristics

Power supply	- $380 \mathrm{~V}-10 \%$ to $460 \mathrm{~V}+10 \%$ 3-phase
	- $50 / 60 \mathrm{~Hz} \pm 5 \%$
Output voltage	Maximum voltage equal to line supply voltage
Electrical isolation	Electrical isolation between power and control (inputs, outputs, power supplies)
Output frequency range	0.1 to 500 Hz
Switching frequency	Configurable: - without derating: 0.5-1-2-4 kHz for ATV38HU18N4 to D46N4(X) drives 0.5-1-2 kHz for ATV38HD54N4(X) to C33N4X drives - without derating with intermittent operating cycle or with derating by one power rating in continuous operation: 8-12-16 kHz for ATV38HU18N4 to D23N4 drives $8-12 \mathrm{kHz}$ for ATV38HD25N4(X) to D46N4(X) drives $4-8 \mathrm{kHz}$ for ATV38HD54N4(X) to D79N4(X) drives 4 kHz for ATV38HC10N4X to C33N4X drives
Speed range	1 to 10
Braking torque	30% of nominal motor torque without braking resistor (typical value) for low power ratings
Transient overtorque	110% of nominal motor torque (typical values to $\pm 10 \%$) for 60 seconds
Protection and safety features of drive	- Short-circuit protection: - between output phases - between output phases and earth - on internal supply outputs - Thermal protection against overheating and overcurrents - Supply undervoltage and overvoltage safety circuits - Loss of input phase safety circuit (avoids single-phase operation, on all 3phase drives)
Motor protection	- Thermal protection integrated in drive via continuous calculation of $\mathrm{I}^{2} \mathrm{t}$ taking speed into account Motor thermal state saved when the drive is switched off. This function can be modified (via the operator terminal or programming terminal or via the PC software), depending on the type of motor cooling - Protection against motor phase breaks - Protection via PTC probes with option card

Dimensions - Fan output

Dimensions

The EMC mounting plate is supplied with clamps for ATV38HU18N4 to D79N4(X) drives. Fix the EMC equipotentiality mounting plate to the holes in the ATV38 heatsink using the screws supplied, as shown in the drawings above.

EMC mounting plate

ATV38H	a	b	c	G	H	$\varnothing 1$	$\Delta \mathrm{~b}$	$\varnothing 2$
U18N4, U29N4, U41N4	150	230	184	133	210	5	64.5	4
U54N4, U72N4, U90N4	175	286	184	155	270	5.5	64.5	4
D12N4, D16N4	230	325	210	200	310	5.5	76	4
D23N4	230	415	210	200	400	5.5	76	4
D25N4(X), D28N4(X), D33N4(X),	240	550	283	205	530	7	80	5
D46N4(X)								
D54N4(X), D64N4(X), D79N4(X)	350	650	304	300	619	9	110	5
C10N4X	370	630	360	317.5	609	12		
C13N4X, C15N4X, C19N4X	480	680	400	426	652	12		
C23N4X, C25N4X, C28N4X, C31N4X,C33N4X	660	950	440	598	920	15		

Fan output

ATV38HU18N4	not cooled
ATV38HU29N4, U41N4, U54N4	$36 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HU72N4, U90N4, D12N4,D16N4, D23N4	$72 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HD25N4(X), HD28N4(X), D33N4(X), D46N4(X)	$292 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HD54N4(X), D64N4(X), D79N4(X)	$492 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HC10N4X	$600 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HC13N4X, C15N4X, C19N4X	$900 \mathrm{~m}^{3} / \mathrm{hour}$
ATV38HC23N4X, C25N4X, C28N4X, C31N4X,C33N4X	$900 \mathrm{~m}^{3} / \mathrm{hour}$

Mounting and Temperature Conditions

Install the unit vertically to within $+/-10^{\circ}$.
Do not place it close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

ATV38HU18N4 to D23N4

Free space in front of unit: 10 mm minimum.

ATV38HU18N4 to U90N4:

From $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}: \mathrm{d} \geq 50 \mathrm{~mm}$: no special precautions.
$d=0$: remove the protective blanking cover from the top of the drive as shown overleaf (the degree of protection is then IP 20).

From $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$: $\mathrm{d} \geq 50 \mathrm{~mm}$: remove the protective blanking cover from the top of the drive as shown overleaf (the degree of protection is then IP 20).
$\mathrm{d}=0$: add control ventilation kit VW3A5882• (see ATV38 catalogue).
From $50^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$: $\mathrm{d} \geq 50 \mathrm{~mm}$: add control ventilation kit VW3A5882• (see ATV38 catalogue). Derate the operating current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $50^{\circ} \mathrm{C}$.

ATV38HD12N4 to D23N4:

From $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}: \mathrm{d} \geq 50 \mathrm{~mm}$: no special precautions.
$d=0$: remove the protective blanking cover from the top of the drive as shown overleaf (the degree of protection is then IP 20).

From $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$: $\mathrm{d} \geq 50 \mathrm{~mm}$: remove the protective blanking cover from the top of the drive as shown overleaf (the degree of protection is then IP 20).
Derate the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$.
$\mathrm{d}=0$: add control ventilation kit VW3A5882 (see ATV38 catalogue). Derate the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$.

Mounting and Temperature Conditions

ATV38HD25N4(X) to D79N4(X)

ATV38HC10N4X to C23N4X

- Free space in front of unit: 50 mm minimum.
- From $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$: no special precautions.
- From $40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$: add control ventilation kit VW3A588••• (see ATV38 catalogue). Derate the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$.
- Free space in front of unit: 50 mm minimum.
- From $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$: no special precautions.
- Up to $50^{\circ} \mathrm{C}$, derating the operating current by 2.2% for each ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$.

Removing the IP 41 Protective Blanking Cover

ATV38HU18N4 to U90N4

ATV38HD12N4 to D23N4

ATV38HD25N4(X) to D79N4(X)

Mounting in a Wall-fixing or Floor-standing Enclosure

Observe the mounting recommendations on the previous page.
To ensure proper air circulation in the drive:

- Fit ventilation grilles
- Ensure that ventilation is adequate: if not, install forced ventilation with a filter
- Use special IP 54 filters

Dust and damp proof metal wall-fixing or floor-standing enclosure (IP 54 degree of protection)

The drive must be mounted in a dust and damp proof casing in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.

To avoid hot spots in the drive, add a fan to circulate the air inside the enclosure, reference VW3A5882• (see ATV38 catalogue).

This enables the drive to be used in an enclosure where the maximum internal temperature can reach $60^{\circ} \mathrm{C}$.

Calculating the size of the enclosure

Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$) :

$$
\text { Rth }=\frac{\theta^{\circ}-\theta^{\circ} \mathrm{e}}{\mathrm{P}} \quad \begin{aligned}
& \theta^{\circ}=\text { maximum temperature inside enclosure in }{ }^{\circ} \mathrm{C} \\
& \theta^{\circ} \mathrm{e}=\text { maximum external temperature in }{ }^{\circ} \mathrm{C} \\
& \mathrm{P}=\text { total power dissipated in the enclosure in } \mathrm{W}
\end{aligned}
$$

Power dissipated by the drive: see section Selecting a drive.
Add the power dissipated by the other equipment components.
Useful heat dissipation surface of enclosure $S\left(\mathrm{~m}^{2}\right)$:
(sides + top + front panel if wall-mounted)
$S=\frac{K}{R t h} \quad K=$ enclosure thermal resistance per m^{2}
For metal enclosure: $\quad \mathrm{K}=0.12$ with internal fan
$K=0.15$ without fan
Caution: Do not use insulated enclosures, as they have a poor level of conductivity.

Access to Terminals - Power Terminals

Access to terminals

Switch off the drive.
ATV38HU18N4 to ATV38HD79N4(X):

- control terminals: unlock and open the hinged cover
- power terminals: accessible on the underside of the Altivar 38

Location of terminals: on the underside of the Altivar.

1 Control
2 Power
3 Terminal for connection of a protective conductor, $10 \mathrm{~mm}^{2}$ cross-section conforming to EN50178 (earth leakage current)

ATV38HC10N4X to HC33N4X:

- the control and power terminals can be accessed by removing the front cover

Power terminals

Terminal characteristics

Altivar ATV38H	Terminals	Maximum connection capacity		Tightening torque in Nm
		AWG	mm^{2}	
U18N4, U29N4, U41N4	all terminals	AWG 8	6	0.75
U54N4, U72N4, U90N4	all terminals	AWG 8	6	0.75
D12N4, D16N4, D23N4	all terminals	AWG 6	10	2
D25N4(X), D28N4(X)	$\begin{gathered} \text { L1, L2, L3, U, V, W, } \\ \stackrel{=}{=} \end{gathered}$	AWG 4	16	3
D33N4(X), D46N4(X)	L1, L2, L3, U, V, W,	AWG 2	35	4
$\begin{aligned} & \text { D54N4(X), } 64 \text { N4(X), } \\ & \text { D79N4(X) } \end{aligned}$	$\stackrel{\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{U}, \mathrm{~V}, \mathrm{~W},}{\perp}$	AWG 2/0	70	10
C10N4X	$\stackrel{1}{1}$	AWG 3/0	60	8
	other terminals	AWG 3/0	100	16
C13N4X	$\stackrel{1}{1}$	AWG 4/0	60	16
	other terminals	AWG 4/0	100	16
C15N4X	$\stackrel{1}{\square}$	AWG $1 / 0 \times 2$	60	16
	other terminals	AWG $1 / 0 \times 2$	100	16
C19N4X	$\stackrel{1}{\underline{-}}$	AWG $3 / 0 \times 2$	100	16
	other terminals	AWG $3 / 0 \times 2$	150	16
C23N4X	$\stackrel{1}{=}$	AWG 4/0 $\times 2$	100	32
	other terminals	AWG 4/0 $\times 2$	200	32

Power Terminals

Altivar ATV38H	Terminals	Maximum connection capacity		Tightening torque in Nm
		AWG	mm^{2}	
C25N4X	$\underline{1}$	AWG $2 / 0 \times 3$ - AWG 300×2	100	32
	other terminals	AWG $2 / 0 \times 3$-AWG 300×2	200	32
C28N4X	$\underline{1}$	AWG $3 / 0 \times 3$-AWG 350×2	150	32
	other terminals	AWG $3 / 0 \times 3$-AWG 350×2	150×2	32
C31N4X,	$\underline{1}$	AWG $4 / 0 \times 3$ - AWG 400×2	150	32
	other terminals	AWG $4 / 0 \times 3$ - AWG 400×2	150×2	32
C33N4X	$\stackrel{1}{=}$	AWG 250×3-AWG 500×2	150	32
	other terminals	AWG 250×3-AWG 500×2	150×2	32

Terminal layout

$\stackrel{ }{\approx}$	L 1	L 2	L 3	PA	PB	U	V	W	$\stackrel{\perp}{亏}$

ATV38HU18N4 to D23N4

ATV38HD25N4(X) and D79N4(X)

ATV38HC10N4X

L1	L2	L3	$\stackrel{\perp}{\stackrel{ }{\perp}}$	$\stackrel{y}{\rightleftharpoons}$			
+		-			U	V	W

ATV38HC13N4X to C19N4X

ATV38HC23N4X to C33N4X

Do not use

Terminal functions

Terminals	Function	For Altivar ATV38H
$\stackrel{\perp}{\perp}$	Altivar ground terminal	All ratings
L1	Power supply	All ratings
L2		
L3	DC bus outputs	All ratings except HU18N4 to HD23N4
-	Not used	ATV38HU18N4 to HD79N4(X)
PA	Outputs to motor	All ratings
PB		
U		
W		

Control Terminals

Terminal characteristics:

- Shielding connection terminal: for metal clamp or tag connector
- 2 removable terminals, one for the relay contacts, the other for the low-level I/O
- Maximum connection capacity : $1.5 \mathrm{~mm}^{2}$ - AWG 14
- Max. tightening torque: 0.4 Nm

Terminal layout:

Terminal functions

Terminal	Function	Electrical characteristics
$\begin{aligned} & \text { R1A } \\ & \text { R1B } \\ & \text { R1C } \end{aligned}$	Common point C/O contact (R1C) of R1 fault relay	Min. switching capacity - 10 mA for 24 V -- Max. switching capacity on inductive load ($\cos \varphi 0.4$ and L/R 7 ms): - 1.5 A for $250 \mathrm{~V} \sim$ and 30 V --
$\begin{aligned} & \text { R2A } \\ & \text { R2C } \end{aligned}$	N / O contact of R2 programmable relay	
AO1	Analog current output	$\mathrm{X}-\mathrm{Y}$ mA analog output, where X and Y can be configured Factory setting 0-20 mA impedance 500Ω
COM	Common for logic and analog inputs	
Al1	Analog voltage input	Analog input $0+10 \mathrm{~V}$ impedance $30 \mathrm{k} \Omega$
+10	Power supply for reference potentiometer 1 to $10 \mathrm{k} \Omega$	+10 V (- 0, +10\%) 10 mA max. short-circuit and overload protection
Al2	Analog current input	$X-Y$ mA analog input, where X and Y can be configured Factory setting 4-20 mA impedance 100Ω
$\begin{aligned} & \mathrm{LI} 1 \\ & \mathrm{LI2} \\ & \mathrm{LI3} \\ & \mathrm{LI4} \end{aligned}$	Logic inputs	Programmable logic inputs impedance $3.5 \mathrm{k} \Omega$ +24 V power supply (max. 30 V) State 0 if $<5 \mathrm{~V}$, state 1 if $>11 \mathrm{~V}$
+ 24	Power supply for inputs	+24 V protected against short-circuits and overloads, min. 18 V , max. 30 V Max. current 200 mA

Electromagnetic Compatibility - Wiring

Altivar 38 with integral EMC filter ATV38HU18N4 to HD79N4

Principle

- Grounds between drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with shielding connected to the ground at both ends of the motor cable, braking resistor (if fitted) and control-signalling cables. Conduit or metal ducting can be used for part of the shielding length provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation diagram

1 Sheet steel machine ground supplied with the drive, to be fitted as indicated on the diagram.
2 Altivar 38.
3 Non-shielded power supply wires or cable.
4 Non-shielded wires for the output of the safety relay contacts.
5 Fix and ground the shielding of cables 6,7 and 8 as close as possible to the drive:

- strip the cable to expose the shielding
- use the clamps supplied to fix the stripped part of the shielding to the metal plate 1

The shielding must be clamped tightly enough to the metal plate to ensure good contact.
6 Shielded cable for motor connection with shielding connected to ground at both ends.
The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.
7 Shielded cable for connecting the control/signalling wiring.
For applications requiring several conductors, use small cross-sections ($0.5 \mathrm{~mm}^{2}$).
The shielding must be connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.
8 Shielded cable for connecting braking resistor (if fitted). The shielding must be connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

Note:

- If using an additional input filter, it should be mounted behind the drive and connected directly to the line supply via an unshielded cable. Link 3 to the drive is then via the filter output cable.
- The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.

Electromagnetic Compatibility - Wiring

Altivar 38 without integral EMC filter ATV38HC10N4X to HC33N4X

Line chokes are compulsory if the line supply prospective short-circuit current is less than 22 kA . These chokes can be used to provide improved protection against overvoltages on the line supply and to reduce harmonic distortion of the current produced by the drive. The chokes are used to limit the line current.

Principle

- Grounds between drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with shielding connected to the ground at both ends of the motor cable, and controlsignalling cables. Conduit or metal ducting can be used for part of the shielding length provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Power wiring

The power wiring should consist of cables with 4 conductors or individual cables maintained as close as possible to the PE cable. Take care to route the motor cables well away from the power supply cables. The power supply cables are not shielded. If a radio interference filter is used, the grounds for the filter and the drive should be at the same potential with low-impedance links at high frequency (fixed to unpainted metal plate with anti-corrosion treatment/machine ground wiring). The filter should be fitted as close as possible to the drive.
If the environment is sensitive to radiated radio interference, the motor cables should be shielded. On the drive side, fix and connect the shielding to the machine ground with rustproof clamps. The main function of the motor cable shielding is to limit their radio frequency radiation. Therefore, use 4 -pole cables for the motor, connecting each end of the shielding in accordance with established practice for High Frequency wiring. The type of protective material (copper or steel) is less important than the quality of the connection at both ends. An alternative is to use a metal cable duct with good conductivity and no break in continuity.
Note: when using a cable with a protective sleeve (NYCY type) which fulfils the dual function of PE + screen, it must be connected correctly to both the drive and the motor (its radiation efficiency is reduced).

Control wiring

Shielding clamp

Cable grip. Check that the cable follows the path indicated by the clips

Wiring Recommendations, Use

Wiring recommendations

Power

Observe the cable cross-sectional areas recommended in the standards.
The drive must be earthed to conform with the regulations concerning high leakage currents (over 3.5 mA). Do not use a residual current device for upstream protection on account of the DC elements which may be generated by leakage currents. If the installation involves several drives on the same line, each drive must be earthed separately. If necessary, fit a line choke (consult the catalogue).

Keep the power cables separate from circuits in the installation with low-level signals (detectors, PLCs, measuring apparatus, video, telephone).

Control

Keep the control circuits away from the power cables. For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm connecting the shielding to each end.

Recommendations for use

With power switching via line contactor:

- Avoid operating contactor KM1 frequently (premature ageing of the filter capacitors). Use inputs LI1 to LI4 to control the drive
- these steps are essential in the event of cycles:
of less than 60 seconds for ATV38HU18N4 to HD79N4(X)
of less than 180 seconds for ATV38HC10N4X to ATV38HC33N4X
If safety standards necessitate isolation of the motor, fit a contactor on the drive output and use the "downstream contactor control" function (consult the programming manual).

Fault relay, unlocking

The fault relay is energized when the drive is powered up and is not faulty. It has one C/O contact at the common point.

The drive is unlocked after a fault by:

- powering down the drive until both the display and indicator lamps go out, then powering up again
- automatically or remotely via logic input: consult the programming manual

Connection Diagrams

3-phase power supply

(1) ATV38HC10N4X to C33N4X: Line choke compulsory. ATV38HU18N4 to D23N4: Line choke if necessary.
(2) Fault relay contacts for remote signalling of drive status.
(3) Internal +24 V . If an external +24 V supply is used, connect the 0 V from that source to the COM terminal, do not use the +24 terminal on the drive, and connect the common of the LI inputs to the +24 V of the external supply.
(4) R2 reassignable relay.

Note:

Fit interference suppressors to all inductive circuits near the drive or connected in the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Components which can be used in association with the Altivar: see catalogue.

Connection diagrams

Diagram with downstream contactor for ATV38HU18N4 to D23N4.

The shaded part should be added to the various diagram types.

Use the "downstream contactor control" function with relay R2, or logic output LO (-- 24 V) with the addition of an I/O extension card.
Consult the programming manual.

Note:

Fit interference suppressors to all inductive circuits near the drive or connected in the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Components which can be used in association with the Altivar: see catalogue.

Connection Diagrams

Diagram with downstream contactor for ATV38HD25N4(X) to C33N4X.

The shaded part should be added to the 3-phase power supply diagram.

Use the "downstream contactor control" function with relay R2, or logic output LO ($\quad-24 \mathrm{~V}$) switching the coil using an I/O extension card.
Consult the programming manual.
Note: Fit interference suppressors to all inductive circuits near the drive or connected in the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Components which can be used in association with the Altivar: see catalogue.

24 V external supply for supplying logic inputs

Keypad operation

Front panel

Use of keys and meaning of displays

90
$\left\{\begin{array}{l}\text { Flashing: } \\ \text { indicates the selected direction of rotation } \\ \text { Steady: } \\ \text { indicates the direction of motor rotation }\end{array}\right.$

LOC Indicates control via the terminal
PROG Appears in setup and programming mode Flashing: indicates that a value has been modified but not saved
4-character display:
displays numeric values and codes
One line of 16 characters:
displays messages in plain text

Scroll through menus or parameters and adjust a value.
Return to the previous menu or abort the current adjustment and return to the original value.
Select a menu, confirm and save a selection or adjustment.

If control via the terminal is active:

Use the display module delivered with the ATV38 or a version 5.1 or above display module (see label on the rear view).

Rear view

Notes:

The operator terminal may be connected and disconnected with the power on. If the terminal is disconnected when control of the drive via the terminal is enabled, the drive locks in fault mode SLF.
Access locking switch:

- position : Adjustment and configuration not accessible
- position : Adjustment accessible
- position \square : Adjustment and configuration accessible

Connector:

- for direct connection of the terminal to the drive
- for remote operation, the terminal can be connected via a cable provided in the VW3A58103 kit

Remote mounting of the terminal:

Use the kit, reference VW3A58103, comprising 1 cable with connectors, the kit for mounting on an enclosure door and the installation guide.

Access to Menus

The number of menus which can be accessed depends on the position of the access locking switch. Each menu is made up of a number of parameters.
1st

power-up | Subsequent |
| :---: |
| power-ups |

Language: French, English, German, Spanish, Italian

Macro-config: variable torque (factory setting) If an input/output has been reassigned,
[u5: Customised is displayed
Identification: display of the drive power and voltage

Display: display of electrical values, operation or fault

Adjust: configuration of parameters which can be accessed while the motor is rotating

Drive: motor-drive configuration

Control: configuration of drive control:
terminal strip, operator terminal, RS485

I/O: configuration of the I/O assignment

Faults: configuration of the behaviour of the motor-drive in the event of a fault, and the protection devices

Files: saving and restoring the configuration or return to factory settings

Only accessible if the "application" or "communication" card is installed
power-up power-ups

access:

CAUTION: If an access code has already been programmed, it may be impossible to modify some menus; these may not even be visible. In this case, see the section entitled "FILES menu" explaining how to enter the access code.

Access to Menus - Programming Principle

Language:

This menu can be accessed whatever position the access switch is in, and can be modified in stop or run mode.

Example :

© NT

Possible selections: English (factory setting), French, German, Spanish, Italian.

Programming principle:

The principle is always the same, with 1 or 2 levels:

- 1 level: see the "language" example above.
- 2 levels: see the "acceleration ramp" example below.

Macro-Configurations

This parameter can always be displayed and indicates whether an input/output has been reassigned.
Factory macro-configuration = Variable torque

Customizing the configuration:

The drive configuration can be customized by changing the I/O assignment in the I/O menu which can be accessed in programming mode (access switch in position \quad).

This customization modifies the displayed macro-configuration value:
display of

I/O assignment in variable torque macro-configuration

Logic input LI1	forward	Logic input LI5	ramp switching
Logic input LI2	reverse	Logic input LI6	Not assigned
Logic input LI3	Fault reset	Analog input Al3 or	summed ref.
Logic input LI4	Not assigned	Inputs $\mathrm{A}, \mathrm{A}+, \mathrm{B}, \mathrm{B}+$	summed ref.
Analog input Al1	motor frequency	Logic output LO	high speed reached
Analog input Al2	summed ref.	Analog output AO	motor current
Relay R1	drive fault		
Relay R2	drive running		
Analog output AO1	motor frequency		

[^0]
Display Menu

Display menu (selection of parameter displayed during operation)
The following parameters can be accessed whatever position the access switch is in, stop or run mode.

Adjust Menu

This menu can be accessed when the switch \square and \square. Adjustment parameters can be modified in stop mode OR during operation. Ensure that any changes made during operation are not dangerous; changes should preferably be made in stop mode.

List of adjustment parameters which can be accessed in the factory configuration, without an I/O extension card present.

Code	Description	Adjustment range	Factory setting
LFr	Freq. Ref. - Hz	LSP to HSP	-
	Appears when control via the terminal is activated: parameter L [[in the control menu		
$\begin{aligned} & A[C \\ & d E[\end{aligned}$	Aceeleration - s Deceleration - $-s$	$\begin{aligned} & \hline 0.05 \text { to } 999.9 \\ & 0.05 \text { to } 999.9 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~s} \\ & 3 \mathrm{~s} \end{aligned}$
	Acceleration and deceleration ramp times (0 to nominal motor frequency (FrS)).		
L5P	Low Speed - Hz	0 to HSP	0 Hz
	Low speed		
H5P	High Speed - - Hz	LSP to tFr	50 Hz
	High speed: ensure that this setting is suitable for the motor and the application.		
FLE	liain - \%	0 to 100	20
	Frequency loop gain: used to adapt the response of the machine speed according to the dynamics. For high resistive torque, high inertia or fast cycle machines, increase the gain gradually.		
5t月	Stability - \%	0 to 100	20
	Used to adapt the return to steady state after a speed transient, according to the dynamics of the machine. Gradually increase the stability to avoid any overspeed.		
ItH	ThermCurrent - A	0.25 to 1.1 ln (1)	According to drive rating
	Current used for the motor thermal protection. Set ItH to the nominal current on the motor rating plate.		
$t d[$	IC: In.j. Time - 5	0 to 30 s Cont	0.5 s
	DC injection braking time. If this is increased to more than 30 s , "Cont" is displayed, Continuous current injection. The injection current will equal SdC after 30 s .		
FFt	NST Thr:Shold - Hz	0 to HSP	0 Hz
	Freewheel stop trip threshold: on a stop on ramp or fast stop request, the selected type of stop is activated until the speed drops below this threshold. Below this threshold, freewheel stopping is activated.		
$\begin{aligned} & J P F \\ & J F Z \\ & J F \exists \end{aligned}$	Jump Freg. - Hz	0 to HSP	0 Hz
	Jump frequency: prohibits prolonged operation over a frequency range of $+/-2.5 \mathrm{~Hz}$ around JPF. This function prevents a critical speed which leads to resonance.		
U5 [Machine Coef	0.01 to 100	1
	Coefficient applied to parameter rFr (output frequency applied to the motor), the machine speed is displayed via parameter USP: USP $=\mathrm{rFr} x$ USC		
tLS	LSP Time -	0 to 999.9	0 (no time limit)
	Low speed operating time. After operating at LSP for a given time, the motor is stopped automatically. The motor restarts if the frequency reference is greater than LSP and if a run command is still present. Caution : value 0 corresponds to an unlimited period		

(1) In is the drive nominal current shown in the catalogue and on the rating plate.

Adjust Menu

The following parameters may be accessible following reassignment of the I／O in the standard product or modification of the settings．

Code	Description	Adjustment range	Factory setting
AL 2	Acoel． 2 － 5	0.05 to 999.9	5 s
	$2^{\text {nd }}$ acceleration ramp time		
dEz	Iecel． 2 － 5	0.05 to 999.9	5 s
	$2^{\text {nd }}$ deceleration ramp time．These parameters can be accessed if the ramp switching threshold（Frt parameter）is other than 0 Hz or if a logic input has been assigned to ramp switching．		
5d［	de I at rest－A	0.1 to $1.1 \ln$（1）	According to drive rating
	Level of injection braking current applied after 30 seconds if tdC＝Cont． Check that the motor will withstand this current without overheating．		
1dL	IC In，Curr．－－	0.1 to 1.1 ln （1）	According to drive rating
	Level of DC injection braking current This parameter can be accessed if a logic input has been assigned to current injection braking．After 30 seconds the injection current is limited to 0.5 Ith if set to a higher value．		
PFL	U／f Profile－\％	0 to 100\％	20\％
	Can be used to adjust the motor quadratic power supply ratio when the energy－saving function has been inhibited．		
5P2	Preset Sp． $2-\mathrm{Hz}$	LSP to HSP	10 Hz
	$2^{\text {nd }}$ preset speed		
5Pヨ	Preset Sp． 3 －Hz	LSP to HSP	15 Hz
	$33^{\text {rd }}$ preset speed		
$5 P 4$	Freset Sp． 4 －Hz	LSP to HSP	20 Hz
	$4^{\text {th }}$ preset speed		
5P5	Preset Sp．5－Hz	LSP to HSP	25 Hz
	$5^{\text {th }}$ preset speed		
5P6	Preset Sp．6－Hz	LSP to HSP	30 Hz
	$6{ }^{\text {th }}$ preset speed		
5P7	Preset Sp． 7 －Hz	LSP to HSP	35 Hz
	$7^{\text {th }}$ preset speed		
5P日	Preset Sp． 8 － Hz	LSP to HSP	50 Hz
	$8^{\text {th }}$ preset speed		
$U F r$	IR Compens．－\％	0 to 800\％	0\％
	$U F r$ only appears if the SPC parameter（special motor）of the drive menu is set to＂yes＂．Used to adjust the value measured during auto－tuning that corresponds to 100% ．		
JロL	Jogl Freg．－Hz	0 to 10 Hz	10 Hz
	Jog frequency		
」ちt	Jogl Ielay－	0 to 2 s	0.5 s
	Anti－repeat delay between two consecutive jog operations		

（1）In corresponds to the drive nominal current indicated in the catalogue and on the drive rating plate．

Adjust Menu

Code	Description	Adjustment range	Factory setting
dt 5	Tacho Coeff.	1 to 2	1
	Multiplication coefficient of the feedback associated with the tachogenerator function:$\mathrm{dtS}=\frac{9}{\text { tachogenerator voltage at max. speed HSP }}$		
rPG	FI Prold, Gain	0.01 to 100	1
	PI regulator proportional gain		
r 16	FI Int. liain	0.01 to 100/s	1/s
	PI regulator integral gain		
Fbs	FI Coeff.	1 to 100	1
	PI feedback multiplication coefficient		
PIL	FI Inversion	no-yes	no
	Reversal of the direction of correction of the PI regulator no: normal yes: reverse		
Ftd	Freq. Lev. At.t. - Hz	LSP to HSP	50 Hz
	Motor frequency threshold above which the logic output changes to 1		
F2d	Freq. 2 ftt - Hz	LSP to HSP	50 Hz
	Frequency 2 threshold: same function as Ftd, for a 2nd frequency value		
[td	Curr.Lev.Att - A	0 to 1.1 ln (1)	$1.1 \mathrm{ln}(1)$
	Current threshold above which the logic output or the relay changes to 1		
ttd	ThermLev. At.t. - \%	0 to 118\%	100\%
	Motor thermal state threshold above which the logic output or the relay changes to 1		
P5P	FI Filter $\quad-\mathrm{s}$	0.0 to 10.0	0 s
	Used to adjust the filter time constant on the PI feedback		
P12	FI Preset $2-\%$	0 to 100\%	30\%
	$2^{\text {nd }}$ preset PI reference, when a logic input has been assigned to the 4 preset PI references function. $100 \%=$ process $\max 0 \%=$ process \min		
P13	FI Preset 3 - \%	0 to 100\%	60\%
	$3^{\text {rd }}$ preset PI reference, when a logic input has been assigned to the 4 preset PI references function. $100 \%=$ process \max $0 \%=$ process min		
dtd	ATV th. fault	0 to 118\%	105\%
	Drive thermal threshold above which the logic output or the relay changes to 1		

(1) In corresponds to the drive nominal current indicated in the catalogue and on the drive rating plate.
\square The parameters with a grey background appear if an I/O extension card has been installed.

Drive Menu

This menu can be accessed when the switch is in position \square.
The parameters can only be modified in stop mode with the drive locked.

Drive performance can be optimized by:

- entering the values given on the rating plate in the drive menu
- performing an auto-tune operation (on a standard asynchronous motor)

Code	Description	Adjustment range	Factory setting
UnS	Nom. Mot. Volt - V	200 to 480 V	400 V
	Nominal motor voltage marked on the rating plate. The adjustment range depends on the drive model.		
Frs	Nom. Mot. Freal - Hz	10 to 500 Hz	50 Hz
	Nominal motor frequency given on the rating plate		
$n \mathrm{nr}$	Nom. Mot. Curr - A	0.25 to 1.1 ln (1)	according to drive rating
	Nominal motor current given on the rating plate		
n5 P	Nom, MotSpeed - rmm	0 to 9999 rpm	according to drive rating
	Nominal motor speed given on the rating plate		
[05	Mot. Cos Phi	0.5 to 1	according to drive rating
	Motor Cos Phi given on the rating plate		
tリn	Auto Tuning	no - yes	no
	Used to auto-tune motor control once this parameter has been set to "yes". Once auto-tuning is complete, the parameter automatically returns to "done" or "no" in the event of a fault. Caution: Auto-tuning will only be performed if no command has been activated. If a "freewheel stop" or "fast stop" function has been assigned to a logic input, this input must be set to 1 (active at 0).		
$t F r$	Max. Frea, - Hz	10 to 500 Hz	60 Hz
	Maximum output frequency. The maximum value depends on the switching frequency. See SFR parameter (drive menu)		
nld	Eneroly Eoo	no - yes	yes
	Optimizes motor efficiency		
Fdb	I lim adapt.	no - yes	no
	Adaptation of the limit current as a function of the output frequency (ventilation applications where the load curve changes as a function of the gas density).		
bra		no - yes	yes
	Activating this function automatically increases the deceleration time, if this has been set at too low a value for the inertia of the load, thus avoiding the drive going into ObF fault. This function may be incompatible with positioning on a ramp and with the use of a braking resistor.		
Frt	SuitehRamp2-Hz	0 to HSP	0 Hz
	Ramp switching frequency Once the output frequency exceeds Frt, the ramp times taken into account are AC2 and dE2.		

Drive Menu

(1) yes if $5 F E=L F$, no if $5 F E=H F I$ or $H F$ ㄹI
\square The parameters with a grey background appear if a VW3 A58202 I/O extension card has been installed.

Control Menu

This menu can be accessed when the switch is in position \square . The parameters can only be modified in stop mode with the drive locked.

The I/O with a grey background can be accessed if an I/O extension card has been installed.
3 -wire control (Pulse control: one pulse is sufficient to control start-up). This option inhibits the
"automatic restart" function.
Wiring example:
LII: stop
LI2: forward
LIx: reverse

This option only appears if 2 -wire control is configured.

[^1]
Control Menu

Code	Description	Adjustment range	Factory setting
b 5 P	deadb. /pedst no B B	no BNS: pedestal BLS: deadband	no
	Management of operation at low speed:		
$\begin{aligned} & {[r L} \\ & {[r H} \end{aligned}$	$\begin{aligned} & \text { AI2 min Ref. - mi } \\ & \text { HI2 Max Ref. - mi } \end{aligned}$	$\begin{aligned} & 0 \text { to } 20 \mathrm{~mA} \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$
	Minimum and maximum values of the signal on input Al2. These two parameters are used to define the signal sent to Al 2 . There are several configuration possibilities, one of which is to configure the input for a $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 20-4 \mathrm{~mA}$, etc signal.		
$\begin{aligned} & \text { AOL } \\ & \text { ROH } \end{aligned}$	Min. Val $\mathrm{AD}-\mathrm{MA}$ 0 Max. Val $\mathrm{AO}-\mathrm{MA}$ 0	$\begin{aligned} & 0 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$
		Minimum and maximum values of the signal on outputs AO and AO1 (1) These two parameters are used to define the output signal on AO and AO1. Eg: 0-20 mA, 4-20 mA, 20-4mA, etc	

(1) The AO output is available if an I/O extension card has been installed.

Control Menu

Code	Description	Adjustment range	Factory setting
5tr	Save Ref.	NO-RAM-EEP	NO
	Associated with the + speed/- speed function, this function is used to save the reference: when run commands disappear (saved in RAM) or when the line supply disappears (saved in EEPROM). On the next start-up, the speed reference is the last reference saved.		
L [[Keyliad Comm.	No - Yes	No
	Used to activate drive control via the terminal. The STOP/RESET, RUN and FWD/REV keys are active. The speed reference is given by parameter LFr. Only the freewheel stop, fast stop, DC injection stop commands and external fault remain active at the terminals. If the drive/terminal connection is cut, the drive locks in SLF fault mode.\qquad This function is no longer accessible by the keypad if LIX=FTK.		
P5t	STOP Priorit	No - Yes	Yes
	This function gives priority to the STOP key irrespective of the control channel (terminals or fieldbus). To change the PSt parameter to "no": 1 - Display "no" 2 - Press the "ENT" key 3 - The drive displays "See manual" 4 - Press $\boldsymbol{\Delta}$ then $\boldsymbol{\nabla}$ then "ENT" For applications with continuous processes, it is advisable to configure the key as inactive (set to "no").		
Add	Ir 1 veAddress	0 to 31	0
	Drive address when it is controlled via the connector port (with the operator terminal and programming terminal removed).		
tbr	BdRate RS485	9600-19200	19200
	Transmission speed via the RS485 serial link (effective on the next power-up) 9600 bps 19200 bps \triangle If $t b r \neq 19200$, the terminal can no longer be used. To reactivate the terminal, reconfigure t br as 19200 via the serial link or revert to factory settings (see page 119).		
rPr	Reset ents	No-APH-RTH	No
	Reset kWh or the operating time. No APH: Reset kWh to zero RTH: Reset operating time to zero The reset command must be confirmed with "ENT" APH and RTH take effect immediately. The parameter then automatically reverts to No		

I/O Menu

This menu can be accessed when the switch is in position \square.
The assignments can only be modified in stop mode with the drive locked.

Code	Function
LIZ	LI2 AEsign.
	See the summary table and description of the functions.

The inputs and outputs available in the menu depend on the I/O cards installed (if any) in the drive, as well as the selections made previously in the control menu.

Summary table of the logic input assignments (exc. 2-wire / 3-wire option)

I/O extension option cards		2 logic inputs LI5-LI6
Drive without option		3 logic inputs LI2 to LI4
N0 : Not assigned	(Not assigned)	X
RU:Reverse	(Reverse)	X
RF2:Switch ramp2	(Ramp switching)	X
Joli	(Jog operation)	X
+SF: + Speed	(+ speed)	X
-SF: - speed	(- speed)	X
FS2: 2 Preset Speeds	(2 preset speeds)	X
PS4 : 4 Preset Speeds	(4 preset speeds)	X
PS8: 8 Preset Speeds	(8 preset speeds)	X
NST:Freewhl Stole	(Freewheel stop)	X
ICI:IC inject.	(Injection stop)	X
FST:Fast stol	(Fast stop)	X
CHF: Multi. Motor	(Motor switching)	X
FL0:Forced Loeal	(Forced local mode)	X
RST: Fault Reset.	(Fault reset)	X
RFC: Auto/Manu	(Reference switching)	X
ATN: Auto Tuning	(Auto-tuning)	X
FRUL: PI Auto/Mari	(PI Auto/Man) If one AI = PIF	X
PR2:PI 2 Preset	(2 preset PI references) If one $\mathrm{Al}=\mathrm{PIF}$	X
PR4:PI 4 Preset.	(4 preset PI references) If one $\mathrm{Al}=\mathrm{PIF}$	X
EDID: Ext flt.	(external fault)	X
FTK: Fore.Keys.	(Force to keypad)	X

\triangle
CAUTION: If a logic input is assigned to "Freewheel stop" or "Fast stop", start-up can only be performed by linking this input to the +24 V , as these stop functions are active when the inputs are at state 0.

I/O Menu

Summary table of the encoder and analog input assignments

I/O extension option cards			Analog input	Encoder
Drive without option		Analog input Al2		
N0:Not aseighed	(Not assigned)	X	X	X
FR2:Speed Ref2	(Speed reference 2)	X	X	
SHI:Sumimed Ref.	(Summed reference)	X	X	X
PIF:PI Regulator	(PI regulator feedback)	X	X	
PIMEPI Manamef.	(Manual PI speed reference) If one AI = PIF		X	
SFB: Tacho feedtb	(Tachogenerator)		X	
PTC: Therm, Sensor	(PTC probes)		X	
RGI:Fij feedok	(Encoder or detector feedback)			X

(1) NB: The menu for assigning encoder input $\mathrm{A}+, \mathrm{A}-, \mathrm{B}+, \mathrm{B}-$ is called "Assign Al 3 ".

Summary table for logic output assignments

I/O extension option card			Logic output
Drive without option		Relay R2	
No : Not assigned	(Not assigned)	X	X
RUNW: Ir iveRunnirs	(Drive running)	X	X
OCC: Dut, Put Cont.	(Downstream contactor control)	X	X
FTA: Freal ittain.	(Frequency threshold reached)	X	X
FLA:HSP Attained	(HSP reached)	X	X
CTA:I Attained	(Current threshold reached)	X	X
SRA: FRH Attained	(Frequency reference reached)	X	X
TSA:MtreTherm Lul	(Motor thermal threshold reached)	X	X
AFL: LossFollower	(Loss of 4/20 mA signal)	X	X
F2.f: Frear 2 Att.	(Frequency 2 threshold reached)	X	X
t.Ad: ATV th. alarm	(Drive thermal threshold reached)	X	X

I／O Menu

Summary table for the analog output assignments

I／O extension option		Analog output AO
Drive without option		Analog output AO1
No ：Not aseighed	（Not assigned）	X
OCR：Motor Curr．	（Motor current）	X
OFR：Motor Frea	（Motor speed）	X
ORP：Output ramp	（Ramp output）	X
ORS：Sionted ramb	（Signed ramp output）	X
OPS：PI ref．	（PI reference output）If one $\mathrm{Al}=\mathrm{PIF}$	X
OPF：PI Feedback	（PI feedback output）If one $\mathrm{Al}=\mathrm{PIF}$	X
OPE：PI Error	（PI error output）If one $\mathrm{Al}=\mathrm{PIF}$	X
OPI：PI Intesmal	（PI integral output）If one $\mathrm{AI}=\mathrm{PIF}$	X
OPR：Output Fower	（Motor power）	X
THR：Motor Themmal	（Motor thermal state）	X
THI：IriveThermal	（Drive thermal state）	X

Once the I／O have been reassigned，the parameters related to the function automatically appear in the menus，and the macro－configuration indicates＂CUS：Customised＂．Some reassignments result in new adjustment parameters which the user must not forget to configure in the adjust menu：

I／O		Assignments	Parameters to set
LI	RP2	Ramp switching	R［J dEz
LI	JOG	Jog operation	JロG J何
LI	PS2	2 preset speeds	$5 P 2$
LI	PS4	4 preset speeds	5P2－5P3－5P4
LI	PS8	8 preset speeds	5P5－5P6－5P7－5P日
LI	DCI	Injection stop	Id［
LI	PR4	4 preset PI references	P12－P1ヨ
AI	PIF	Pl regulator feedback	rPE－rIL－PIL－P5P
AI	SFB	Tachogenerator	$d t 5$
LO／R2	FTA	Frequency threshold reached	Ftd
LO／R2	CTA	Current threshold reached	［td
LO／R2	TSA	Motor thermal threshold reached	ttd
LO／R2	F2A	Frequency 2 threshold reached	F2d
LO／R2	TAD	Drive thermal threshold reached	$d t d$

I/O Menu

Some reassignments result in new adjustment parameters which the user must not forget to configure in the control, drive or fault menu:

I/O	Assignments		Parameters to set
LI	- SP	- speed	5t r (control menu)
LI	FST	Fast stop	$d[$ F (drive menu)
LI	RST	Fault reset	r 5 t (fault menu)
LI	CHP	Motor switching	PL[(drive menu)
AI	SFB	Tachogenerator	$5 d d$ (fault menu)
A+, A-, B+, B-	SAI	Summed reference	PLt, PL 5 (drive menu)
A+, A-, B+, B-	RGI	PG feedback	PLE, PL 5 (drive menu)

Configurable I/O Application Functions

Function compatibility table

The choice of application functions may be limited by incompatibility between certain functions. Functions which are not listed in this table are fully compatible.

Incompatible functions

Compatible functions

Not applicable
Priority functions (functions which cannot be active simultaneously):

| \leftarrow | \uparrow |
| :--- | :--- | The function indicated by the arrow has priority over the other.

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.

Configurable I/O Application Functions

Logic input application functions

Operating direction: forward/reverse

Reverse operation can be disabled for applications requiring only a single direction of motor rotation.

2-wire control

Run (forward or reverse) and stop are controlled by the same logic input, for which state 1 (run) or 0 (stop), or a change in state is taken into account (see the 2 -wire control menu).

3-wire control

Run (forward or reverse) and stop are controlled by 2 different logic inputs.
LI1 is always assigned to the stop function. A stop is obtained on opening (state 0).
The pulse on the run input is stored until the stop input opens.
During power-up or a manual or automatic fault reset, the motor can only be supplied with power after prior resetting of the "forward", "reverse", and "injection stop" commands.

Ramp switching : $1^{\text {st }}$ ramp: ACC, dEC; $2^{\text {nd }}$ ramp: AC2, dE2
Two types of activation are possible:

- activation of a logic input LIx
- detection of an adjustable frequency threshold

If a logic input is assigned to the function, ramp switching can only be performed by this input.
Step by step operation (JOG): Low speed operation pulse
If the JOG contact is closed and then the operating direction contact is actuated, the ramp is 0.1 s irrespective of the ACC, dEC, AC2, dE2 settings. If the direction contact is closed and the JOG contact is then actuated, the configured ramps are used.

Parameters which can be accessed in the adjust menu:

- JOG speed
- anti-repeat delay (minimum time between 2 "JOG" commands)

Configurable I/O Application Functions

+/- speed: Two types of operation are available.
1 Use of single action buttons: two logic inputs are required in addition to the operating direction(s). The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.

This function accesses the STr save reference parameter in the Control menu.
2 Use of double action buttons: only one logic input assigned to + speed is required.

+ speed/- speed with double action buttons:
Description: 1 button pressed twice for each direction of rotation.
Each action closes a volt-free contact.

	Released (- speed)	Press 1 (speed maintained)	Press 2 (+ speed)
forward button	-	a	a and b
reverse button	-	c	c and d

Wiring example:
LI1: forward
LIx: reverse
Lly: + speed

This type of $+/$ - speed is incompatible with 3 -wire control. In this case, the - speed function is automatically assigned to the logic input with the highest number (for example: LI3 (+ speed), LI4 (- speed)).

In both cases, the maximum speed is given by the references applied to the analog inputs. For example, connect Al1 to the +10 V .

Configurable I/O Application Functions

Preset speeds

2, 4 or 8 speeds can be preset, requiring 1, 2 or 3 logic inputs respectively.
The following assignment order must be observed : PS2 (LIx), then PS4 (Lly), then PS8 (LIz).

To unassign the logic inputs, the following order must be observed: PS8 (LIz), then PS4 (Lly), then PS2 (LIx).

Reference switching

To configure the AI1/AI2 reference switching:

- Verify that the LI is not configured to "RFC: Auto/TIEru" (if so, configure the LI to "NO: Not assigned").
- Configure a LI to "RFC: Auto/Manu". The second reference is then AI2.

To configure the Al1/Al3 reference switching:

- Verify that the LI is not configured to "RFC: Auto/Maru" (if so, configure the LI to "No: Not assigned").
- Configure Al3 to "FR2! Sipeed Ref 2 ".
- Configure a LI to "RFC: Auto/Manu". The second reference is then Al3.

Connection diagram

Freewheel stop

Causes the motor to stop using the resistive torque only. The motor power supply is cut.
A freewheel stop is obtained when the logic input opens (state 0).

DC injection stop

An injection stop is obtained when the logic input closes (state 1).

Fast stop

Braked stop with the deceleration ramp time reduced by a reduction factor dCF which appears in the drive menu.
A fast stop is obtained when the logic input opens (state 0).

Configurable I/O Application Functions

Motor switching

This function enables two motors with different ratings to be powered by the same drive in succession, with switching performed by an appropriate sequence at the drive output. Switching must take place with the motor stopped, and the drive locked. The following internal parameters are switched automatically by the logic command:

- nominal motor current
- injection current

This function automatically disables thermal protection on the second motor.
Accessible parameter: Ratio of PCC motor ratings in the drive menu.

Fault reset

Two types of reset are available: partial or general (rSt parameter in the "fault" menu).
Partial reset (rSt = RSP):
Used to clear the stored fault and reset the drive if the cause of the fault has disappeared.
Faults affected by partial clearing:

- line overvoltage
- DC bus overvoltage
- motor phase loss
- overhauling
- communication fault
- motor overheating
- motor overload
- loss of 4-20 mA
- external fault
- serial link fault
- drive overheating
- overspeed

General reset (rSt = RSG):
This inhibits all faults (forced operation) except SCF (motor short circuit) while the assigned logic input is closed.

Forced local mode

Used to switch between line control mode (serial link) and local mode (controlled via the terminal strip or via the terminal).

Auto-tuning

When the assigned logic input changes to 1 an auto-tuning operation is triggered, in the same way as parameter tUn in the "drive" menu.

Caution: Auto-tuning will only be performed if no command has been activated. If a "freewheel stop" or "fast stop" function has been assigned to a logic input, this input must be set to 1 (active at 0).
Application: Motor switching for example.
Preset PI auto-man, PI reference: See PI function (page 111)

External fault

When the assigned logic input changes to 1 , the motor stops (according to the configuration of the L5F Stoplf lt parameter in the Drive menu), and the drive locks in EFF external fault fault mode.

Force to keypad

Enables a LI to be used to select for local control: If LIX=FTK and FTK=0: operation by the control terminals If LIX=FTK and FTK=1: control by the keypad

- If LIX=FTK, the LCC function in the control menu is no longer accessible by the keypad. In consequence it is impossible to control the drive by the keypad.
- When FTK has been disactivated it is neccesary to revalidate the function LCC again in the control menu.

Configurable I/O Application Functions

Analog input application functions

Input Al1 is always the speed reference.

Assignment of Al2 and Al3

Summed speed reference: The frequency references provided by AI2 and AI3 can be summed with AI1.
Speed regulation with tachogenerator: (Assignment to AI3 only with an I/O extension card with analog input): used for speed correction via tachogenerator feedback.
An external divider bridge is required to adapt the voltage of the tachogenerator. The maximum voltage must be between 5 and 9 V . A precise setting is then obtained by setting parameter dtS available in the adjust menu.

PTC probe protection: (only with an I/O extension card with analog input). Used for the direct thermal protection of the motor by connecting the PTC probes in the motor windings to analog input AI3.
PTC probe characteristics:
Total resistance of the probe circuit at $20^{\circ} \mathrm{C}=750$ Ohms.
PI regulator: Used to regulate a process with a reference and a feedback given by a sensor. In PI mode the ramps are all linear, even if they are configured differently.
With the PI regulator, it is possible to:

- Adapt the feedback via FbS.
- Correct Pl inversion.
- Adjust the proportional and integral gain (RPG and RIG).
- Assign an analog output for the PI reference, PI feedback and PI error.
- Apply a ramp to establish the action of the PI (AC2) on start-up if PSP >0.

If $P S P=0$ the active ramps are $A C C / d E C$. The $d E C$ ramp is always used when stopping.
The motor speed is limited to between LSP and HSP.
Note: PI regulator mode is active if an AI input is assigned to PI feedback. This Al assignment can only be made after disabling any functions incompatible with PI (see page 106).

Auto/Man: This function can only be accessed when the PI function is active, and requires an I/O extension card with analog input

- Via logic input LI, this is used to switch operation to speed regulation if $\mathrm{LIX}=0$ (manual reference on Al 3), and PI regulation if $\mathrm{LIx}=1$ (auto).

Configurable I/O Application Functions

Preset references:

2 or 4 preset references require the use of 1 or 2 logic inputs respectively:

2 preset references		4 preset references		
Assign: LIx to Pr2		Assign: LIx to Pr2, then Lly to Pr4		
LIx	Reference	Lly	LIx	Reference
0	Analog reference	0	0	Analog reference
1	Process $\max (=10 \mathrm{~V})$	0	1	PI2 (adjustable)
		1	0	PI3 (adjustable)
		1	1	Process max (=10 V)

Encoder input application functions

(only with an I/O extension card with encoder input)
Speed regulation: Used to correct the speed via an incremental encoder or detector. (See documentation supplied with the card).

Summed speed reference: The reference provided by the encoder input is summed with Al1. (see documentation supplied with the card)
Applications:

- Synchronization of the speed of a number of drives. Parameter PLS on the "drive" menu is used to adjust the speed ratio of one motor in relation to that of another.
- Reference via encoder.

Logic output application functions

Relay R2, LO solid state output (with I/O extension card)
Downstream contactor control (OCC): can be assigned to R2 or LO
Enables the drive to control an output contactor (located between the drive and the motor). The request to close the contactor is made when a run command appears. The request to open the contactor is made when there is no current to the motor.

If a DC injection braking function has been configured, it should not be left operating too long in stop mode, as the contactor only opens at the end of braking.

Drive running (RUN): can be assigned to R2 or LO
The logic output is at state 1 if the motor power supply is provided by the drive (current present) or if a run command is present with a zero reference.

Frequency threshold reached (FTA): can be assigned to R2 or LO
The logic output is at state 1 if the motor frequency is greater than or equal to the frequency threshold set by Ftd in the adjust menu.

Frequency 2 threshold reached (F2A): can be assigned to R2 or LO
The logic output is at state 1 if the motor frequency is greater than or equal to the frequency threshold set by F2d in the adjust menu.

Reference reached (SRA): can be assigned to R2 or LO
The logic output is at state 1 if the motor frequency is equal to the reference value.

Configurable I/O Application Functions

High speed reached (FLA): can be assigned to R2 or LO
The logic output is at state 1 if the motor frequency is equal to HSP.
Current threshold reached (CTA): can be assigned to R2 or LO
The logic output is at state 1 if the motor current is greater than or equal to the current threshold set by Ctd in the adjust menu.

Motor thermal state reached (TSA): can be assigned to R2 or LO
The logic output is at state 1 if the motor thermal state is greater than or equal to the thermal state threshold set by ttd in the adjust menu.

Drive thermal state reached (TAD): can be assigned to R2 or LO
The logic output is at state 1 if the drive thermal state is greater than or equal to the thermal state threshold set by dtd in the adjust menu.

Loss follower (APL): can be assigned to R2 or LO
The logic output is at 1 if the signal on the $4-20 \mathrm{~mA}$ input is below 2 mA .

Analog output AO and AO1 application functions

Analog outputs AO and AO1 are current outputs, from AOL (mA) to $\mathrm{AOH}(\mathrm{mA})$,

- AOL and AOH can be configured between 0 and 20 mA .

Examples of AOL - AOH: 0-20 mA
4-20 mA
20-4mA
Motor current (code OCR): the image of the motor rms current.

- AOH corresponds to twice the drive nominal current.
- AOL corresponds to zero current.

Motor frequency (code OFR): the motor frequency estimated by the drive.

- AOH corresponds to the maximum frequency (parameter tFr).
- AOL corresponds to zero frequency.

Ramp output (code ORP): the image of the ramp output frequency.

- AOH corresponds to the maximum frequency (parameter tFr).
- AOL corresponds to zero frequency.

Signed ramp (code ORS): the image of the ramp output frequency and direction.

- AOL corresponds to the maximum frequency (parameter tFr) in reverse direction.
- AOH corresponds to the maximum frequency (parameter tFr) in forward direction.
- $\frac{\mathrm{AOH}+\mathrm{AOL}}{2}$ corresponds to zero frequency.

PI reference (code OPS): the image of the PI regulator reference.

- AOL corresponds to the minimum reference.
- AOH corresponds to the maximum reference.

PI feedback (code OPF): the image of the PI regulator feedback.

- AOL corresponds to the minimum feedback.
- AOH corresponds to the maximum feedback.

Configurable I/O Application Functions

PI error (code OPE): the image of the PI regulator error as a \% of the sensor range (maximum feedback - minimum feedback).

- AOL corresponds to the maximum error < 0 .
- AOH corresponds to the maximum error >0.
- $\frac{\mathrm{AOH}+\mathrm{AOL}}{2}$ corresponds to a zero error ($\mathrm{OPE}=0$).

PI integral (code OPI): the image of the PI regulator error integral.

- AOL corresponds to a zero integral.
- AOH corresponds to a saturated integral.

Motor power (code OPR): the image of the motor power consumption.

- AOL corresponds to 0% of the nominal motor power.
- AOH corresponds to 200% of the nominal motor power.

Motor thermal state (code THR): the image of the motor thermal state, calculated.

- AOL corresponds to 0%.
- AOH corresponds to 200%.

Drive thermal state (code THD): the image of the drive thermal state, calculated.

- AOL corresponds to 0\%.
- AOH corresponds to 200%.

This menu can be accessed when the switch is in position
Modifications can only be made in stop mode with the drive locked.

Code	Description Factory
At	Huto R
	This function is used to restart the drive automatically if the fault has disappeared (Yes/No option). Automatic restarting is possible after the following faults: - line overvoltage - DC bus overvoltage - external fault - motor phase loss - serial link fault - communication fault - loss of 4-20 mA signal - motor overload (condition: motor thermal state less than 100%) - drive overheating (condition: drive thermal state less than 70%) - motor overheating (condition: resistance of probes less than 1,500 Ohms) When the function is activated, following appearance of one or more of these faults, the R1 relay stays closed: the drive attempts to start every 30 s . A maximum of 6 attempts are made with the drive unable to start (fault present). If all 6 fail, the drive remains locked definitively with the fault relay open, until it is reset by being switched off. This function requires the associated sequence to be maintained. Ensure that accidental restarting will not pose any danger to either equipment or personnel.
r 5t	Reset Tylpe
	This function can be accessed if fault reset is assigned to a logic input. 2 possible options: partial reset (RSP), general reset (RSG) Faults affected by a partial reset ($\mathrm{rSt}=\mathrm{RSP}$) - line overvoltage - DC bus overvoltage - motor overload - loss of 4-20 mA - motor overheating - overhauling - motor phase loss - drive overheating - serial link fault - external fault - communication fault - overspeed Faults affected by a general reset ($\mathrm{rSt}=\mathrm{RSG}$): all faults. The general reset actually inhibits all faults (forced operation). To configure rSt = RSG: 1 Display RSG 2 Press the "ENT" key 3 The drive displays "See manual" 4 Press $\boldsymbol{\Delta}$ then $\boldsymbol{\nabla}$ then "ENT"
DPL	DutPhaseLoss ${ }^{\text {a }}$
	Used to enable the motor phase loss fault. (Fault is eliminated if an isolator is used between the drive and the motor). Choice Yes/No
IPL	InPhaseLoss
	Used to enable the line phase loss fault (fault is eliminated if there is a direct power supply via a DC bus). Choice Yes/No

Files Menu

This menu can be accessed when the switch is in position \square
The operations are only possible in stop mode with the drive locked.
The terminal is used to store 4 files containing the drive configurations.

Code	Description	Factory setting
$\begin{aligned} & F 15 \\ & \text { F } 25 \\ & F 35 \\ & F 45 \end{aligned}$	File 1 State	FRE
	File 2 State	FRE
	File 3 State	FRE
	File 4 State	FRE
	Used to display the state of the corresponding file. Possible states: FRE: file free (state in which terminal is delivered) EnG: a configuration has already been saved to this file	
FOt	Operat. Tylpe	NO
	Used to select the operation to be performed on the files. Possible operations: NO: no operation requested (default value on each new terminal connection to the drive) STR: operation to save the drive configuration to a file on the terminal REC: transfer the content of a file to the drive Ini: return the drive to factory settings \triangle A return to factory settings cancels all your adjustments and your configuration.	

Operating mode

Select STR, REC or Inl and press "ENT".
1 If Operat. Type = STR:
The file numbers are displayed. Select a file using $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ and confirm with "ENT".
2 If Operat. Type = REC:
The file numbers are displayed. Select a file using $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ and confirm with "ENT".

Check that the wiring is compatible with the file configuration.
Cancel with "ESC" or confirm with "ENT".

- The display then requests a second confirmation using "ENT" or cancellation using "ESC".

3 If Operat.Type = Inl:

- Confirm with "ENT".
- TThe display indicates:

Check that the wiring is compatible with the factory configuration.
Cancel with "ESC" or confirm with "ENT".

- The display then requests a second confirmation using "ENT" or cancellation using "ESC".

At the end of each operation the display returns to the "Operat.Type" parameter set to "NO".

Files Menu

Files Menu (continued)

Code	Description
cod	Fassword
	Confidential code

The drive configuration can be protected by a password (COd).
CAUTION: THIS PARAMETER SHOULD BE USED WITH CAUTION. IT MAY PREVENT ACCESS TO ALL PARAMETERS. ANY MODIFICATION TO THE VALUE OF THIS PARAMETER MUST BE CAREFULLY NOTED AND SAVED.

The code value is given by four figures, the last of which is used to define the level of accessibility required by the user.

of access permitted, without the correct code.
Access to the menus according to the position of the access locking switch on the rear of the terminal is always operational, within the limits authorized by the code.
The Code value 0000 (factory setting) does not restrict access.
The table below defines access to the menus according to the last figure in the code.

	Last figure in the code				
Menus	Access locked	Display	Modification		
Adjustments	0 exc. 0000 and 9	1	2		
Level 2: Adjustments, Macro-config, Drive, Control, I/O, Faults,	0 exc. 0000 and 9			$\quad 3$	
:---:					
Files (excluding code), Communication (if card present)					

For access to the APPLICATION menu, refer to the application card documentation.
The code is modified using the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys.
If an incorrect code is entered, it is refused and the following message is displayed:

After pressing the ENT or ESC key on the keypad, the value displayed for the Code parameter changes to 0000: the level of accessibility does not change. The operation should be repeated.

To access menus protected by the access code, the user must first enter this code which can always be accessed in the Files menu.

Communication and Application Menus / Return to factory settings

Communication or Application menu

This menu is only displayed if a communication or application card is installed. It can be accessed when the switch is in position \square . Configuration is only possible in stop mode with the drive locked.

For use with a communication or application option card, refer to the document provided with this card.
For communication via the RS485 link on the base product, refer to the document provided with the RS485 connection kit.

Return to factory settings

- In order to use the keypad only (see page117)
- Proceed using the following method:

- Switch off the drive
- Unlock and open the Altivar cover in order to access the $50 / 60 \mathrm{~Hz}$ switch (1) on the control card. If an option card is present, the selector switch can be accessed through it.
- Change the position of the $50 / 60 \mathrm{~Hz}$ switch (1) on the control card
- Switch on the drive
- Switch off the drive
- Reset the $50 / 60 \mathrm{~Hz}$ switch (1) on the control card to its initial position (nominal motor frequency)
- Switch on the drive, and it reverts to its factory configuration.

Operation - Maintenance - Spares and Repairs

Operation

Signalling on the front panel of the Altivar

green POWER LED $\bar{\sim}$ on: Altivar powered up red FAULT LED

- on: Altivar faulty
- flashing: Altivar locked once the "STOP" key has been pressed on the terminal or after a change to the configuration. The motor can then only be supplied with power after first resetting the "forward", "reverse", and "injection stop" commands.

Display mode on terminal screen

Displays preset frequency reference, or fault.
The display mode can be modified via the terminal: consult the programming manual.

Maintenance

Before performing any work on the drive, switch off the power supply, check that the green LED has gone off, and wait for the capacitors to discharge (3 to 10 minutes depending on the drive power rating).

4The DC voltage at the + and - terminals or PA and PB terminals may reach 850 V depending on the line supply voltage.

If a problem arises during setup or operation, ensure that the recommendations relating to the environment, mounting and connections have been observed.

Servicing

The Altivar 38 does not require preventative maintenance. We nevertheless advise you regularly to:

- Check the condition and tightness of connections
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years depending on operating conditions)
- Remove any dust from the drive

Assistance with maintenance

The first fault detected is stored and displayed on the terminal display: the drive locks, the red LED (FAULT) illuminates, and fault relay R1 trips.

Clearing the fault

- Cut the power supply to the drive in the event of a non-resettable fault.
- Locate the cause of the fault in order to eliminate it.
- Reconnect the power supply: this clears the fault if it has disappeared.
- In some cases there may be an automatic restart once the fault has disappeared if this function has been programmed.

Spares and repairs

For spare parts and repairs to Altivar 38 drives, consult Schneider group product support.

Faults - causes - remedies

Fault displayed	Probable cause	Procedure, remedy
PHF Mains Phase Loss	- drive incorrectly supplied or fuses blown - transient fault on one phase - drive supplied by DC bus	- check the power connection and the fuses - reset - configure the "InPhaseLoss" fault (code IPL) as "No", in the FAULT menu
$\begin{aligned} & \text { U5F } \\ & \text { Undervoltage } \end{aligned}$	- line supply too low - transient voltage dip - damaged load resistor	- check the line voltage - change the load resistor
$\begin{aligned} & \text { O5F } \\ & \text { Overvoltage } \end{aligned}$	- line supply too high	- check the line voltage
DHF Irive Ouerhested	- heatsink temperature too high (t Hd>118\%)	- monitor the motor load, the drive ventilation and wait for the drive to cool down before resetting
OLF Mot. Duerload	- thermal trip due to prolonged overload (L H r > $>118 \%$)	- check the thermal protection setting, monitor the motor load - a reset will be possible after approximately 7 minutes
DbF Overbraking	- braking too sudden or driving load - line supply overvoltage during operation	- increase the deceleration time, add a braking resistor if necessary - check for any line overvoltages
DPF Motor Phase Loss	- one phase open-circuit at the drive output	- check the motor connections and that the downstream contactor is closed (if it exists) - if a motor starter is being used in a macro configuration, check that the R2 relay is configured as a downstream contactor
LFF LoseFollower	- loss of the $4-20 \mathrm{~mA}$ signal on input Al2	- check the connection of the reference circuits
$\square[F$ Overcurrent	- ramp too short - inertia or load too high - mechanical locking	- check the settings - check the size of the motor/drive/load - check the state of the mechanism
$\begin{aligned} & \text { S[F } \\ & \text { Short Cirouit } \end{aligned}$	- short-circuit or grounding at the drive output	- check the connection cables with the drive disconnected, and the motor insulation. Check the drive transistor bridge
$\begin{aligned} & \text { LrF } \\ & \text { Precharge Fault. } \end{aligned}$	- load relay control fault - damaged load resistor	- check the connectors in the drive and the load resistor
$\begin{aligned} & \text { SLF } \\ & \text { RS485 Flt. } \end{aligned}$	- incorrect connection on the drive connector port	- check the connection on the drive connector port
마 F Motor Ouerheated	- motor temperature too high (PTC probes)	- check the motor ventilation and the ambient temperature, monitor the motor load - check the type of probes used
$\begin{aligned} & \text { tSF } \\ & \text { PTC Probe Fault. } \end{aligned}$	- incorrect connection of probes to the drive	- check the connection of the probes to the drive - check the probes

Faults - causes - remedies

Fault displayed	Probable cause	Procedure, remedy
EEF EEFTrom Fault	- error saving in EEPROM	- cut the power supply to the drive and reset
In F Internal Fault	- internal fault - connector fault	- check the connectors in the drive
$\begin{aligned} & \text { EPF } \\ & \text { External Fault. } \end{aligned}$	- fault triggered by an external device	- check the device which has caused the fault and reset
5PF Sp. Feedbk. Lose	- no speed feedback	- check the connection and the mechanical coupling of the speed sensor
AnF Load Veer. Flt.	- non-following of ramp - speed inverse to the reference	- check the speed feedback settings and the wiring - check the suitability of the settings for the load - check the size of the motor-drive and the possible need for a braking resistor
50F Ouerspeed	- instability - driving load too high	- check the settings and the parameters - add a braking resistor check the size of the motor/drive/load
$\left[{ }_{n} F\right.$ Network Fault.	- communication fault on the fieldbus	- check the network connection to the drive - check the time-out
$\begin{aligned} & \text { ILF } \\ & \text { Int. Comin. Flt. } \end{aligned}$	- communication fault between the option card and the control card	- check the connection of the option card to the control card
[FF Rating Fault-ENT Option Fault-ENT Opt. Missing-ENT CKS Fault - ENT	Error probably caused when changing the card: - change of rating of the power card - change of the type of option card or installation of an option card if there was not one already and if the macroconfig is CUS - option card removed - inconsistent configuration saved Pressing ENT brings up the message: Fact.Set? ENT/ESC	- check the drive hardware configuration (power card, others) - cut the power supply to the drive then reset - save the configuration in a file in the terminal - press ENT to return to factory settings
$\begin{aligned} & \text { [FI } \\ & \text { Config. Fault } \end{aligned}$	- inconsistent configuration sent to drive via serial link	- check the configuration sent previously - send a consistent configuration

Faults - causes - remedies

Malfunction with no fault display

Display	Probable cause	Procedure, remedy
No code, LEDs not illuminated	- No power supply	- Check power supply to drive
No code, green LED illuminated, red LED illuminated or not illuminated	- Terminal defective	- Change the terminal
rdy green LED illuminated	- Drive in line mode with communication card or RS 485 kit An LI input is assigned to "Freewheel stop" or "Fast stop", and this input is not energized These stops are controlled by loss of the input	- Set parameter LI4 to forced local mode then use LI4 to confirm this forced mode Connect the input to 24 V to disable the stop

Record of configuration and adjustments

Drive reference ATV38 Display rEF：
Customer identification number（if applicable）：
Option card：no \square yes \square ：reference \qquad
Access code：no \square yes \square ： \qquad
Configuration in file no \qquad on the operator terminal Macro－configuration： \qquad
For a CuS：customised configuration，assign the I／O as follows：

	ALTIVAR	Option card
Logic inputs	LI 1：	LI 5：
	LI 2：	
	LI 3：	LI 6：
	LI 4：	
Analog inputs	Al 1：	
	Al 2：	Al 3：
Encoder input		AI3：
Relay	R2：	
Logic output		LO：
Analog output	AO1：	AO：

Adjustment parameters：

Code	Factory setting	Customer setting（1）	Code	Factory setting	Customer setting（1）
AL［	3 s	s	5P5	25 Hz	Hz
dE［	3 s	s	5Pb	30 Hz	Hz
LSP	0 Hz	Hz	5P7	35 Hz	Hz
H5P	50 Hz	Hz	5P日	50 Hz	Hz
FLE	20\％	\％	JロL	10 Hz	Hz
5t A	20\％	\％	J丁t	0.5 s	s
It H	According to model	A	FFt	0 Hz	Hz
IdL	According to model	A	bIP	no	
$t d[$	0.5 s	s	rPG	1	
5d［	0.5 ItH	A	r IL	1／s	／s
AL 2	5 s	s	Fb5	1	
dE 2	5 s	s	PIL	no	
JPF	0 Hz	Hz	dt 5	1	
JFE	0 Hz	Hz	［Ed	1.1 In	A
JFG	0 Hz	Hz	tEd	100\％	\％
ELS	0	s	P5P	0 s	s
U5［	1		P12	30\％	\％
UFr	100\％	\％	P13	60\％	\％
PFL	20\％	\％	dtd	105\％	\％
5 Pr	10 Hz	Hz	Ftd	50 Hz	Hz
5Pヨ	15 Hz	Hz	F2d	50 Hz	Hz
5 P4	20 Hz	Hz			

（1）leave blank when the parameter is missing

Record of configuration and adjustments

Drive menu parameters:

Code	Factory setting	Customer setting (1)	Code	Factory setting	Customer setting (1)
Un5	according to model	V	rPt	LIN	
Fr 5	50 Hz	Hz	d[F	4	
n[r	according to model	A	CLI	1.1 ln	A
n5P	according to model	rpm	AdL	yes	
[05	according to model		P[[1	
EUn	no		5Ft	LF	
EFr	60 Hz	Hz	5 Fr	according to model	kHz
nld	yes		nrd	yes	
Fdb	no		5PL	no	
bri	yes		PCt	DET	
Frt	0 Hz		PL 5	1024	
5tt	STN				

(1) leave blank when the parameter is missing

Control menu parameters:

Code	Factory setting	Customer setting (1)	Code	Factory setting	Customer setting (1)
t[L	2 W		ADH	20 mA	mA
$t[t$	LEL		5tr	No	
$r \ln$	no		L[L	no	
b5P	no		P5t	yes	
CrL	4 mA	mA	Add	0	
[rH	20 mA	mA	tbr	19200	
AOL	0 mA	mA	rPr	No	

(1) leave blank when the parameter is missing

Fault menu parameters:

Code	Factory setting	Customer setting (1)	Code	Factory setting	Customer setting (1)
AL	no		$L F F$	0 Hz	Hz
r 5 E	RSP		$F L r$	yes	
DPL	yes	$5 t P$	no		
IPL	yes	$5 d d$	yes		
EHE	ACL		$E P L$	yes	
LFL	no				

(1) leave blank when the parameter is missing

Summary of menus

LANGUAGE menu

Name	Code
English	LnL
Fraņais	LnL
Ieutech	LnL
Esfrañol	LnL
Italiano	LnL

MACRO－CONFIG menu

Name	Code
UT：Var．Torque	$[\mathrm{F}$

1 －DISPLAY menu

Name	Code
Irive State	－－－
Freg．Ref．	FrH
Dutput Freq．	rFr
Motor Speed	5Pd
Motor Curent．	L［r
Mach．Speed	USP
Dutput Power	DPr
Mainevoltage	ULn
Motor Thermal	EHr
DriveThermal	thd
Last Fault	LFE
Freq．Ref．	LFr
Fower Used	APH
Run time	rth

2 －ADJUST menu

Name	Code
Freq．Ref．－Hz	LFr
Acoleration－ 5	R［［
Deceleration－ 5	dEL
Aceel． $2-5$	RL 2
Decel． $2-\mathrm{E}$	dEz
Low Speed－ Hz	LSP
High Speed－Hz	H5P
Gain－\％	FLE
Stabilites－\％	5t月
Therriurrent－－	ItH
IC：Inj．Time－ s	$t d[$
de I at rest－ H	$5 d[$
Juplo Freg．－ Hz	JPF
Juplo 2 Freq －－ Hz	$J F 弓$
Juplos Freq．－Hz	JF ${ }^{\text {J }}$

2 －ADJUST menu（continued）

Name	Code
Machine Coef．	U5［
IR Compens．	$u F r$
LSP Time－	ELS
IC Inis．Curr．－A	IdC
W／f Profile－\％	PFL
Preset Sp．2－Hz	$5 P 3$
Preset．Sp． 3 －Hz	5Pヨ
Preset Sp． $4-\mathrm{Hz}$	$5 P 4$
Freset Sp．5－Hz	5P5
Freset Sp． 6 －Hz	5P6
Freset Sp． 7 －Hz	5P7
Freset Sp． 8 － Hz	5P日
Jool Frear．－Hz	JOL
Jog lelay－	JUE
NST Threshold－Hz	FFE
Tacho Coeff．	$d t 5$
FI Prop．Gain	$r P G$
FI Int．Ciain－／s	$r 16$
FI Coeff．	Fbs
FI Inversion	PIL
Frea．Leu．Att－Hz	Ftd
Frea． 2 At．t－Hz	Fed
Curr．Lev．Att－－	［td
FI Filter－	PSP
FI Preset $2-\%$	P12
FI Preset 3－\％	P13
ATV th．fault	dtd

3 －DRIVE menu

Name	Code
Nom．Mot．Volt－－V	Un5
Nom．Mot．Frea－Hz	Frs
Nom．Mot．Curr－A	$n r_{r}$
Nom，MotSpeed－repr	n5P
Mot．Cos Phi	［05
Auto Tuning	tun
Max Freq．－Hz	$t F r$
Energy	nld
I lim adapt．	$F d b$
Ilecrambidal	brA
SuitchRamp 2 － Hz	Frt
Stop Type	5tt
Ramis Type	rPt

Summary of menus

3 - DRIVE menu (continued)

Name	Code
IecRAmpCoff	$d[F$
Int. I Lim- \boldsymbol{A}	[LI
Huto IC: In.j.	AdL
Motor P Coef	P[[
Sul Frea. Tylle	5Ft
Su Frea - kHz	5 Fr
Noise Reduct	nrd
Special Motor	5P[
Fg Type	PLE
Num: Pulses	PLS

4-CONTROL menu

Name	Code
TermStrip Con	E[[
Type 2 Wire	t[t
RU imibit	$r \ln$
deardb/pedst.	b 5 P
AI2 min Ref. - mi	CrL
HI2 Max Ref. - min	[rH
Min Val. AO 0 - mi	AOL
Max Val. $\mathrm{HO}_{0} \mathrm{~m} \mathrm{mH}$	ADH
Save Ref.	5tr
Keyped Comm.	L [[
STOP Priorit	P5t
Irivehdress	Add
BdRate R 6485	Ebr
Reset ents	$r \mathrm{Pr}$

5-I/O menu

Name	Code
LI2 Assign.	LI2
LIS Assign.	119
LI4 Assign.	L 14
LI5 Assign.	L 15
LI6 Assign.	116
NO : Not assigned	
RU : Reverse	
RF2:Switch ramp 2	
Joli	
+SP: + Speed	
-sp: - Speed	
PS2: 2 Preset Speeds	
FS4 : 4 Preset Speeds	
FS8 : 8 Preset Speeds	

5-I/O menu (continued)

Name	Code
NST:Freewhl Stop	
ICI:IC inject.	
FST:Fast stol	
CHP:Multi. Motor	
FL0: Forced Local	
RST: Fault Reset	
RFC: Auto/Maru.	
ATN: Auto Tuning	
FPIU:PI Auto/MEn	
FR2PII 2 Preset	
PR4:PI 4 Preset	
EII: External flt.	
FTK: Forc. Keyle.	
R2 AEsign.	$r 2$
L0 assigh.	L0
N0 :Not assighed	
Rund Irive Rumine	
occ:output cont.	
FTA: Freg Attain.	
FLA: HSP Attained	
CTA: I Attained	
SRA: FRH Attained	
TSA: Mt.r.Therm Lul	
AFL: LoseFollower	
F2R:Freg 2 Attain.	
t.Ad:ATU th. alamm	
AI2 assigh.	A 12
AIS AEsigh.	\& 19
No :Not assighed	
FR2: Speed Ref2	
SAI: Sumped Ref.	
PIF:PI Regulator	
PIM:PI Man.ref.	
SFE: Tacho feedlak	
FTC: Therm. Sensor	
AIS assigh, (encoder)	A13
NO : Not assighed	
SHI:Surimed Ref.	
RGI: Retour Gi	
A0 assigh.	AD
NO : Not assismed	

Summary of menus

5-I/O menu (continued)

Name	Code
OCR:Motor Curr.	
OFR: Motor Frea	
ORP: Outbut ramb	
ORS: Sighed ramb	
OPS:PI ref.	
OPF:PI Feedback	
OPE:PI Error	
OPI:PI Integral	
OPr: Output Fower	
thr: Motor-Thermal	
thd: ItriveThermal	

6 - FAULT menu

Name	Code
Auto Restart	Atr
Reset Type	r 5t
DutFhaseLose	DPL
InFhaseLose	IPL
Cont. Stole	5tP
ThermProtyle	tHt
LosFollouer	LFL
4-20 Flt Spd	LFF
Catch On Fly	FLr
RamiNotFoll	5dd
Extermal fault.	EPL

7 - FILES menu

Name	Code
File 1 State	F 15
File 2 State	F25
File 3 State	F35
File 4 State	F45
Operat. Tylee	FOt
Fassword	[0d

8 - COMMUNICATION menu

Refer to the documentation provided with the communication card.

8 - APPLICATION menu

Refer to the documentation provided with the application card.

Index

Function	Menus	Pages
Acceleration	ADJUST - DRIVE	93-97
Automatic ramp adaptation	DRIVE	96
Serial link address	CONTROL	101
Controlled stop	I/O - FAULT	102-116
Auto Tuning	DRIVE - //O	96-102-110
Speed loop with encoder	DRIVE - I/O	98-103-104-112
Speed loop with tacho	ADJUST - I/O	95-103-104-111
Password	FILES	118
2/3-wire control	CONTROL	99-107
Motor switching	DRIVE - I/O	97-102-110
Ramp switching	ADJUST - DRIVE - I/O	94-96-102-104-107
Reference switching	I/O	102-109
Downstream contactor	I/O	103-112
Deceleration	ADJUST - DRIVE	93-97
External fault	I/O	110
Energy saving	DRIVE	96
Analog input Al2	CONTROL	100
Configurable inputs	I/O	102-103-104
Force to keypad	CONTROL - I/O	102-110
Forced local mode	CONTROL - I/O	102-110
Injection braking	ADJUST - DRIVE	93-94-97
Switching frequency	DRIVE	98
Jump frequencies	ADJUST	93
Current limit	DRIVE	96-97
Low speed limit time	ADJUST	93
Save reference	CONTROL	101
Step by step (JOG)	ADJUST - I/O	94-102-104-107
Loss of 4-20mA	FAULT	113
+/- speed	I/O	102-105-108
Stop priority	CONTROL	101
Motor thermal protection	ADJUST - I/O-FAULT	93-95-103-104-116
Auto catching (flying restart)	FAULT	116
Automatic restart	FAULT	115
Factory setting / Save	FILES	117
Pl regulator	ADJUST - I/O	95-103-104-111
Fault reset	I/O-FAULT	102-105-110-115
PTC probes	I/O	103-111
Configurable outputs	CONTROL - I/O	100-103-104-112-113
Preset speeds	ADJUST - I/O	94-102-104-109

VVDED302071
039481

[^0]: The assignments with a grey background appear if an I/O extension card has been installed.

[^1]: The parameters with a grey background appear if an I/O extension card has been installed.

