

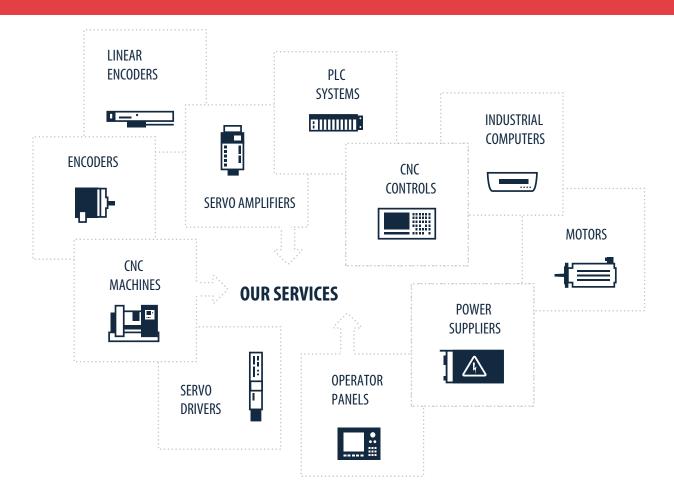
OTHER SYMBOLS:

RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA

Jana Dlugosza 2-6 Street 51-162 Wrocław Poland

■ biuro@rgbelektronika.pl

L +48 71 325 15 05



www.rgbautomatyka.pl

YOUR PARTNER IN MAINTENANCE

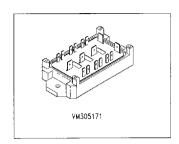
Repair this product with RGB ELEKTRONIKA

ORDER A DIAGNOSIS

At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit. Our trained employees, equipped with a wide variety of tools and having several testing stands at their disposal, are a guarantee of the highest quality service.

SIEMENS AKTIENGESELLSCHAF

T-23-07


IGBT Module

Preliminary Data

BSM 25 GD 100 D

 $V_{\rm CE}$ = 1000 V $I_{\rm C}$ = 6 x 35 A at $T_{\rm C}$ = 25 °C $I_{\rm C}$ = 6 x 25 A at $T_{\rm C}$ = 80 °C

- Power module
- 3-phase full bridge
- Including fast free-wheel diodes
- Package with insulated metal base plate
- Package outlines/Circuit diagram: 3¹⁾

Туре	Ordering Code
BSM 25 GD 100 D	C67076-A2501-A2

Maximum Ratings

Parameter	Symbol	Values	Unit	
Collector-emitter voltage	$V_{\sf CE}$	1000	V	
Collector-gate voltage, $R_{GE} = 20 \text{ k}\Omega$	V_{CGR}	1000		
Gate-emitter voltage	V_{GE}	± 20		
Continuous collector current, $T_{\rm C}$ = 25 °C $T_{\rm C}$ = 80 °C	I _C	35 25	A	
Pulsed collector current, $T_{\rm C}$ = 25 °C $T_{\rm C}$ = 80 °C	I _{C puls}	70 50		
Operating and storage temperature range	T_{J} , T_{stg}	- 55 + 150	C	
Power dissipation, $T_{\rm C}$ = 25 °C	P_{tot}	300	W	
Thermal resistance, chip-case	R _{thJC}	≤ 0.4	K/W	
Insulation test voltage ²⁾ , $t = 1$ min.	V_{is}	2500	V _{ac}	
Creepage distance	_	16	mm	
Clearance	-	11		
DIN humidity category, DIN 40 040	-	F	_	
IEC climatic category, DIN IEC 68-1	-	55/150/56		

See chapter Package Outline and Circuit Diagrams.

Insulation test voltage between collector and metal base plate referred to standard climate 23/50 in acc. with DIN 50 014, IEC 146, para. 492.1.

60E D ■ 8235605 0045825 23T ■ SIEG

SIEMENS

BSM 25 GD 100 D

SIEMENS AKTIENGESELLSCHAF

Electrical Characteristics

at $T_1 = 25$ °C, unless otherwise specified.

Parameter	Symbol		Values	•	Unit
		min.	typ.	max.	
Static Characteristics					
Collector-emitter breakdown voltage $V_{\rm GE}$ = 0, $I_{\rm C}$ = 0.75 mA	$V_{(BR)CES}$	1000	_	_	٧
Gate threshold voltage $V_{\text{GE}} = V_{\text{CE}}$, $I_{\text{C}} = 2 \text{ mA}$	$V_{GE(th)}$	4.8	5.5	6.2	
Collector-emitter saturation voltage $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $T_{\rm J}$ = 25 °C $T_{\rm J}$ = 150 °C	$V_{CE(sat)}$	<u>-</u>	2.8 4.0	3.3 4.5	
Zero gate voltage collector current V_{CE} = 1000 V, V_{GE} = 0 T_{J} = 25 °C T_{J} = 125 °C	I _{CES}			750 3000	μΑ
Gate-emitter leakage current $V_{\text{GE}} = 20 \text{ V}, V_{\text{CE}} = 0$	$I_{ m GES}$	_	_	100	nA
AC Characteristics					
Forward transconductance $V_{\text{CE}} = 20 \text{ V}, I_{\text{C}} = 25 \text{ A}$	g _{fs}	9.0		-	S
Input capacitance $V_{\rm CE}$ = 25 V, $V_{\rm GE}$ = 0, f = 1 MHz	C_{iss}	-	4000	_	pF
Output capacitance, $V_{GS} = 0$ $V_{CE} = 25 \text{ V}, V_{GE} = 0, f = 1 \text{ MHz}$	$C_{ m oss}$	_	320	_	
Reverse transfer capacitance $V_{\text{CE}} = 25 \text{ V}, V_{\text{GE}} = 0, f = 1 \text{ MHz}$	C_{rss}	-	130	-	

BSM 25 GD 100 D

SIEMENS AKTIENGESELLSCHAF

Switching Characteristics

at $T_1 = 125$ °C, unless otherwise specified.

Parameter	Symbol		Value	s	Unit
		min.	typ.	max.	
Resistive Load					
Turn-on delay time $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 Ω , $R_{\rm g~(off)}$ = 3.3 Ω	$t_{ m d~(on)}$	20	30	40	ns
Rise time $V_{\rm CC} = 600~{\rm V},~V_{\rm GE} = 15~{\rm V},~I_{\rm C} = 25~{\rm A}$ $R_{\rm g~(on)} = 3.3~\Omega,~R_{\rm g~(off)} = 3.3~\Omega$	t _r	_	110	_	
Turn-off delay time $V_{\rm CC} = 600~{\rm V},~V_{\rm GE} = 15~{\rm V},~I_{\rm C} = 25~{\rm A}$ $R_{g~(\rm on)} = 3.3~\Omega,~R_{g~(\rm off)} = 3.3~\Omega$	t _d (off)	_	200	_	
Fall time $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 Ω , $R_{\rm g~(off)}$ = 3.3 Ω	t _f	_	300	_	
Inductive Load					
Turn-on delay time $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 Ω , $R_{\rm g~(off)}$ = 3.3 Ω	f _{d (on)}	20	30	40	ns
Rise time $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 Ω , $R_{\rm g~(off)}$ = 3.3 Ω	t _r	5	10	15	
Turn-off delay time $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 Ω , $R_{\rm g~(off)}$ = 3.3 Ω	f _{d (off)}	160	230	280	

 $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A $R_{\rm g~(on)}$ = 3.3 $\Omega,\,R_{\rm g~(off)}$ = 3.3 Ω

 $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 25 A

Turn-off loss $(E_{\text{off}} = E_{\text{off 1}} + E_{\text{off 2}})$

 $R_{\rm g~(on)}=3.3~\Omega,\,R_{\rm g~(off)}=3.3~\Omega$

 $t_{\rm f}$

 $E_{\mathsf{off}\, \mathsf{1}}$

 $E_{\text{off 2}}$

20

30

1.4

1.3

40

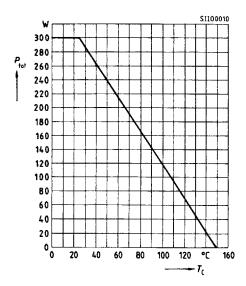
mWs

BSM 25 GD 100 D

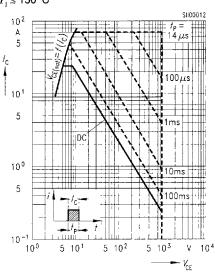
SIEMENS AKTIENGESELLSCHAF

Electrical Characteristics

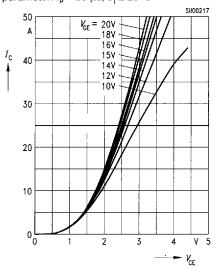
at $T_1 = 25$ °C, unless otherwise specified.

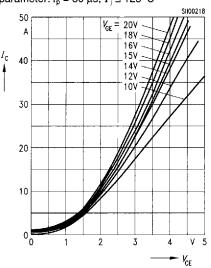

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Free-Wheel Diode					
Diode forward voltage $I_F = 25 \text{ A}, V_{GE} = 0$ $T_J = 25 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$	$V_{ extsf{F}}$	-	1.75 1.4		V
Reverse recovery time $I_{\rm F}=25$ A, $V_{\rm R}=600$ V $V_{\rm GE}=0$, $d_{\rm F}/dt=-800$ A/ μ s $T_{\rm j}=125$ °C	I _{rr}	_	0.13	_	μs
Reverse recovery charge $I_{\rm F}=25$ A, $V_{\rm R}=600$ V $V_{\rm GE}=0$, ${\rm d}i_{\rm F}/{\rm d}t=-800$ A/ μ s $T_{\rm J}=25$ °C $T_{\rm J}=125$ °C	Q_{rr}	-	2.3	 - -	μC
Soft factor $I_{\rm F}=25~{\rm A},V_{\rm R}=600~{\rm V}$ $V_{\rm GE}=0,{\rm d}i_{\rm F}/{\rm d}t=-800~{\rm A/\mu s}$ $T_{\rm J}=125~{\rm C}$	S	_	1	_	_
Thermal resistance Chip-case	R_{thJC}	-	_	1.0	K/W

SIEMENS AKTIENGESELLSCHAF


Characteristics at $T_i = 25$ °C, unless otherwise specified.

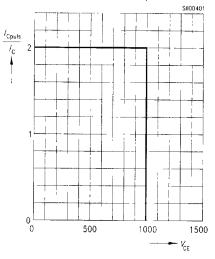
Power dissipation $P_{\text{tot}} = f(T_{\text{C}})$


parameter: $T_{\rm j} = 150 \, ^{\circ}{\rm C}$

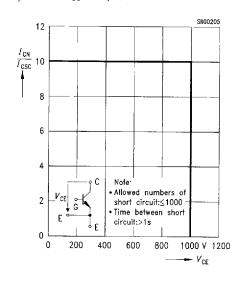

Safe operating area $I_{\rm C} = f\left(V_{\rm CE}\right)$ parameter: single pulse, $T_{\rm C} = 25~{\rm ^{\circ}C}$ $T_{\rm I} \le 150~{\rm ^{\circ}C}$

Typ. output characteristics $I_{\rm C}$ = f ($V_{\rm CE}$) parameter: $t_{\rm p}$ = 80 μ s, $T_{\rm l}$ \leq 25 $^{\circ}$ C

Typ. output characteristics $I_{\rm C} = f(V_{\rm CE})$ parameter: $t_{\rm p} = 80~\mu \rm s$, $T_{\rm i} \le 125~{\rm ^{\circ}C}$

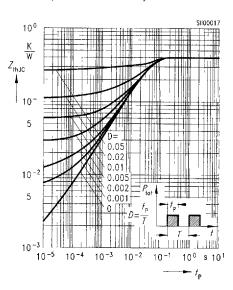


BSM 25 GD 100 D

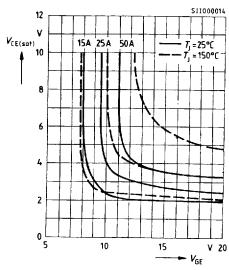

SIEMENS AKTIENGESELLSCHAF

Reverse biased safe operating area

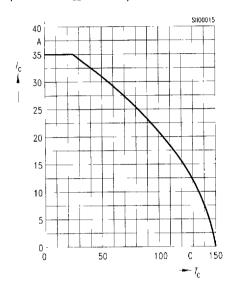
 $I_{\rm C}$ = f ($V_{\rm CE}$), parameter: $T_{\rm J}$ = 125 °C, $V_{\rm GE}$ = 15 V, $R_{\rm g(off)}$ = 3.3 Ω , L (parastic inductance, module) < 50 nH



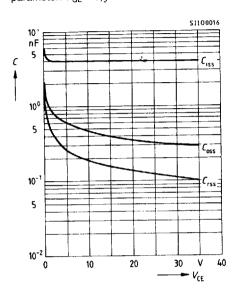
Safe operating area, short circuit $I_{\rm C} = f\left(V_{\rm CE}\right), \, V_{\rm GE} = \pm \, 15 \, {\rm V}$ $T_{\rm I} \leq 150 \, ^{\circ}{\rm C}, \, t_{\rm SC} \leq 10 \, \, \mu{\rm s}, \, L < 50 \, \, {\rm nH}$


Transient thermal impedance

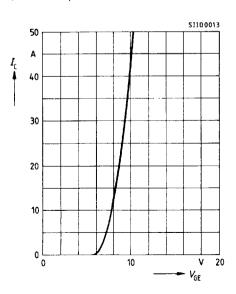
 $Z_{thJC} = f(t_p)$, parameter: $D = t_p / T$

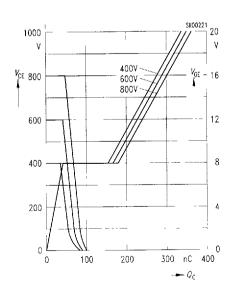

Typ. on-state characteristics V = f(V) parameter: I = T

 $V_{\text{CE (sat)}} = f(V_{\text{GE}})$, parameter: I_{C} , T_{I}

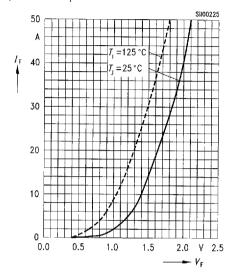


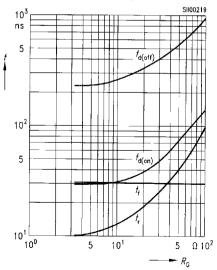
SIEMENS AKTIENGESELLSCHAF


Collector current $I_C = f(T_C)$ parameter: $V_{GE} \ge 15 \text{ V}, T_1 = 150 ^{\circ}\text{C}$

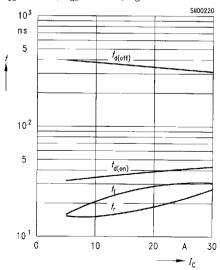

Typ. capacitances $C = f(V_{CE})$ parameter: $V_{GE} = 0, f = 1$ MHz

Typ. transfer characteristics $I_{\rm C}$ = $f(V_{\rm GE})$ parameter: $t_{\rm p}$ = 80 μ s, $V_{\rm CE}$ = 20 V


Typ. gate charge $V_{\rm CE}$, $V_{\rm GE}$ = $f\left(Q_{\rm G}\right)$


BSM 25 GD 100 D

SIEMENS AKTIENGESELLSCHAF


Forward characteristics of fast recovery reverse diode $I_F = f(V_F)$ parameter: $T_{\rm i}$

Typ. switching time $t = f(R_{\rm G})$ Inductive load, parameter: $T_{\rm J} = 125~{\rm ^{\circ}C}$ $V_{\rm CE} = 600$ V, $V_{\rm GE} = \pm 15$ V, $I_{\rm C} = 25$ A

Typ. switching time $t = f(I_{\rm C})$ Inductive load, parameter: $T_{\rm J} = 125\,^{\circ}{\rm C}$ $V_{\rm CE} = 600\,$ V, $V_{\rm GE} = \pm\,15\,$ V, $R_{\rm G} = 22\,$ Ω

