
M0001584J

Released Revision F Revision J September 1999 April 2001 August 2003

SANYO DENKI CO., LTD

English

This product does not qualify as strategic goods as specified by the Foreign Exchange and Foreign Trade Control Law. Accordingly, applying for an export permit from the Ministry of Economy, Trade & Industry is not required. For customs purposes, however, an explanation may be required. So, please ask us for the material explaining that this product is not applicable. In addition, when this product is incorporated into other equipment, the applicable regulations must be complied with.

PREFACE

The "PY" series Servo Amplifier is applicable to a wide range of applications from small to medium capacity thanks to its multiple functions, high performance, downsizing and high cost performance. The "PY2" was developed as an upgraded version of this "PY" series to satisfy customer needs for further downsizing.

The "PY2" Servo Amplifier features the same performance as the "PY" series, on which it is based, with only the size reduced. The small and high performance "PY2" Servo Amplifier is useful for a large number of customers in applications requiring space saving.

This User's Manual explains the functions, wiring, installation, operation, maintenance and specifications of the "PY2" Servo Amplifies and our Servomotors.

To completely utilize all functions of the "PY2" series, read this manual carefully before use to ensure proper operation.

After reading this manual, keep it handy so that it can be referred to by anyone at anytime.

In this manual,

"AC Servomotor" is sometimes abbreviated to "Servomotor" or "Motor". "AC Servo Amplifiers" to "Servo Amps." or "Amps.".

Also, "Wiring-saved incremental encoders" and "Request signal-unavailable absolute encoders" are sometimes abbreviated to "Encoders" and "Wiring-saved incremental encoders", "Request signal-unavailable absolute encoders" and "Request-available absolute sensors" to "Sensors".

International Standard Compliance

International standard	Standard No.
TÜV	EN50178
UL	UL508C
CUL	UL508C
Low Voltage Directive	EN50178
EMC Directive	EN55011
2	2

The "PY2" Servo Amplifier complies with the following International standards.

Working Environment

Since the working environment for the "PY2" Servo Amplifiers must be pollution level 2 or above (i.e. level 1 or 2) as specified in EN50178, be sure to use them in a pollution level 1 or 2 environment.

Power Supply

The "PY2" Servo Amplifiers must be used under the conditions specified in overvoltage category II, EN 50178. Use a reinforced insulation transformer conforming to the EN Standard for power supply input. For the interface, use a DC power supply whose input and output sections have reinforced-insulation.

CE Marking

At Sanyo Denki, we are executing tests on the "PY2" Servo Amplifier for compliance with the CE marking at qualifying institutions. The CE mark is required to be attached all end products sold in EU countries. Only products conforming to the safety standards are permitted to have them. Accordingly, customers are requested to perform the final conformity test on their machines or systems incorporating our amplifiers.

The CE Marking Conformity Standards

We execute conformity tests for the following standards on the "PY2" Servo Amplifier at qualifying institutions.

Classification of directive	Classification	Test	Test standard
Low Voltage Directive	- 4 ⁴⁴⁴	- acht	EN50178
8	6	Terminal interference voltage	EN55011
2°'	Emission	Electromagnetic radiation interference	EN55011
NIGDOURC	irective	Radiation field immunity	EN61000-4-3 / 1996 ENV50204 / 1995
EMC Directive		Conductivity immunity	EN61000-4-6 / 1996
<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Electrostatic immunity	EN61000-4-2 EN61000-4-2 : A1 / 1998
- 		Electrostatic immunity	EN61000-4-2 EN61000-4-2 : A1 / 1998
ALCO'S	100 1	Burst immunity	EN61000-4-4 / 1995

File numbers

Low Voltage Directive, Declaration	:	File No. C0002827C
Low Voltage Directive, Certification	:	File No. B 01 05 21206 040 (Messrs. TÜV PRODUCT SERVICE)
EMC Directive, Declaration	:	File No. C0004056
EMC Directive, Certification	18	File No. E9 99 05 30982 005 (Messrs. TÜV PRODUCT SERVICE)

UL Marking

The "PY2" series products are qualified to have the UL (U.S. version) and cUL (Canada version) marks of the Underwriters Laboratories attached.

File Numbers

File No.: E179775 Power Conversion Equipment (CCN: NMMS, NMMS7)

<u>Fuse</u>

The "PY2" Servo Amplifiers are not equipped with fuses. Customers are requested to prepare a UL-approved fast-blown fuse and install it in the input section of the main circuit power supply.

CONTENTS

0. SAFETY PRECAUTIONS

0.1	Introdu	uction	
0.2	"Warn	ing Label" Location on Product	
0.3	Meani	ing of Warning Indication	0-3
	0.3.1	Details of Indications	0-3
	0.3.2	Rank of Cautions on Safety	0-3
	0.3.3	Symbolic Indication	0-4
0.4	Cautio	ons on Safety	

1. BEFORE OPERATION

1.1	Precaution on Unpacking		1-2
1.2	Confirmation of the Product		1-2
1.3	Precautions on Operation		1-2
1.4	How to Read Model Numbers	<u></u>	1-6
	1.4.1 Model Number of Servomotor		1-6
	1.4.2 Model Number of Servo Amplifier		1-7
1.5	"PY2" Servo Amplifier Standard Combination		1-8
1.6	Flowchart for Determining Servomotor		
	Model Number		1-9

2. FUNCTION, CHARACTERISTICS AND CONFIGURATION

2.1	"PY2" Servo Amplifier Built-in Functions	. 2-2
	Characteristics of "PY2" Servo Amplifier	
2.3	Characteristics of Servomotor	. 2-11

3. SERVO SYSTEM CONFIGURATION

3.1	Block Dia	agram		
3.2	External	Mounting and Wiring Diagram		
3.3	Names o	of Servo Amplifier Parts	2 2	
	3.3.1	PY2A015/030		
	3.3.2	PY2E015/030		
	3.3.3	PY2A050		
3.4	Optional	Peripheral Equipment List		
3.4	3.3.3	PY2A050		

4. WIRING

4.1	Applic	able Wire Sizes	
4.2	Specif	ications of Sensor Cable	
4.3	Extern	al Wiring Diagram	
	4.3.1	External Wiring Diagram (200 VAC Input Type)	
	4.3.2	External Wiring Diagram (100 VAC Input Type)	

	4.3.3	Sensor Connection Diagram (INC-E)	
	4.3.4	Sensor Connection Diagram (ABS-E)	4-9
	4.3.5	Sensor Connection Diagram (ABS-RII)	4-10
	4.3.6	Sensor Connection Diagram (ABS-E.S1)	4-11
4.4	Connec	ctor Terminal Arrangement Input/Output Signal Diagram	
	4.4.1	CN1: Interface Connector	
	4.4.2	CN2: Sensor Connector	
4.5	Wiring	Procedure	4-15
4.6	Precau	tions on Wiring	
	4.6.1	Recommended Surge Protector	4-17
	4.6.2	CN1 & CN2 Shielding Procedure	4-18
	4.6.3	Typical CN2 Compression Insert Application	

5. INSTALLATION

5.1	Servo	Amplifier Installation		
	5.1.1	Installation Place		
	5.1.2	Installation Procedure		
5.2	Servor	notor Installation	<u></u>	
	5.2.1	Installation Place		
	5.2.2	Installation Procedure		
5.3	Cable	Installation	a	

6. OPERATION

6.1	Opera	tion Sequence			6-2
	6.1.1	Power ON Sequence	S	S	6-2
	6.1.2	Stop Sequence	£	£	6-3
	6.1.3	Servo OFF Sequence			6-5
	6.1.4	Alarm Reset Sequence			6-6
	6.1.5	Overtravel Sequence			6-7
6.2	Displa	y			6-8
	6.2.1	Status Display			6-8
	6.2.2	Alarm Display			6-8
6.3	Be Su	re to Check the Functioning at First			
	6.3.1	Minimum Wiring			6-9
	6.3.2	Jog Operation			6-10
	6.3.3	Resetting and Turning the Power Of	ff		6-12
6.4.	Encod	er Clear Using Remote Operator			
	(When	Absolute Encoder is Used)	<u> </u>	<u> </u>	6-13

7. EXPLANATION OF PARAMETERS

7.1	Remot	e Operator (Optional)	
	7.1.1	Outline of Remote Operator	
	7.1.2	Function Table	
	7.1.3	Basic Operation Procedure	

	7.1.4	Parameter Setting Mode		
		(Screen Mode 0 to 2 and 8)	<u></u>	7-5
	7.1.5	Parameter Increment/Decrement Mode		
		(Screen Mode 3)		7-8
	7.1.6	Parameter Select Mode (Screen Mode 4)		7-10
	7.1.7	Monitor Mode (Screen Mode 5)		7-12
	7.1.8	Alarm Trace Mode (Screen Mode 6)		7-14
	7.1.9	Test Mode (Screen Mode 7)		7-19
	7.1.9	9.1 JOG Operation		7-18
	7.1.9	9.2 Off Line Auto-tuning Function		7-20
	7.1.9	9.3		
7.2	Descri	ption of Parameters		7-25
	7.2.1	Block Diagram of Position, Velocity and		
		Torque Control Type Parameters		7-25
	7.2.2	Parameter Summary Table	4.	7-26
	7.2.3	Parameter List		7-29

MAINTENANCE 8.

8.1	Troubl	eshooting (Alarm)	
8.2	Troubl	eshooting (Non-Alarm)	
8.3	Switch	ing of Velocity Loop Proportional Gain Using Rotary Switch	8-23
	8.3.1	Overview	
	8.3.2	Setting Procedure	
8.4	Mainte	nance	
8.5	Overh	aul Parts	8-25

SPECIFICATIONS 9.

9.1	Servo /	Amplifier	
	9.1.1	Common Specifications	9-3
	9.1.2	Acceleration and Deceleration Time	9-5
	9.1.3	Allowable Repetition Frequency	9-6
	9.1.4	Precautions on Load	9-9
	9.1.5	CN1 Input/Output Interface Circuit Configuration	9-10
	9.1.6	Position Signal Output	
	9.1.7	Monitor Output	9-17
	9.1.8	Position Control Type Specifications	9-20
	9.1.9	Velocity/Torque Control Type Specifications	
	9.1.10		
	9.1.11	Internal Velocity Command	9-36
	9.1.12	Power Supply Capacity	9-37
	9.1.13	Servo Amplifier/Servomotor Leakage Current	9-39
	9.1.14	Calorific Value	9-40
	9.1.15	Dynamic Brake	9-42
	9.1.16	Regenerative Processing	9-45
9.2	Servon	notor	9-48

	9.2.1	Common Specifications	9-48
	9.2.2	Revolution Direction Specifications	9-49
	9.2.3	Motor Mechanical Specifications	9-50
	9.2.4	Holding Brake Specifications	9-53
	9.2.5	Motor Data Sheet	9-55
9.3	Extern	al Views	9-125
	9.3.1	Servo Amplifier	9-125
	9.3.2	Servomotor	9-126
	9.3.3	Remote Operator (Option)	9-140
9.4	Extern	al Regenerative Resistor (Optional)	9-141
	9.4.1	How to Connect and Set External Regenerative Resistor (Optional)	9-141
	9.4.2	External Regenerative Resistor Combination Table	
	9.4.3	External Regenerative Resistor List	9-147
	9.4.4	Detailed Connecting Methods of External Regenerative Resistor	9-148
	9.4.5	External Regenerative Resistor Outline Drawings	9-149
9.5	Full Cl	ose Function (Option)	9-151
	9.5.1	Rough Diagram of Full Close Function (Option)	9-151
	9.5.2	Hardware of Full Close Function (Option)	9-152
	9.5.3	Parameter of Full Close Function (Option)	9-153

10. INTERNATIONAL STANDARDS

10.1	Interna	tional Standard Conformity			10-2
	10.1.1	Outline			10-2
	10.1.2	International Standard Conformity for PY	R Servo System .		10-2
10.2	Cautior	ns for International Standard Conformity			10-3
	10.2.1	Cautions Common to UL/TUV Conformity	ý		10-3
10.3	UL/cUL	/TUV Standard Conformity		<u> </u>	10-4
	10.3.1	UL/cUL Conformity and File Numbers			10-4
	10.3.2	TUV Conformity and File Numbers			10-5
10.4		mity with EC Directives			
	10.4.1	Outline		<u>\$</u> 0`	10-5
	10.4.2	Conformity with EC Directives	<u></u>		10-5
	10.4.3	CE Marking Conformity Standard		<u></u>	10-6
	10.4.4	Cautions for EMC Directive Conformity			10-7

11. PY PC INTERFACE

11.1 Outline of Servo Function	 11-2
11.2 Control Mode Switch	 11-3
11.3 Gain Switch	 11-4
11.4 Real Time Automatic Tuning	 11-5
11.5 Additional Function of Velocity Loop Proportional Gain	
11.6 P-PI Control Automatic Switch	 11-9
11.7 Full Close Function	 11-10

SAFETY PRECAUTIONS

This chapter summarizes the precautions to ensure safe operation of the PY2 Servo Amplifier.

Be sure to read this chapter before operation.

0.1	Introd	luction	0-2
0.2	"Warr	ning Label" Location on Product	0-2
0.3	Mean	ing of Warning Indication	0-3
	0.3.1	Details of Indications	0-3
	0.3.2	Rank of Cautions on Safety	0-3
	0.3.3	Symbolic Indication	0-4
0.4	Cauti	ons on Safety	0-5

0.1 Introduction

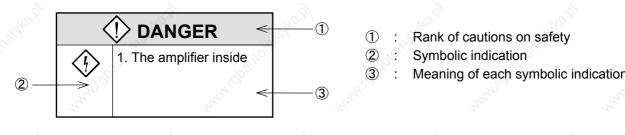
The "PY2" Servo Amplifier is designed to be used for general industrial equipment. So, note the following precautions.

- To ensure proper operation, thoroughly read the Instruction Manual before installation, wiring and operation.
- Do not modify the product.
- For installation or maintenance, consult our dealer or authorized agency.
- When using the product for the following purposes, special measures, such as system multiplication or emergency power generator installation, should be taken regarding operation, maintenance and management of the product. In this case, consult us.
 - ① Use in medical equipment affecting people's lives.
 - ② Use in equipment that may be lead to physical injury, for example, trains or elevators.
 - ③ Use in a computer system that may be socially or publicly influential.
 - ④ Use in other equipment related to physical safety or equipment that may affect the functions of public facilities.
- For use in an environment subject to vibration, for example, on-vehicle use, consult us.

Be sure to read all parts of this manual before use (installation, operation, maintenance, inspection, etc.) to properly use the equipment and only start using it after completely understanding all aspects, safety information and precautions relating to the equipment. Keep this manual handy after reading it.

0.2 "Warning Label" Location on Product

The warning label is on the front upper left of the Servo Amplifier.



0.3 Meaning of Warning Indication

This chapter explains how warnings are indicated. Please understand the details of indications before reading 0.4 Cautions on Safety.

0.3.1 Details of Indications

Section 0.4 describes as follow s:

0.3.2 Rank of Cautions on Safety

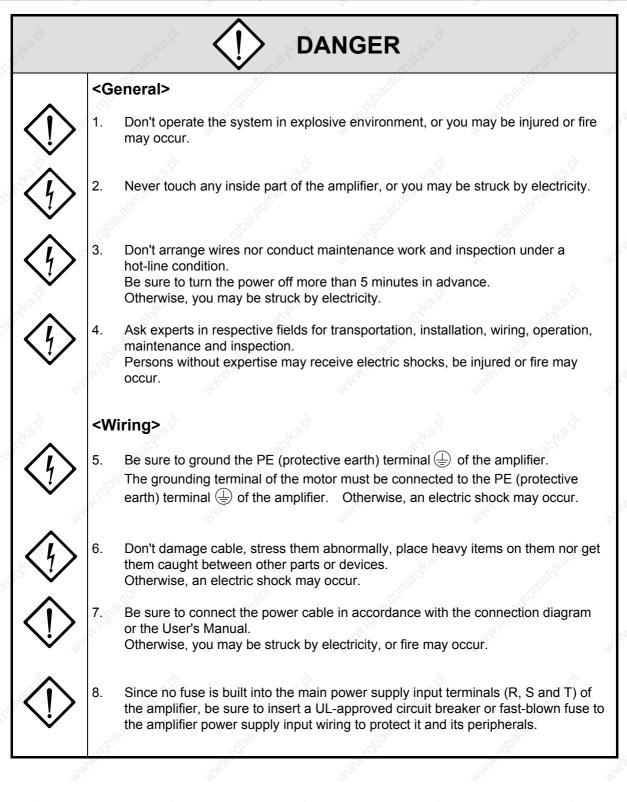
Cautions are divided into the following four ranks:

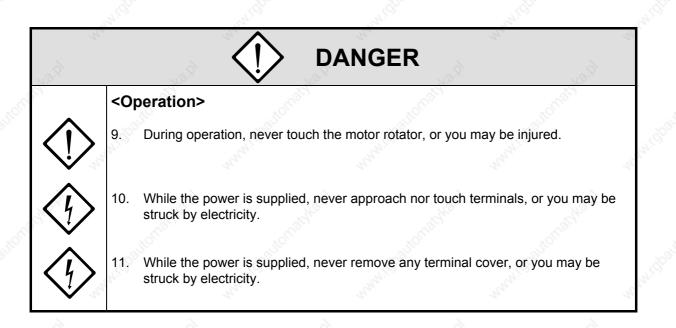
Incorrect operation may result in such a dangerous situation as death or serious injury.

Incorrect operation may result in such a dangerous situation as medium or slight injury or may result in only physical damage.

Note that some indications with **A CAUTION** may lead to serious results depending on situations. Since any indications are important, be sure to observe them.

What should not be done are indicated.


What should be done by all means are indicated.


0.3.3 Symbolic Indication

Symbolic indications are divided into the following eight kinds:

Kinds of symbols	Example of symbols			
Symbolic indications of danger	DANGER, INJURY	ELECTRIC SHOCK	www.clautor	
Symbolic indications calling attention	CAUTION	FIRE	BURN	
Symbolic indications prohibiting actions		PROHIBITION OF DISASSEMBLING	www.co	
Symbolic indication urging actions	MANDATORY	. Houternadie	abattonathe	

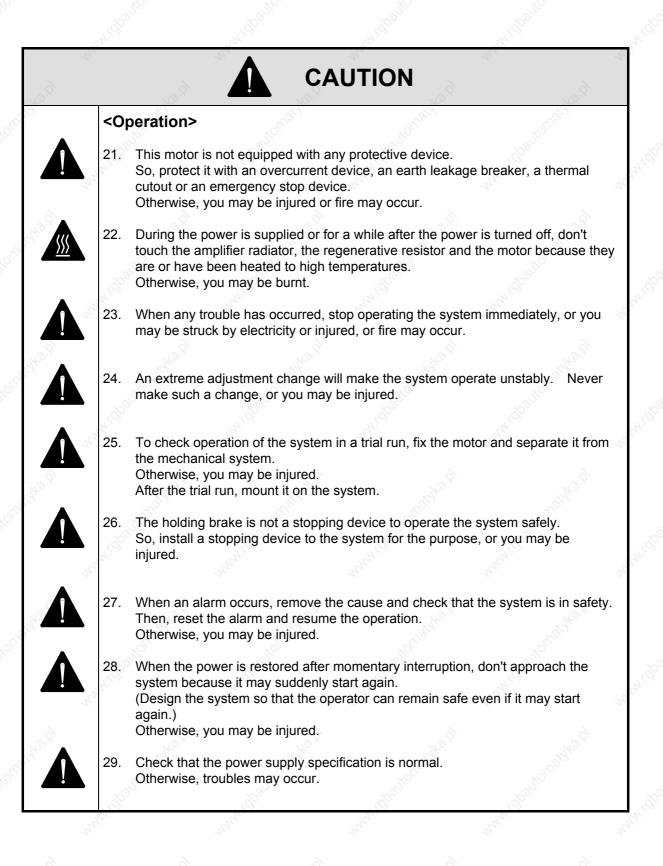
0.4 Cautions on Safety

CAUTION <General> 1° Before installation, operation, maintenance and inspection, be sure to read the User's Manual and follow instructions detailed in the manual. Otherwise, you may be struck by electricity or be injured, or fire may occur. 2. Don't use the amplifier and the motor in any situations where the specifications are not fully satisfied. Otherwise, you may be struck by electricity or injured, or they may be damaged. 3. Don't use the amplifier and the motor if they are damaged. Otherwise, you may be injured or fire may occur. 4. Use the amplifier and the motor only in the combination specified, or fire or a trouble may occur. 5. Note that the amplifier, the motor and their peripheral equipment are heated to high temperatures. Don't touch them, or you may be burnt. <Unpacking> 6. Check which side is up before unpacking, or you may be injured. 7. Check if what you have received are as per your order. Installation of an incorrect product may result in injury to you or breakage of the product. 8. Don't apply static electricity to the motor sensor terminal, or the motor may get out of order.

0-7

CAUTION

<Wiring>


Don't measure insulation resistance and dielectric strength, or these units may 9. be damaged.

When you have to measure them, please contact us.

- 10. Arrange cables in accordance with the Technical Standard for Electric Facilities and the Extension Rules. Otherwise, cables may be burnt and fire may occur.
- 11. Arrange cables correctly and securely, or the motor may run away and you may be injured.
- 12. Don't apply static electricity or high voltage to the motor sensor terminal, or the motor may get out of order.

<Installation>

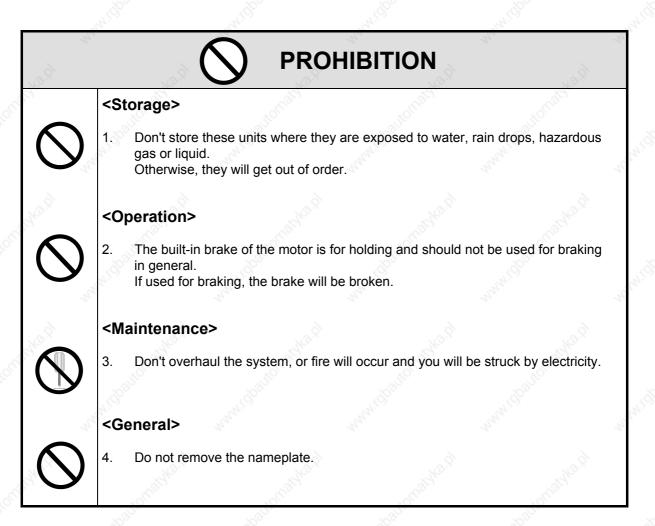
- 13. Don't climb up these units nor place heavy substance on them, or you may be injured.
- 14. Don't stop the air inlets and outlets nor put foreign matters in them, or fire may occur.
- 15.
 - Be sure to observe the direction of installation, or a trouble will occur.
 - 16. Decide the distances between the amplifier, the inside surface of the control panel and other equipment in accordance with the User's Manual. Otherwise, troubles may occur.
 - 17. Don't shock these units badly, or they may be get out of order.
- 18.
 - During installation, take an extreme care not to drop nor overturn these units, or you may face serious dangers. When raising the motor, use the lifting bolt if it is fitted.
 - 19. Never install these units where they are exposed to splash of water, in corrosive or inflammable gas atmosphere or near combustibles. Otherwise, fire may occur or they may get out of order.
- 20. Install them to any of nonflammables like metal, or fire may occur.

CAUTION

<Maintenance>

- 30. Since the amplifier frame is heated to high temperature, beware of it at the time of maintenance and inspection, or you may be burnt.
- 31. The electrolytic capacitor inside the amplifier is recommended to be replaced with a new one every five years for preventive maintenance providing that the yearly ambient temperature is 40°C.

The expected life of the cooling fan motor is 10 years at the yearly ambient temperature of 40°C. Regular replacement is recommended.


32. In case of repair, please contact us. If these units are disassembled by yourself, they may malfunction.

<Transportation>

- 33. During transportation, take an extreme care not to drop nor overturn these units, or you may face serious dangers.
- 34. During transportation, don't catch cables and the motor shaft, or these unit may get out of order or you may be injured.

<Disposal>

35. Dispose of the amplifier and the motor as general industrial wastes.

MANDATORY

<Storage>

- 1. Store these units where they are not exposed to direct sunlight and in the specified ranges of temperature and humidity {-20°C to +65°C, below 90%RH (without dew condensation)}.
- When the amplifier was stored for a long period (over 3 years as a guide), please contact us for how to treat it.
 When it is stored for a long time, the electrolytic capacitor capacity will decrease and any trouble may occur.

<Operation>

- 3. Install an emergency stop circuit outside the system so that operation can be stopped immediately and that the power supply can be shut off.
- 4. When the alarm generates, assemble the safety circuit outside of the amplifier. Running away, injury, burning, fire, and secondary damage may be caused.
- 5. Operate the system within the specified ranges of the temperature and humidity (see below).
 Amplifier: Temperature = 0 to 55°C, Humidity = 90% RH or lower (no dew condensation)
 Motor: Temperature = 0 to 40°C, Humidity = 90% RH or lower (no dew

<Transportation>

7.

condensation)

- Overloaded products will collapse. So, load them in accordance with the indication on the outer cases.
 - Use the lifting bolts on motors for carrying motors only and don't use them for carrying machines.

BEFORE OPERATION

1.1	Precaution on Unpacking	1-2
1.2	Confirmation of the Product	
1.3	Precautions on Operation	1-2
1.4	How to Read Model Numbers	
	1.4.1 Model Number of Servomotor	
	1.4.2 Model Number of Servo Amplifier	1-7
1.5	PY2 Servo Amplifier Standard Combination	
1.6	Flowchart for Determining Servomotor	
	Model Number	

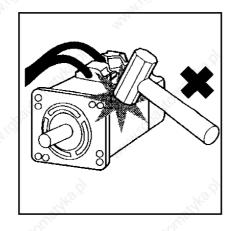
Please operate this system taking the contents of the following description into consideration. A misoperation will lead to an unexpected accident or damage.

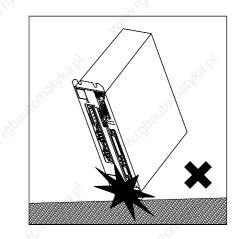
1.1 Precaution on Unpacking

When unpacking this product after purchasing, care is needed to the following.

• When unpacking the Servo Amplifier, don't touch its printed circuit boards in any case.

1.2 Confirmation of the Product


Check the following after receiving the product. Contact us if any abnormality is detected.


- Check if the model numbers of the Servomotor and the Servo Amplifier match those of the ordered ones (the numbers are described after "MODEL" on the main nameplate).
- Check the appearance of the Servomotor and the Servo Amplifier to confirm that they are free from any abnormality such as breakage or lack of parts.
- Check that all screws on the Servomotor and the Servo Amplifier are tightened properly.

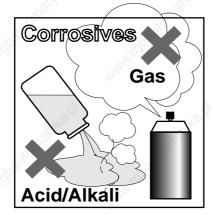
1.3 Precautions on Operation

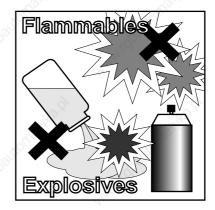
Take care the following during operation.

 At installation, don't give shocks to the Servomotor and the Servo Amplifier, or they may break. In particular, handle the Servomotor carefully since it is provided with a sensor.

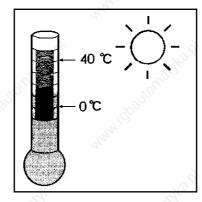
• Be sure to use a power supply within the specified range. 200 VAC input type: PY2A..., PY2B...

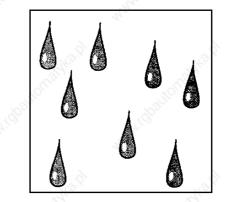
200 VAC to 230 VAC (+10%, -15%) 50/60 Hz

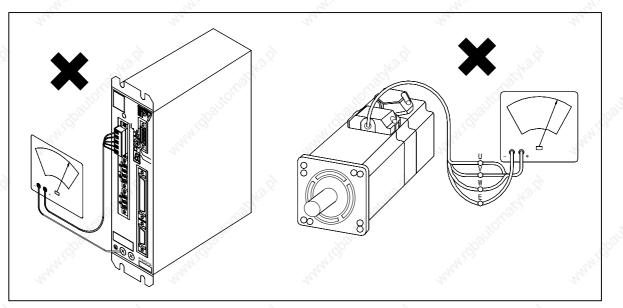

100 VAC input type: PY2E..., PY2F... 100 VAC to 115 VAC (+10%, -15%) 50/60 Hz

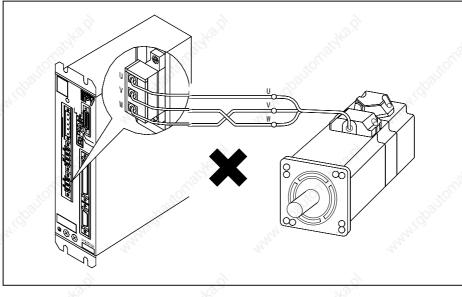

If a power supply other than the above is used, an accident may result.

When a surge voltage is produced in the power supply, connect a surge absorber or others between the
powers to absorb the voltage before operation.

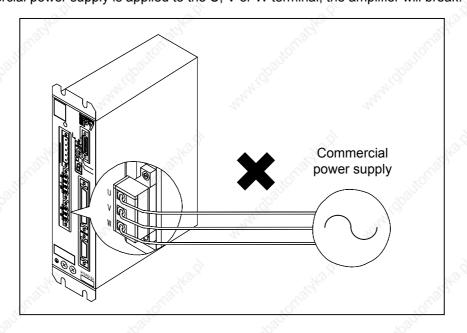

Otherwise malfunction or breakage may result.


- Turn the power on and off during maintenance and inspection after safety (such as the situation of the load) is completely checked. If the power is turned on or off during the load is applied, an accident or breakage may result.
- Never use this product where corrosive (acid, alkali, etc.), flammable or explosive liquid or gas exists to prevent it from deforming or breaking.
- Never use this product where flammable or explosive liquid or gas exists since the liquid or the gas may be ignited, causing great danger.

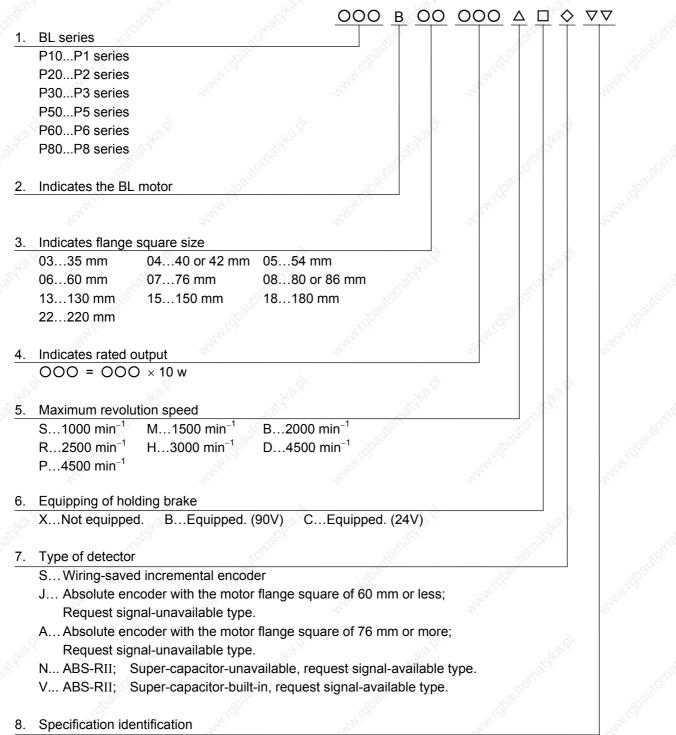

- Use this product within the ambient temperature range from 0°C to 40°C (0°C to 55°C for the Servo Amplifier) and below the relative humidity limit of 90%.
- The Servomotor and the Servo Amplifier <u>should be kept away from water</u>, <u>cutting fluid or rainwater</u>.
 Otherwise electric leakage or and electric shock may result.


1 - 3

- Never perform a withstand voltage or a megger test of the Servomotor or the Servo Amplifier. In this product, 0V and the main body is earthed by the capacitor. If such test is necessary, consult with us.


- Perform correct wiring by referring to the chapter "4. Wiring".
 Wrong wiring may cause Servomotor's or amplifier's breakage.
- Since the "P" series Servomotor is not an induction motor, the direction of revolution cannot be changed by swapping the phases.

To change the direction, use the remote operator.


• For safety operation, be sure to install a surge absorber on the relay, electromagnetic contactor, induction motor and brake solenoid coils.

Connect a power supply within the specified range to the Servo Amplifier's R, S, T terminals respectively.
 When a power supply out of the specified range is used, install a transformer.
 If a commercial power supply is applied to the U, V or W terminal, the amplifier will break.

1.4 How to Read Model Numbers

1.4.1 Model Number of Servomotor

00... Standard motor

The design revision order is indicated by an alphabet at the end of Lot No. on the nameplate.

1.4.2 Model Number of Servo Amplifier

- 1. Indicates a PY2 servo amplifier
- 2. Type of power unit
 - A... For 200 VAC input, with dynamic brake
 - B... For 200 VAC input, without dynamic brake
 - E... For 100 VAC input, with dynamic brake
 - F... For 100 VAC input, without dynamic brake
- 3. Amplifier capacity
 - 015... 15A 030... 30A 050...50A
- 4. Hardware type of control unit
 - A... Wiring-saved incremental encoder (INC-E) or request signal-unavailable absolute encoder (ABS-E)
 - H... Request signal-available absolute sensor (ABS-RII)
 - P... Wiring-saved absolute sensor (ABS-E.S1)
- 5. Optional specifications of power supply input and power sections

Model code	Conte	nts of specific	ations	Support by power section type and amplifier capacity *3				
	Built-in regenerative resistor *1	RDY output *2	Main circuit power supply type	PY2A015	PY2A030	PY2A050	PY2E015	PY2E030
0	×	0	3-phase	0	0	×	×	×
1 \$	×	0	Single phase	0	0	×	0	0
2	×	×	3-phase	0	0	×	×	×
3	×	×	Single phase	0	0	×	0	0
4	0	0	3-phase	∆ *4	0	0	×	×
5	0	0	Single phase	∆ *4	0	0	∆*4	0
6	0	×	3-phase	△ *4	0	0	×	×
7	0 🖉	×	Single phase	⊘ ∆ *4	0	0	∆*4	0 📎

 $PY2 \Box OOO A 0 XX \bigtriangleup \nabla 00$

*1: Built-in regenerative resistor: O= with built-in regenerative resistor, ×= without built-in regenerative resistor

- *2: RDY output: O= with RDY output, ×= without RDY output
- *3: Support by power section type and amplifier capacity O= supportive, ×= not supportive
- *4: For 15A regenerative resistor built-in type, configuration (dimension) of Amp. partially differs from standard.
- 6. Applicable motor (For details, refer to the standard combination table on the next page.)
 Example M1...P50B03003D

7. Type of applicable sensor

- 1... Wiring-saved incremental encoder (2000P/R)
- 2... Wiring-saved incremental encoder (6000P/R)
- 3... Request signal-unavailable absolute encoder (ABS-E, 2048P/R)
- 6... Request signal-available absolute encoder (ABS-RII, 8192P/R)
- W...Wiring-saved absolute sensor (ABS-E.S1, 32768 dividing)

8. Interface specification

- S...Speed control type. T...Torque control type. P...Position control type.
- X...S-T switch type Y...P-T switch type U...P-S switch type V...Internal Speed control type

9. Discrete specification

00.... Standard product

- The design revision order is indicated by an alphabet at the end of Lot No. on the nameplate.
- In some Servo Amplifiers, the items 6 to 9 above are not specified. Servo Amplifiers having the following model numbers can be used after specifying the parameters such as motor, sensor and interface.
 PY2A015A2 PY2A030A2 PY2A050A6 PY2E015A3 PY2E030A3

1.5 "PY2" Servo Amplifier Standard Combination

Check the model numbers of the motor and the amplifier on the combination table below. If the combination is different, the system will not function properly.

Table1-1 "PY2" Servo Amplifier Standard Combination Table (200 VAC input type)

S	ervomotor	Servo Amplifier		
<u>₽</u> ★₿ ОС		PY2AOOC	A2 <u>XX</u> ∆⊽00	
	\backslash		10	
Series	Flange square Rated output Maximum speed	Amplifier capacity	Motor type	
	10030H	030	N° 11	
	10075H	030	12	
	13050H	030	13	
	13100H	050	14	
P10	13150H	050	15	
FIU	13050B	030	1A	
201	13100B	030	1B	
	13150B	050	1C	
	18200B	050	1D	
	10100D	050	21	
	10150D	050	22	
P20	10100H	030	28	
P20	10150H	050	29	
	10200H	050	2A	
<u>2</u> 21	04003D	015	N1	
	04005D	015	N2	
	04010D	015	N3	
	06020D	015	N4	
P30	06040D	030	N5	
	08075D	030	N6	
		2	0	

S	ervomotor	Servo Amplifier		
<u>₽</u> ★₿ <u></u> 00	<u>>00000</u> □◊▽▽ ⊲	PY2A <u>OOO</u> A2 <u>X X</u> ∆∇00		
Series	Flange square Rated output Maximum speed	Amplifier capacity	Motor type	
20	03003D	015	M1	
S. March	04006D	015	M2	
State -	04010D	015	M3	
	05005D	015	M4	
	05010D	015	M5	
	05020D	015	M6	
	07020D	015 🔜	M8	
P50	07030D	015	M9	
P50	07040D	030	MA	
	08040D	030	MB	
14.	08050D	030	MC	
AL.	08075D	050	MD	
	08100D	050	ME	
	08075H	030	MF	
	08100H	030	MG	
	Je.	2	T.	
	13050H	030	PA	
P60	13100H	050	P1	
100	13150H	050	P2	
Star.	15075H	030	R2	
20	18120H	030	R3	
P80	1012011	030	ΓĴ	
	0		d'	
	and the second s		20	

Table1-2 "PY2" Servo Amplifier Standard Combination Table (100 VAC input type)

S	ervomotor	Servo Amplifier	
<u>₽</u> ★₿ <u>000000</u> □◊∇∇		PY2E <u>OOO</u> A3 <u>X X</u> ∆∇00	
19.			a start
Series	Flange square Rated output Maximum speed	Amplifier capacity	Motor type
	04003P	015	NA 🚫
	04005P	015	NB
	04010P	015 🚿	NC
P30	06020P	030	ND
Nº.S		N.	K
5	Ĵ	0	20
	· 30,		.0

Servomotor			Servo	Amplifier
<u>₽</u> ★₿ <u>000000</u> □◊∇∇		PY2E <u>OOO</u> A3 <u>X X</u> ∆∇00		
				e d
Serie	es	Flange square Rated output Maximum speed	Amplifier capacity	Motor type
S.		03003P	015	MH 📣
Ser.		04006P	015	MJ
12		04010P 🚿	015	MK
P50	n	05005P	015	ML
	0	05010P	015	👌 MM
		05020P	030	MN MN
		07020P	030 🔊	MR
		07030P	030	MS

1 - 8

1.6 Flowchart for Determining Servomotor Model Number

Refer to the following flowchart to determine the Servomotor model number.

Select Servomotor	capacity.	Bar. "iQue	Determine capac maximum speed.	ity and
454	- 1 ⁸⁶	- Shi	> P50B08100D	
			à	
		2 Bro	1940	
	90 V	Add B to the end.	> P50B08100DB	<u>_0</u>
With brake 24	24 V 🔇	Add C to the end.	> P50B08100DC	
Without brake	444	Add X to the end.		
	2			

Sensor type		Ex.
Incre. 2000P/R	Add S to the end.	
	Add A to the end.	30
Absol. 2048 divisions	Add N to the end.	—> P50B08100DXA
ABS-RII 8192 divisions	Add N to the end.	——> P50B08100DXN

\bigvee		Ex.	
Standard specifications	Add 00 to the end.		
Consult with us for special requirements.	chaite.	io'	

FUNCTION, CHARACTERISTICS AND CONFIGURATION

2.1	"PY2" Servo Amplifier Built-in Functions	2-2
2.2	Characteristics of "PY2" Servo Amplifier	. 2-6
2.3	Characteristics of Servomotor	. 2-11

2.1 "PY2" Servo Amplifier Built-in Functions

This section describes the main built-in functions of the Servo Amplifier and additional functions specially for the PY2 series.

The functions marked **OP** require the remote operator (see Chapter 7).

Position, speed and torque control OP

The above three types are controlled as a package and can be selected using the remote operator. The control type can be changed during operation (velocity \leftrightarrow torque, position \leftrightarrow torque, position \leftrightarrow velocity).

Regenerative processing function

A regenerative processing circuit is built into the system, which enables regenerative processing simply by externally connecting a resistor to the amplifier.

Since no regenerative resistor is built in except for 50 A type amplifier, one is required to be externally connected to the amplifier when regenerative processing is required.

Dynamic brake function

When the main circuit power supply is cut off, the dynamic brake is actuated. However, this brake is operated regardless of the main circuit power supply when an alarm occurs.

Holding brake excitation timing output

The power supply to the holding brake is controlled with the timing of this output signal, thereby preventing a self-weight fall of the gravitational shaft at an emergency stop. Keep this output open when the system is not operated.

Vibration restraining function OP

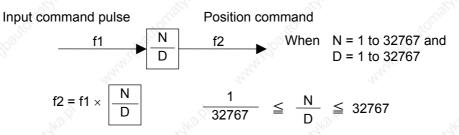
If a vibration occurs when this function is incorporated in the system, the parameters "BEF" and "LPF" are set by the remote operator according to the vibration frequency, restraining the vibration. When offline, executing "auto notch filter tuning (Tune IBEF) at test mode can automatically set notch filter frequency (IBF1). For more adequate setting, measure the oscillation frequency with an oscilloscope on the current command monitor.

Separation of control power and main circuit power

The control power and the main circuit power are separated. When an alarm or an emergency stop occurs, the main circuit power alone can be cut off for safety, and the control power can remain activated.

This enables the continuation of alarm output, making analysis and maintenance easy.

2-2

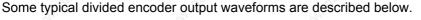

Servo tuning support function OP

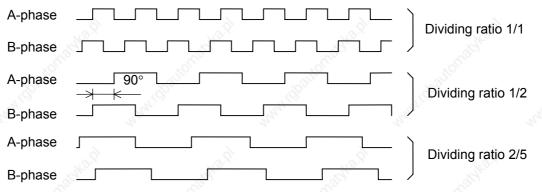
When the remote operator sets a mode, the load inertia is automatically estimated and a proper parameter is set. There are two different kind of tuning methods: one is "Offline auto tuning" executed at test mode when offline, and the other is "Online auto tuning" estimating appropriate gain and changing the gain at real time during operation.

Electric gear function OP

For a position control type, the feed can be changed without changing the mechanical gear by using this electronic gear.

This gear is set by the remote operator.


Dividing output function **OP**


Encoder signal pulses can be output by being divided into N/8192 (N=1 to 8191), 1/N (N=1 to 64) or 2/N (N=3 to 64) based on the setting by the remote operator.

Although the phase relation does not change, the 2/5 division is not the 90° phase difference.

To set the encoder signal dividing ratio, refer to the explanation on the parameters.

The dividing ratio must be a value with which the encoder pulse number can be divided. For a 2000 pulses/rev encoder, for example, 1/3, 1/6 or 1/7 cannot be used since they are aliquant.

Typical encoder signal output waveforms (forward revolution)

Alarm trace function OP

The past 7 alarm history data can be stored and reviewed from the remote operator or the front panel SELECT, enabling easy troubleshooting.

Power supply type selection function (200 VAC input type) OP

Either a 3-phase, 200 VAC type or the single phase, 200 VAC type main power supply can be selected. After selecting either one, simply turn the control power supply on again, no other parameter settings are necessary. (Since some types of motors have different 3- or single-phase properties, refer to the combination specifications in Section 9.)

Applicable to wiring-saved incremental & absolute encoders OP

The same amplifier is applicable to an incremental encoder (INC-E) and an absolute encoder (ABS-E) simply by changing the appropriate parameters using the remote operator. Different motors, however, are required for the INC-E and the ABS-E, respectively.

Applicable to absolute sensor (ABS-R II) OP

Applicable to an absolute sensor (ABS-R II).

Applicable to Wiring-saved absolute sensor (ABS-E.S1) OP

Applicable to a wiring-saved absolute sensor (ABS-E.S1). Absolute sensor can be wiring-saved. In use to application not requiring holding multi-rotational part, wiring number can be less then that for wiring-saved incremental encoder (INC-E). In case of not requiring holding multi-rotational part, battery connection is not necessary (Need parameter setting to select functions).

Applicable Servo Amplifiers to absolute sensor (ABS-R II) and wiring-saved absolute sensor (ABS-E.S1) have different internal circuits from incremental (INC-E) and absolute (ABS-E) encoder-type amplifiers. Use product applicable to an absolute sensor.

Additional function specially for the PY and PY2 series (compared to PZ amplifiers)

In addition to the various control functions provided in the "PZ" series, the following functions have been added to the "PY" and "PY2" series

1. Control mode switching function **OP**

This function is for switching the control mode without power shutdown.

2. Internal velocity command function **OP**

The amplifier has three types of velocity commands, and this function is for switching the velocity command depending on the situation.

3. Function to correspond with the external encoder for full-close control OP

By providing an external incremental encoder process circuit in the amplifier, full-close control is enabled. (For full-close correspondence, consult us, as additional parts are required.)

4. Gain switching using a rotary switch **OP**

By using a rotary switch, gain setting is enabled without connecting to a remote operator.

5. Gain switching function **OP**

Two types of gain settings can be selected in the amplifier. Gain switching is enabled depending on the situation.

6. Upgrading of the personal computer interface functions **OP**

Following upgrading of the personal computer interface functions, graphic indication of the monitor data and execution of various test modes have been enabled as well as parameter setting and editing using a PC.

(See the instruction manual for the personal computer interface provided separately.)

Be sure to use the PY personal computer interface version 1.30 or later when combining the 100 VAC power input type (PY2E), single-phase power supply specification PY2 Servo Amplifier with a personal computer interface.

(The amplifier may malfunction if combined with version 1.24, 1.23 or earlier.)

7. Input command auto offset function **OP**

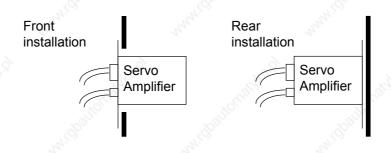
The analog input command auto offset function is added, which facilitates offset adjustment in the velocity or torque control mode.

2.2 Characteristics of "PY2" Servo Amplifier

This section explains the characteristics of the "PY2" amplifiers.

The volume is about half that of conventional models

About 40% to 65% smaller in terms of volume than the "PY", "PZ" and "PE" series.


PY2A015 (to 300 W)	:	About 45%
PY2A030 (to 1 kW)	:	About 65%
PY2A050 (to 2 kW)	:	About 45% (Note: "PY" is assumed to be 100%.)

Unified height and depth

The height of the amplifier applicable to 30 W to 2 kW motors is kept at to 168 mm (excluding the mounting fitting) and the depth at 135 mm.

Front or rear installation is selectable

Although only rear installation is usually available for a small Servo Amplifier, both front and rear installations can be selected for the "PY2" or "PY" type. (Rear installation is standard for the "PY2" on shipment.)

All amplifier I/O wirings are changed to the connector type

The terminals of the high-voltage parts, which used to be the terminal board type on our conventional "PY" and "PZ" series, are changed to the connector type. This improves operability when installing or maintaining the Servo Amplifier.

The leakage current has been reduced to about half that of conventional models

Measures to reduce leakage current are taken on the "PY2" amplifier, reducing it to about half that of our conventional "PY" or "PZ" series.

When a 2 m cabtyre cable is used for the motor power line:

- 15A, 30A 0.5 mA or less
- 50A 1.5mA or less

Additional tuning function

In addition to "Offline auto tuning" function, "Online auto tuning" and "Auto notch filter tuning" functions are available.

2 - 6

• Supports various types of power supplies

The "PY2" Servo Amplifier supports 200 VAC 3-phase, 200 VAC single-phase and 100 VAC single-phase types of power supplies.

Switching between 200 VAC 3-phase and 200 VAC single-phase is possible by simply changing the parameters.

(Switching between 100 VAC single-phase and 3-/single-phase is impossible since they have different hardware. A 100 VAC motor is also necessary.)

High response

Features higher response than our conventional "PZ" type ("PY" and "PY2" have the same level of response).

High reliability and long life

Ensures long operation without failure thanks to circuit technologies accumulated from extensive experience gained from our conventional models.

Differences Between PY2 Amplifier and Sanyo Denki's Conventional Models and Precautions

No fuse is built into the main power supply input section.

On our conventional PY, PZ, PE and PU models, fuses are built into the main power supply input sections to save wiring and other reasons when a single axis is used. On the PY2 amplifier, however, no fuse is built in since use of multiple axes is assumed and downsizing is the main theme of its development.

(No fuse is built into the PV amplifier, one of our conventional models, as with the PY2.) In order to protect the main power supply input section from overcurrent, connect a UL-approved circuit breaker and a fast-blown fuse to the amplifier input section before operation.

Fewer noise filters on the main and control power supply input sections

The number of noise filters has been reduced on the PY2 amplifier than on our conventional PY, PZ, PE, PV and PU models. Noiseproofing, however, is the same as that on conventional models thanks to improved internal circuits.

Although noiseproofing does not differ, after Sanyo Denki's conventional amplifier in your system is replaced with the PY2 amplifier, power supply noise which had been absorbed by the noise filters inside the conventional amplifier may affect other peripherals. So, it is recommended that you attach noise filters to the power supply (200 VAC).

No regenerative resistor is built in. (The 50 A type amplifier normally has one built-in.)

On our conventional PY, PZ, PE, PV and PU models, regenerative resistors are built in (the power absorbed differs depending on the model and the capacity).

On the "PY2A015*" and "PY2A030*" types, no regenerative resistor is built in.

(They incorporate regenerative processing circuits only.)

Externally connect regenerative resistors to systems requiring regenerative processing. If no regenerative resistor is externally connected, it takes about five minutes to discharge the capacitor after the main circuit power is turned off. Before maintaining the amplifier, make sure that the "CHARGE" lamp on the front of the amplifier indicates that it has been discharged.

The dynamic braking methods differ.

On the PY2 amplifier, the slowing-down revolution angle at the time of stopping by dynamic braking is twice that of the PY, PZ and PE models in the worst case. (The angle is the same between the PV and PY2. No dynamic brake is built into the PU model.)

The forcible air cooling method is adopted for cooling power modules (for the 30 A and 50 A types only).

On the "PY2A030*" and "PY2A050*" types, the forcible air cooling method is adopted to enable down sizing and long life. So, the Servo Amplifier does not stop functioning even after the cooling fan stops due to failure. To ensure long operation of the amplifier, check the motion of the fan during regular inspection.

• Sensor cable wiring

While the maximum length of the sensor cable wiring is 50 m for our conventional PY, PZ, and PE models when a standard cable is used, the length is 30 m for the PY2 amplifier for sensor power supply reasons (the maximum length is 25 m for the absolute encoder (ABS-E) type). The permissible wiring distance can be extended to 50 m by using a cable with low conductor resistance (a thick cable) or by increasing the number of wires. Contact us for details.

External thermal input

While our conventional PY, PZ and PE models are equipped with input terminals capable of directly connecting contact outputs of external thermals, the PY2 amplifier is not. To connect an external thermal output to the amplifier, set the general-purpose input terminal to the external thermal signal input before operation.

AMP ready contact output

While our conventional PY, PZ and PE models are equipped with contact output terminals (AMP ready output terminals) for magnetic contactors which control the amplifier main power on/off switching, they are optional on the PY2 amplifier. For details, refer to "1.4 How to Read Model Numbers". When no AMP ready output is used, turn the main power on and off using an external safety circuit.

• Analog monitor output

While analog monitor output is \pm 10 V peak for our conventional PY, PZ and PE models, it is \pm 3 V peak for the PY2 amplifier. The resolution of the PY2 is also lower than that of conventional models. Consult with us if high resolution is required for system evaluation or other purposes.

	PY2 amplifier	PY amplifier	PZ and PE amplifiers	PU amplifier	PR amplifier	RB amplifier	PV amplifier
Input power	100 VAC 200 VAC Single phase 3 phases	200 VAC Single phase 3 phases	200 VAC Single phase 3 phases	100 VAC 200 VAC Single phase	200 VAC Single phase	5 VDC, 38 V 5 VDC, 24 V 100 VAC, Single phase 200 VAC, Single phase	200 VAC Single phase
Features	 Multi function High response, high performance Small & compact Easy connection due to adopting connector method 	 Multi function High response, high performance 	 Multi function High response, high performance 	 Small & compact Easy connection due to adopting connector method 	 Data transmission servo (Direct input of velocity, acceleration and feed data. Easy operation using PC or CPU.) High cost performance Downsizing Easy system design 	 Data transmission servo (Direct input of velocity, acceleration and feed data. Easy operation using PC or CPU.) High cost performance Downsizing Easy system design 	 Small & compact Wide range of interface Position, velocity and torque command Serial command (RS-485) Contact input operation command Easy connection due to adopting connector method
Motor combined	P1 series 0.3 to 2 kW P2 series 1 to 2 kW P3 series 30 to 750 W P5 series 30 to 1000 W P6 series 0.5 to 1.5 kW P8 series 0.75 to 1.2 kW	P1 series 0.3 to 5.5 kW P2 series 1 to 5 kW P3 series 30 to 750 W P5 series 30 to 1000 W P6 series 0.5 to 15 kW P8 series 0.75 to 4.5 kW	P1 series 0.3 to 5.5 kW P2 series 1 to 5 kW P3 series 30 to 750 W P5 series 30 to 1000 W P6 series 0.5 to 15 kW P8 series 0.75 to 4.5 kW	P3 series 30 to 750 W P5 series 30 to 1000 W	P3 series 30 to 750 W P5 series 30 to 1000 W	Robust-syn motor Equivalent to 10 to 600 W	P3 series 30 to 750 W P5 series 30 to 1000 W
Sensor	Wiring-saved incremental ANS-R II ABS-E ABS-E.S1	Wiring-saved incremental ABS-R II ABS-E	Wiring-saved incremental ABS-R II ABS-E	Wiring-saved incremental ABS-R II	Wiring-saved incremental	Incremental (200P/R, 800P/R)	Wiring-saved incremental ABS-R II ABS-E
N ^O I/F	Pulse train input Analog input Serial input	Pulse train input Analog input Serial input	Pulse train input Analog input Serial input	Pulse train input or analog input	Centronics-based 8-bit parallel data input	Centronics-based 8-bit parallel data input	Serial command (RS-485), pulse train input or analog input
Built-in functions	 Regenerative processing circuit (without internal regenerative resistor) Auto tuning Electronic gear Remote operator Vibration restraining function Dynamic brake Holding brake excitation timing output Rush prevention Control mode switching 	 Remote operator Vibration restrain-ing function Dynamic brake Holding brake excitation timing output Rush prevention 	 Regenerative processing Auto tuning Electronic gear Remote operator Vibration restraining function Dynamic brake Holding brake excitation timing output Rush prevention Discharge circuit 	 Regenerative processing Auto tuning Electronic gear Remote operator 	 Built-in pattern generator Rush prevention Discharge circuit 	 Built-in pattern generator Rush prevention Discharge circuit 	 Regenerative processing Vibration restraining function Dynamic brake Rush prevention
Jonath ^e	 Internal velocity command function Gain changeover using a rotary switch Gain changeover Personal computer interface functions 	 Internal velocity command function Gain change-over using a rotary switch Gain changeover Personal computer interface functions 	, dastonadikan	www.dbauc	CREAKE P	N.Ghantonanjka	
Measures for overseas standards	TÜV recognition to be obtained UL recognition to be obtained	TÜV recognition obtained UL recognition obtained	TÜV recognition obtained (PE type only)	.0	TÜV recognition obtained	TÜV recognition obtained	TÜV recognition obtained UL recognition obtained

Table 2-1 Comparison of PY2/PY and Sanyo's Other Series (for Reference)

2-10

2.3 Characteristics of Servomotor

• Wide range of models (67 types in total)

P1 series:from 0.3 to 5.5 kW (15 types)P3 series:from 30 to 750 W (6 types)P6 series:from 0.5 to 7 kW (11 types)

P2 series: from 1 to 5 kW (14 types) P5 series: from 30 W to 1000 W (15 types) P8 series: from 0.75 to 4.5 kW (6 types)

High-speed motor

Maximum speed of 2000 min⁻¹ and 3000 min⁻¹ for P1 Maximum speed of 3000 min⁻¹ and 4500 min⁻¹ for P2 Maximum speed of 4500 min⁻¹ for P3 and P5 Maximum speed of 3000 min⁻¹ for P6 and P8 The above enables the positioning time to be shortened.

(For P1, P6/P8 series motor with output of 4.5 kW or above, however, maximum speed is little lower.)

Compatibility

Compatible with the conventional models.

Compatible with various sensors

Compatible with the wiring-saved incremental encoder, the ABS-E absolute sensor (encoder) or the ABS-R II absolute sensor (the settings inside the amplifier differ depending on sensor types).

1 Alexandre	P1 series (high rigidity)	P2 series (low inertia)	P3 series (low inertia)	P5 series (high rigidity)	P6 series (high rigidity)	P8 series (flat type)
Features	 High servo performance Compatible with "861" motor High inertia Series expanded Flange size 100 added Down-sizing 80% smaller than our conventional models 	 Low inertia High power rate Successor to "862" series Upper capacity model of P3 series Down-sizing 40% smaller than our conventional models 	 Low inertia High power rate Down-sizing 50% smaller than our conventional models 	 Medium inertia, high rigidity Compatible with "865Z" motor Flange size 35 and 42 added Down-sizing 70% smaller than our conventional models 	 Medium inertia, high rigidity Upper capacity model of P5 series Compatible with "861" motor Supplements P8 series Down-sizing 50% smaller than our conventional models 	 Medium inertia, super flat type Compatible with "868Z" motor Down-sizing 70% smaller and 60% flatter than our conventional models
Rated output	0.3 to 5.5 kW (15 types)	1 to 5 kW (14 types)	30 to 750 W (6 types)	30 to 1000 W (15 types)	0.5 to 7 kW (11 types)	0.75 to 4.5 kW (6 types)
Sensor	 Incre. Absolute ABS-E 	 Incre. Absolute ABS-E ABS-R II (R III) 	 Incre. Absolute ABS-R II (R III) 	 Incre. Absolute ABS-E ABS-R II (R III) 	 Incre. Absolute ABS-E ABS-R II (R III) 	 Incre. Absolute ABS-E ABS-R II (R III)
Waterproo f	● IP67	● IP67	● IP40 (IP55 option)	 IP55 (□55 to □86) IP55 (□35 to □42) (IP55 option) 	● IP67	● IP67
Holding brake	 Standard specifications (24 V, 90 V) 	 Standard specifications (24 V, 90 V) 	 Standard specifications (24 V, 90 V) 	 Standard specifications (24 V, 90 V) 	 Standard specifications (24 V, 90 V) 	 Standard specifications (24 V, 90 V)
Oil seal	 Standard specifications 	 Standard specifications 	Optional	● Standard specifications (□54 to □86) ● Optional (□35 to □42)	 Standard specifications 	 Standard specifications
Measures for CE	● TÜV obtained	● TÜV obtained	TÜV obtained	● TÜV obtained	● TÜV obtained	● TÜV obtained

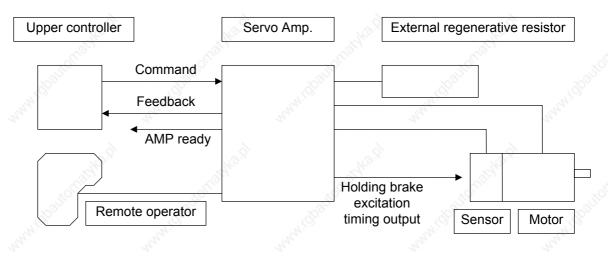
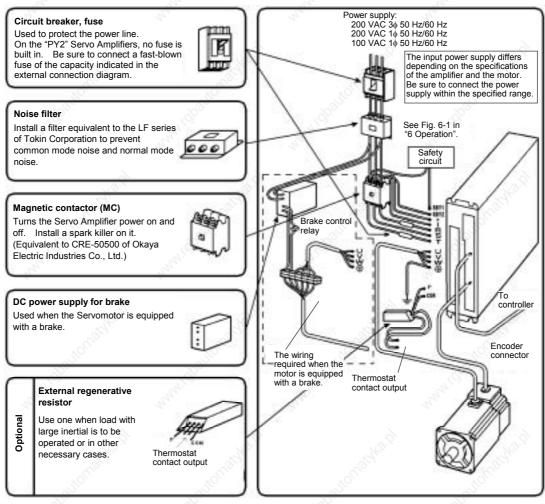
Table 2-2 Comparison of PY2 and PY Servomotor (for reference)

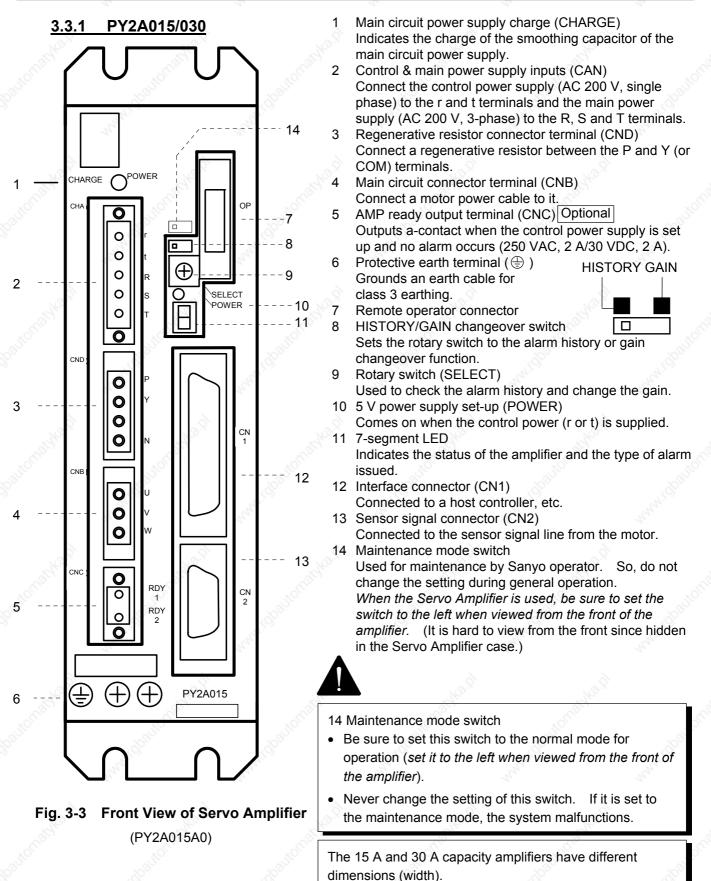
2 - 11

SERVO SYSTEM CONFIGURATION

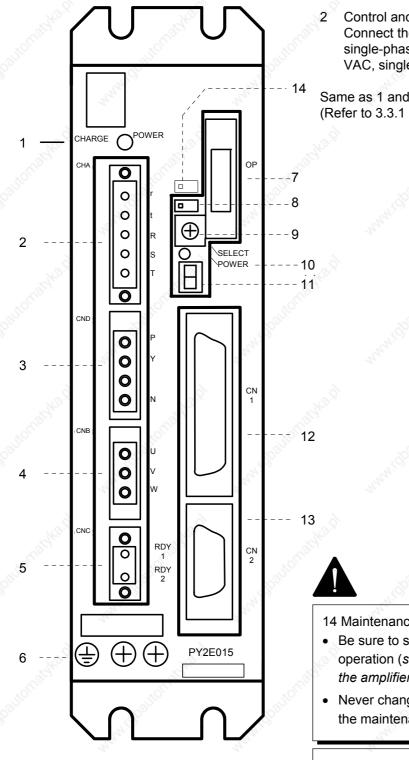
3.1	Block Diagram	
3.2	External Mounting and Wiring Diagram	3-2
3.3	Names of Servo Amplifier Parts	
	3.3.1 PY2A015/030	
	3.3.2 PY2E015/030	
	3.3.3 PY2A050	
3.4	Optional Peripheral Equipment List	

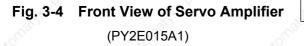
3.1 Block Diagram


Fig. 3-1 System Configuration Schematic Diagram

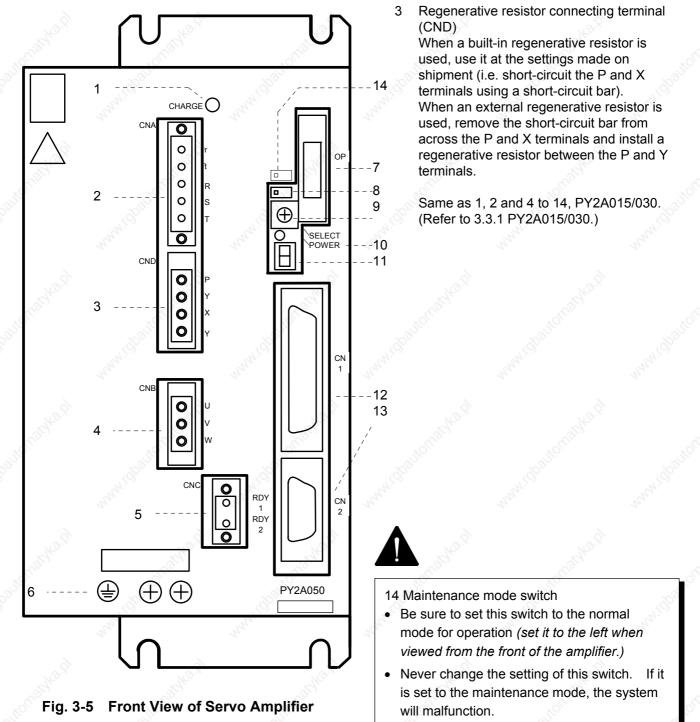
3.2 External Mounting and Wiring Diagram




Fig. 3-2 External Mounting and Wiring Diagram

3.3 Names of Servo Amplifier Parts

3.3.2 PY2E015/030


Control and main power supply (CNA) Connect the control power supply (100 VAC, single-phase) to r and t, and the main power supply (100 VAC, single-phase) to R and T.

Same as 1 and 3 to 14, 200 VAC input type. (Refer to 3.3.1 PY2A015/030.)

- 14 Maintenance mode switch
- Be sure to set this switch to the normal mode for operation (set it to the left when viewed from the front of the amplifier).
- Never change the setting of this switch. If it is set to the maintenance mode, the system will malfunction.

The 15 A and 30 A capacity amplifiers have different dimensions (width).

3.3.3 PY2A050

(PY2A050A4)

3 - 5

3.4 Optional Peripheral Equipment List

The following optional peripheral devices are available for the PY2 Servo Amplifiers. Please order as necessary.

I/O connectors

The table below lists I/O connector plugs and housings. (Connectors of standard shapes are listed as optional equipment.)

Application	Model No.	Set contents	Maker	Maker's model No.
S	- A.		Sumitomo 3M	10150-3000VE
	AL-00385594	CN1 plug and housing	Sumitomo 3M	10350-52A0-008
	AL-00385596	CN2 plug and housing	Sumitomo 3M	10120-3000VE
Single item	AL-00365596	CN2 plug and housing	Sumitorio Sivi	10320-52A0-008
Single item	AL-00329461-01	CNA plug	Phoenix Contact	MSTB2.5/5-STF-5.08
6	AL-00329458-01	CNB plug	Phoenix Contact	IC2.5/3-STF-5.08
No	AL-00329460-01	CNC plug	Phoenix Contact	MSTB2.5/2-STF-5.08
C. C. C.	AL-00329459-01	CND plug	Phoenix Contact	IC2.5/4-STF-5.08
	.30		Sto.	10150-3000VE
Low-voltage circuit connector	AL-00292309	CN1 or CN2 plug and	Sumitomo 3M	10350-52A0-008
set	AL-00292309	housing	Sumilomo Sivi	10120-3000VE
301	24	4	4	10320-52A0-008
High-voltage				MSTB2.5/5-STF-5.08
circuit connector	AL-00377169	CNA, CNB or CND plug	Phoenix Contact	IC2.5/3-STF-5.08
set	and the second	and the second sec	and the second second	IC2.5/4-STF-5.08
C.			S	10150-3000VE
~	(without AL-00382550	- Charles	C.S.	10350-52A0-008
PY2A015 and		CN1 or CN2 plug and housing CNA, CNB or CND plug	Sumitomo 3M Phoenix Contact	10120-3000VE
PY2A030 (without				10320-52A0-008
RDY output) set				MSTB2.5/5-STF-5.08
8				IC2.5/3-STF-5.08
NO.X		NO.X	NO.X	IC2.5/4-STF-5.08
PY2A015 and	A.	CN1 or CN2 plug and	A. C.	S.
PY2A030	AL-00382550	housing	Sumitomo 3M	
(with RDY	AL-00382550 AL-00329460-01	CNA, CNB, CNC or	Phoenix Contact	. 2 ⁰
output) set	7 LE 00020400 01	CND plug		h. and
4	Sec.	one ping	4	Sec.
PY2A015 (built-in				10150-3000VE
Regenerative resistor)	2ª	2	0	10350-52A0-008
PY2A030 (built-in	AL-00393603	and the	Sumitomo 3M	10120-3000VE
Regenerative resistor)	7.12,00000000	- Chio	Phoenix Contact	10320-52A0-008
PY2A050(without	SULL.	- alle	and the second s	MSTB2.5/5-STF-5.08
RDY output) set		ð. Ö	2	IC2.5/3-STF-5.08
PY2A015 (built-in		and the second sec		e. Aler.
Regenerative resistor)	14	CN1 or CN2 plug and	0 1 01	-24
PY2A030 (built-in	AL-00393605	housing	Sumitomo 3M	2
Regenerative resistor)	NO.	CNA, CNB or CNC plug		
PY2A050 (with	Ser.		AN AN	AN AN
RDY output) set	120			

Connector List for PY2A (200 VAC input type)

Application	Model No.	Set contents	Maker	Maker's model No.
Single item	AL-00329461-02	CNA plug	Phoenix Contact	MSTB2.5/4-STF-5.08
Carl Carl	C. B.C.	and the second s	and the	10150-3000VE
	S	autol	autrol.	10350-52A0-008
PY2E015 and	- AL	CN1 or CN2 plug	Oursiters a 2NA	10120-3000VE
PY2E030 (without	AL-00397841	and housing CNA, CNB or CND	Sumitomo 3M	10320-52A0-008
RDY output) set	~	plug	Phoenix Contact	MSTB2.5/4-STF-5.08
	1340 X	a Shan	- SHO X	IC2.5/3-STF-5.08
	C. C.	xofflor.	10Mart	IC2.5/4-STF-5.08
PY2E015 and PY2E030 (with RDY output) set	AL-00397841 AL-00329460-01	CN1 or CN2 plug and housing CNA, CNB, CNC or CND plug	Sumitomo 3M Phoenix Contact	and the second
PY2A015 (built-in Regenerative resistor) PY2A030 (built-in Regenerative resistor) (without RDY output) set	AL-00329461-02 AL-00329458-01 AL-00292309	CN1 or CN2 plug and housing CNA or CNB plug	Sumitomo 3M Phoenix Contact	undballomastic.o
PY2A015 (built-in Regenerative resistor) PY2A030 (built-in Regenerative resistor) (with RDY output) set	AL-00329461-02 AL-00329458-01 AL-00329460-01 AL-00292309	CN1 or CN2 plug and housing CNA, CNB or CNC plug	Sumitomo 3M Phoenix Contact	Habastomasha.pl

Connector List for PY2E (100 VAC input type)

- Although a commercially available plug not listed in the above table may be used, it may not engage with the amplifier properly depending on its shape.
- Consult with us when using a plug or housing whose engagement with the amplifier is not confirmed.
- The power supply input connector CNA models differ depending on the input power supply voltage type (200 VAC or 100 VAC input).
- CND connector (IC2.5/4-STF-5.08) is normally attached to Servo Amplifier having an amplifier capacity of 50 A.
- CND connector (IC2.5/4-STF-5.08) is normally attached to 15A and 30A Servo Amplifier with built-in regenerative resistor.

Remote operator

Connected to the Servo Amplifier to set various parameters or check the internal status.

Model No. RP-001

Personal computer interface

The following parts are available for communication with PC.

Model No.	Remarks
AL-00356620-01	Specialized cable
SFY95-00	Communication program

The PC interface can be used only on Windows 95.

External regenerative resistor

Use one when load with large inertia is to be operated or in other necessary cases.

Model No.	Model No.
REGIST-080W 100B	REGIST-220W 20B
REGIST-080W 50B	REGIST-500W 20B
REGIST-120W 100B	REGIST-500W 14B
REGIST-120W 50B	REGIST-500W 10B
REGIST-220W 100B	REGIST-500W 7B
REGIST-220W 50B	0 16 0 16 0
8 8	8 8 8

A type without a thermal (no "B" at the end of the model number) is also available.

Cable

Only sensor cables are available. Terminals, however, are not treated.

	Model No.	Remarks
	6879019-1	For wiring-saved incremental encoder (20 m or shorter)
6	6870010-1	For wiring-saved incremental encoder (20 m or longer)
0 ×		For absolute encoder (ABS-E)
	KOLIO.	Absolute sensor (ABS-R II)

Cannon connector

Use a connector to wire the Servo Amplifier and the motor.

Model No.	Remarks
MS06B24-11S-16	Straight plug for the P1, P2, P6 or P8 motor power line.
MS06B20-29S-12	Straight plug for the P1, P2, P6 or P8 motor sensor line.

Anti-noise parts

The following anti-noise parts are available.

Model No.	Remarks	
CRE-50500	Spark killer	
R·A·V-781BXZ-2A	Surge protector	8

WIRING

4.1	Applicable Wire Sizes	
4.2	Specifications of Sensor Cable	
4.3	External Wiring Diagram	4-4
	4.3.1 External Wiring Diagram (200 VAC Input Type)	
	4.3.2 External Wiring Diagram (100 VAC Input Type)	4-6
	4.3.3 Sensor Connection Diagram (INC-E)	
	4.3.4 Sensor Connection Diagram (ABS-E)	4-9
	4.3.5 Sensor Connection Diagram (ABS-RII)	4-10
	4.3.6 Sensor Connection Diagram (ABS-E.S1)	4-11
4.4	Connector Terminal Arrangement	
	Input/Output Signal Diagram	
	4.4.1 CN1: Interface Connector	<u></u> 4-12
	4.4.2 CN2: Sensor Connector	4-13
4.5	Wiring Procedure	4-15
4.6	Precautions on Wiring	4-16
	4.6.1 Recommended Surge Protector	
	4.6.2 CN1 & CN2 Shielding Procedure	4-18
	4.6.3 Typical CN2 Compression Insert Application	

4.1 Applicable Wire Sizes

- The table below shows typical sizes of external terminals and wires used for the Servo Amplifier.
- Select the wire to use and its size based on the wiring distance, operation environment and current capacity.
- Table 4-1 assumes that the rated current flows on three lead wiring harnesses at an ambient temperature of 104°F (40°C).

	Model	Example of applicable wire size			
External terminal name	Terminal code	PY2A015 PY2E015	PY2A030 PY2E030	PY2A050	
Main circuit power supply input terminal	CNA (R. S. T)	Equivalent to AWG16	Equivalent to AWG14	Equivalent to AWG12	
Control power supply input terminal	CNA (r. t)	Ec	Equivalent to AWG16		
Motor connector terminal (power line)	CNB (U, V, W)	Equivalent to AWG16	Equivalent to AWG14	Equivalent to AWG12	
PE (protective earth) terminal $((=))$	Ð	Equivalent to AWG14		14	
AMP ready output terminal (optional)	CNC (RDY1, RDY2)	Equivalent to AWG20			
Regenerative resistor connection input terminal	CND (P, X, Y)	Equivalent	to AWG16	Equivalent to AWG14	
I/O signal connector	CN1	AWG24 or greater (A twisted pair lump shielded wire is partly us			
Sensor signal connector	CN2	AWG 24 or greater twisted pair lump shielded wire			
	Main circuit power supply input terminalControl power supply input terminalMotor connector terminal (power line)PE (protective earth) terminal ((External terminal nameTerminal codeMain circuit power supply input terminalCNA (R. S. T)Control power supply input terminalCNA (r. t)Motor connector terminal (power line)CNB (U, V, W)PE (protective earth) terminal ((=))CNC (RDY1, RDY2)AMP ready output terminal (optional)CNC (RDY1, RDY2)Regenerative resistor connection input terminalCND (P, X, Y)I/O signal connectorCN1Sensor signalCN2	External terminal nameTerminal codePY2A015 PY2E015Main circuit power supply input terminalCNA (R. S. T)Equivalent to AWG16Control power supply input terminalCNA (r. t)Equivalent to AWG16Motor connector terminal (power line)CNB (U, V, W)Equivalent to AWG16PE (protective earth) terminal (Imported power line)CNC (RDY1, RDY2)Equivalent to AWG16AMP ready output terminal (optional)CNC (RDY1, RDY2)Equivalent to AWG16Regenerative resistor connection input terminal (P, X, Y)CND (P, X, Y)Equivalent AWG24 of AWG24 of	External terminal nameTerminal codePY2A015 PY2E015PY2A030 PY2E030Main circuit power supply input terminalCNA (R. S. T)Equivalent to AWG16Equivalent to AWG14Control power supply input terminalCNA (r. t)Equivalent to AWG16Equivalent to AWG AWG14Motor connector terminal (power line)CNB (U, V, W)Equivalent to AWG16Equivalent to AWG14PE (protective earth) terminal (c)CNC (RDY1, RDY2)Equivalent to AWG AWG16Equivalent to AWG AWG16AMP ready output terminal (optional)CND (RDY1, RDY2)Equivalent to AWG16Regenerative resistor connection input terminal (P, X, Y)CN1AWG24 or greater (A twisted pair lump shielded wird AWG24 or greater twistedI/O signal connectorCN2AWG 24 or greater twisted	

Table 4-1 Applicable Wire Sizes

- 1 For bundling wires or putting them in a duct, take the allowable current reduction ratio of the wires into consideration.
- 2 When the ambient temperature is high, the life will be shortened due to thermal degradation. In this case, use a heat-resistant vinyl cable.
- 3 The size of the wire to be connected to the main circuit power supply input terminal or motor connecting terminal can be smaller than listed in the above table, depending on the capacity of the Servomotor. (Use a wire of suitable size, referring to Power Supply Capacity in Section 9.)
- 4 We prepare an optional sensor signal line connector cable, which can be purchased by specifying the model number.
- 5 It is recommended to use an "insulation sleeve-equipped bar terminal" if a certain insulation distance is required to be secured between main circuit wires or between main and signal circuit wires.
- (This terminal cannot be used when the wire used is AWG12 or greater.)
- 6 The recommended tightening torque of the jack screw (screw) in the shell (connector cover : 10320-52A0-008) is 0.196±0.049N⋅m(2.0±0.5kgf⋅cm). We ask you to tighten with this torque.
- 7 The jack screw with a stopper can prevent over-tightening. The product no. (with a stopper) is 3342-26 and the recommended tightening torque is 0.441±0.049N·m (4.5±0.5kgf·cm).

4.2 Specifications of Sensor Cable

Nº.	Store and a store of the store	Speci	fications	A.
, ²	Wiring-saved incre (INC-E : wiring dista		(INC-E : wiring dist	remental encoder ance 20 m to 30 m) (ABS-E, ABS-RII)
Connecting Method	By sold	lering	By so	Idering
Maker names	Tonichi Ca	able, Ltd.		tric Wire and Co., Ltd.
Approximate specification	6-pairs × 0 (Tinned anneale			× 0.2 mm ² er alloy twisted wire)
Finished outside diameter	8.0 mm	MAX	10.0 m	m MAX
Bulk resistance	91 Ω /kn	n MAX	123 Ω/	km MAX
composition and Lead color		Pair Binding tape Striping shield Drain wire Sheath		Pair Binding tap Copper foil yarn mesh shielding Drain wire Sheath
www.cf	 1 : Red-Black 2 : Blue-Brown 3 : Green-Purple 4 : White-Yellow 5 : Skyblue-Pink 6 : Orange-Gray 	(Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair)	1 : Blue-White 2 : Yellow-White 3 : Green-White 4 : Red-White 5 : Purple-White 6 : Blue-Brown	(Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair) (Twisted pair)
BKQ.Q			7 : Yellow-Brown 8 : Green-Brown 9 : Red-Brown 10 : Purple-Brown	(Twisted pair) (Twisted pair)
Our available specifications	Our Model No. No terminal treatment	- C	Our Model N No terminal treatmen	o. 6870010-1, nt (without connecto

Table 4-2 Specifications of Cable

- When applicable cables are used, the permissible distance between the Servo Amplifier and the motor (sensor) is as follows:
 - Wiring-saved incremental encoder (INC-E): 20 m max. when 6 pairs of cables of 91 Ω/km or less are used.
 - Wiring-saved incremental encoder (INC-E): 30 m max. when 10 pairs of cables of 123 Ω/km or less are used.
 - Absolute encoder (ABS-E): 25 m max. when 10 pairs of cables of 123 Ω /km or less are used.
 - Absolute sensor (ABS-R II): 30 m max. when 10 pairs of cables of 123 Ω/km or less are used.
- 2 The permissible wiring distance can be extended to 50 m by using a cable with low conductor resistance (a thick cable) or increasing the number of wires. Contact us for details.
- 3 When ordering cables from us, please specify our Model Nos. and lengths.
- 4 Before using these cables to any moving elements, please consult with us.

4.3 External Wiring Diagram

4.3.1 External Wiring Diagram (200 VAC Input Type)

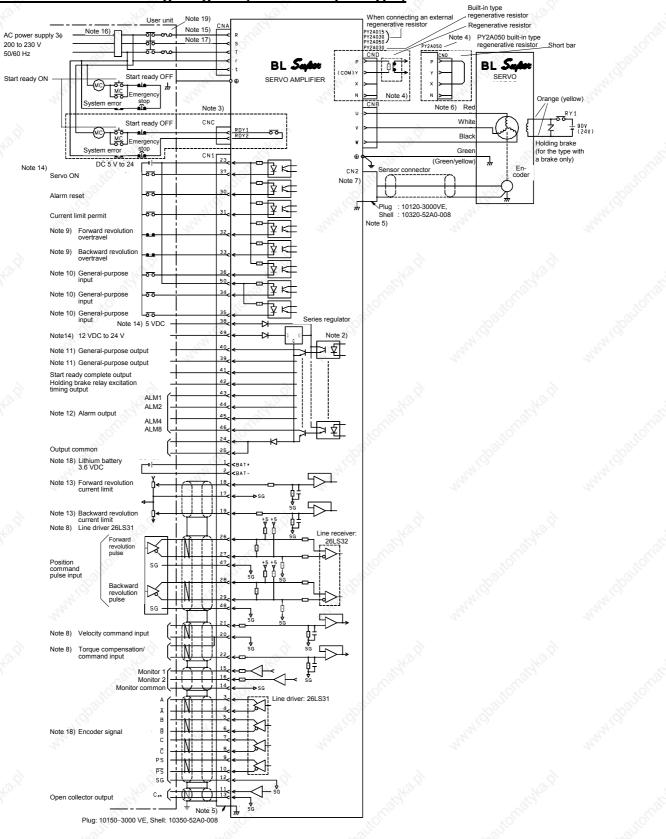


Fig. 4-1 (a) External Wiring Diagram (200 VAC Input Type)

			- N -	
		Eautha namha na ailead		, use a twisted pair shielded cable.
NOTE 11	-	For the barrs marked	: 1 \ 1 :	lise a twisten hair shielded cable

Note 2) : Select the power supply from the two types, 5 V or 12 V to 24 V.

						38
	Carl Carl	CN1 - 38 pin	CN1 - 49 pin	Carlyle	5 V input	
	5 V used	Connected	Open	5	12 V to 24 V	
	12 to 24 V used	Open	Connected		input	
No		30 VD	contact output.		5 V input: 10 mA max. 12 to 24 V input: 50 mA max. Output common	

Note 4) :

Amp. capacity	CND terminal *1	Built-in type regenerative resistor	Use of built-in type regenerative resistor ^{*2}	Method of connecting external regenerative resistor *3
15, 30 A (Normal)	P, Y (or COM), N	None		Connect it between the P and Y (or COM) terminals.
30 A (Special)	P, Y, N	Equipped	Same as default connection. Connect it between the P and Y terminals.	Connect it between the P and Y terminals after removing the wiring connected between the P and Y terminals. ^{*4}
50 A (Normal)	P, Y, X, N	Equipped	Same as the default. Short-circuit the P and X terminals using a short-circuit bar.	Connect it between the P and X terminals after removing the short-circuit bar across P and X terminals.

1 : The N terminal is for maintenance (high-voltage circuit). So, do not wire the N terminal.

*2 : The thermostat contact output of the built-in regenerative resistor is connected inside the amplifier.

*3 : A thermostat for the external regenerative resistor shall be built into the user device, or connected to the external overheat detection input to protect the resistor.

*4 : Be careful not to bring the removed wire into contact with the conductive parts.

Note 5) : Refer to 4.6.2 CN1 & CN2 Shielding Procedure.

Note 6) : Motor connection differs to the motor specifications. The indications of red, white, black, green and orange apply when the motor power and brake lines are the lead type. When they are the cannon plug type, connect them according to the motor specifications.

Note 7) : For how to wire the sensor connector, refer to the sensor wiring diagram.

Note 8) : The functions of command input differ depending on control modes.

		- Ca	la.	11°	
Command input terminal Control mode		Position command pulse input	Velocity command input	Torque command input	
Position control ty	pe	Position command pulse input	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
Velocity control type		- Harris Color	Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	
Torque control typ	e	23-		Torque command input	
Velocity/torque switch type	No switching	- 	Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	
	During switching		(a., <u>-</u> (f.a.,	Torque command input	
Position/torque switch type	No switching	Position command pulse input	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
	During switching	4 <u>0</u>	24 -	Torque command input	
Position/velocity switch type	No switching	Position command pulse input	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
one	During switching	- doauto	Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	

For the details of the control mode and Func1 setting, refer to the user's manual.

The polarity of command input can be reversed.

Refer to the figure on the right when connecting the position command pulse input to the open collector output.

Note 9) : Forward/backward revolution overtravel input By setting Func0, this function can be deleted or set to the a-contact input.

Note 10) : The function of the general-purpose input can be selected from the table below.

			~~~~ ///	
General-purpose input terminal Control mode		34 pin	35 pin	36 pin
Position control type	N. S. C.	Deviation clear	(1)	(1)
Velocity control type		Internal velocity command, (2) revolution direction input		(2)
Torque control type	4	_ 4	(3)	(3)
Velocity/torque switch type	No switching	Internal velocity command, revolution direction input	Control mode switching input or (2).	Control mode switching input or (2).
marsha	During switching	na ^{ble}	Control mode switching input or (3).	Control mode switching input or (3).
Position/torque switch type	No switching	Deviation clear	Control mode switching input or (1).	Control mode switching input or (1).
	During switching	- and	Control mode switching input or (3).	Control mode switching input or (3).
Position/velocity switch type	No switching	Deviation clear	Control mode switching input or (1).	Control mode switching input or (1).
	During switching	Internal velocity command, revolution direction input	Control mode switching input or (2).	Control mode switching input or (2).

Forward revolution pulse

Backward

revolution pulse

47

28

48

(1) : Functions can be selected among external overheating detection, proportional control, command multiplication and command pulse inhibit.

(2): Functions can be selected among external overheating detection, proportional control, zero clamp and internal setting velocity select.
 (3): Available as the external overheating detection input function.

In addition to the above, it can also be set as the gain switch input. One pin can be set to have several or no functions.

For details, refer to the operation manual.

Note 11) : General-purpose output

By setting Func4, functions can be selected among current limit, low velocity, high velocity, velocity match, positioning complete and command receive enabled. Output logic can also be selected.

Note 12) : Alarm output

Output alarm state using codes. It can also be output using bits by setting.

Note 13) : Forward/backward revolution current limit input By changing the setting, both forward and backward revolution currents can be limited using the revolution current limit or the backward revolution current can be limited using positive voltage. It can also be limited using the internal setting.

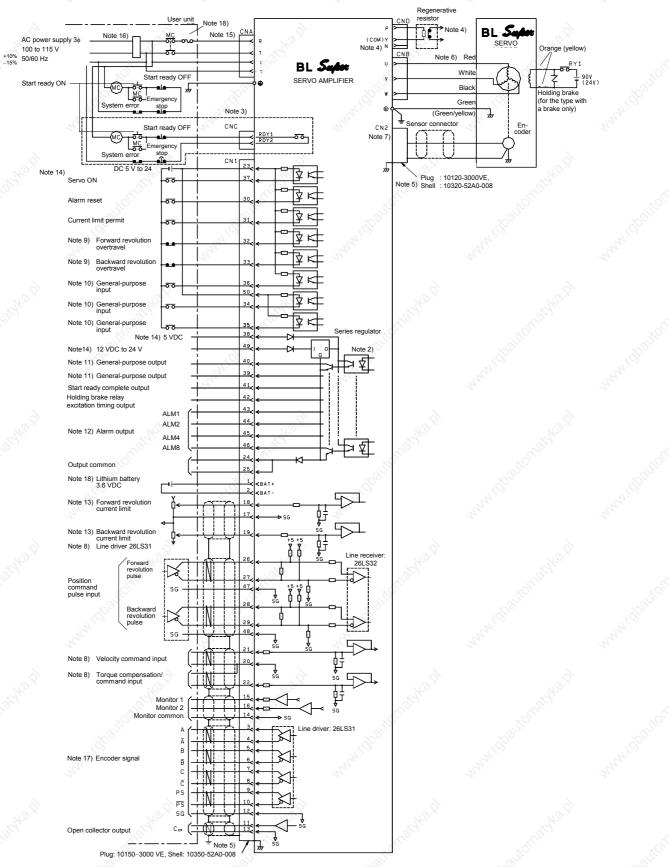
Note 14) : Your are required to prepare the power. Either of the inputs can be selected.

Note 15) : The R, S, T, r, t, RDY1, RDY2, P, Y (or COM), N, U, V and W terminals are high-voltage circuits and the others are low-voltage circuits.

For the wiring-related reason, allow sufficient distance between high- and low-voltage circuits.

Note 16) : We recommend that a UL-approved earth leakage breaker be used that complies with IEC or EN standard.

Note 17) : Do not wire the S phase for a single-phase power amplifier.

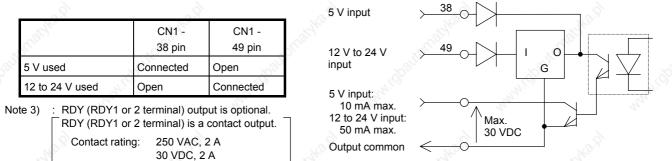

Note 18) : The lithium battery connector terminals (1 and 2 pins) and encoder signals PS and  $\overrightarrow{PS}$  (9 and 10 pins) are available when your encoder is the absolute type (ABS-E, ABS-RII or ABS-E.S1).

Note 19) : Be sure to install the following types of UL-approved fuses for the main circuit power supply input.

Amplifier capacity 15 A, 30 A : 30 A fast-blown type Amplifier capacity 50 A : 50 A fast-blown type

Note 20) : Make sure to connect SG (signal ground) for difference input signal (line driver of position command/ line driver of dividing output), or wrong operation and breakage may occur.

### Fig. 4-1 (b) External Wiring Diagram (200 VAC Input Type), Precautions




### 4.3.2 External Wiring Diagram (100 VAC Input Type)

Fig. 4-2 (a) External Wiring Diagram (100 VAC Input Type)

Note 1) : For the parts marked , use a twisted pair shielded cable.

Note 2) : Select the power supply from the two types, 5 V or 12 V to 24 V.



Inductive load:  $COS\phi = 0.4$ , L/R = 7 mS

Note 4)

,		- 25°		
Amp. capacity	CND terminal *1	Built-in type regenerative resistor	Use of built-in type regenerative resistor ^{*2}	Method of connecting external regenerative resistor *3
15, 30 A 🔌 (Normal)	P, Y (or COM), N	None	47	Connect it between the P and Y (or COM) terminals.
30 A (Special)	P, Y, N	Equipped	Same as default connection. Connect it between the P and Y terminals in the same way as on shipment.	Connect it between the P and Y terminals after removing the wiring connected between the P and Y terminals. ^{*4}

*1 : The N terminal is for maintenance (high-voltage circuit). So, do not wire the N terminal.

*2 : The thermostat contact output of the built-in regenerative resistor is connected inside the amplifier.

*3 : A thermostat for the external regenerative resistor shall be built into the user device, or connected to the external overheat detection input to protect the resistor.

*4 : Be careful not to bring the removed wire into contact with the conductive parts.

Note 5) : Refer to 4.6.2 CN1 & CN2 Shielding Procedure.

Note 6) : Motor connection differs to the motor specifications. The indications of red, white, black, green and orange apply when the motor power and brake lines are the lead type. When they are the cannon plug type, connect them according to the motor specifications.

Note 7) : For how to wire the sensor connector, refer to the sensor wiring diagram.

Note 8) : The functions of command input differ depending on control modes.

Command input terminal Control mode		Position command pulse input	Velocity command input	Torque command input	
Position control ty	pe	2.01 -	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
Velocity control type			Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	
Torque control typ	e	8	Ð	Torque command input	
Velocity/torque switch type	No switching	n.	Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	
La R	During switching	, ²	20 ⁰ - 20 ⁰	Torque command input	
Position/torque switch type	No switching	Position command pulse input	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
	During switching	- 196	AL PACE	Torque command input	
Position/velocity switch type	No switching	Position command pulse input	Velocity addition input is assumed depending on the setting of Func1.	Torque compensation input is assumed depending on the setting of Func1.	
~a5/42.91	During switching	₽ ^{\$} ?` =	Velocity command input	Torque compensation input is assumed depending on the setting of Func1.	

For the details of the control mode and Func1 setting, refer to the user's manual.

The polarity of command input can be reversed.

Refer to the figure on the right when connecting the position command pulse input to the open collector output.

Note 9) : Forward/backward revolution overtravel input By setting Func0, this function can be deleted or set to the a-contact input.

Note 10) : The function of the general-purpose input can be selected from the table below.

General-purpose input terminal Control mode		34 pin	35 pin	36 pin
Position control type	15°	Deviation clear	(1)	(1)
Velocity control type		Internal velocity command, (2) revolution direction input		(2)
Torque control type	4	_ 4	(3)	(3)
Velocity/torque switch type	No switching	Internal velocity command, revolution direction input	Control mode switching input or (2).	Control mode switching input or (2).
marsha	During switching	na ^{ble}	Control mode switching input or (3).	Control mode switching input or (3).
Position/torque switch type	No switching	Deviation clear	Control mode switching input or (1).	Control mode switching input or (1).
	During switching	- man	Control mode switching input or (3).	Control mode switching input or (3).
Position/velocity switch type	No switching	Deviation clear	Control mode switching input or (1).	Control mode switching input or (1).
	During switching	Internal velocity command, revolution direction input	Control mode switching input or (2).	Control mode switching input or (2).

Forward

Backward

revolution pulse

revolution pulse

47

28

48

(1) : Functions can be selected among external overheating detection, proportional control, command multiplication and command pulse inhibit.

(2) : Functions can be selected among external overheating detection, proportional control, zero clamp and internal setting velocity select.
 (3) : Available as the external overheating detection input function.

In addition to the above, it can also be set as the gain switch input. One pin can be set to have several or no functions.

For details, refer to the operation manual.

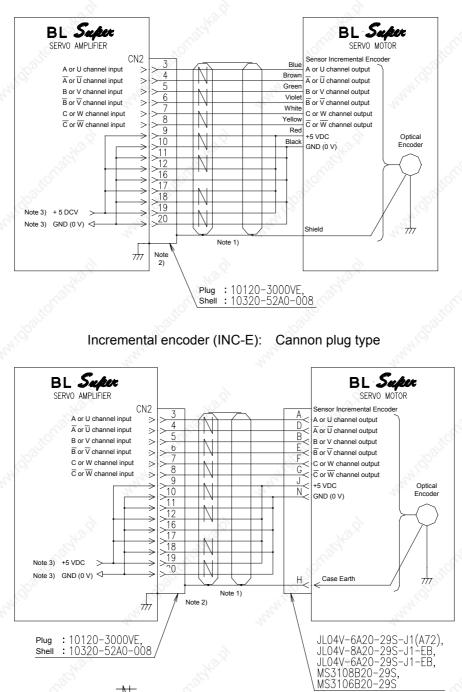
Note 11) : General-purpose output

By setting Func4, functions can be selected among current limit, low velocity, high velocity, velocity match, positioning complete and command receive enabled. Output logic can also be selected.

#### Note 12) : Alarm output

Output alarm state using codes. It can also be output using bits by setting.

Note 13) : Forward/backward revolution current limit input By changing the setting, both forward and backward revolution currents can be limited using the revolution current limit or the backward revolution current can be limited using positive voltage. It can also be limited using the internal setting.


- Note 14) : Your are required to prepare the power. Either of the inputs can be selected.
- Note 15) : The R, S, T, r, t, RDY1, RDY2, P, Y (or COM), N, U, V and W terminals are high-voltage circuits and the others are low-voltage circuits.

For the wiring-related reason, allow sufficient distance between high- and low-voltage circuits.

- Note 16) : We recommend a UL-approved earth leakage breaker be used that complies with IEC or EN standard.
- Note 17) : The lithium battery connector terminals (1 and 2 pins) and encoder signals PS and PS (9 and 10 pins) are available when your encoder is the absolute type (ABS-E, ABS-RII or ABS-E.S1).
- Note 18) : Be sure to install a UL-approved, 30 A fast-blown type fuse for the main circuit power supply input.
- Note 19) : Make sure to connect SG (signal ground) for difference input signal (line driver of position command/ line driver of dividing output), or wrong operation and breakage may occur.

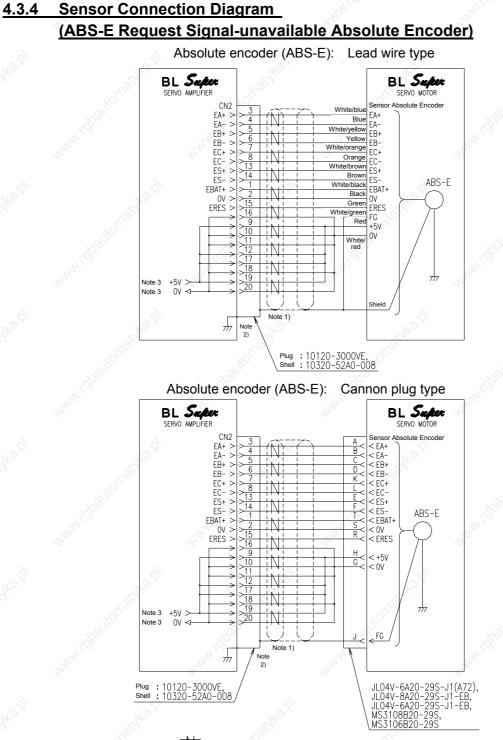
### Fig. 4-2 (b) External Wiring Diagram (100 VAC Input Type), Precautions

#### Sensor Connection Diagram (INC-E Wiring-saved Incremental Encoder) 4.3.3



Incremental encoder (INC-E): Lead wire type

For the parts marked  $\downarrow \downarrow \downarrow$ , use a twisted pair shielded cable. Refer to 4.6.2 CN1 & CN2 Shielding Procedure. 1.


- 2.
- 3. The sensor power connection differs depending on the cable length.

Refer to the following table.

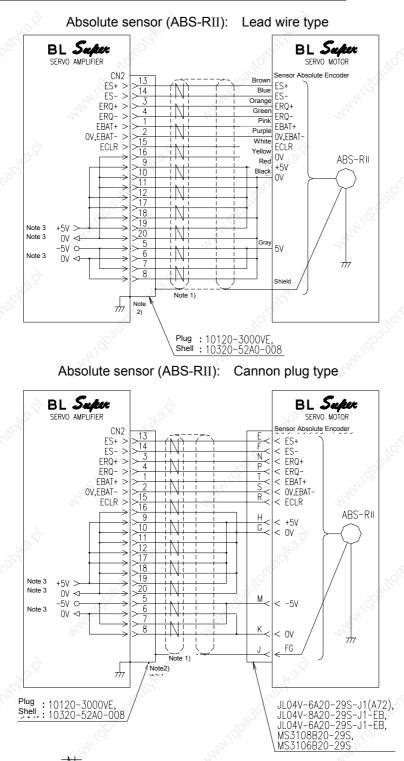
Notes:

	C-10-10		120	
Sensor cable length	5 m or less	10 m or less 🔊	20 m or less	30 m or less
+5 VDC wiring	19-pin connection	17- and 19-pin connection	12-, 17- and 19-pin connection	9-, 12-, 17- and 19-pin
N	(9, 12 and 17 pins need not	(9 and 12 pins need not be	(9 pin need not be connected)	connection
28	be connected)	connected)	S.	2
GND (0 V) wiring	20-pin connection	18- and 20-pin connection	11-, 18- and 20-pin connection	10-, 11-, 16-, 18- and 20-pin
- 8°	(10, 11, 16 and 18 pins need	(10, 11 and 16 pins need not	(10 and 16 pins need not be	connection
- 12 m	not be connected)	be connected)	connected)	22

Fig. 4-3 Sensor Connection Diagram (INC-E Wiring-saved Incremental Encoder)



For the parts marked ______, use a twisted pair shielded cable. Refer to 4.6.2 CN1 & CN2 Shielding Procedure. Notes: 1.


- 2.
- 3. The sensor power connection differs depending on the cable length. Refer to the following table.

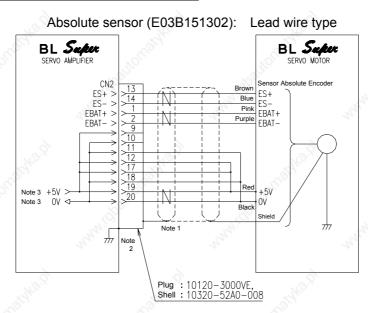
Sensor cable length	5 m or less	10 m or less	15 m or less	25 m or less
+5 V wiring	19-pin connection (9, 12 and 17 pins need not be connected)	17- and 19-pin connection (9 and 12 pins need not be connected)	12-, 17- and 19-pin connection (9 pin need not be connected)	9-, 12-, 17- and 19-pin connection
0 V wiring	16- and 20-pin connection (10, 11 and 18 pins need not be connected)	16-, 18- and 20-pin connection (10 and 11 pins need not be connected)	11-, 16-, 18- and 20-pin connection (10 pin need not be connected)	10-, 11-, 16-, 18- and 20-pin connection

Fig. 4-4 Sensor Connection Diagram (ABS-E Absolute Encoder)

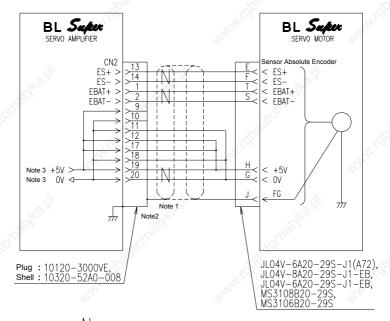
#### WIRING 4.

#### Sensor Connection Diagram 4.3.5 (ABS-RII Request Signal-available Absolute Sensor)




Notes:

1. 2. 3. For the parts marked ______, use a twisted pair shielded cable. Refer to 4.6.2 CN1 & CN2 Shielding Procedure.


When the sensor cable length is 5m or less, 11, 12, 17 and 18 pins need not be connected. When the length is between 5 m and 30 m, connect all pins.

#### Sensor Connection Diagram (ABS-RII Absolute Sensor) Fig. 4-5

### <u>4.3.6 Sensor Connection Diagram</u> (Wiring-saved Absolute Sensor)



Absolute sensor (E03B151302): Cannon plug type



Notes: 1. For the parts marked  $\downarrow \downarrow$ , use a twisted pair shielded cable.

- 2. Refer to 4.6.2 CN1 & CN2 Shielding Procedure.
- 3. The sensor power connection differs depending on the cable length. Refer to the following table.

Sensor cable length	10 m or less	25 m or less	40 m or less
+5 V wiring	19-pin connection (12 and 17 pins need not be connected)	17- and 19-pin connection (12 pin need not be connected)	12-, 17- and 19-pin connection
0 V wiring	20-pin connection (11 and 18 pins need not be connected)	18- and 20-pin connection (11 pin need not be connected)	11-, 18- and 20-pin connection

4. In case of application not using multi-rotational part, wiring of "EBAT+" and "EBAT-" are not necessary. However, set Func6, bit5 to "1".

#### Fig. 4-6 Sensor Connection Diagram (Wiring-saved Absolute Encoder ABS-E.S1)

# WIRING

### **Connector Terminal Arrangement Input/** 4.4 **Output Signal Diagram**

#### 4.4.1 CN1: Interface Connector

CN1 is an interface connector to a host computer or the like. The connector of the amplifier is "10250-52A2JL" (made by Sumitomo 3M).

	2 12V to 2 c c	DC 24V	22 Not TCMD		Note2	1 N P I	lote3	1 мот	lote5	1 s (	- 5	1 s (		1 • • •	lote1	8		6 • •	-	4 A		2 В А	lote1	
	Out seque pov comi	ence ver	Torque commai	e tor	ocity/ que mand	Forw revolu side cu lim	ution urrent	Moni outpu		Moni comr					Positi	ion sig	nal ou	itput				Batt nega sid	tive	
2	5	2	3	2 1	1	9	1	78	1	5	1	3	1	1.3	്ം	)	7	,	5	5	.3	3	1	
to	VDC 24V O M		'DC 24V	Note2 V C M D		Note3	and a	G	мо	Note5 N 1	со	ΡG	С	ΟP		Note1 S	(	с	E	3 .43		4	ВА [.]	ote1 r +
po	itput Jence wer 1mon	sequ		Velocity command	revo side d	ward lution current mit	lir	rent nit mon	Mor outp		C-pl com	nase mon	(ò coll	hase pen ector tput)			Posit	tion sig	inal o	utput			Batte posit sid	ive
	4	9	47	4	5	4	3	4	1	3	9	3	7	3	5	3	3	3	1	2 9	9	2	7	
	12V to 2		S G	AL	Note6 M 4	N A L I	lote6 VI 1	SRI	DY	Gene purp outp	ose	so	N	N Gene purp inp	ose	NRO	lote4 O T	N I L	ote3 M	N N P	lote2	PP	Note2	
	Out seque pov	ence	Pulse comma commo	nd	Alarm	output	12	Opera rea comp	dy	Gene purp outp	ose	Ser ON		Gene purp inp	ose	Backv revolu sid over tr	ition e	Curr lim perr	it	Backy revolu puls comm	ution	Forw revolu puls comm	ution	
5	0	4	8	46	4	4	4	2	4	0	3	8	3	6	3	34	3	2	3	0	2	8	2	6
	VDC 24V	s	G .	Note6 A L M 8	2	Note6 M 2		Note9 8 O N	Gen purp out	ose	5	v	pur	Note7 neral- pose put	Gen	Note7 eral- pose put		Note4 R O T		Note6 S T	N	Note2 P C	N PP	ote2 C
	put	Pu	Ise	2011			Hol	ding ake	Gen	eral- oose		tput ence		neral- pose		eral- pose		ward lution	Ala	arm	Back revo	ward lution	Forwarevolu	

### Fig. 4-7 CN1 Connector Terminal Arrangement Diagram

#### Notes :

- Battery connector terminal and position signal output PS terminal: Available when being used together with the absolute encoder (ABS-E) or the absolute sensor (ABS-RII).
- Command input : Functions differ depending on the control modes. Current limit : The input method can optionally be set. Overtravel : The input method can optionally be set. 2. 3.
- 4.
- Monitor output : The signal and output range to be monitored can be selected. Alarm output : The output method and polarity can be selected. 5.
- 6.
- General-purpose input : Selectable from multiple signals. The contents of signals differ depending 7. on the control modes.
- General-purpose output : Multiple signals can be selected. 8
- Holding brake timing output : Timing output for operating the motor holding brake. The timing can be adjusted according to the machine.



The above figure shows the arrangement when viewed from the wiring section of the connector. Connector at cable side is not attached to Servo Amplifier, and should be prepared by user.

### 4.4.2 CN2 Sensor Connector

The amplifier-side connector is "10220-52A2JL" (made by Sumitomo 3M).

- Δ
- Connection differs depending on the type of the Servomotor sensor to be combined with the Servo Amplifier.
- Note that the hardware inside the Servo Amplifier differs between the incremental encoder (INC-E) or the request signal-unavailable absolute encoder (ABS-E) and the request signal-available absolute sensor (ABS-RII) or wiring-saved absolute sensor (ABS-E.S1).

Incremental encoder (INC-E) terminal arrangement diagram

	10		3	6	3	4	4	2	2	
1	SG	Ē		Ē	3	Ā		Reserved		
offe		9	-			5		3		
	5	V	8°0	C		В	100	4	Rese	rved
	20 1		18		6	1	4	1	2	3
	SG	S	G	S	G	Rese	erved	5	V	
	<u>_</u> ? 1	9	1	7	<u>_</u> ? 1	5	1	3	୍ଡ ହିୀ	1
	5	V	5	V	Res	erved	Rese	erved	S	G
20°	L		Š.	Q.,	1		· .	60.	1	

Fig. 4-8 CN2 Connector (INC-E Incremental Encoder) Terminal Arrangement Diagram

Request signal-unavailable absolute encoder (ABS-E) terminal arrangement diagram

					5				0		
82	10		8		్ 6			4 8	2		
	S	G		5	Ē	3	3	٩	BA	.T–	.55
L			9	-	7	ļ	5	3	5		1
		S	G		C 🖉 I		3 A		۱.	BA	T+
	2	0	1	8	<u>_</u> 1	6	1	4	ুগ	2	
30	SG		G SG		S	G	P	S S	5	V	
		1	9	8 1	7	1	5	1:	3	1	1
		5	V	5	V	EC	LR	P	S	S	G
		~				~		I		~	



1	10 SG		8 SG		be State	4	4	2		
S					G	RE	Q–	BA	T–	
0	ç	9	33	7	Ę	5	100	3		1
	5		V –5		-5	V RE		Q+	BA	λT+
2	0	1	8	1	6	1	4	12	2	
S	G	S	G	S	G	P	S	5 `	V è	
E.	19		9 1		1	5	1	3	1	1
6	5	V	5	V	EC	LR	P	s	S	G

Request signal-available absolute sensor (ABS-RII) terminal arrangement diagram

Fig. 4-10 CN2 Connector (ABS-RII Request Signal-available Absolute Sensor) Terminal Arrangement Diagram

### • Wiring-saved absolute sensor (ABS-E.S1) terminal arrangement diagram

10	8	8		5 ₀ .2	2	4   2		10.2	
SG	OP	EN	OP	EN	OP	EN	BA	T–	
	9	300	7	Ę	5		3		1
5	V	OP	EN	OP	EN	OP	EN	BA	T+
20	1	8	1	6	31	4	12	2	4
SG	S	G	S	G	Ē	S	5 `	Vò	
1	9	1	7	1	5	1	3	11	
5	V	5	V	OP	EN	E	S	S	G
	SG 5 20 SG 1	SG OP 9 5V 20 1	SG     OPEN       9     7       5 V     OP       20     18       SG     SG       19     1	SG     OPEN     OP       9     7       5 V     OPEN       20     18     1       SG     SG     S       19     17	SG     OPEN     OPEN       9     7     €       5 V     OPEN     OP       20     18     16       SG     SG     SG       19     17     1	SG     OPEN     OPEN     OP       9     7     5       5 ∨     OPEN     OPEN       20     18     16     1       SG     SG     SG     E       19     17     15	SGOPENOPENOPEN9753 $5 \vee$ OPENOPENOP20181614SGSGSGES1917151	SG     OPEN     OPEN     OPEN     BA       9     7     5     3       5 V     OPEN     OPEN     OPEN       20     18     16     14     12       SG     SG     SG     SG     5       19     17     15     13	SG     OPEN     OPEN     OPEN     BAT-       9     7     5     3     7       5 V     OPEN     OPEN     OPEN     OPEN     BA       20     18     16     14     12       SG     SG     SG     ES     5 V       19     17     15     13     1

Fig. 4-11 CN2 Connector (ABS-E.S1 Wiring-saved Absolute Sensor) Terminal Arrangement Diagram

### 4.5 Wiring Procedure

The Servo Amplifier is control unit to process signals of several mV or less. Therefore, perform wiring observing the following items.

1 Input/output or sensor signal line

For the input/output or sensor signal line, use recommended cables or their equivalent (twisted wires or multi-conductor twisted lump shielded wires). Wire them by taking the following precautions into account.

- Wire them in the shortest distance.
- Separate the main circuit line from the signal circuit line.
- Do not wire the main circuit line on the side of the amplifier or near another amplifier.
- We recommend to use an "insulation sleeve-equipped bar terminal" if a certain insulation distance is required to be secured between main circuit wires or between main and signal circuit wires.

(This terminal cannot be used when AWG12 wire is used.)

- 2 Earth cable
  - Earth the wire with the diameter of 2.0 mm² at one point.
  - Perform class 3 earth (earth resistance value: 100  $\Omega$  max.).
  - Be sure to connect the frame of the Servomotor (the grounding wire and the terminal) to the PE (protective earth) terminal (=) of the Servo Amplifier.
  - Be sure to connect the PE (protective earth) terminal () ) for the Servo Amplifier to that for the control panel. Be sure to ground it at one point.
- 3 Measures against malfunction due to noise

Note the following to prevent malfunction due to noise.

- Arrange the noise filter, the Servo Amplifier, and the upper controller as near as possible.
- Be sure to install a surge absorbing circuit on the coils for the relay, the magnetic contactor, the induction motor and the brake solenoid.
- Don't pass main circuit signal lines in the same duct or overlap them.
- When a large noise source such as an electric welding machine or an electric discharge machine exists nearby, insert a noise filter into the power supply and the input circuit.
- · Don't bind the noise filter primary and secondary side wires together.
- Don't make the earth cable longer.
- 4 Measure against radio interference

Since the Servo Amplifier is an industrial equipment, no measure against radio interference has been taken to it. If the interference causes some problem, insert a line filter to the power line input.

4-18

### 4.6 Precautions on Wiring

Perform wiring observing the following completely.

#### Noise processing

The main circuit of the Servo Amplifier uses IGBTs under PWM control. If the wiring processing is not earthed properly, switching noise may occur by di/dt and dv/dt generated when IGBT is switched. Because the Servo Amplifier incorporates electronic circuits such as the CPU, it is necessary to perform wiring and processing so as to prevent external noise from invading to the utmost.

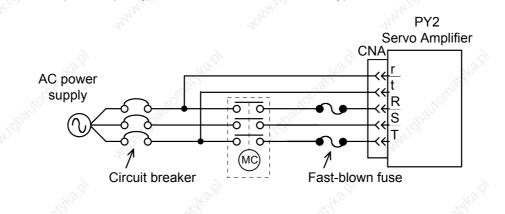
To prevent trouble due to this noise in advance, perform wiring and grounding securely. The power noise resistance (normal, common noise) of the Servo Amplifier is within 30 minutes at 1500 V, 1  $\mu$ sec. Do not conduct a noise test for more than 30 minutes.

2 Motor frame earth

When the machine is grounded through the frame, Cf x dv / dt current flows from the PWM power unit of the Servo Amplifier through the motor floating capacity (Cf). To prevent any adverse effect due to this current, be sure to connect the motor terminal (motor frame) to the PE (protective earth) terminal ( ) of the Servo Amplifier. Also, be sure to ground it directly.

3 Wire grounding

When a motor is wired to a metal conduit or box, be sure to ground the metal. In this case, perform one-point grounding.


4 Miswiring

Since miswiring in the Servo Amplifier and the Servomotor may damage equipment, be sure to check that wiring has been performed properly.

5 Protection against input overcurrent

Be sure to connect a UL-approved circuit breaker and a fast-blown fuse to the Servo Amplifier input to protect the power line. For the capacity of the fast-blown fuse, refer to the following.

Amplifier capacity 15 A, 30 A :30 A fast-blown typeAmplifier capacity 50 A:50 A fast-blown type

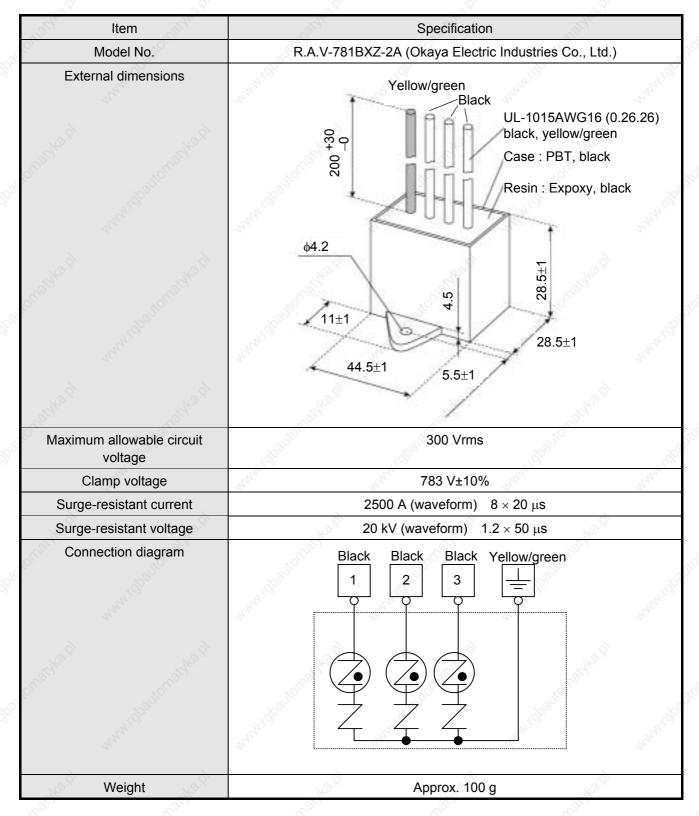




#### 6 Leakage current

Even after the motor frame is grounded as specified, leakage current flows in the input power line. When selecting a leak detection-type breaker, make sure that no oversensitive operation is caused by high-frequency leakage current by referring to "Servo Amplifier/Servomotor Leakage Current" in the specifications.

7 Power supply surge

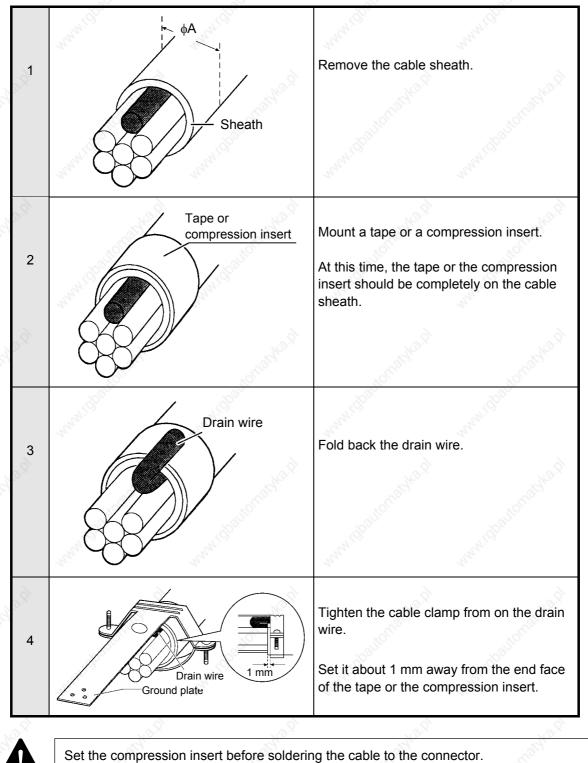

When a surge voltage occurs in the power supply, connect a surge absorber between the powers to absorb the voltage before operation.

#### 8 Lightning surge

When there is a possibility that a lightning surge over 2kV may be applied to the Servo Amplifier, take countermeasures against the surge at the control panel inlet. For lightning surge protectors to be inserted to each Servo Amplifier inlet, the product in the following table or its equivalent is recommended.

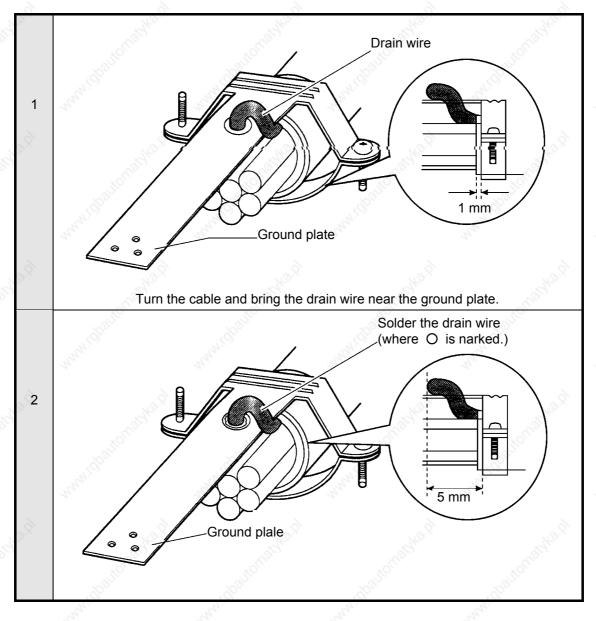
### 4.6.1 Recommended Surge Protector

When purchasing the following, directly make a reference to the maker for it.




### Fig. 4-12 Recommended Surge Protector

### 4.6.2 CN1 & CN2 Shielding Procedure


The following figure shows the connector shielding procedure for the CN1 or CN2 connector. There are two shielding procedures, clamp and soldering processing.

### Clamp processing



### • Soldering processing

Procedures 1 and 2 are the same as the clamp processing.



Applicable CN2 φ A Size

The applicable CN1 and CN2  $\phi$ A sizes are shown in the following table.

	Connector No.	Applicable $\phi A$ size	Connector model name	Maker name
ا <u>ا</u> ک	CN1	15.0 to 16.5 mm	10150-3000VE 10350-52A0-008	Sumitomo 3M Ltd.
	CN2	10.5 to 12.0 mm	10120-3000VE 10320-52A0-008	Sumitomo 3M Ltd.

Table 4-3 Applicable CN2  $\phi$  A Size

### 4. WIRING

#### 4.6.3 Typical CN2 Compression Insert Application

The following products are recommended as a CN2 compression insert.

	Compression insert No.	Applicable cable outer diameter (\phiA)	Maker name
	10607-C058	φ4.0 to 5.0 mm	teres and
	10607-C068	φ5.0 to 6.0 mm	
38	10607-C078	φ6.0 to 7.0 mm	Sumitomo 3M Ltd.
	10607-C088	φ7.0 to 8.0 mm	an ^{aby}
	10607-C098	φ8.0 to 9.0 mm	waller .

Table 4-4 CN2 Compression Inserts

1 The above products are applicable to the connector CN2.

2 When purchasing the above products, directly make a reference to the maker for them or ask our company for information.

For inquiry:

Sumitomo 3M Ltd., Tokyo Branch Phone: +81(3)5716-7290

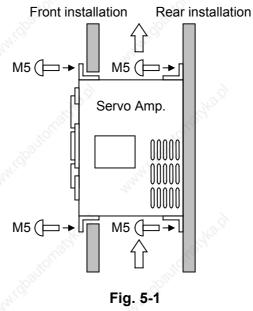
# INSTALLATION

5.1	Servo Amplifier Installation			
	5.1.1	Installation Place		
	5.1.2	Installation Procedure		5-3
5.2	Servo	motor Installation	4 ¹⁰	
	5.2.1	Installation Place	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	5.2.2	Installation Procedure	Ś	
5.3	Cable	Installation		

### 5.1 Servo Amplifier Installation

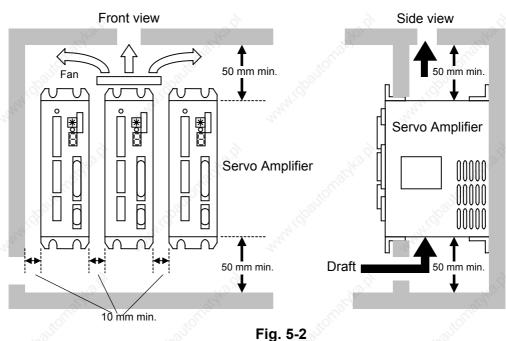
Refer to the following for the Servo Amplifier installation place and procedure.

#### 5.1.1 Installation Place


Install the Servo Amplifier by referring to the following.

Case	Precautions
When installing the Servo Amplifier in a box	The temperature in the box may be higher than the outside temperature depending on the power loss of built-in equipment and the dimensions of the box. Be sure to keep the temperature around the Servo Amplifier at 55°C or lower by properly determining the dimensions of the box, the cooling system and the arrangement. For a longer lifetime and higher reliability, operate the Servo Amplifier at an in-box temperature of lower than 40°C.
When there is a vibration source nearby	Install the Servo Amplifier at the base through a shock absorber so that vibration may not be transmitted directly to the Servo Amplifier.
When there is a heat generating source nearby	Even it there is a possibility that a temperature rise may be caused by convection or radiation, keep the temperature near the Servo Amplifier lower than 55°C.
When there is corrosive gas	If the Servo Amplifier is operated for a long time, contact failure will come to occur at contact parts (e.g., connectors). So, never install the Servo Amplifier in corrosive gas atmosphere.
When there is explosive gas or combustible gas	Never install the Servo Amplifier in explosive gas or combustible gas atmosphere. Relays and contactors, which generate arcs (sparks) inside boxes, and such parts as regenerative brake resistor may become ignition sources, causing fires and explosion.
When there is dust or oil mist	Never install the Servo Amplifier in such atmosphere containing dusts or oil mists. Dusts or oil mists adhered to or accumulated on the Servo Amplifier may lower insulation or cause leak between conductors of applicable parts, damaging the Servo Amplifier.
When there is a large noise source	Induction noise will enter input signals and the power supply circuit, causing Servo Amplifier's malfunction. When there is a possibility of noise entering, take proper measures such as inserting a noise filter, revising line wiring and preventing noise generation.

#### 5.1.2 Installation Procedure


#### Direction and Position of Installation

Install the Servo Amplifier vertically and fix the amplifier by tightening M5 screws onto the four mounting holes as in the figure below.



#### Board arrangement conditions

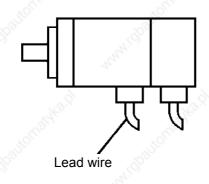
- Provide a space of 50 mm at minimum on both upper and lower sides of the Servo Amplifier so as not to prevent air from flowing out of the radiator or the amplifier. If heat remains on the upper part of the amplifier, install a fan to force air to flow.
- Provide a space of 10 mm at minimum on both sides of the amplifier so as not to prevent radiation from the heat sink on the side of the amplifier or air from flowing out of it.



### 5.2 Servomotor Installation

The Servomotor is designed to be installed indoors. Note the following precautions on the position and method for installation.

#### 5.2.1 Installation Place


Install the Servomotor at an indoor site by referring to the following.

- Ambient temperature : 0 to 40°C
- Storage temperature : 20 to 65°C
- Ambient humidity : 20 to 90%
- Well-ventilated places without corrosive or explosive gas
- Places free from dust or foreign materials
- Places easy to check and clean
- Always keep the oil seal lip away from oil or the Servomotor away from a large amount of water, oil or cut liquid. The Servomotor can be protected from slight splashes by means taken on it.

#### 5.2.2 Installation Procedure

#### • Direction of installation

- The Servomotor can be installed horizontally or on/under the end of a shaft.
- Set the cable from the motor with its end downward.
- At vertical installation, provide a cable trap to prevent oily water from going to the motor.



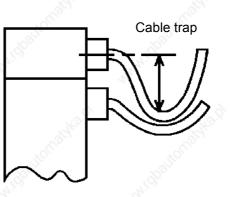



Fig. 5-4

#### Prevention against wetting

The motor, as a single unit, satisfies the IEC standard. Since the standard, however, is intended to check performance over a short period of time, the following measures against wetting are required for actual usage. Handle the system carefully, or the connector sheathes may be hit or damaged, deteriorating waterproof function.

The cannon plug type P1, P2 and P6 as well as the P8 series motor become equivalent to IP67 by using a waterproof connector or conduit on the other side of the cannon connector.

The P3 series motors and the P5 series motors with the flange size of 30 mm and 40 mm sqs. have waterproofing equivalent to IP40 and the P5 series motors with the flange size of 50 mm, 70 mm and 80 mm sqs. to IP55.

- Set the connector (lead outlet) with its end downward in the angle range shown in the following figure.
- Install the cover on the side to which water (oil) will splash.
- Install the cover with a gradient so that water (oil) may not stay.
- Avoid dipping the cable in water (oil).
- Slacken the cable outside the cover so that water (oil) may not invade the motor side.



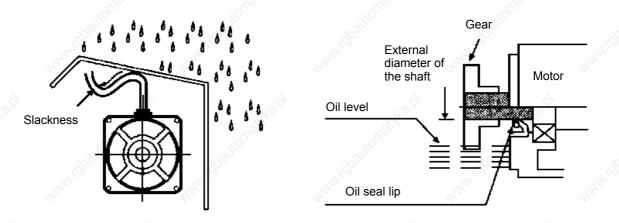
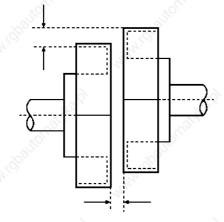

Fig. 5-5



Fig. 5-6

5 - 5

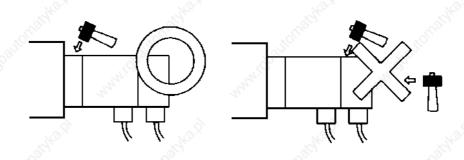

- When the connector (lead outlet) cannot be installed with its end downward by any means, slacken the cable so that water (oil) may not invade it.
- Make the oil level of the gear box lower than the oil seal lip.
- Provide a vent to prevent the internal pressure of the gear box from rising.



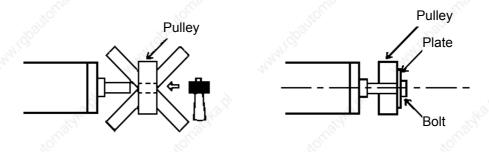


#### Connection to the opposite machine

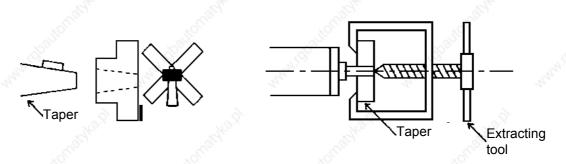
• Perform centering accurately between the motor shaft and the opposite machine as in Fig. 5-8. Note that when a rigid coupling is used, especially, a slight offset will lead to damage of the output shaft.




The difference between the maximum and minimum after measuring four points on the entire circumference is 3/100 mm or less (when rotated together with the coupling).


Fig. 5-8

Centering


• Since a precision encoder is directly connected to the motor shaft, be careful not to give shocks to it. If tapping on the motor is unavoidable for position adjustment or other reasons, tap on the front flange, if possible, with a rubber or plastic hammer.



- When installing the motor to the machine, make a installing hole precisely so that the motor joint can be smoothly connected. Also, make the installing surface as flat as possible, or the shaft or the bearing may be damaged.
- When installing the gear, the pulley, the coupling, etc., avoid giving shocks to them by using the screw on the shaft edge.

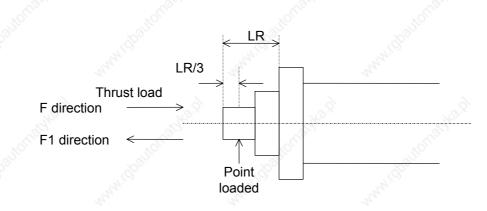


- Since torque is transferred, in the case of the tapered motor shaft, from the tapered surface, take care that the key can be engaged without being tapped. Also, make a hole so that at least 70% of the tapered surface is to be engaged.
- When removing the gear, the pulley, etc., use a dedicated extracting tool.



• When performing belt driving, check that the shaft-converted value of the belt tension does not exceed the allowable value shown in Table 5-1.

#### Allowable load of bearing


Fig. 5-1 shows the load which the Servomotor can endure. Do not apply an excessive thrust or radial load. The thrust or radial load in the table indicates the value when it is independently applied to the shaft.

6		Du	uring assemb	bly	ò Di	uring operation	on
He.	Models	Radial load (kg)	Thrus (k		Radial load (kg)	Thrust load (kg)	
	Midbaule	FR	F Direction	F1 Direction	FR	F Direction	F1 Direction
P1	P10B10030	60	80	80	40	10	10 📣
	P10B10075	60	80	80	40	10	10
28	P10B13050	[©] 100	140	140	50	10	10
8	P10B13100	100	140	140	50	10	10
	P10B13150	100	140	140	70	10	10
	P10B18200	230	190	190	150	50	50
P2	P20B10100	100	30	30	70	30	30
	P20B10150	100	30	30	70	30	30
38	P20B10200	100	30	30	70	30	30
P3	P30B04003	10	8	8	ຼິິ 5	3	3
	P30B04005	15	10	10	10	3	3
	P30B04010	15 🚫	10	10	10	3	3
	P30B06020	40	20	20	20	8	8
	P30B06040	40	20	20	25	10	10
2	P30B08075	60	40	40	35	20	20
P5	P50B03003	7	7	7	6	2	2
	P50B04006	15	<u></u> 10	10	10	3	3
	P50B04010	15	10	10	10	3	3
	P50B05005	20	20	15	15	8	8
	P50B05010	20	20	15	15	8	8
2	B50B05020	25	20	15	15	8	8
Ke.	P50B07020	25	50	20	20	10	10
	P50B07030	25	50	20	20	10	10
	P50B07040	25	50	20	25	10	10
	P50B08040	60	80	30	35	20	20
	P50B08050	60	80	30	35	20	20
8	P50B08075	60	80 👌	30	35	20	20
Ke.	P50B08100	60	80	30	35	20	20
P6	P60B13050	65	130	130	35	35	35
	P60B13100	100	140	140	65	50	50
Γ	P60B13150	170	190	190	65	50	50
P8	P80B15075	100	140	140	65	50	50
8	P80B18120	150	140 👌	140	95	50	്50

Table 5-1 P Series Motor Allowable Radial and Thrust Load



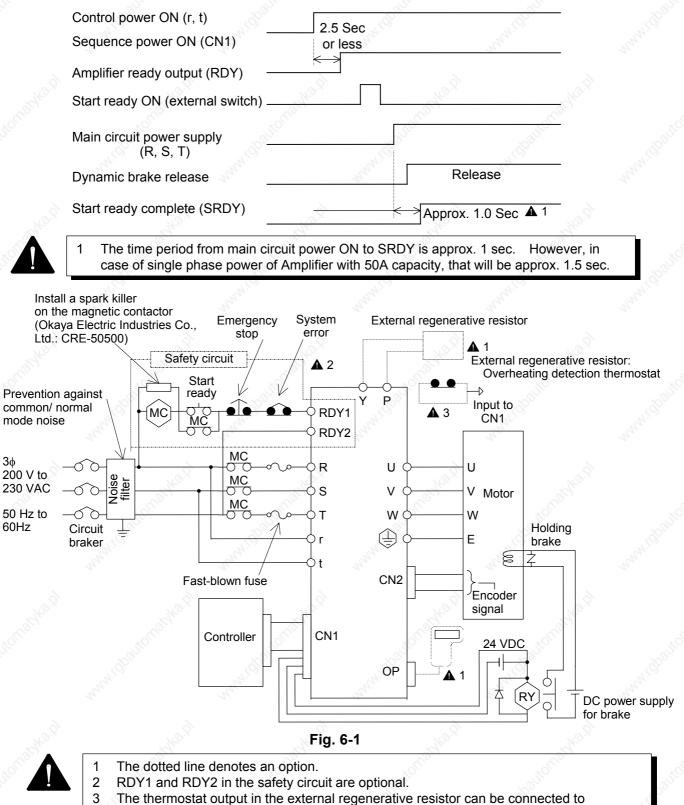
The allowable radial load refers to the maximum load applicable to the point one-third of the output shaft length away from the output shaft (see the figure below).



#### Fig. 5-9 Radially loaded position

#### 5.3 Cable Installation

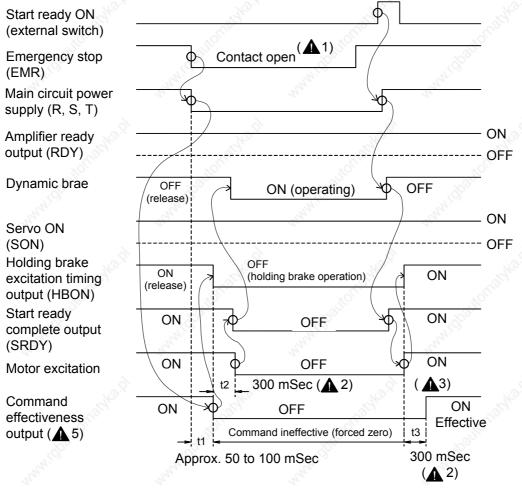
- Be careful not to give stress or damage to cables.
- When the motor and cables are moved by cable bearer, determine a bending radius of each cable by the necessary flexure lifetime and type of wire. It is recommended that the cable of a movable portion should have a structure that permits periodic replacement. When you desire to use a recommended cable for a movable portion, consult with our company.


# OPERATION

6.1	Opera	ition Sequence	
	6.1.1	Power ON Sequence	
	6.1.2	Stop Sequence	6-3
	6.1.3	Servo OFF Sequence	6-5
	6.1.4	Alarm Reset Sequence	
	6.1.5	Overtravel Sequence	
6.2	Displa	ıy	
	6.2.1	Status Display	6-8
	6.2.2	Alarm Display	6-8
6.3	Be Su	re to Check the Functioning at First	
	6.3.1	Minimum Wiring	
	6.3.2	Jog Operation	6-10
	6.3.3	Reseting and Turning the Power Off	6-12
6.4	Encoc	ler Clear Using Remote Operator	
	(Wher	Absolute Encoder is Used)	

#### 6.1 Operation Sequence

The frequency of power ON/OFF should be 10 times/H or less, and 50 times/day or less.

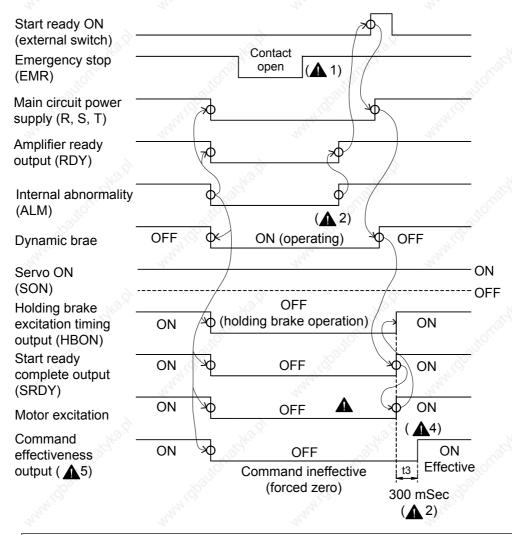

#### 6.1.1 Power ON Sequence



general-purpose input CN1 of the amplifier.

#### 6.1.2 Stop Sequence

#### 6.1.2.1 Stop and recovery due to emergency stop input

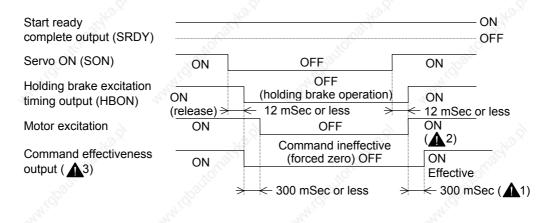





2

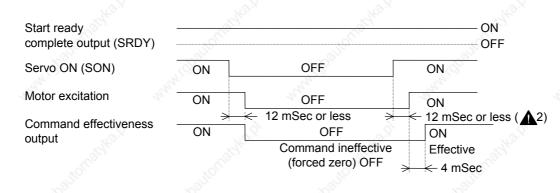
- Release "emergency stop" before inputting "start ready".
- The holding brake timing (standard value 300 ms, in Parameter Mode 1 on page 13) can be changed to 0 to 1 sec. However, when it is set at 0 msec, command ineffective (forced zero) status continues for 4 msec after SON.
- The current is limited by the sequence current limit value (standard value 120 %, in parameter Mode 1 on page 12) between t2 and t3.
- It is possible to make commands ineffective (forced zero) during t3 after SON by setting Func1 bit5 to "0" when setting parameters. In case of the position control type, however, the command pulse remains as a deviation for t3.
  - It is possible to make commands effective immediately after SON by setting Func1 bit5 to "1" when setting parameters. However, the sequence current limit value is applied when switching from SON to SOFF and is not applied when switching from SOFF to SON.
- 4 If an emergency stop occurs in a heavy load status, MPE (Main circuit Power Error, alarm "9") may be activated.
- 5 It is possible to output the command effectiveness from CN1-39 and 40 pins by using parameter Func4.
- 6 The time period from main circuit power ON to SRDY is approx. 1 sec. However, in case of single phase power of Amplifier with 50A capacity, that will be approx. 1.5 sec.
- When the alarm generates, assemble the safety circuit outside of the amplifier. Running away, injury, burning, fire, and secondary damage may be caused.

#### 6.1.2.2 Stop and recovery due to an internal error



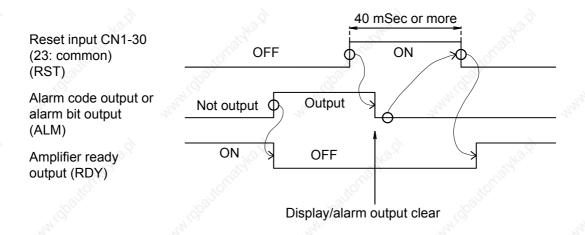



- In an internal error status, inputting "emergency stop" has no effect. However, release it before inputting "start ready".
- 2 As per the alarm reset sequence.
- 3 The holding brake timing (standard value 300 ms, in Parameter Mode 1 on page 13) can be changed to 0 to 1 sec. However, when it is set at 0 msec, command ineffective (forced zero) status continues for 4 msec after SON.
  - The current is limited by the sequence current limit value (standard value 120 %, in parameter Mode 1 on page 12) within 300 msec.
- It is possible to make commands ineffective (forced zero) for 300 msec after SON by setting Func1 bit5 to "0" when setting parameters. In case of the position control type, however, the command pulse remains as a deviation for 300 msec.
  - It is possible to make commands effective immediately after SON by setting Func1 bit5 to "1" when setting parameters. However, the sequence current limit value is applied when switching from SON to SOFF and is not applied when switching from SOFF to SON.
- 5 It is possible to output the command effectiveness from CN1-39 and 40 pins by using parameter Func4.
- The time period from main circuit power ON to SRDY is approx. 1 sec. However, in case
  of single phase power of Amplifier with 50A capacity, that will be approx. 1.5 sec.


#### 6.1.3 Servo OFF Sequence

#### 6.1.3.1 When holding brake timing THB is set at 300 msec (standard)




- The current is limited by the sequence current limit value (standard value 120%, which is changed in Parameter Mode 1 on Page 12) for 300 mSec.
- It is possible to make commands ineffective (forced zero) for 300 msec after SON by setting Func1 bit5 to "0" when setting parameters. In case of the position control type, however, the command pulse remains as a deviation for 300 msec.
  - It is possible to make commands effective immediately after SON by setting Func1 bit5 to "1" when setting parameters. However, the sequence current limit value is applied when switching from SON to SOFF and is not applied when switching from SOFF to SON.
- 3 It is possible to output the command effectiveness from CN1-39 and 40 pins by using parameter Func4.

#### 6.1.3.2 When holding brake timing THB is set at 0 msec ( 1)



- 1 This setting cannot prevent a self-weight fall by using "holding brake excitation timing output". Secure command input timing that does not hold off braking.
- 2 It is possible to make commands effective immediately after SON regardless of THB setting, by setting Func1 bit5 to "1" when setting parameters.

#### 6.1.4 Alarm Reset Sequence



- 1 Regarding the upper controller, turn off "reset input" after checking that no alarm occurs by watching the alarm output.
- 2 When the alarm status continues in spite of "reset input", the alarm output is not cleared. It is necessary to set a time-out period of 40 mSec or more to return "reset input" to the original status.
- 3 Sensor error (DE), servo processor error (DSPE), memory error (MEME) and CPU error (CPUE) cannot be reset unless the control power supply is turned off.
- 4 The battery alarm (AEE) output will not be cleared unless "encoder clear" is operated.



When turning the control power on or off to reset an alarm, allow a sufficient control power off time. If the time is too short, another alarm may be issued.

#### 6.1.5 Overtravel Sequence

Forward revolution side overtravel (PROT)	OFF	ON	OFF
Backward revolution side overtravel	OFF	N ^{alo} M ^{alo}	atonas
(NROT)	SAMP DE	WAR COC	March C
Input command	7	Forward revolution command	Backward revolution command
		NO.S.	No.9
Internal command	Input command effective	Command ineffective (forced zero)	Input command effective
Current limit	Normal limit	Sequence current limit value (	Normal limit
Forward revolution side overtravel	12 ms	Sec or less 12	mSec or less
(PROT) Backward revolution	OFF	ON	OFF
side overtravel (NROT)	K.	area area	
Input command	., 	Backward revolution command	Forward revolution command
	and a start of the	and the second s	and the second sec
Internal command	Input command effective	Command ineffective (forced zero)	Input command effective
Current limit	Normal limit	Sequence current limit value ( 12)	Normal limit
		<b>←</b>	• •
	12 mS	Sec or less	mSec or less

Operation of command invalidation (forced zero) differs between the position and velocity control types. For the position control type, command pulses are inhibited, and for the velocity control type, the velocity command becomes zero (VCMD = 0). These settings are validated when the acceleration/deceleration time (Tvac, Tvde) or low pass filter (VLPF) parameter is set.

2 Sequence current limit value can be changed by SILM in the Parameter Mode 1 on Page 12.

### 6.2 Display

The Servo Amplifier status and alarms are displayed by LED and 7-segment LED.

#### 6.2.1 Status Display

Display	Explanation of status
LED POWER ON	The control power supply of +5 V is set up.
7-segment LED	The control power supply (r, t) is set up and the "amplifier ready output (RDY)" signal is ON.
7-segment LED	The main power supply (R, S, T) is being turned or or set up but the "start ready complete" signal is OFF.
7-segment LED	The main power supply (R, S, T) is set up and the start ready complete" signal is ON.
7-segment LED Rotates in the form of the figure 8.	The "Servo ON" signal is ON.
7-segment LED	This indicates a battery warning status due to the lowering of the external battery power when an absolute encoder is used. (Replace the external battery.)
7-segment LED	In the position/velocity control type, the forward revolution side is in an overtravel status.
7-segment LED	In the position/velocity control type, the backward revolution side is in an overtravel status.
LED CHARGE ON	The smoothing capacitor of the main power supply is being charged. <while a="" about="" be="" careful="" high<br="" is="" led="" on,="" this="">voltage.&gt;</while>

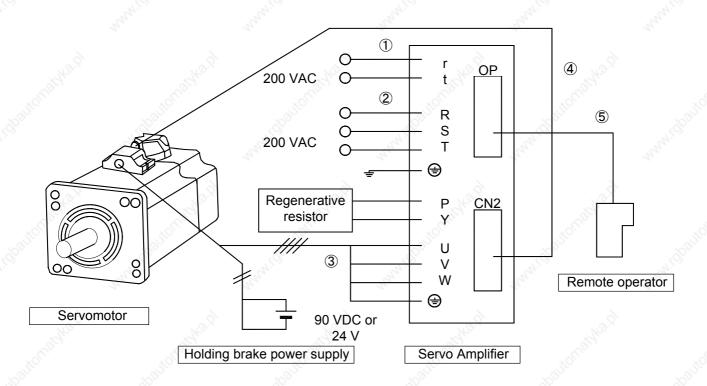
#### Table 6-1 Status Display



When the alarm history is displayed by 7-segment LED, the battery warning "." is not displayed.

#### 6.2.2 Alarm Display

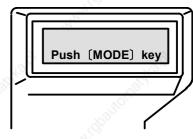
For alarm display, refer to the paragraph pertaining to troubleshooing in "Maintenance".


#### 6.3 Be Sure to Check the Functioning at First

The parameter setting at the first power ON is assumed to be a standard setting. In taking a runaway into consideration, be sure to fasten the motor to a fixing table or the like, and also do not apply any load to its shaft side.

Wire the power supply so that it can be immediately cut off in case of an emergency.

#### 6.3.1 Minimum Wiring


- Wire 200 VAC to terminals r and t of connector CNA of the Servo Amplifier (hereinafter referred to "amplifier").
- 2 Wire 200 VAC to terminals R, S and T of amplifier connector CNA. Ground the PE (protective earth  $\bigoplus$ ) terminal of the amplifier.
- 3 Wire the motor power lines to the U, V and W terminals as well as to the PE () terminals of the amplifier connector CNB. (For amplifiers having 15 A or 30 A capacity, connect an external regenerative resistor between the P and Y (or COM) terminals of the connector CND.)
- 4 Wire the encoder cable to amplifier connector CN2.
- 5 Connect the remote operator to the amplifier connector OP.
- 6 When a brake is fitted with the motor, apply a specified voltage to the brake cable and release the brake.



#### 6.3.2 Jog Operation

- 7 Turn ON the 200 VAC of r-t (1) wires).
- → The servo amplifier POWER and the right-hand figure portion of 7-segment LED are lighted.
- → When the 7-segment LED displays "U", proceed to section 6.4.
- → The remote operator screen display becomes the [Push Mode Key] screen as shown on the right and a "beep" sound is emitted.





8 Change the remote operator setting and reset the OT (over travel) signal. The procedure is as follows: * Para. Set3 ON Func0 00000000 ۰., **2** and  $|\triangle|$ Repeat pushing or MODE V keys until the right screen appears. Push the  $|\rangle|$ ,  $|\rangle|$  key twice and the |1|* Para. Set3 key Func0 00100000 • once so that the right screen will appear. WR Push the key so that the right screen will appear. Completed 00100000 Func0 : WR 9 Make the JOG operation function effective using the remote operator. *Para. Set3 00000000 Push the  $[\bigvee]$  key a few times until the right Func6 screen appears.

Push the 2 and 1 keys in that order so that the right screen will appear.



Push the WR key so that the right screen will appear. Completed (Func6 bit6 "1" described above returns to "0" by Func6 : 01000000 turning the power on again.) WR 10 Turn on the 200 VAC (2) wires) of R-S-T. POWER The 7-segment LED is light as shown in the right figure. Start the JOG operation. 11 ON * Test JOG Set min-1 keys so that the Push the MODE and 7 right screen will appear. Push the keys so that the 1 and WR * Test right screen will appear. JOG Set 10min⁻¹ WR The 7-segment LED draws a figure of 8. Continue pushing the | > | key until the right screen appears. *Test 0 The remote operator keeps sounding "beep, beep" JOG Fwd Running and the motor rotates counterclockwise (CCW) in 10 min⁻¹ when viewed from its shaft side. ( 🔈 Then continue pushing the  $\left| \checkmark \right|$  key until the right screen appears. In this mode, the motor rotates clockwise (CW) in 10 min⁻¹. *Test 10 JOG Rvs Running

12 Return to original mode.

Push the <b>O</b> and <b>MODE</b> right screen will appear.	keys so that the	* Mode select       *         Push [0] to [7] key
The <b>d</b> key in the 7-segme	nt LED flickers.	Power
By this, the JOG operation en	ds.	6

#### 6.3.3 Resetting and Turning the Power Off

Change the remote operator setting and reset the 13 OT. Then, operate the remote operator according to the following procedure. ON Repeat pushing the and  $\triangle$ MODE 2 * Para. Set3 Func0 00100000 keys until the right screen appears. or  $\bigtriangledown$ Push the | > |>**0** keys so that the * Para. Set3 and 1 Func0 0000000 : right screen will appear. WR Push the key so that the right screen will Completed 00000000 Func0 : appear, completing operation.

WR

- 14 Turn off the 200 VAC of R-S-T.
- 15 Turn off the 200 VAC of r-t.
- 16 If the brake is fitted with the motor, turn off the brake power.

### 6.4 Encoder Clear Using Remote Operator (When Absolute Encoder is Used)

When the power is first turned on after the amplifier and the motor are wired, the alarm "U" (battery alarm) may come on even though a lithium battery is connected. This is because, when an absolute encoder is used, the absolute position is not fixed inside the encoder if the battery backup is less than 20 hours, causing an alarm to be output. The encoder can be cleared without wiring for CN1 encoder clear signal by executing ECLR (mode 7, page 4) using the remote operator and turning the power on again, which releases the battery alarm.

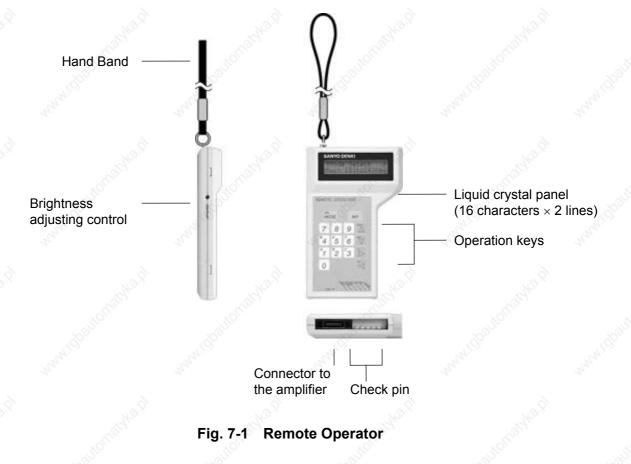
1	Make the te	st mode et	ffective.	toatto.			
	Press the	on MODE	key and the	2 key, then		*Para. Set3 Func6 : 0	4 1000000
	select Func	6 and set t	he bit6 to "1".				
	Press the	<b>WR</b> key	-utomatike	utomat			WR
2	Perform EC	LR.		NIGDO-		and the second s	
	Press the	on MODE	key and the	7 key, then		* Test ECLR Clear	4 (WR)
	select ELCF	R on page	4.	3	_ال		
	Press the	WR key	, and press the	3 key		1000	WR
	down for 4 s	seconds or	· more.				¥
	Press the	<b>0</b> key an	d the MODE	key to		*Test	4
	terminate th	ie test moo	le.	- Č	5°°	ECLR Rdy	Y=3,N=0
				autor .		1	
3	Turn on the	power aga	ain.	1000		J.C.	
	The alarm "	U" will be o	cleared.	And a second			35

- Our recommendation: Use a Toshiba lithium battery (ER6V: 3.6 V, 2,000 mAh). The battery life is estimated at approximately 6 years.
- 2 On the ABS-E absolute encoder, alarm "8" (sensor error) may be issued after the power is turned on for the first time after the amplifier or motor is wired. This is because the voltage to be supplied to the sensor is lowered due to charging to the capacitor in the encoder. The alarm can be reset by turning the control power on again.



In case of use without connecting retium battery in an application not using multiple rotational data for wiring-saved absolute sensor (ABS-E.S1), set Func6, bit5 to "1" before turning control power ON again. Thus, alarm "U" (battery alarm) shall not be detected when turning control power ON again.

## **EXPLANATION OF PARAMETERS**


7.1	Remo	te Operator (Optional)	. 7-2
		Outline of Remote Operator	
	7.1.2	Function Table	. 7-3
	7.1.3	Basic Operation Procedure	7-4
		Parameter Setting Mode	
		(Screen Mode 0 to 2 and 8)	. 7-5
	7.1.5	Parameter Increment/Decrement Mode	
		(Screen Mode 3)	7-8
	7.1.6	Parameter Select Mode (Screen Mode 4)	7-10
	7.1.7	Monitor Mode (Screen Mode 5)	. 7-12
	7.1.8	Alarm Trace Mode (Screen Mode 6)	. 7-14
	7.1.9	Test Mode (Screen Mode 7)	7-17
		7.1.9.1 JOG Operation	7-18
		7.1.9.2 Offline Automatic Tuning Function	. 7-20
		7.1.9.3 Automatic Notch Filter Tuning Function	. 7-22
		7.1.9.4 Automatic Offset Function	. 7-24
7.2	Descr	iption of Parameters	. 7-26
	7.2.1	Block Diagram of Position Control Type Parameters	7-26
	7.2.2	Parameter Summary Table	. 7-27
	7.2.3	Parameter List	. 7-30

#### 7.1 Remote Operator (Optional)

This section explains the basic operation of the remote operator. By using the remote operator, parameter change, monitoring of velocity and current, alarm trace and various tests are possible.

#### 7.1.1 Outline of Remote Operator

The following figure shows the remote operator.



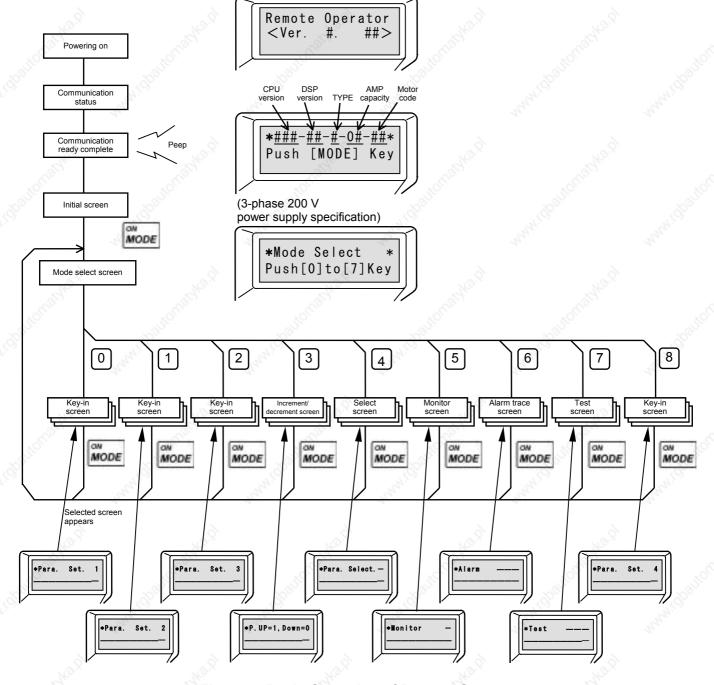


Since the liquid crystal panel may be broken if the remote operator is dropped, handle it with care.

Item	Specification					
Power supply	Supplied from the Servo Amplifier					
Connection method	Connector connection using an exclu (cable length: 2 m)	onnector connection using an exclusive cable able able length: 2 m)				
Ambient temperature	During operation status 0°C to +50°C (32°F to 122°F)	During storage –20°C to +65°C (-4°F to 149°F)				
Working atmosphere	Free from oil mist, corrosive gas and dust					

#### Table 7-1 Specifications of Remote Operator

#### 7.1.2 Function Table


Mode	Screen No.	Function	
Setting mode	0	Directly enters user parameters by key-in operation.	
300-	1	Directly enters user parameters by key-in operation.	
and the second sec	2	Directly enters user parameters by key-in operation.	and a state
Up/down mode	3	Allows values to be incremented or decremented using the "1" (increment) and "0" (decrement) keys.	1
Select mode	4	Allows user parameters to be selected from the screen display.	
Monitor mode	5 Hood	Displays various monitors on the screen. • Status monitor • Input monitor • Output monitor • Velocity command • Velocity • Current command • Current • Position deviation counter value • U-phase electric angle • Position command frequency • Absolute value	. And and a second
a www.chaitons	4 ^{2.01}	<ul> <li>Position free-run counter value</li> <li>Estimated effective torque value</li> <li>Position loop gain</li> <li>Velocity loop proportional gain</li> <li>Velocity loop integral time constant</li> <li>Current command low pass filter setting value</li> <li>Built-in regenerative resistor absorbed power</li> </ul>	ANNON A
Alarm trace mode	6	Display 8 alarms (the current one plus the past seven alarms)	
Test mode	f 7	<ul> <li>Allows various test modes to be operated:</li> <li>JOG operation</li> <li>Offline automatic tuning</li> <li>Automatic offset (velocity and torque commands)</li> <li>Encoder clear</li> <li>Automatic notch filter tuning</li> </ul>	Server State
Setting mode	8	Allows user parameters to be entered directly from the key pad.	
<b>U</b>	9	Allows user parameters to be entered directly from the key pad.	

#### Table 7-2 Functions of Remote Operator

 Table 7-3
 Functions of Remote Operator Check Pin

Name	Description
VCMD	Monitors the velocity command (CN1 - 21 pin input).
M1	Monitors the same as the amplifier monitor 1 output.
N2	Monitors the same as the amplifier monitor 2 output.
SG	Signal ground. (Common to amplifier SG)
DM1	Outputs the internal status to the monitor (motor excitation). (It goes high when the motor is excited.)
DM2	Outputs the internal status to the monitor (alarm). (High when the alarm is on.)

#### 7.1.3 Basic Operation Procedure





If a no-operation status continues for about 3 minutes, the liquid crystal display disappears.

To re-start, press the MODE key.

#### 7.1.4 Parameter Setting Mode (Screen Mode 0 to 2 and 8)

Various Servo Amplifier parameters can be directly set in this mode from the keys.

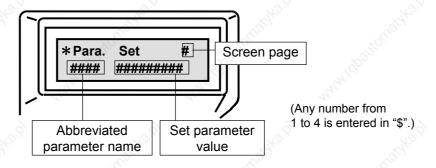



Fig. 7-3 Parameter Setting Mode Screen

Page No.	Abbreviation	Name	Setting range	Unit
0	КрМ	Monitors position loop gain	and the second s	rad/S
1	KffM	Monitors feed forward gain	Nalle -	%
2	[∞] К∨рМ	Monitors velocity loop proportional gain	⁻	Hz
3	TviM	Monitors velocity loop integral time constant	-	mSec
ò 4	FLPM	Monitors feed forward LPF	- 3	Hz
5	VLPM	Monitors velocity command LPF		Hz
6	ILPM	Monitors current command LPF	350 ⁵ -	Hz
7	BFAM	Monitors current command BEFA	. S -	Hz
8	BFBM	Monitors current command BEFB	-	Hz
9	Tpcm	Position command LPF time constant	0 to 4000	mSec
10	Tvac	Velocity command acceleration time	0 to 9999	mSec
11	Tvde	Velocity command deceleration time	0 to 9999	mSec
12	KvpA	Velocity loop proportional gain addition value	0 to 255	Hz

Table 7-4	Parameters for	Screen Mode 0
-----------	----------------	---------------

Table 7-5	Parameters	for Screen	Mode	1 (1/2)	)
-----------	------------	------------	------	---------	---

Page No.	Abbreviation	Name	Setting range	Unit
0	INP	Positioning complete signal width	1 to 32767	P (+/-)
1	OVF	Excess deviation over value	1 to 32767	×256P
2	EGER	Electronic gear ratio	1/32767 to 32767/1	10
3	PMUL	Command pulse multiplier	1 to 63	44
4	ENCR	Output pulse dividing ratio	1 to 8192	
<u>ک</u> آ	LTG	Low speed	0 to 32767	min⁻¹
6	HTG	High speed	0 to 32767	min⁻¹
7	SPE	Speed matching width	0 to 32767	min ⁻¹
8	VCI1	Internal velocity command value 1	0 to 32767	min ⁻¹

		Table 7-5         Parameters for Screen Mode 1 (2/2)		
Page No.	Abbreviation	Name Settin	g range Unit	
9	VCI2	Internal velocity command value 2 0 to 3276	67 min ⁻¹	
10	VCI3	Internal velocity command value 3 0 to 3276	67 min ⁻¹	
11	UILM	Internal current limit value 30 to (IP	/IR) × 100 %	
12	SILM	Sequence current limit value 30 to (IP/	/IR) × 100 %	
13	THB	Holding brake excitation timing 0 to 1000	) mSec	
or 14	VCMS	Velocity command scale 0 to 3000	) _o min⁻¹/V	
15	TCMS	Torque command scale   0 to 400	%/V	
16	MENP	Motor encoder pulse number 1,2 500 to 65	5535 P/R	
17	EENP*	Full close encoder pulse number 1,2,3 500 to 65	5535 P/R	
18	OLWL	Over load warning level	) %	

Page 16(MENP) and 17(EENP) can be changed after setting Mode2, Func6, bit7 to "1". **A**₁

A 2 Page 16(MENP), 17(EENP) and 18(OLWL) are enabled by turning control power ON again.

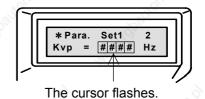
Аз Page 17(EENP) is available only for the servo system that supports the full close encoder.

Table 7-6         Parameters for Screen Mode 2	Table 7-6	Parameters	for Screer	Mode 2
------------------------------------------------	-----------	------------	------------	--------

Page No.	Abbreviation	Name	Setting range	Unit
0	PMOD	Command pulse train format	0, 1	-
्रे 1	Func0	Amplifier function select 0	0, 1	
2	Func1	Amplifier function select 1	0, 1	
3	Func2	Amplifier function select 2	0, 1	
4	Func3	Amplifier function select 3	0, 1	anio.
5	Func4	Amplifier function select 4	0, 1	32
8	Func5	Amplifier function select 5	0, 1	
7	Func6	Amplifier function select 6	0, 1	

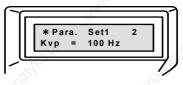
Table 7-7	Parameters	for	Screen	Mode 8
-----------	------------	-----	--------	--------

Page No.	Abbreviation	Name	Setting range	e Unit
0	-		- ~	-
^{2×} 1	-M ^o N	- ANDIX - ANDIX	- HO.X	-
2	. officer	. offer offer	100 m	-
3	Tn_F	Current command user setting value when automatic notch filter tuning	30 to (IP/IR) × 100	%
4	O_JL	Observer / load inertia proportion	0 to 3000	%


-6

#### Setting practice

For example, set the speed loop proportional gain to 100 Hz. According to the basic operating procedure, select **0** from the Mode Select screen, then implement the following operations:


key.

Select page 2 using by A or V 1



2 Move the cursor to the position corresponding to the desired number of input digits using  $\triangleright$  or  $\triangleleft$  key.

Continuously enter **100** using the **0** 3 9 9 keys.



The set value is stored in the nonvolatile 4 memory using key and the remote operator operates with the set value.

> After completion of the setting, the screen turns as shown in the figure.

> If a value out of the setting range is to be stored in memory, the screen to the right appears and storing is not performed.

In this case, retry setting from step 2.

5

Press **MODE** to return to the initial screen. To set me next page, start with step 1.

1.0	1			_	31
10	Invalid			2	2
	Kvp :	=	3200 Hz	O.	Ш
11				1 m	- 11

When, for instance, you tried to store 3200 Hz.

Completed

Kvp

100 Hz

WF

#### 7.1.5 Parameter Increment/Decrement Mode (Screen Mode 3)

This mode allows you to increment or decrement parameter values using the increment ("1") and decrement ("0") keys.

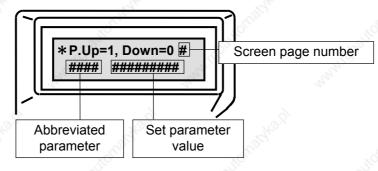
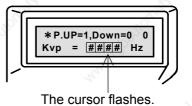


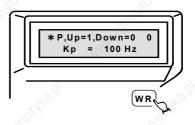

Fig. 7-4 Parameter Increment/Decrement Mode Screen

Page No.	Abbreviation	190	Name		Setting range	Unit
0	- ^{Oldo}	and the second			- 101	-
1	S	and Co	- 210	3	<u>, 6 – – – – – – – – – – – – – – – – – – </u>	-110
2	-	32	2 ¹⁰	324	-	32
3	Vzero	Velocity comma	Velocity command zero adjustment		±16383	
4	Tzero	Torque comma	nd zero adjustment		±16383	
5	Tn_Lv	Real time auton	Real time automatic tuning level			


Table 7-8	Parameters	for	Screen	Mode 3

#### Setting practice

1

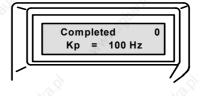

The following describes the procedure for selecting, for instance, 100 Hz for the position loop gain. According to the basic operating procedure, select 3 from the Mode Select screen. Then,

Select page 0 using by 🛆 or 🕅 key.



2 Using the D or key, move the cursor to the digit(s) to be modified.

As needed, increase or decrease the number in each digit using the 1 or 0 key (the value you specify will be immediately reflected in the operation).




Using the key, store your setting in the non-volatile memory.

(Current screen data is also stored in memory if you exit using the  $\operatorname{MODE}$  or  $\operatorname{A}$  /  $\operatorname{V}$  keys.)

Upon completion of the setting, the screen shown to the right appears.

(The "Completed" message does not appear when you use the  $\bigcap_{mode}$  or  $\bigwedge$  /  $\bigtriangledown$  keys.)



5

Press the **MODE** to return to the initial screen.

For setting another page, repeat the above steps from 1.



In order to store a modified parameter value in the non-volatile memory, you must press either the , , , , or , keys. Otherwise, the modified data will not be stored.

#### 7.1.6 Parameter Select Mode (Screen Mode 4)

This mode allows you to set data according to the screen display.

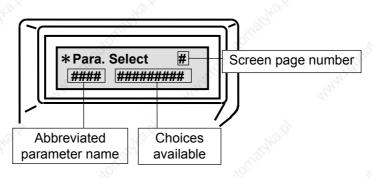


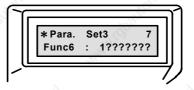

Fig. 7-5 Parameter Select Mode Screen

Category	Page No.	Abbreviation	Name	Number of choices available
Normally used	0	M1 💉	Monitor 1 output	19
parameters	⁵⁰ 1	M2	Monitor 2 output	19
AND STREET	2	Func	Servo function select	4
System	3	TYPE	Control mode	6
parameters	4 👌	ENKD	Encoder type	3
	5	ABSF	ABS sensor format	11
	് 6	MOT.	Motor type	X – 42676
	7	MOKD	Motor configuration	Rotary only
	8	PSKD	Power supply type	PY2B050: 1
	9	RGKD	Regenerative resistor type	2

#### Table 7-9 Parameters for Screen Mode 4

- 1 Modification of a system parameter is available only after you have set Func6 bit7 to "1" from Screen Mode 2 Page 7.
- 2 Note that modification of a system parameter is enabled only after the control power has been turned off.




Make sure to set the page9 regenerative resistor type (RGKD) to "Built-in regenerative resistor (Built-in R). With this setting, validity of overheat protection detecting process of build-in regenerative resistor will be judged. Overheat detection of build-in regenerative resistor will not be executed when "No regenerative resistor connection or external regenerative resistor (Note/Ext.R)" is selected. Therefore, built-in regenerative resistor may smoke or be burnt.

#### Setting practice

The following describes the procedure for selecting, for instance, the velocity control for the amplifier's control mode.

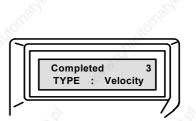
According to the basic operating procedure, select **4** from the Mode Select screen. Then,

1 Set Func6 bit7 to "1" from Mode 2 Page 7.



(?) appears before the setting is down.

* Para. Select


- 2 Select Mode 4.
- 3

4

Using the  $\bigtriangleup$  or  $\bigtriangledown$  key, select page 3.



Using the  $\sum$  or  $\triangleleft$  key, scroll the screen to select "Velocity".



WR

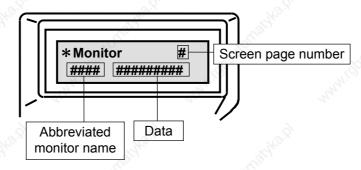
5 Using the key, store your selection in the non-volatile memory.

When the setting is completed, "Completed" is indicated.

When you want to correct the setting, repeat the above steps from 4.

6 Press the **MODE** key to return to the initial screen.

For setting another page, repeat the steps from 3.


7 Turn the control power off to validate your setting (with normal parameters, you can validate the change using the key).

#### Monitor Mode (Screen Mode 5) 7.1.7

8

CSU

This mode is used for monitoring input/output status, velocity and current on the Servo Amplifier.





	Table 7	7-10 F	Paramet	ters for	Screen	Mode	5 (1/2)			
Abbre-viatio n	3×9.9.		and and		Conten	ts			atten?	
STATUS					· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			douter		
INPUT	Indicate: bit	s the CN 7	11 input : 6	status in 5	"1" or "0' 4	'. 3	2	1	0	4.
hautome	340. ⁰	RST	GAIN3	GAIN2	GAIN1/ General purpose 2	CLE	-	General purpose 1	SON	
And M. O.	Pin No. The out	31 out beco	9 mes acti	8 ive at "1	27 ". Bit 2 d	30 display i	- s unstat	32 ble.	29	4
OUTPUT	Indicate: bit	s the CN 7	11 output 6	t status i 5	n "1" or " 4	0". 3	2	1	0	
dballome	Die No.	ALM+ ALM-	ACOD3	ACOD2	ACOD1+ ACOD1-	- ``	-	dpailon	COIN1+ COIN1-	
A. C.		36,37 ates the	12 active o	40 utput sta	34,35 atus. Disp	lays for	Bit 3, 2,	1 are ur	38,39 Istable.	4
VCMD	Indicate	s the ve	locity cor	mmand.			[min ⁻¹ ]	( 🛕 2)	22	
VFBK	Indicates the velocity feedback.				[min ⁻¹ ]		201			
ICMD	Indicates the current command.				[I/IR ×	100%]				
IFBK	Indicate	s the cu	rrent fee	dback.	N.C.		[I/IR ×	100%]		
Pos. E	Indicate	s the po	sition de	viation c	ounter va	lue.	[pulse]	]		4
	n STATUS INPUT OUTPUT OUTPUT VCMD VFBK ICMD IFBK	Abbre-viatio nIndicates Power ofSTATUSIndicates Power ofINPUTIndicates bitINPUTIndicates bitPin No.The outpOUTPUTIndicates bitOUTPUTIndicates bitVCMDIndicates Indicates IndicatesVFBKIndicates IndicatesIFBKIndicates	Abbre-viatio       n         STATUS       Indicates the interpower off, server         INPUT       Indicates the CN         bit       7         bit       7         Pin No.       31         The output beco       31         OUTPUT       Indicates the CN         bit       7         Pin No.       31         The output beco       31         OUTPUT       Indicates the CN         bit       7         Pin No.       31         The output beco       31         OUTPUT       Indicates the CN         bit       7         ALM+         ALM-         36,37         "1" indicates the vel         VCMD       Indicates the vel         VFBK       Indicates the vel         ICMD       Indicates the vel         IFBK       Indicates the cut	Abbre-viatio nIndicates the internal sta Power off, servo ready, sSTATUSIndicates the internal sta Power off, servo ready, sINPUTIndicates the CN1 input s bitbit76RSTGAIN3Pin No.319The output becomes actOUTPUTIndicates the CN1 output bit0UTPUTIndicates the CN1 output bitPin No.319The output becomes actOUTPUTIndicates the CN1 output bit00TPUTIndicates the cut output bit11" indicates the cut output a6,37VCMDIndicates the velocity feeICMDIndicates the cut output feeIFBKIndicates the cut output fee	Abbre-viatio nIndicates the internal status of th Power off, servo ready, servo onSTATUSIndicates the CN1 input status in bit765INPUTIndicates the CN1 input status in bit765RSTGAIN3GAIN2Pin No.3198The output becomes active at "10UTPUTIndicates the CN1 output status in bit76OUTPUTIndicates the CN1 output status in bit765OUTPUTIndicates the CN1 output status in bit765Pin No.31981OUTPUTIndicates the CN1 output status in bit765OUTPUTIndicates the current output status in bit36,371240"1" indicates the velocity command.111VCMDIndicates the velocity feedback.11ICMDIndicates the current command.11IFBKIndicates the current feedback.1	Abbre-viatio nIndicates the internal status of the amplifie Power off, servo ready, servo on and alarnINPUTIndicates the CN1 input status in "1" or "0" bitINPUTIndicates the CN1 input status in "1" or "0" bitbit765ARSTGAIN3GAIN2GAIN1/ General purpose 2Pin No.319827The output becomes active at "1". Bit 2 or bitThe output status in "1" or "0" bitBit7OUTPUTIndicates the CN1 output status in "1" or "0" bitALM+ACOD3ACOD2OUTPUTIndicates the cN1 output status in "1" or "0" bitALM+ACOD3ACOD2ACOD1+ ACOD1- 36,37VCMDIndicates the velocity command.Indicates the velocity feedback.Indicates the velocity feedback.Indicates the current command.IFBKIndicates the current feedback.Indicates the current feedback.Indicates the current feedback.	Abbre-viatio nContentsSTATUSIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bitbit76543RSTGAIN3GAIN2GAIN1/ General purposeCLE General purposePin No.31982730The output becomes active at "1". bit76543OUTPUTIndicates the CN1 output status in "1" or "0". bit76543OUTPUTIndicates the CN1 output status in "1" or "0". bit76543OUTPUTIndicates the CN1 output status in "1" or "0". bit76543OUTPUTIndicates the cut output status in "1" or "0". bit76543OUTPUTIndicates the cut output status in "1" or "0". bit76543OUTPUTIndicates the cut output status in "1" or "0". bit76543OUTPUTIndicates the velocity command. T1" indicates the active output status. Displays for VCMD111VCMDIndicates the cut command.IIIIVFBKIndicates the cut command.IIIIIFBKIndicates the cut command.IIIIIFBKIndicates the cut command.IIII </td <td>nContentsSTATUSIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bit765432INPUTIndicates the CN1 input status in "1" or "0". bit765432RSTGAIN3GAIN2GAIN1/ General purposeCLE - General purpose-Pin No.31982730-The output becomes active at "1".Bit 2 display is unstateOUTPUTIndicates the CN1 output status in "1" or "0". bit765432OUTPUTIndicates the CN1 output status in "1" or "0". bit765432Pin No.36,37124034,35"1" indicates the active output status. Displays for Bit 3, 2, VCMDIndicates the velocity feedback.[min⁻¹]VFBKIndicates the velocity feedback.[I/IR ×IFBKIndicates the current feedback.[I/IR ×</td> <td>Abbre-viatio nIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bitT654321INPUTIndicates the CN1 input status in "1" or "0". bitT654321Pin No.RSTGAIN3GAIN2GAIN1/ General purposeCLE-General purposePin No.31982730-32The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit7654321OUTPUTIndicates the CN1 output status in "1" or "0". bit7654321OUTPUTIndicates the current set us tatus in "1" or "0". bit7654321OUTPUTIndicates the current command.ACOD2ACOD1+Pin No.ALM+ACOD3ACOD2ACOD1+Pin No.36,37124034,35IIIVCMDIndicates the velocity command.[min⁻¹]( <b>A</b>2)VFBKIndicates the velocity feedback.[min⁻¹]IAIFBKIndicates the current command.[I/IR × 100%]</td> <td>Abbre-viatio nContentsSTATUSIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bit76543210Bit76543210Pin No.31982730-3229The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit76543210Pin No.31982730-322929The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit76543210OUTPUTIndicates the cN1 output status in "1" or "0". bit76543210OUTPUTIndicates the cN1 output status in "1" or "0". bit76543210MarkACD3ACD2ACD1+ ACD1Colin1+ Colin1- Colin1- Colin1- Colin1- Colin1- Colin1-33210MarkACD3ACD2ACD1+ ACD1Colin1+ Colin1- Colin1- Colin1-0MarkACD3ACD2ACD2+Colin1+ Colin1- ACD1-<!--</td--></td>	nContentsSTATUSIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bit765432INPUTIndicates the CN1 input status in "1" or "0". bit765432RSTGAIN3GAIN2GAIN1/ General purposeCLE - General purpose-Pin No.31982730-The output becomes active at "1".Bit 2 display is unstateOUTPUTIndicates the CN1 output status in "1" or "0". bit765432OUTPUTIndicates the CN1 output status in "1" or "0". bit765432Pin No.36,37124034,35"1" indicates the active output status. Displays for Bit 3, 2, VCMDIndicates the velocity feedback.[min ⁻¹ ]VFBKIndicates the velocity feedback.[I/IR ×IFBKIndicates the current feedback.[I/IR ×	Abbre-viatio nIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bitT654321INPUTIndicates the CN1 input status in "1" or "0". bitT654321Pin No.RSTGAIN3GAIN2GAIN1/ General purposeCLE-General purposePin No.31982730-32The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit7654321OUTPUTIndicates the CN1 output status in "1" or "0". bit7654321OUTPUTIndicates the current set us tatus in "1" or "0". bit7654321OUTPUTIndicates the current command.ACOD2ACOD1+Pin No.ALM+ACOD3ACOD2ACOD1+Pin No.36,37124034,35IIIVCMDIndicates the velocity command.[min ⁻¹ ]( <b>A</b> 2)VFBKIndicates the velocity feedback.[min ⁻¹ ]IAIFBKIndicates the current command.[I/IR × 100%]	Abbre-viatio nContentsSTATUSIndicates the internal status of the amplifier: Power off, servo ready, servo on and alarm.INPUTIndicates the CN1 input status in "1" or "0". bit76543210Bit76543210Pin No.31982730-3229The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit76543210Pin No.31982730-322929The output becomes active at "1".Bit 2 display is unstable.OUTPUTIndicates the CN1 output status in "1" or "0". bit76543210OUTPUTIndicates the cN1 output status in "1" or "0". bit76543210OUTPUTIndicates the cN1 output status in "1" or "0". bit76543210MarkACD3ACD2ACD1+ ACD1Colin1+ Colin1- Colin1- Colin1- Colin1- Colin1- Colin1-33210MarkACD3ACD2ACD1+ ACD1Colin1+ Colin1- Colin1- Colin1-0MarkACD3ACD2ACD2+Colin1+ Colin1- ACD1- </td

Table 7-10	Parameters	for Screen	Mode 5 (1/2	2)
------------	------------	------------	-------------	----

7-12

[deg]

Indicates the U-phase electric angle.

Page No.	Abbre-vi ation	Contents	, di
9	PCMD f	Indicates the position command frequency.	[pulse/s]
10	PS	Indicates the absolute value.	[hexadecimal]
11	FCCNT	Indicates the position free-run counter value.	[hexadecimal](▲1)
12	Trms	Indicates the effective torque.	[Trms/TR × 100%]
13	-		
[©] 14	-	- 14 ⁰ . 14 ⁰ . 14 ⁰	.Ho.9
15		E	office.
16	10000		10 ⁰¹¹⁰
17	RegP	Indicates the built-in regenerative resistor absorbed p	ower. [W] (🛦 3)

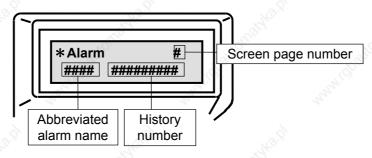
#### Table 7-10 Parameters for Screen Mode 5 (2/2)



- 1 Display of this parameter value is enabled only when the position loop full close encoder is selected. When the motor encoder is selected, "0" will be indicated.
- 2 It indicates input stage status of the analog velocity command.

3 It indicates the power when built-in regenerative resistor is selected at screen Mode4, page9 regenerative resistor type selection (RGKD) in Servo Amplifier with built-in regenerative resistor. It will not indicate in case of no regenerative resistor connection or external regenerative resistor.

<Monitoring method>


Select a page to be monitored using the or  $\bigtriangledown$  key.

Press the

MODE key to return to the initial stage.

### 7.1.8 Alarm Trace Mode (Screen Mode 6)

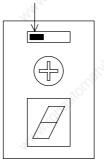
This mode is used for displaying the alarm history.





Table 7-11	Screen Mode 6

Page No.	History No.	Abbre-viati on	Name	
0	Now	38	Current alarm	
35		None	No alarm	
с ^и	torn.	ос	Power element error	
	and the second s	AOH	Amplifier overheating	
	ANN!	EXOH	External overheating	
-3	5	ov 🚿	Overvoltage	22.
2		RGOH	Built-in regenerative resistor overheating	
K2.X		PE	Control power supply voltage	
30	2ª	DE1	Sensor error	
	150°	DE2	Sensor error	
	S	OL	Overload	30
	stati.	OS	Over-speed	States.
-1		SE	Velocity control error	
6		OVF	Excessive deviation	
No.		MPE	Main power error	
Q.,	Sec.	FP	Main power open-phase	
	~ alle	RGOL	Regenerative error	~3
	A.C.	DSPE	Servo processor error	10
3	s ^{ist}	MEME	Memory error	32.25
		DE3	Sensor error	
à		DE4	Sensor error	
3 No	2	IFBE	Current FB error	
1	Last	1	The last alarm	
		ast 2	The alarm second to last	200
	3	Last 3	The alarm third to last	A1.0
	4	Last 4	The alarm fourth to last	35.20
			st 5 The alarm fifth to last	
		6	Last 6 The alarm sixth to last	
		7	Last 7 The alarm seventh last	


### Tracing method

The alarm history can be seen by using  $\bigtriangleup$  or  $\heartsuit$  key.

Press the MODE key to return to the initial screen.

- O Viewing the alarm history on the amplifier 7-segment LED.
  - Set the GAIN/HISTORY selector switch located on the front of the amplifier to HISTORY.
  - Using a small screwdriver, rotate the switch on the front of the amplifier.
  - The numbers 1 and 2 on the switch correspond to the last alarm and the second to the last alarm, respectively.
  - Selected alarm number is indicated on the [7-segment LED]. Its abbreviated name will appear in the adjacent [ALARM BLINK].

Set the switch to HISTORY to display the alarm history.



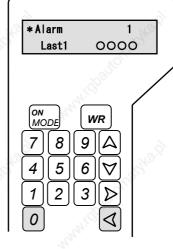
#### **Displaying the Alarm History** Fig. 7-8



As long as the alarm history is present on the 7-segment LED, display of the battery warning "." is not available.

When the selector switch is set to HISTORY, the rotary switch must be positioned at "0".

The following table lists the abbreviated alarm names and corresponding errors.


	191	192		
7-seg.	Abbre-viat ion	How to read		
<u>_</u> ]1	OC	Power element error		
2	OL	Overload		
3	AOH	Amplifier overheating		
5	OV	Overvoltage		
6	OS	Over-speed		
7	PE	Control power supply error		
8	DE	Sensor error		
9	MPE	Main power error		
А	FP	Main power open-phase		
	101	. 61		

	7-seg.	Abbre-viat ion	How to read
ò	С	SE	Speed control error
	d	OVF	Excessive deviation
	Е	EXOH	External overheating
	F	DSPE	Servo processor failure
	H.A.	RGOH	Built-in regenerative resistor overheating
ò	J	RGOL	Regenerative error
	Р	MEME	Memory error
	U	AEE	Low battery
	No light	CPUE	CPU error
	19.		34

#### Table 7-12 Abbreviated Alarm Names

O Clearing all alarm histories

- Select page 1 using the  $\bigtriangleup$  or  $\bigtriangledown$  key.
- Press the **0** and **(**keys at the same time. This clears all the alarm histories (Last 1 to Last 7).
- Press the screen.
- MODE key to return to the initial



Press them at the same time.

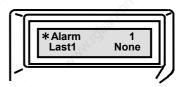



Fig. 7-9 Alarm Clearing Method

### 7.1.9 Test Mode (Screen Mode 7)

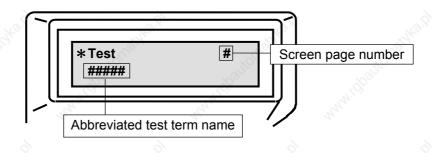



Fig. 7-10 Test Mode Screen

Abbreviation	Description
JOG	Initiates JOG operation.
Tune Gain	Implements offline automatic tuning.
VCMD	Offers automatic offsets of the velocity command.
TCMD	Offers automatic offsets of the torque command.
ECLR	Performs encoder clear.
Tune IBEF	Implements automatic notch filter tuning
	JOG Tune Gain VCMD TCMD ECLR

#### Table 7-13 Screen Mode 7

### Before turning on the test mode

1 Set Func6 bit6 to **1** from Screen Mode 2 Page 7.

### • When implementing JOG or Tune

- 1 When the control mode can be switched (between velocity and torque, position and torque, and position and velocity), turn off the input signal for switching.
- 2 Set the command input to "0".
- 3 Turn off the Servo ON (SON) signal. In the test mode, turn the forced Servo ON using the remote operator to output the holding brake excitation timing signal.
- 4 Set up the main circuit power supply.
- 5 When JOG or Tune is enabled in the test mode, the Servo ready signal is turned off.
- 6 When the gain switching function through external input is enabled, turn the changeover input signal off (Tune only).
- 7 When the slide switch on the front of the amplifier is set to GAIN, change it to History (Tune only).
- 8 Be sure to confirm the Servo ON state after pressing the WR key, and then perform the following operation.

#### • After implementing JOG or Tune

- I If you return to the initial screen using the **MODE** key, the excessive deviation error will be indicated because a deviation can be left on the controller in this manner. This alarm, however, is not recorded in the alarm history.
  - Clear the alarm before starting normal operation of the remote controller.
  - You can suppress the excessive deviation alarm by setting parameter Func6 bit4 to "1".
  - For the position control type amplifier, you also need to enter the deviation clear.
- Since a deviation can be left on the user controller, you need to make sure that the command output from the controller is zero before turning on normal operation.
   (If the command is not zero, a sudden action can result.)

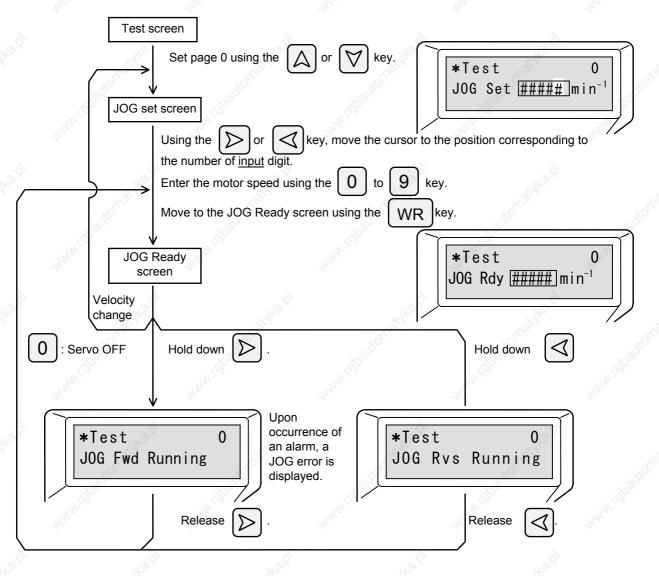
#### 7.1.9.1 JOG Operation

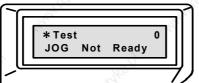
### Outline of JOG operation

The motor can be rotated forward or backward at the revolution speed set from the remote operator. Pay attention to the following precautions.

- Starting the JOG operation turns on the velocity control mode whatever the currently selected control mode is.
- Forward revolution is performed by pressing the "→" key ("Fwd running" is indicated when the motor rotates counterclockwise as viewed from the load side).
- Secure enough motor operating range.
   In particular, when the load inertia is large or revolution speed is high, you must take the required deceleration time into consideration before operating the motor.
- During the JOG operation, current is limited by the sequence current limit value (standard value is 120% which can be changed from Parameter Mode 1 Page 12).
   So, large load inertia or load torque can increase the acceleration/deceleration time, thereby delaying the response time.
- If slow up/down is necessary for the motor speed, set the acceleration/deceleration time from Screen Mode 0 Page 10 and 11.
- During the JOG operation, overtravel is effective. For example, the motor is stopped if an
  overtravel status occurs on the forward revolution side while the motor is in forward revolution.
  No forward revolution input will be acceptable after that. Since the acceleration/deceleration time
  setting remains effective in the overtravel status, care should be taken with respect to the operating
  range.
- Since a position loop deviation may sometimes be left by JOG operation, be sure to perform "deviation clear" before returning to normal operation.

### • JOG operation procedure





Fig. 7-11 JOG Operation Procedure

After [JOB] operation ends, press the  $|\mathbf{0}|$  key to return to the set screen from the ready

screen, then return to the initial screen using the MODE key.

When the initial screen is displayed again, the "OVF (excessive deviation)" alarm occurs. This alarm, however, is not indicated when Func6 bit4 is set to 1.

When [JOG] operation is disabled by a main circuit power off status or an alarm, the following message is displayed:



When [JOG] operation is enabled, the [JOG] set screen appears.

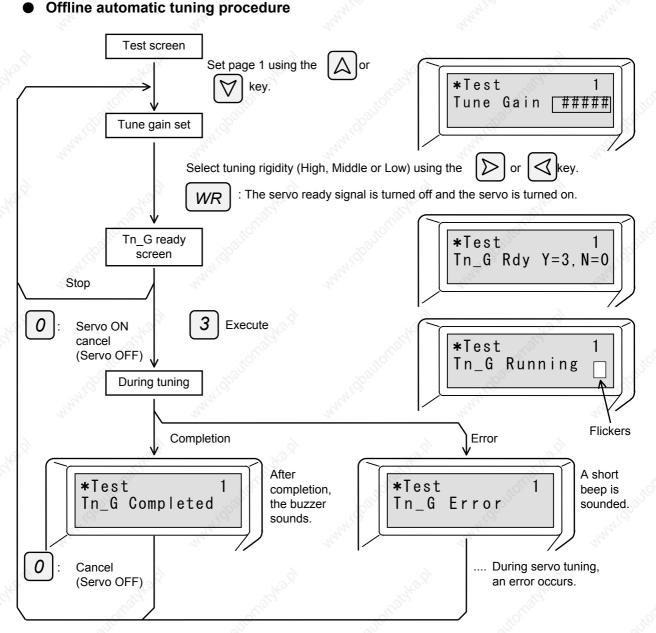
#### 7.1.9.2 Offline automatic tuning function

#### • Outline of offline automatic tuning function

The offline automatic tuning function operates the motor through the remote operator and estimates load inertia from its operating status. With this, proper parameters are automatically set. Four parameters for position loop gain (Kp), velocity loop proportional gain (Kvp), velocity loop integral time constant (Tvi) and current command LPF (ILPF) are set using this function.

#### Precautions on working and load conditions

If the servo vibrates before tuning when turned on, reduce the proportional gain Kvp and increase the integral time constant Tvi beforehand. When offline automatic tuning is executed, forward/backward revolution is performed. Accordingly, secure one turn or more for both forward and backward revolution as the motor operating range. Use this function only when safety is secured even under vibrating conditions and no damage to the machine occurs. In the following cases, proper parameters may not be set by the offline automatic tuning function or a tuning error may occur ("Tn_G Error" is displayed).


- The load inertia is significantly larger than that allowed.
- The variation in load inertia or torque is large.
- The backlash of ball screws and gears is large.
- The machine rigidity including couplings is low, causing machine resonance.
- While offline automatic tuning function is executed, the remote operator is dismounted from the Amplifier main body (remote operator POWER OFF).
- · While offline automatic tuning function is executed, main circuit power supply is cut off or an alarm occurs
- When the output current is limited by current limit permit input.
- The sequence current limit value (page 12 of Mode 1) is set to 100% or low.
- The gain switching through external input is enabled and the changeover input signal is ON (during gain switching).
- The slide switch on the front of the amplifier is set to GAIN and the rotary switch is set to other than 0.
- Over travel status
- While command input is inhibited by holding brake timing or others.

#### Offline automatic tuning operation

- For tuning rigidity to be tuned, select Low, Middle or High according to machine rigidity.
- When offline automatic tuning is executed, forward/backward revolution is performed for about 0.5 seconds with a torque command (equivalent to the rated torque at the peak) of about 60 Hz sine waveform. For the motor operating range at this time, secure one turn or more as standard, though this varies depending on the load conditions.
- When offline automatic tuning is ended normally, proper parameters are automatically set from the estimated load inertia and the parameters are stored in the non-volatile memory.
- After execution of this automatic tuning function, a deviation of the position loop may be left. For this reason, be sure to clear the deviation before returning to normal operation.

#### Setting together with Real time automatic tuning

In case of devise making real time automatic tuning valid during normal operation, it is required to set the gain in initial operation to low. Therefore, when executing offline automatic tuning in the device making real time automatic tuning valid, selecting low for machine rigidity is recommended. (Refer to Chapter 11 for Tunings)



#### Fig. 7-12 Offline automatic Tuning Operation

After offline automatic tuning is completed, press the **0** key to return to the set screen from the ready

screen, then return to the initial screen using the

key.

When the initial screen is displayed, the "OVF (excessive deviation)" alarm occurs. When the offline automatic tuning is disabled by a main circuit power off status or an alarm, the following is displayed:

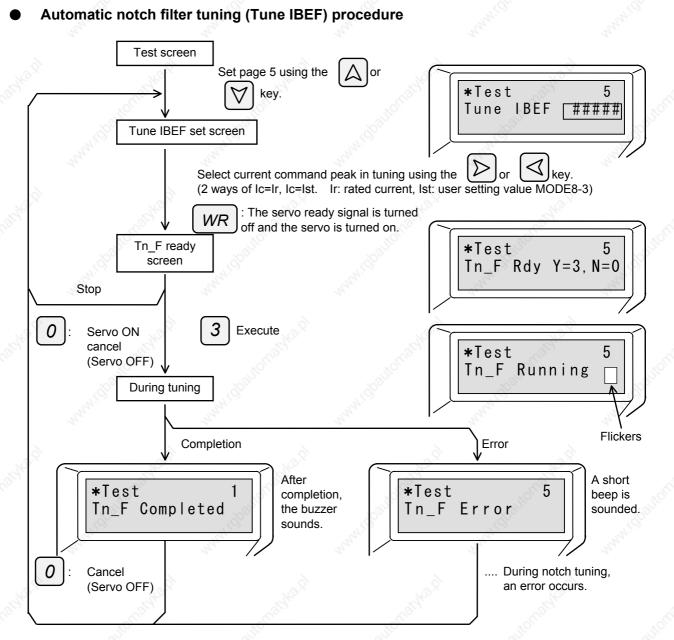
* Test			1
Tune	Not	Ready	

The offline automatic tuning is enabled, the Tune Gain set screen appears.

#### 7.1.9.3 Automatic notch filter tuning function

#### Outline of Automatic notch filter tuning function (Tune IBEF)

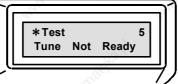
The automatic notch filter tuning function operates the motor through the remote operator and estimates resonance point of current loop from its operating status, and proper parameters are automatically set as notch filter frequency. Current command BEF1 parameter (IBF1) is set using this function.


#### Precautions on working and load conditions

When automatic notch filter tuning is executed, forward/backward revolution is performed. Accordingly, secure one turn or more for both forward and backward revolution as the motor operating range. Use this function only when safety is secured even under vibrating conditions and no damage to the machine occurs. In the following cases, proper parameters may not be able to set by the automatic notch filter tuning function or a tuning error may occur ("Tn_F Error" is displayed).

- The load inertia is significantly larger than that allowed.
- The variation in load inertia or torque is large.
- The backlash of ball screws and gears is large.
- While offline automatic tuning function is executed, the remote operator is dismounted from the Amplifier main body (remote operator POWER OFF).
- · While offline automatic tuning function is executed, main circuit power supply is cut off or an alarm occurs
- When the output current is limited by current limit permit input.
- The sequence current limit value (page 12 of Mode 1) is set under sine waveform current command peak.
- The gain switching through external input is enabled and the changeover input signal is ON (during gain switching).
- The slide switch on the front of the amplifier is set to GAIN and the rotary switch is set to other than 0.
- Over travel status
- While command input is inhibited by holding brake timing or others.

#### Automatic notch filter tuning operation (Tune IBEF)


- When automatic notch filter tuning is executed, forward/backward revolution is performed for about 1.5 seconds with a current command of 200 Hz to 1kHz sine waveform. For the motor operating range at this time, secure one turn or more as standard, though this varies depending on the load conditions.
- Current command peak value of sine waveform is equivalent to rated current (rated torque) at standard setting. User setting value (page3 of Mode3) can be also used as current command peak value. Execute tuning with appropriate current command according to load status.
- During automatic notch filter tuning, notch filter set by parameter (IBF1, IBF2) is invalid.
- When automatic notch filter tuning is ended normally, proper parameters are automatically set and the parameters are stored in the non-volatile memory.
- After execution of this automatic notch filter tuning function, a deviation of the position loop may be left. For this reason, make sure to clear the deviation before returning to normal operation.
- In this automatic notch filter tuning, a maximum resonance point is estimated and automatically set into the current command BEF1 (IBF1). When there are more than one resonance points, manually set the resonance point into current command BEF2 (IBF2).
- When notch filter is not necessary as a result of automatic notch filter tuning, current command BEF1 (IBF1) shall be set to 1000 Hz (filter invalid).



#### Fig. 7-13 Automatic Notch Filter Tuning Operation

After automatic notch filter tuning is completed, press the **0** key to return to the set screen from the ready screen, and then return to the initial screen using the **work** key.

When the initial screen is displayed, the "OVF (excessive deviation)" alarm occurs. When the automatic notch filter tuning is disabled by a main circuit power off status or an alarm, the following is displayed:



The automatic notch filter tuning is enabled, the Tune IBEF set screen appears.

### 7.1.9.4 Automatic offset function

#### Outline of automatic offset function

This function enables an offset value for a velocity or torque command to be automatically selected. It implements velocity command zero adjustment (Vzero) or torque command zero adjustment (Tzero)

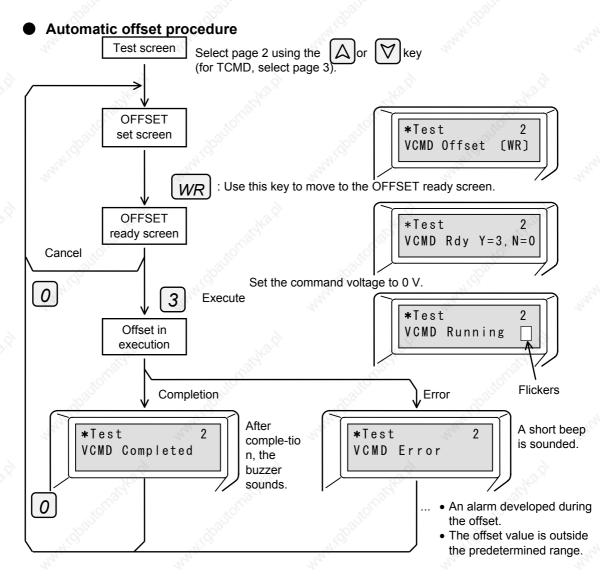
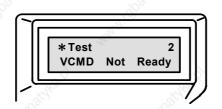




Fig. 7-14 Automatic Offset Operation Procedure

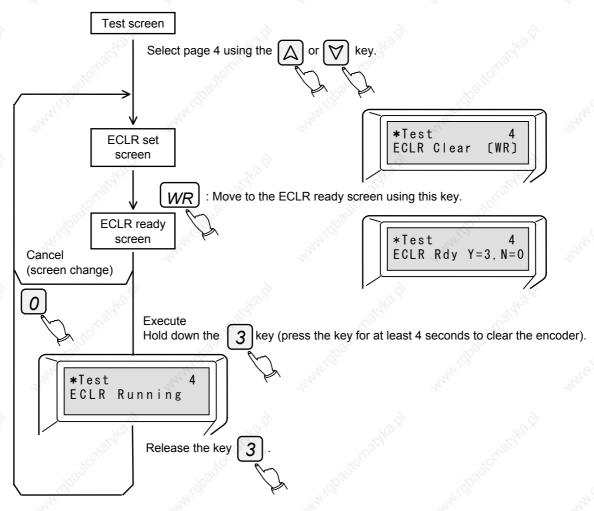
Using the **0** key, return to the set screen from the ready screen, then return to the initial screen using the key.

When the offset operation is disabled (when Func6 bit6 = 0), the following message appears on the screen:



When the offset function is enabled, the OFFSET screen appears.

The screen for the torque command offset differs from that for the velocity command as follows:

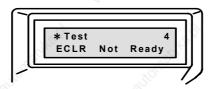

- Screen No.  $2 \rightarrow 3$ .
- VCMD  $\rightarrow$  TCMD.

An ideal zero adjustment may not be expected if significant fluctuation exists in the commanded input voltage or substantial noise is present. In such case, manual zero adjustment shall be implemented in parallel from Screen Mode 3 Page 3 (Vzero) or 4 (Tzero).

### 7.1.9.5 Encoder clear function

This function is used for clearing the encoder multiple revolution counter or an encoder alarm.

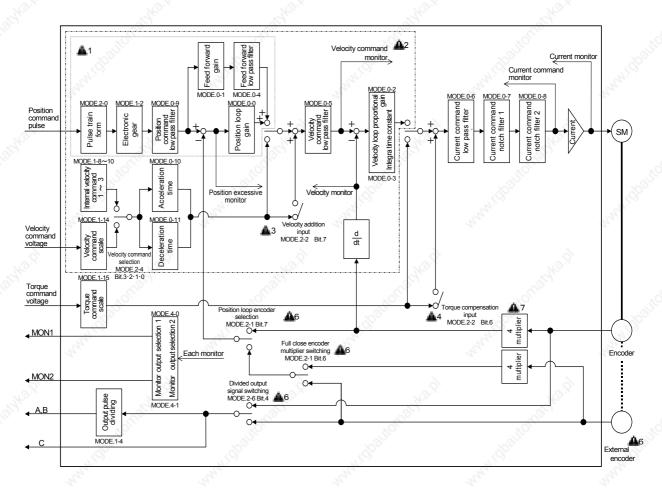
### Encoder clearing procedure






Using the **0** key, return to the set screen from the ready screen, then return to the initial

screen using the MODE key.


When the encoder clear is disabled (when Func6 bit6 = 0), the following message appears on the screen:



When the encoder clear function is enabled, the ECLR screen appears.

### 7.2 Description of Parameters

### 7.2.1 Block Diagram of Position Control Type Parameters



### Fig. 7-15 Control System Block Diagram

- 1 Parts inside do not function in the velocity/torque control mode.
- 2 Parts inside do not function in the torque control mode.
- 3 Velocity addition input functions for the position control type only.
- 4 Torque compensation input functions for the position/velocity control type only.
- 5 Each low pass or notch filter is disabled at the setting of 1,000 Hz.
- An external encoder can be connected on a fully closed servo system only.
   If your system is not fully closed, set bits7 and 6 of MODE.2-1 and bit4 of MODE.2-6 to zero.
- 7 The multiplication-by-4 function of the motor encoder applies only to INC-E and ABS-E . For ABS-RII, multiplication by 1 applies.

Mode	Page	Abbre-vi ation	Name	Standard value	Unit	Setting range	Remarks
0	0	КрМ	Position loop gain Monitor	45(30)	rad/S	100	
5	1	KffM	Feed forward gain Monitor	0	%	20 ⁵ -	
	2	KvpM	Velocity loop proportional gain Monitor	100(70)	Hz	5 ⁰⁰ -	
	3	TviM	Velocity loop integral time constant Monitor	15(20)	mSec	-	ANI C
	4 1	FLPM	Feed forward LPF Monitor	1000	Hz	-	2 hrs
	5	VLPM	Velocity command LPF Monitor	1000	Hz	- 、	
.0	6	ILPM	Current command LPF Monitor	450	Hz	- 13.8	
and	7	BFAM	Current command BEFA Monitor	1000	Hz	and the second second	
8	8	BFBM	Current command BEFB Monitor	1000	Hz	. 10 ^{° -}	
	9	Tpcm	Position command LPF time constant Monitor	0	mSec	- ¹	.8
	10	Tvac	Velocity command acceleration time	0	mSec	0 to 9999	Star Star
	11 1	Tvde	Velocity command deceleration time	0	mSec	0 to 9999	32
	12	KvpA	Velocity loop proportional gain addition value	0	Hz	0 to 255	

### 7.2.2 Parameter Summary Table

Figures in parentheses are applicable to other than P3 and P5 series.

Mode	Page	Abbre-viat ion	Name	Standard value	Unit	Setting range	Remarks
1	0	INP	Positioning complete signal width	64	P(+/-)	1 to 32767	3250
	1	OVF	Excessive deviation value	256	×256P	1 to 32767	12
	2	EGER	Electronic gear ratio	4/1		1/32767 to 32767	
	3	PMUL	Command pulse multiplication	1 ~ో		1 to 63	
	4	ENCR	Output pulse division ratio	1/1		1 to 1/8192	
	5	LTG	Low velocity	50	min ⁻¹	0 to 32767	à
	6	HTG	High velocity	1000	min ⁻¹	0 to 32767	and i
	7	SPE	Velocity matching width	50	min ⁻¹	0 to 32767	27
	8	VCI1	Internal velocity command value 1	500	min⁻¹	0 to 32767	
	9	VCI2	Internal velocity command value 2	1000	min ⁻¹	0 to 32767	
	10	VCI3	Internal velocity command value 3	1500	min ⁻¹	0 to 32767	
	11	IILM	Internal current limit value	100	%	30 to (🛕 1)	
	12	SILM	Sequence current limit value	120	%	30 to (🛕 1)	à
	13	THB	Holding brake timing	300	mSec	0 to 1000	and in
	14	VCMS	Velocity command scale	500	min ⁻¹ /V	0 to 3000	22
	15	TCMS	Torque command scale	50	%/V	0 to 400	
	16	MENP	Motor encoder pulse number	\$\$\$\$	P/R	500 to 65535	(▲ 2)
	17	EENP*	Full close encoder pulse number	\$\$\$\$	P/R	500 to 65535	(▲ 2)
	18	OLWL	Over load warning level	100	%	30 to 100	( 🛦 3)

* The page 17 (EENP) can only be used on the full-close type servo system.



- 1 Any value above "IP/IR  $\times$  100%" may not be selected for an internal current limit value or sequence current limit value.
- 2 Prior to this operation, Func6 bit7 of Screen Mode 2 must be set at "1" and the control power must be turned off once.
- 3 Cannot be changed without turning control power OFF once.

Mode	Page	Abbre-viat ion	Name	Standard value	Unit	Setting range	Remarks
2	0	PMOD	Command pulse train form	0000000		0, 1	
E. C.	1	Func0	Amplifier function select 0	00000000		0, 1	
	2	Func1	Amplifier function select 1	00000000		0, 1	.8
	3	Func2	Amplifier function select 2	00100000		0, 1	and the
	4	Func3	Amplifier function select 3	0000001		0, 1	
Nº?	5	Func4	Amplifier function select 4	00000001*		0, 1	
Clar.	6	Func5	Amplifier function select 5	00000000		0, 1	
	7	Func6	Amplifier function select 6	00000000		0, 1	

* In the position control mode, page 5 (Func4) is set at 00000100.

Mode	Page	Abbre-vi ation	Name	Standard value	Unit	Setting range	Remarks
3	0	102150	10010	10 ^{0,110}	-	CONTENT -	2
	1	CAPIO.	and the second second	N ^N .O	- schil	» -	and Co
	2		4		- 42	-	22
.0	3	Vzero	Zero adjustment of velocity command	\$\$\$\$	2	±16383	
Carl	4	Tzero	Zero adjustment of torque command	\$\$\$\$		±16383	
	5	Tn_Lv	Level of real time automatic tuning	0		±5	

Mode	Page	Abbre-viat ion	Name	Standard value	Unit	Setting range	Remarks
8	0	6	pt stat	Carol Star		C. S. S. S.	
	1	10auto	ab ^{aute}	108111C		OBUTO.	~
	2	n ¹ .101	and Charles and Charles	2	and the	5	and I.
	3	Tn_F	User setting value of current command	100	%	30 to ( 🛦 1)	4
200			when automatic notch filter tuning	21	2	2.9	
and	4	O_JL	Observer • load inertia proportion	100	%	0 to 3000	

The values in parentheses are applicable for other than P3 and P5 series.



User setting value of torque command when automatic notch filter tuning cannot be over  $\mbox{IP/IR}\times 100\%.$ 

		65	2	22		9.
Mode	Page	Abbre-viat ion	Name	Standard value	Setting range	Remarks
4	0 1 2	M1 M2 Func	Monitor 1 output Monitor 2 output Servo function	Vm0.5mV/min ⁻¹ Ic0.5 V/IR Normal	19 ranges 19 ranges 4 ranges	IR: Rated armature current
191 191	3 4 5 6 7 8 9	TYPE ENKD ABSF MOT. MOKD PSKD RGKD	Control mode Encoder type ABS sensor format Motor type Motor configuration Power supply type Selection of regenerative	\$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ Rotary \$\$\$\$ \$\$\$\$	6 ranges 3 ranges 11 ranges x - 42676 Rotary only PY2A: 1 range 2 ranges	(▲) (▲) (▲) (▲) (▲) (▲)
	-		resistor type	2		( 🔒 )

* The values denoted by \$\$\$\$ vary according to the specifications employed at the time of shipment.



Prior to modifying a setting, Func6 bit7 of Screen Mode 2 must be set at "1". You are also required to turn the control power off once.

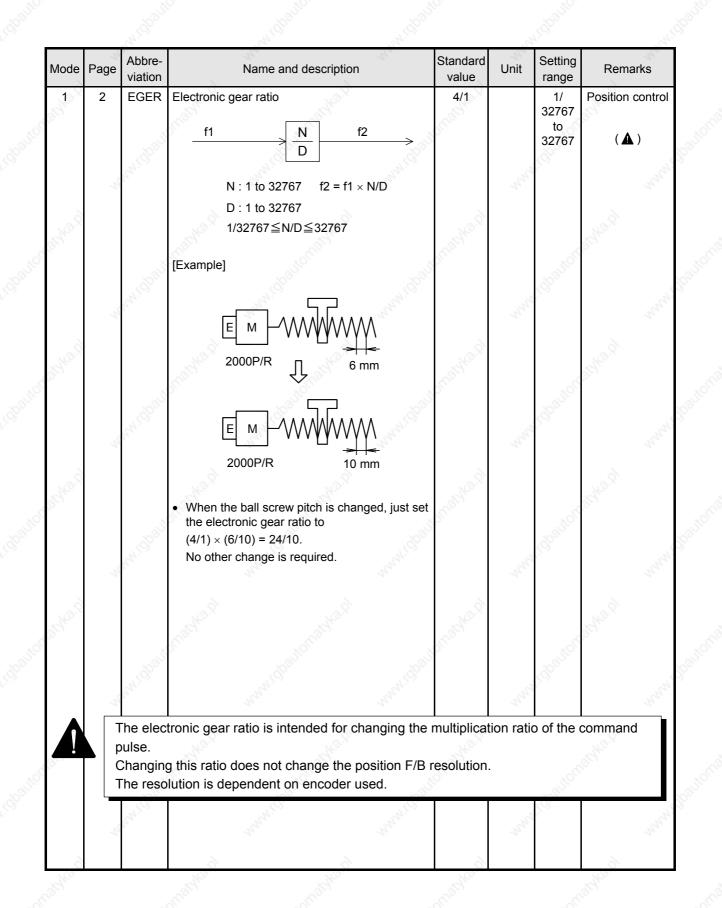
### 7.2.3 Parameter List

	Dece	Abbre-vi	4 4	Standard	20	Sotting	1
Mode	Page	ation	Name and description	Standard value	Unit	Setting range	Remarks
9	0 to	Kp0 to	Position loop gain	45	rad/s	1 to	Position contro
	7	Kp7	Proportional gain of the position controller.	(30)		1000	
	8 to	Kff0 to	Position loop feed forward gain	0	%	0 to	Position contro
	15	Kff7	<ul> <li>Feed forward gain of the position loop.</li> </ul>			100	
			<ul> <li>When this parameter is set at 100%, the number of waiting pulses becomes 0 at constant-speed operation.</li> </ul>	Catho ?		.C	Sta?
		Barth	Response of the position loop can be			100 Martin	
		44.CT	improved. However, if the value is increased too much, vibration may result.			(ST	S.
	25						34
			d0i	6			6
			dt	alle.			de.
		. 10		SC.		105	
		6000	$\theta_{-}^{0} + \theta_{-}^{+}$ Position loop gain KP			Son -	
	5	al.	Position command Position feedback				54
	-4-		command Costilon reeuback		-1		
	16 to	Kvp0	Velocity loop proportional gain	100	Hz	10 to 3000	Position and
	23	to Kvp7	<ul> <li>Proportional gain of the velocity controller (proportional integral control).</li> </ul>	(70)		3000	velocity contro
		135°	The setting unit indicates the value when the	5		~ aller	
		A.100	load inertia is 0.			8	
	44		Althe Althe Althe				352
				~			~
			Non Non	No.X			Marx.
		×C	nation offact	S. Carl		· . 6	)
		. Barr	diall' diall'			10000	
	4	W. GDaute	on www.chantone www.chant			Opation	Arash
	-2-		4				1
			2. di	2			2
			and the second second	3 Miles		2	St.
		35	C' all C' all	5		Joh	
		1 Boo	statistical and the stational statistical and the statistical stat			800	
	34	1 Sec.	masked www.dautomasked				AND AND AND
0			6	0			0

Values in parentheses are applicable to motors of other than P3 and P5 series.

Mode	Page	Abbre-vi ation	Name and description	Standard value	Unit	Setting range	Remarks
9	24 to 31	T∨i0 to T∨i7	Velocity loop integral time constant • Integral time constant of the velocity controller (proportional integral control). Velocity deviation $Kvp(1+\int \frac{1}{1} dt)$	15 (20)	mSec	1 to 1000	Position and velocity control ( <b>1</b> 1)
	32 to 39	FLP0 to FLP7	<ul> <li>Tvi</li> <li>Feed forward LPF</li> <li>This parameter sets the cut off frequency of the low pass filter for the position loop feed forward command.</li> </ul>	1000	Hz	1 to 1000	Position contro
	40 to 47	VLP0 to VLP7	<ul> <li>Velocity command LPF</li> <li>This parameter sets the cut off frequency of the primary low pass filter for the velocity command.</li> </ul>	1000	Hz	1 to 1000	Position and velocity control
	48 to 55	ILP0 to ILP7	<ul> <li>Current command LPF</li> <li>This parameter sets the cut off frequency of the primary low pass filter for the current command in the velocity loop.</li> </ul>	450	Hz	1 to 1000	( <b>1</b> 2)
	4	ANIC DOUTE		200		GP300C	10.01 St. 0.01
Δ			g 1000 ms turns on the proportional control. g 1000 Hz disables the filter function.	Copy.	4. Carton and Carton a	dpautorn	- 0 
		MIGDOUTC	Next Contraction of the second s	Contraction of the second	4	obattori	

Values in parentheses are applicable to motors of other than P3 and P5 series.


Mode	Page	Abbre-vi ation	Name and description	Standard value	Unit	Setting range	Remarks
9	56 to 63	BFA0 to	<ul><li>Current command BEF1</li><li>For the current command in the velocity loop,</li></ul>	1000	Hz	200 to 1000	In 10 Hz
		BFA7	this parameter specifies the notch filter center frequency of the following characteristics. [Characteristics]			grane.	( 🛕 )
	4		dB Gain 0 dB	rubha.t			
	44		0.62 fn fn 1.62fn f	<u>}</u>		GDOUTO.	
	64 to	BFB0	Current command BEF2	1000	Hz	200 to	In 10 Hz
	71	to BFB7	<ul> <li>For the current command in the velocity loop, this parameter sets the notch filter center frequency of the following characteristics.</li> </ul>	1000	ΠZ	1000	(▲)
			[Characteristics]	6			
			dB OdB	Caple.		1. C.	
	4		dB Gain Gain			drante.	
			0.62fn ^{fn} 1.62fn ^f <b>0.62 fn fn 1.62fn</b> f	rodyka.P		.5	
			and that and the set			draune -	

Selecting 1000 Hz disables the filter function.

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
0	9	Tpcm	<ul><li>Position command LPF time constant</li><li>When installing the first-order lag filter for the</li></ul>	0	mSec	0 to 4000	Position contro
		S.W. GEON	position control pulse, this parameter sets the time constant.	D,		GDOULO.	(▲)
	10	Tvac	Velocity command acceleration time	0	mSec	0 to	Velocity contro
29. 29.			• This parameter is used for limiting acceleration time in the velocity control to 1000 min ⁻¹ minute.	marghand		9999	
		W. COST		D.		GDauto.	
0	14			6			10
Nor			Tvac	matelkon		, 10 ⁶⁶	20 V.C. 1
		1 dbar	A SPECIAL SPEC			B	
2	11	Tvde	<ul> <li>Velocity command deceleration time</li> <li>This parameter is used for limiting</li> </ul>	0	mSec	0 to 9999	Velocity contro
Nº .?			deceleration time in the velocity command to 1000 min ⁻¹ minute.	marghes.P		5	(▲)
	4	ANALG DOUT	100 min ⁻¹			(draute	414
24. Q.			<del>c &gt;</del> Tvde	Califica A		~	5340.9
			an michauton michaut	þ.,		Sparto,	
2	h.	£*		6			and a second
8		When c setting.	onfiguring the position loop external to the se	rvo amplif	ier, sele	ect 0 ms	ec for the
	5	ANNI GUN	Market Contraction of the second seco		. 4 ⁴	, CS	2

Node	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
0	12	KvpA	<ul> <li>Velocity loop proportional gain addition value</li> <li>This parameter is used for setting a weight per rotary switch 1.</li> </ul>	0	Hz	0 to 255	Position and velocity control
01	4	ANI COOL	<ul> <li>The actual velocity loop proportional gain is: Kvp + (KvpA × RSW).</li> <li>When switching of the gain is done, it will be: Kvp2 + (KvpA × RSW).</li> </ul>	Ŕ		'egger	( <b>( )</b>
14°.		and closed	<ul> <li>RSW : A value set on the rotary switch.</li> <li>* Slide switch position Gain switching from the front panel slide switch is enabled when it is set at "GAIN".</li> </ul>	Stradylo.		idoautor	55 ⁴⁶⁰
20.00	4	~015	mathad rationathad rat	snashe.p		valtor	534 ^{20,0}
100	4	and for	www.con www.con	naskan		50°	and a character
50,	⁴⁴	and the part	anne anne anne anne anne anne anne anne	2) 20		repauto.	and and
St.	4	and to bout	Mathe www.challonalon www.chall	STRADY		robatton	53 ^{tt} turn ^a
		′ou can 4(KvpM	check the actual velocity loop proportional ga ).	in from mo	onitor s	creen pa	age
	4	ANA.OT	and the second the second the second the second the second the second test second test second test second test			i O'	A.C.

Node	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
12.2	0	INP	<ul> <li>In-position (positioning finish) signal width</li> <li>This parameter selects the number of waiting pulses on the deviation counter that output the in-position signal.</li> </ul>	64	pulse (+/-)	1 to 32767	Position contro
20.	12.		• The standard value is the encoder pulse irrespective of the electronic gear function or the command multiplier setting.	20.0			and the second
<i>S</i> ,			INC-E, ABS-E Incremental pulse multiplied by 4 is standard. ABS-R II, ABS-E.S1	SUSSI		Spatton	55° 8
10. 10.	1. A		Sensor absolute value (PS) is standard. [Example] When the parameter is set at 64 with a 2000 pulse encoder, the positioning complete signal is output when the value falls in the following range toward the target position: $64 \times 1/(2000 \times 4) \times 360^\circ = 2.88^\circ$	matikali		. Spaulor	and
340.0	1	OVF	<ul><li>Excess deviation value</li><li>When the deviation counter exceeds the setting range, an OVF alarm occurs.</li></ul>	256	× 256 pulses	1 to 32767	Position contro
	12.		www.char			S. C. D. S.	4144
3×2.0			mathant www.chautomathant www.chau	Stradkald		, obalton	Selfe P
10. 20. 20.	hr.		www.chaiter.chaiter.chaiter.ch	mathant			ANN
	42,		www.gov www.gov			A. COOL	S. S



Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
10.2	3	PMUL	<ul><li>Command pulse multiplier</li><li>Set the parameter so that the position command pulse is multiplied by 1 to 63.</li></ul>	1.a.V		1 to 63	Position control
	4	and Bo	• You can enable the setting by selecting the PMUL input terminal with the Func3 parameter, then turning on the input.			L Bir	W. Martin
340.9	4	ENCR	Output pulse dividing ratio	1/1		1 to	134 ⁰⁷
		.800 ¹⁵	<ul> <li>This parameter is used for selecting the dividing ratio of the encoder signal (A- and B-phase).</li> </ul>	STIG		1/8192	()****
	4	AN.	Dividing ratio = $\beta / \alpha$ Where,				A CAN
10. 20.		15	$ \begin{array}{l} \alpha : \ 1 \ \text{to} \ 64, \ 8192 \\ \beta : \ 1 \qquad (\alpha = 1 \ \text{to} \ 64) \\ 2 \qquad (\alpha = 3 \ \text{to} \ 64) \\ 1 \ \text{to} \ 8191 \ (\alpha = 8192) \end{array} $	orrabha.P		autor	5540.0
	5	LTG	Low speed	50	min ⁻¹	0 to	
Nº.	4		• This parameter is used for selecting a revolution speed below which the low speed alarm is output.	12.2		32767	
5		6000	• If you specify LTG (low speed) with the Func4 parameter, the LTG alarm is output as the revolution speed goes below the setting.	SMOL		doutor	\$~`
201	24	and it.	<ul> <li>When the P-PI automatic switching function is enabled: Proportional-plus-integral control when the speed is lower than the LTG setting.</li> </ul>	2			and the second second
34		25	Proportional control when the speed is over the LEG setting.	Smalake		autor	53 ⁴⁰
	4	AN. Co	and the second s			¹ 20°	Arthon &
19. 20. 20.			maska.nl	(natyles?)		2	6342.P
	la .	MAL COOL	or server of all	b,		. obauto	
	1			~			2

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
1	6	HTG	<ul> <li>High speed</li> <li>This parameter is used for selecting a revolution speed above which the HTG (high speed) alarm is output. The HTG alarm can be specified using the Func4 parameter.</li> </ul>	1000	min ⁻¹	0 to 32767	and the second s
12. 12. 12.	4	and the second se	<ul> <li>Switching of the control mode The following switching enables a speed limit to be set in the torque control mode:</li> <li>Velo ↔ Torq Posi ↔ Torq</li> </ul>	snasha d		autor	10140.01
10. 10.	7	SPE	<ul> <li>Speed matching width</li> <li>When the difference between the velocity command and velocity feedback is smaller than the specified value, a speed matching width can be output by selecting SPE with the Func4 parameter.</li> </ul>	50	min ⁻¹	0 to 32767	44 10: 10:
340.Q	8	VCI1	<ul> <li>Internal velocity command value 1</li> <li>Sets a velocity command value.</li> <li>It is enabled by setting the Func3 parameter bits 3, 2, 1 and 0 to "1010", and turning the CN1-36 pin on and the 35 pin off.</li> </ul>	500	min ⁻¹	0 to 32767	Velocity contro
0/	4	Arra 1. CONT	www.losute www.losute	, 		(donine	44
H.	<i>h</i> r.	and Charl	maintan www.goananantan www.goan	Stranker.		, diautor	States
340.Q	24	ANI-GOOD	snathani	snabhard		copautor	ACHER OF ANY
2	4			6	1		4 10

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
12.9	9	VCI2	<ul> <li>Internal velocity command value 2</li> <li>Set a velocity command value.</li> <li>It is enabled by setting the Func3 parameter bits 3, 2, 1 and 0 to "1010", and turning the CN1-35 pin on and the 36 pin off.</li> </ul>	1000	min ⁻¹	0 to 32767	Velocity control
	10	VCI3	<ul> <li>Internal velocity command value 3</li> <li>Sets a velocity command value.</li> <li>It is enabled by setting the Func3 parameter bits 3, 2, 1 and 0 to "1010", and</li> </ul>	1500	min ⁻¹	0 to 32767	Velocity control
	3	ANI-GDOL	simultaneously turning both the CN1-35 pin and the 36 pin on.	400	and the second		and and a start of the start of
	11	IILM	<ul> <li>Internal current limit value</li> <li>You can clamp the current at the value set from this page by setting the Func1 parameter bit0 to 0, and entering ILM (CN1-31 pin). Setting of a value greater than IP is not available.</li> </ul>	100	%	30 to (IP/IR) × 100	50K2.0
	<i>h</i> ,	ANI-GOOD	<ul> <li>This setting is available within the range of IP/IR × 100.</li> <li>IP : Momentary maximum stall current on the armature.</li> <li>IR : Rated armature current.</li> </ul>	Strath and		diastor	5342 P
		Are Coal		onabhail		school of	anter fi
			manyka.pl	and		doautor	53Kert

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
1	12	SILM	<ul> <li>Sequence current limit value</li> <li>Sets a current limit value for holding brake sequencing, overtravel or JOG operation.</li> </ul>	120	%	30 to (IP/IR) × 100	504 ^{1,0}
	4	ANI COL	<ul> <li>This setting is available within the range of IP/IR × 100.</li> </ul>		14	S	and the second
en trancia	13	тнв	<ul><li>Holding brake excitation timing</li><li>Sets the holding brake excitation timing.</li><li>Select "0" when this function is not used.</li></ul>	300	mSec	0 to 1000	Timing setting is available in multiples of 4 msec.
~0	14	VCMS	<ul> <li>Velocity command scale</li> <li>Sets a velocity command scale corresponding to 1 V of the command voltage.</li> </ul>	500	min ⁻¹ / V	0 to 3000	and the second
5 N	15	TCMS	<ul><li>Torque command scale</li><li>Sets a torque command scale corresponding</li></ul>	50	%/V	0 to 400	S. C.
	4	and boy	to 1 V of the command voltage.		144	1. BORN	Arter
2012.Q		x	matter?	onoble.p		• of	874 ^{0,01}
	4	Arra 1 (DOU)	www.cond.		They are	1. Brann	Arres
201 × 10			mashant onashant	Strather, P			55/10.91
	4	and bail	www.coalionalite		4500	reparton	H. H
10. H.		х	manyead www.challonatyead	Smatska.P			ASHER P
	4	A.M. BOU	www.colorist		14	Spann	-search

Node	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
1	16	MENP	<ul> <li>Motor encoder pulse number</li> <li>Sets the number of pulses of the encoder used.</li> <li>The following shows the number of encoder pulse in standard combination:</li> </ul>	\$\$\$\$	P/R	500 to 65535	(▲1) (▲2)
10:			Saved wiring incremental encoder 2000 P/R. Absolute encoder 2048 P/R.	mathart		5	acheo.pt
	17	EENP	<ul> <li>Number of pulses of fully closed encoder</li> <li>Sets the number of pulses of the encoder used in terms of the motor shaft.</li> </ul>	\$\$\$\$	P/R	500 to 65535	(▲ 1) (▲ 2)
34°.			• This parameter is usable only on the servo system that supports the fully closed design.	ashe d			
	18	OLWL	<ul> <li>Over load warning level</li> <li>This parameter is for warning output before getting into over load alarm status and motor stoppage (see 9.6 warning output for over load warning output function).</li> </ul>	100	%	30 to 100	(▲ 2)
Nº.Q		ALIGORIA .	• Possible setting level range is from 30 to 99% when over load alarm level is regarded as 100%. There will be no over load warning output in setting 100%.	Smarthe P		I GEORGE	
20.2	14		maskent www.	mashan		-6	
	4	char	I en changing your setting, set Func6 bit7 to "1" nge. n the control power off once before the change		en Mo	de 2 prio	r to the
24 C.		ANI COSU	STREET AND STREET AND AND STREET	Stranko.P		robautors	
	1						

Mode	Page	Abbre- viation			Na	ame and descri	iption		Standard value	Unit	Setting range	Remarks
2	0	PMOD	Pos	ition c	omma	and pulse train	form		0000-		0, 1	Position contr
ion.	42	Nr. Goal	e b tr A	nterec ackwa ains a ulse tr lso, th	l in 3 Ird rev nd 90 ain). Ie risir	command puls forms (forward volution pulse to o ^o phase differe ng/falling edge rection and digi	revolution rain, code nce two-p command	+ + pulse nase , the	0000		is ballon	(▲1) (▲2)
dro.x			b	e spec	cified.				- Herr			No.
5		8	5.00			xorno.			SC101		.5	0
		1000	PM	OD 7	6	5 4 3	2 1	0				
	-5	and the second			5	AN .	CC	NP input	polarity swite	hing		2
	1						0	Counts	at the rising	edge.		24
							<u>्र</u> े 1	Counts	at the falling	edge.		22
dr.			S.			3	CW	P input p	olarity switch	ing		2 cm
		3	5			30	0	Counts	at the rising	edge.	10	
		1000				1900	1	Counts	at the falling	edge.	Š,	
	4	Sec.					Sel	ection of	revolution dire	ection 🛕	3	44
							0	Standa	rd.			
No.S				16.S		y.	<u>ي</u> ؟ 1	Backwa	ard revolution			12º ?
2			S. F.									3
		. Sons		Bit 6	Bit 5	Command pulse form	Motor for revolution c		Motor backw revolution com		CN1	<u> </u>
	5	and and a second		0	0	Forward revolution pulse train + back-		ommanu		- 38		5
						ward revolution pulse train			L"		28, 29 26, 27	
?				01	0	Code + pulse train			382		Whe revol	n the ution
St			Se Se			18 A.				Л.   [;]	28, 29 direc at "0"	set
		25	0			JION'	"H"	à	<u>۲</u> "L"	2	26, 27	
		N. GD		0	1	90° phase difference two-phase pulse		<u></u>		~ ];	28, 29	
	4	2			3	train.		<u> </u>			26, 27	44
2				1	1		Pi	ohibited				~
No.X				10 × 1			<u></u>					3. C. X.
<b>_</b>		and s 2 Only	ucce "0" a	eding	g pag " are	it1, and bit0, r es. allowed to be in or the code	e set for b	it3 and	bit2 of the	90° ph	ase diffe	erence
	1	Bit4 c	of PN	10D a	and b	it2 of Func5 f	unction th	ne same	Э.			

Mode	Page	Abbre- viation		N	ame a	nd des	criptio	n	×.	Standard value	Unit	Setting range	Remarks
2	0	PMOD	input.	of bit7 wing c	specif lescrib	y settir es the	ig of th digital	ne dig filter	setting	r used for the corresponding			
			PMOD	7 6	5	4	3 2	1	0				
19. 19. 19.			marka P	T			Ster?			When b	it7 = 0		
		~35	-		~	6 ³⁵⁰	bit	bit	~	Digital filter for	r comma	nd pulse inp	out
		10			19		1	0	(S	Minim	um pulse	width	
	3	12		5	42 ⁵⁴		0	0	13 ²³		0.8 μs	1 ⁻¹	i.
							0	1			0.2 μs		
0			à				1	0		é.	0.4 μs		à
Nº.			Charles.			5	s) S	1		No.	1.6 μs	. S.	No.
		~3 ⁵			~	655	bit	bit	~	When b		nd nuloo inr	t
		10			10	Ĺ	1	0	. A.C.	Digital filter for Minim	um pulse	1.2.2	Jui
	3	2		5	2254		0	0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	IVIIIIIII	3.2 μs	width	j.
							0	1	_		0.8 μs		
2			- à				12	0		Ś.	1.6 μs		Ś
Sto.			Nº.			1	1	1		de la	6.4 μs		Ster.
	. A	and South	SEC		enni S	bite 0	bit5 0		nmand pu kward pu	ulse form Ise train + Forv	vard puls	e	
						Sw	itching	of dig	ital filter				
2			Ì			0	High	spee	d	2 A			
Y.			Carthon			1	Low	speed	d (1/4)	Call Pro-			
	42	and the sub	~										
<b>^</b>		The min 'L" pulse		se wi	dth va	lues s	hown	at b	it 0/1 o	f the digital f	filter are	e for both	"H" and
		ANI COOL			AND S	300			and Star	300	. A	ALCORD.	
	124												
6			6										

Node	Page	Abbre- viation	Name and	description		Standard value	Unit	Setting range	Remarks
2	0	PMOD	Position command pulse	train form		N.9.9			14°S
3			2 Code + Pulse train						
		25	PMOD 7 6 5 4		1				
		N.S.	PMOD 7 6 5 4	3 2	1 0				
	S.	62.00	33		- AAAAA				
						Wher	n bit7 = 0	)	
2			2	bit	bit	Digital filter			input
360			Store Internet	8	0			lse width	d
		8	SEC. X	0	0		0.8 µ	is 🦿	
		1000	100 ⁰⁰	0	1	6 ³⁵	0.2 µ		
		A1.0	4 ¹ .0	1	0		0.4 µ		
	2	2	3	1	1		1.6 µ	ιS	3
						Wher	n bit7 = 1		
120			10 ^{.2}	bit	bit	Digital filter			input
d,			AN AN	1	0			lse width	8
		.3	5	) 0	0	30	3.2 µ		
		.800	. 3000	0	1	0	<b>0.8</b> µ	IS N	
		Sal.	and the second sec	1	0		1.6 µ		
6			8		1 1	6	6.4 μ		6
dre.				bit6 bit5		pulse form			
			SCION .	1 0	Code + Pu	lse train		(i	
		500	- Call	Switching	of digital filte	ər			
		N.O.	1. D	0 High	speed				
	3	5	14 ²⁴		speed (1/4)		35		
					,				
128									
d			3. Ch						
			5						
			- Bar						
		Sah.	State State						
	-5	а. -	24						
	-	The min	imum pulse width value	es shown a	t bit 0/1 o	f the digital f	filter ar	e for both	"H" and "L'
		oulses.	No.X			.N2.9			
2			10	20.		. 18°			0
		3	5° _37						
		300	. 8°						
		10.1	141						
	22	55	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -						

Mode	Page	Abbre- viation		Name and o	lescri	otion	13	Standard value	Unit	Setting range	Remarks
2	0	PMOD	Position co	mmand pulse	train f	orm		Nº 9			343.9
5			③ 90° pha	se difference f	two-pł	nase	pulse train				
		. doord	PMOD 7	6 5 4	3	2	1 0				
	A	and in the		12 APR			and the	When bit	7 = 0		
					bit	bit	Digital filter	for comman		nput	
342.9			140.Q		1	0	Minimum pulse width	Minimum between A	edge dis	stance	
5			Carl Carl		0	0	0.8 μS		250 nS		
			p,	3	0	1	0.5 μS 🔬	2	250 nS	250	
		8		80	1	0	0.5 μS	2	250 nS	8	
	0	Lan.		14	1	1	1.6 μS	5	00 nS	¢	
	2			N.			24	\A/bar bit	7 - 1		
à			2		bit	bit	Digital filtor	When bit		nnut	
de.			Sto.		1	סונ 0	Minimum	Minimum		-	
2			SC10		S.C.	v	pulse width	between A			
		~35		~3 ⁵⁶	0	0	3.2 μS		I.0 μS	~35	
		10		N.C.	0	1	0.8 nS		250 nS	10	
	de.	155		S. A.	1	0	1.6 μS	5	600 nS	6	
	-4			-	1	1	6.4 μS	2	2.0 μS		
0			6			6		6			
Nº.			No.		bit6	bit5	Command pu	ulse form			
51			S. C. C.		0	1	90° phase dit		phase p	ulse	
		10 ⁰¹⁵					of digital filter	<u> </u>		AND AND	
		A1.53			0	-	n speed		3		
	3	24		22	1	-	speed (1/4)		- 222		
						LOW	speeu (1/4)				
. 28			2.8								
Set.			and the								
-		8	5								
		1000									
		an ion									
	3	C*	1								

Node	Page	Abbre- viation		Name and	l description			Standard value	Unit	Setting range	Remarks
2	1	Func0	Amplifier fu	nction selec	t0 🔊			0000-		0, 1	13.8
3			This para	ameter selec	ts whether e	xternal		0000		~	S.S.
		3	signals a	re made effe	ective or are	forcibly	3	5		350	( 🛕 3)
		300			It also sele		300			300	( <b>▲</b> 4)
		an' i			, the encode oder and fully						(' 🛋 )
	12		•		Itiplication fa		he				2
0			encoder.		6		-	6			6
K.			- 20				1	Nº.		•	Nº.
			Func0 7	6 5 4	3 2	1 0				. 8	0
		- 20 ⁵		20	×		. All	с. н		Salle -	
		.N.O		NOT			N masl			201	
	12	2		al al a		0		mally effectiv			34
						1		hally forced (	JN		
.08			33.2		300		•	n mask			. B.S.
S			art		ST L	0		mally effectiv		-	S.S.
		3	55		5°	1		hally forced (	JN		
		.800		. 80			mask			100	
		and it		and the second		0		mally effectiv		92.	2
	2			2		1		hally forced (	JN 4		4
0			6		6		OT ma	~			6
Ko.			No."		A. C. N.	0		mally effectiv			Nº.
			aller's			1		hally forced (	JN		
		100 C		S.			OT ma			- ALLE	
		A1.0		NOT L		0		mally effectiv		<u></u>	
	3	C.		Ser.		1		hally forced (	JN		44
							-	logic select			
10.2			202			0	b-cor				. C. S.
37			and and			1	a-cor			dan fi ti'	185 A.
		3	5	3				g of fully clos		aer functio	ns 🗚 1
		do				0	02	plication by 4		-39	
	. 0	and it				1		plication by 1	10	<u> </u>	2
	24					Po		loop encode	r select	<b>A</b> 1 <b>A</b> 2	3
0			8		6	0		r encoder			6
			Non			1	Fully	closed enco	der		No.

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
2	2	Func1	<ul><li>Amplifier function select 1</li><li>A desired function can be set from the digital switch.</li></ul>	0000- 0000		0, 1	(▲)
	4	and COL	Func1 7 6 5 4 3 2 1 0	method		1.130°	Starting Starting
ante ?			1 Externa	I setting enabl	t enabled		50×0.0
		NWI GDOUD	0 Selects	revolution cur NIL input PIL input	rent limit	input	Acher
and a star			1 Positive	ve polarity e polarity	~		10. 12. 13.
C.		AND DOUT		method / pulse interva / pulse edge	I	100 Buton	5 
120	4		excitation O 0 Clear d	eviation	th motor		10: 20:
10 10		6000	Forced zero	ar deviation adjustment of is switched to d		nd	C.
	14	and .	1 Disable		A. C.		and
60140.Q	·		0 Disable 1 Enable Velocity add	d			5 4 A.
		Real Colors	0 Disable 1 Enable	ed		1.000 Martin	
and a			* Bit7 is effective in the position control mode. Bit6 is effective in the position and velocity control modes.	and a start of the	4		KARA R
			4 is set at "1", the position deviation is not clean ngly, be sure to clear the deviation before cle			ice of an	alarm.
	, A		<ul> <li>* For details of bits 2 to 0, refer to the following page.</li> </ul>	342.9			n di.

Mode	Page	Abbre- viation	Na	me and description	14.	Standard value	Unit	Setting range	Remarks
2	2	Func1	Bits 2 to 0 are limit. The following	n select 1 ifferent current limit appr e parameters relevant to describes their setting a g current limit method av	current	Snasha?		Gallond	4 ^{2,0} '
20.			He.g.	He.d		12.Q			Func1
2	4	and to sut	When external analog input is used	Current for forward and backward revolution can t separately set.	e e e e e e e e e e e e e e e e e e e	put positive v sitive polarity	e voltage /oltage to	to NIL input. PIL input	****101
34°.			When internal	Current for forward and ba • Input external analog to current limit is used	ackward re PIL input	evolution is s		same level. nt limit value	******11
	4	ent Spart	5 di	AND CONTRACTOR AND CONTRACTOR OF	www.cboos	(IILM).	A.	Leporto.	
140.00			matthand			500540.0		, 65 al	
	4	ent Goul	4. 14					1923 M	
24°.2		3	mastant			STRABAR P		1050	
	4	antibor.	4					(BOOL	
1		Whichev are turne		ou select, the current li	mit is er	nabled onl	y after t	the CN1-3	1 pins
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		20				20	

2 3	Func2	Amplifier function select 2A desired monitor output method			value	Unit	range		
	- 3° -	regenerative resister OL time car selected.		10215	0010- 0000		0, 1	80 ⁴⁰ (▲1) ▲3)
4	Pure 1	Func2 7 6 5 4 3 2	1 Mor		put polarity				
2		2	0		output at for	ward rev	olution		
St.			1	Negative	e output at fo	orward			
		50000	Mor	nitor 2 out	put polarity		10		
	1300	100 A	0		output at for	ward rev	olution		
	and it	and a	1	Negative	e output at fo	orward	14 ·		
27	·		Mor	nitor 1 out	put absolute	value			
à			0		e/positive ou				
H2X		ARA KAR	1	•	value outpu	•			
с) -		100 I I I I I I I I I I I I I I I I I I			put absolute		5		
			0	č.	e/positive ou		- 10 M		
	100		1	62 -	e value outpu	-	1997		
S.	63. St.	A State		- CNC	resistor OL		ect A 2	4	
à		6	0	Regener	rative resisto power: 20 V	or allowat	ole	• ·	
34° °	8	snabhar sonabhar	1	Regener	rative resisto power: High	or allowat	ole		
	. 1000	Contraction of the second seco	Spe	ed contro	l error (SE)	detection	C. C. D. C.		
	Jan.	Ser .	0	Enabled		S.	9.2		
23			1	Disabled	ł	10			
8			Alar	m output	method 📐				
NO.X		Werk Werk	0	CODE	No.				
5		anah _mah	1	BIT	C.S.		5		
	3	2°	Alar	m output	logic		- ALLO		
	1 B	1.5 ⁰⁰	0		off at an alar	m -	1901		
2.	22	AL AL	1	24	on at an alar	20	<i>V.</i> -		
	1 If bit	7 is set at "1", an alarm will not be			1 1				

Mode	Page	Abbre- viation		Name and	d descript	ion	24	Standard value	Unit	Setting range	Remarks
2	4	Func3	Amplifier for	unction selec	:t 3 🦽			0000-		0, 1	
201			This par	ameter allow	vs you to	set the	CN1-35	0001		~	
		Š		oins to the de				5		250	(🛕 3)
		do.		llows you to g the control			signal for			Ser -	
	3	in a	Switchin	g the control	mode of	yanı.	And a state of the			t I	
			Func3	7 6 5	4 3	2 1	0				
			22		?	<u>§</u>					
E.S.			S.S.		CN1-3	5 pin inp	out select (5,7)			
		3	5		bit 1	bit 0	Positi	on N	Velocity/T	orque	
		. 3000		36	0	0	PCO	N	PCO	N	
	.0	and is		and in the	0	1	ECL	R	ECLF	२	
	24			1	1	0	PMU	IL	VCS2 (A 3)	
3			8		1	1	INH	1 6	ZCMI	D	
de.			No.		CN1-36	3 pin inp	out select (5,7)			
2			5 CO		bit 3	bit 2	Positi	10	Velocity/T	orque	
		1000		308	0	0	PCO		PCO		
		A.C.		19	0	1	ECL	R	ECLF	2	
	3	5		32	1	0	PMU	IL	VCS1 (3)	
2			~		1	1	INH	I N	ZCMI	D	
NO.X			Ma.X		Externa	al overh	eating detec	tion input s	elect (🛦	6)	
50			C.C.		bit 5	bit 4		S.C.		S.	
		~35	J		0	0	Disables e	xternal ove	rheating	235	
		N.C.		19	1	0	detection			1. ¹ 07	
	3	2		350			Enables ex	ternal over	heating		
					0	1	detection	NI4 05 min			
Nº?			12.8		NP	5	Enables Cl	1.0	hooting		
201			See.		×1	1	Enables ex detection	(ternal over	neating	à	
		and and a start of the start of	2		59		Enables Cl	N1-36 pin		_3 ⁵⁰	
		"ido.		190							
	3	55		355		Ir	put signal s	elect for sw	vitching of	gain (🛕 2	, 4)
						C	Enables	s CN1-36 pi	n		
. 22			3.8			्रे 1	Enables	s CN1-35 pi	n		
2.St			Ser.			Ir	put signal s	elect for sw	itching co	ontrol mode	(🛕 1, 4)
		.3	20.		305	C		s CN1-36 pi		.30	
		do.		.80		1	Enables	s CN1-35 pi	n	300	
	2.	and i					Salah.			<u>ð</u> .	
	2						S.		20		

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
2	4	Func3	No.	-3K2.9			340.9
		8	Precautions on setting Func3.	800°°		25	
Λ	. [·	1 Itise	enabled when the switching mode is	selected for the cor	ntrol m	ode.	
			signal select is enabled when the ga	- C-1"			
	1		ng bits 3, 2, 1 and 0 at "1010" in the	•			
ò			city command. Setting bits 3 and 2 or	n, or 1 and 0 alone	does n	ot make f	this
Ye.			nand valid.	d input signal color	tion wh	on goin (witching io
	2		on switching of the control mode and on:	u input signal selec	CION WI	ien gain :	switching is
			n the control mode or gain switching	input signal is assi	aned to	the con	nector CN1
			n, input signal selection with Fuc3 bi		-		
	27	overł	neating detection or internal velocity	setting function.		•	
8		Whe	n the control mode or gain switching	input signal is assi	gned to	the coni	nector CN1
X2.			n, input signal selection with Fuc3 bi		bled ex	cept for	the external
			neating detection or internal velocity				»°
			n the control mode and gain switchin	g are assigned to t	he san	ie pin, bo	th switching
			at the same time. n the internal velocity control is valid,	(Func3 bit2 to 0 at	+ "1010	") the int	ornal
	1		city setting selected in 35 and 36 pins	-7. ··			
2			gain switching.				~
NON		At the	e same time, control mode and gain	switching are made	e valid	(this, how	vever, is only
52		effec	tive when the velocity control mode i	ncluding the contro	ol mode	switchin	g mode is
		selec		all Control of the second		~ auto	
			n the external overheating detection				-
	1	same	ion is not enabled even if the control	mode or gain switt	ching tu	Inction is	set to the
			n the external overheating detection	is enabled enablin	a the ir	nternal ve	locity setting
N2º.			ion enables both functions at the sar		-		
5		deteo	ction input is turned off, however, ala	rm "E" is issued.			20.
	5		n the same signal is selected for both	n the CN1-35 and 3	36 pins	pin 36 ta	akes
		1.1	edence over pin 35.	and the second sec			
	6	-	ernal overheating detection input func	24 -	-54	a.	
			ng bit4 to 1 enables the external ove normal state refers to when the enab	-			mal
12.9			heating alarm is issued when the enable	·			
20			n another signal is assigned to the sa			nal overh	eating input,
			ions other than the internal velocity s				U
	7		se of torque control, inputting any se	lected function exc	ept for	"ECLR" a	at bit3, 2, 1
		or 0 y	will be invalid.				

5 Func4 Amplifier function select 4 0000- 0, 1 • CN1-39 and 40 pins may be set for desired output terminals. 0001 001 0 Func4 7 6 5 4 3 2 1 0 CN1-39 pin output select CN1-39 pin output select Dit 1 bit 0 CN1-39 pin output select Dit 1 bit 0 0 0 1 LTG: Low speed 0 1 0 1 CM1-40 pin output select CN1-40 pin output select D 1 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 ISPE: Speed matching 1 0 0 1 LTG: Low speed 0 0 1 ISPE: Speed matching 1 0 0 1 ISPE: Speed matching 1 0 1 ISPE: Speed matching 1 0 1 ISPE: Speed matching 1 0 1 ISPE: Speed	Node	Page	Abbre- viation			Nam	ne ai	nd desc	cription	4		Standard value	Unit	Setting range	Remarks
Fund 7 6 5 4 3 2 1 0 CN1-39 pin output select bit 2 bit 1 bit 0 0 0 1 LIM: Current limit status 0 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 1 0 1 1 SPE: Speed matching 1 0 1 NP: Positioning complete 1 0 1 NP: Positioning complete 1 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status 0 0 1 LIM: Current limit status <td< td=""><td>2</td><td>5</td><td>Func4</td><td>Amplifie</td><td>r fun</td><td>ction</td><td>sele</td><td>ect 4</td><td>202</td><td></td><td></td><td>0000-</td><td></td><td>0, 1</td><td></td></td<>	2	5	Func4	Amplifie	r fun	ction	sele	ect 4	202			0000-		0, 1	
Image: CN1-39 pin output select bit 2 bit 1 bit 0 0 0 1 LTG: Low speed 0 1 DTG: High speed 0 0 1 1 SPE: Speed matching 1 0 1 NP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select ILIM: Current limit status 0 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CND: Command accept permit CN1-39 pin output logic select 0 O ON at status output 1 OFF at status output 1 OFF at status output	<i>6</i> 1		~35					s may t	be set fo	or des	sired	0001		~8 ^{tor}	80°
Image: CN1-39 pin output select bit 2 bit 1 bit 0 0 0 1 LTG: Low speed 0 1 DTG: High speed 0 0 1 1 SPE: Speed matching 1 0 1 NP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select ILIM: Current limit status 0 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CND: Command accept permit CN1-39 pin output logic select 0 O ON at status output 1 OFF at status output 1 OFF at status output			N.C.		-		jer jer				<u>_</u>	1 1		4.0×	
bit 2 bit 1 bit 0 0 0 0 1 LIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 1 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CMD: compand accept permit CN1-39 pin output logic select 0 0 INP: Positioning complete 1 0 1 CMD: command accept permit <		2	C.2	Func4		6	5	4	3 2	13	0				
bit 2 bit 1 bit 0 0 0 0 1 LIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 1 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CMD: compand accept permit CN1-39 pin output logic select 0 0 INP: Positioning complete 1 0 1 CMD: command accept permit <	2			2					~						
0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 1 LTG: Low speed 0 0 1 LTG: Low speed 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CN1-39 pin output logic select 0 0 1 CN1-39 pin output logic select 0 ON at status output 1 OFF at status output 0 ON at status output 0 ON at status output	Nº X			Nº.				CN1-3	9 pin ou	tput se	lect				
0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 CN1-39 pin output logic select 0 0 INP: Positioning complete 1 0 1 CN1-39 pin output logic select 0 ON at status output 1 OFF at status output 0 ON at status output	5			Carl and				bit 2	bit 1	bit C)	S. S. S.		6	
0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 1 LTG: Low speed 0 1 1 SPE: Speed matching 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output 1 OFF at status output 1 O ON at status output			~35				1	0	0	0	ILIM:	Current limit	t status	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select			N.C.			3	1.9	0	0	1	LTG:	Low speed		100	
1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 SPE: Speed matching 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1		1	12			32	1 L	0	1	0	HTG:	High speed	450		
1 0 1 CMD: Command accept permit CN1-40 pin output select bit 5 bit 4 bit 3 0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 1 CMD: Command accept permit CN1-40 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output 1 OFF at status output 0 ON at status output								0	1	1	SPE:	Speed mate	hing		
CN1-40 pin output select bit 5 bit 4 bit 3 0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output 1 OFF at status output 0 ON at status output	.09							1	0	0	INP: F	Positioning c	complete		
bit 5 bit 4 bit 3 0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output	S			all				1.8	0	1	CMD:	Command	accept pe	ermit	
0 0 0 ILIM: Current limit status 0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 0 ON at status output			3	5				CN1-4	0 pin ou	tput se	lect				
0 0 1 LTG: Low speed 0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 0 ON at status output			300				Ś	bit 5	bit 4	bit 3	80			8	
0 1 0 HTG: High speed 0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output		5	and a start			38	2	0	0	0	ILIM:	Current limit	t status	5×.	
0 1 1 SPE: Speed matching 1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output		-2				-5-		0	0	1	LTG:	Low speed			
1 0 0 INP: Positioning complete 1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output	ò			à	>			0	<u>_</u>	0	HTG:	High speed			
1 0 1 CMD: Command accept permit CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output	Nº.			de				0	1	1	SPE:	Speed matc	hing		
CN1-39 pin output logic select 0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output				ST'iC				_1 ^{°°}	0	0	INP: F	Positioning c	complete	- S	
0 ON at status output 1 OFF at status output CN1-40 pin output logic select 0 ON at status output			1000					1	0	1	CMD:	Command	accept pe	ermit	
1 OFF at status output CN1-40 pin output logic select 0 ON at status output			SNI CO			2				CN1	-39 pin o	utput logic s	elect	N. S.	
CN1-40 pin output logic select 0 ON at status output		2				220				0	ON at s	tatus output	200		
0 ON at status output	2			à											
	Nº.X			No.						CN1	-40 pin o	utput logic s	elect		
1 OFF at status output	5			S. S.				- S		0		<u></u>			
ARANG ARANA CO ARANA			~3 ³							1	OFF at	status outpu	it	and the	
			W.Ch.												
		3	1200												3
	5	4	an chai	SUL OL		44	1.10 ⁰	automat	2	+ $+$		<u></u>		A.I.OBOLIO	\$~~~
			3	<u>6</u> ``								5		a JION	
			100°	* For d	etails	s of C	MD	·						(B)	
* For details of CMD:		4	P.M.		nanc	acc	ept p	permit,	refer to	6.1					4

Mode	Page	Abbre- viation	Name and description	<i>S</i> .	Standard value	Unit	Setting range	Remarks
2	6	Func5	Amplifier function select 5Selects the encoder output format or t command input polarity.	he	0000- 0000		0, 1	(▲ 2) (▲ 3)
	¹ ¹	Aral Boo	Func5 7 6 5 4 3 2 1	0 orque con	nmand polarit	y reversi	ing bit	
640.0		and the second sec		Backv	ard revolution vard revolution mmand polar	n at posit	ive input	
2	4	AN COL		Backv sition con	ard revolution ward revolution mmand polarit ard revolution	n at posit y reversi	ive input	4)
and a second		Bout		Backv se gener 2,048	vard revolution ation output s P/R(8,192-di	n at posit elect (ive input	
10. .0,	4	and a second		vided out	P/R(32,768-d put signal sw encoder closed encod	itching (1)	
5	2	ANNI COOL	Mo 0 1	tor encod	ler A-/B-phas ase signal not ase signal rev	e signal reverse	0.5	se switching
24. A.	4		Er 0 1	ncoder C- H acti L acti		logic se	lect	
		NAL GOOD	0	Start-s (9600	al output meth stop synchron) bps)	ization	ALGDALTO.	
	1	Even if	f you choose the fully closed encoder	(1 Mb	hester coding ps or 2 Mbps)		livided
A	2	output suppor	remains the same. Fully closed encoder ts the fully closed design. changing the setting of bits 7, 6, 5, 4	der can	be used o	nly on	a servo s	system that
2 Con	3 4	Forwar shaft) s Bit3 is ABS-E	enabled when the ABS-R II absolute .S1 is used.	sensoi	r or Wiring-	saved	absolute	sensor
3	5	Bit2 of	Imber of incremental pulses to be out Func5 and bit4 of PMOD function the h is rotated forward at positive input.					

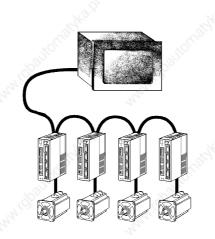
7-54

Mode	Page	Abbre- viation			Nan	ne an	d des	script	ion	22	6°	Standard value	Unit	Setting range	Remarks
2	7	Func6	Amplifier • This p conter execu	oarar nts o	nete f pai	r is us ramet	sed fo ers o	r per	-	-	e	0000- 0000		0, 1	50 March
	4	n. N	Func6	7	6	5	4	3	2		0				
80Ka.9	4	NMI GDOU	Smath A.P		hn,	4. 10 10	3 ¹⁰	530		0 1	Set Not set I automa	tic switching	function	(▲1)	
at 12.0		10215	snatyka.p				,500 C	53 C	0	Co	mpare to	ed setting (▲ 3) o command v	value afte		command LPF
60 40.00	4	and for	adhan		the second	34 ¹ .0		5340	12	0 1 Mul	Alarm o Alarm o tiple-rota	larm setting enabled disabled tional proces l absolute se			and a strange
	4	entito aut	5		11	41.00°	Jtor .			0 1 Tes 0	Not usi		ational (1	100	
			analdka.P				100	Selfer's	8,			ameter rewrit	e		
5340.Q	41	Art. GOOL	return * If bit C	opera s bit) is s	ation s 7, et at	n, bits 6 and t "1", a	4 to alarm	"0". i (me	mory	/ erro		again. Tu	-		rol power also ecessary
A.	2	enabled Proporti Mode1. Proporti When u invalid b required wiring-s	by settir onal-plus onal con sing wirir by setting	ng bi s-inti trol ng-s bits ion, solut	t1 to egra whe ave 5 to 5 bat e se	o "1". al cor en spe d abs "1" (1 tery c ensor	W eed i solute rota conn	hen wher s hig e ser ationa ectio S-E.S	auto n at her nsor al m on is S1.	thai AB ode not	tic switc ower than n set sp S-E.S1). Wh necess	ch function an set spe beed in LT , multiple- ien multipl sary. Set	n is ena eed in L G on p rotatior e-rotati	ibled, con TG on pa age5 of l nal data v onal data	Vode1. vill be

Mode	Page	Abbre- viation	Name and description	Standard value	Unit	Setting range	Remarks
3	0	Кр	Position loop gainProportional gain of the position controller.	45 (30)	rad/S	1 to 1000	(🛦 1)
	1	Кvр	 Velocity loop proportional gain Proportional gain of the velocity controller (proportional integral controller). Setting unit represents the value when the load inertia is 0. 	100 (70)	Hz	10 to 3000	(🛦 2)
	2	Tvi	Velocity loop integral time constant • Integral time constant of the velocity controller (proportional integral controller). Velocity deviation Kvp(1+ $\int \frac{1}{Tvi} dt$) Velocity loop output	15 (20)	mSec	1 to 1000	(A 3) (A 4)
	3	Vzero	Velocity command zero adjustment (offset adjustment) • Offset of the velocity command is adjusted.	\$\$\$\$		±16383	(🛦 5)
	4	Tzero	Torque command zero adjustment (offset adjustment) • Offset of the torque command is adjusted.	\$\$\$\$	134 14	±16383	(🛦 5)
	5	Tn_Lv	 Real time automatic tuning level Setting real time automatic tuning level. For higher set value, estimated proper gain become higher. 	0		±5	36 36
		2 It can 3 It can 4 If you 5 The You	n also be specified from Mode 0 Page 0. n also be specified from Mode 0 Page 2. n also be set from Mode 0 Page 3. u specify 1000 msec, proportional control is s value varies according to the adjustment dom can change the setting by executing offset ac es 2 and 3).	e at shipn		est mode	entre contraction of the second secon
		the W	hanging the value, store your setting in the no R , Mode , A or key. g off the control power without this key operation				5342.P
		ANI CHAN			3	S.	
	he 1		0 keys increase and decrease a value, resp a value, press either the WR , MODE ,	pectively.	M ke	y to store	o it o

Node	Page	Abbre- viation	Name a	and description	Standard value	Setting range	Remarks
4	0	M1		t 1 nonitor 1 output (CN1-15 ed among the following 19	Vm0.5 mV/min ⁻¹	19 types	\$
		and in	Indication	Contents			3
	27		Im 2 V/IR	Current monitor	2 V/IR peak		27.
8			lc 2 V/IR	Current command	2 V/IR peak		
No.			Vm 2 mV/min⁻¹	Velocity monitor	2 mV/min⁻¹	Nº	<
0			Vm 1 mV/min⁻¹	Velocity monitor	1 mV/min ⁻¹	Clar,	
		- 3 ⁵	Vm 3 mV/min⁻¹	Velocity monitor	3 mV/min⁻¹	JEO.	
		S.	Vc 2 mV/min ⁻¹	Velocity command	2 mV/min ⁻¹	S.	
		le an	Vc 1 mV/min ⁻¹	Velocity command	1 mV/min ⁻¹		
			Vc 3 mV/min ⁻¹	Velocity command	3 mV/min ⁻¹		
- d			Per 50 mV/P	Position deviation	50 mV/1 pulse		2
Nº.			Per 20 mV/P	Position deviation	20 mV/1 pulse	all'e	
			Per 10 mV/P	Position deviation	10 mV/1 pulse	* offic	
		100 ⁰	Rm 0.3 V/Full	Regenerative load factor	0.3 V/Full	10315	
		A1.07	Im 0.5 V/IR	Current monitor	0.5 V/IR peak	(⁰)	
	3	22	Ic 0.5 V/IR	Current command	0.5 V/IR peak		35
			Vm 0.5 mV/min ⁻¹	Velocity monitor	0.5 mV/min ⁻¹		
10.9			Vc 0.5 mV/min ⁻¹	Velocity command	0.5 mV/min ⁻¹	.0	Q.
3			Per 5 mV/P	Position deviation	5 mV/1 pulse	all	
		.3	Im 1V/IR	Current monitor	1V/IR peak	30	
		.800	Ic 1V/IR	Current command	1V/IR peak	80°	
10:	42	and a second sec	Where, IR : Rated armatu	anne anne	and point with	C. TRANKS	and a
		3	resistor.		\$ ⁰	JION.	
		S.	, č	be Bee		di ^o	
	1	M2	Monitor output selec	t 2	Ic0.5 V/IR	19 types	54
20,00	1			put (CN1-16 pin) can be 19 types above (M1).	atter of	. H.	17
		This sig accelera	nal is output only at ation/deceleration ti	otes the velocity loop input SON. It is affected by to me and the velocity commode is selected, the posi	he setting specifie nand low pass filte	er.	ocity
	I –		<u> </u>	~	N		

Mode	Page	Abbre- viation		Name	e and description	Sta	ndard value	Setting range	Remarks
4	2	Func	• Se		ect led/ disabled of gain switch tomatic tuning functions.	sail mari	Normal	4 choices	5,
		34.10°		Indication	Contents	5		S	3
	4	t.		Normal	Gain switching disabled Real time automatic tunin	a disable			44
A20.9			and the	Gain_Sel.	Gain switching enabled Real time automatic tunin		£2	Serve and	Q
		doald'	50	Gain_Tun.	Gain switching disabled Real time automatic tuning	g enablec	1	dpauton.	
	4	and!!		Gsel&Gtun	Gain switching enabled Real time automatic tunin	g enablec	1		444
340.9	3	TYPE	• Yo		a desired control mode fro	m star	\$\$\$\$	6 choices	≥ (▲)
		ALGDON	po	Indication	Contents	8 ²⁰¹³		(dpaul	
	3	E.		Position	Position control type		444		44
				Velocity	Velocity control type				
?				Torque	Torque control type		39		2
St.			S.S.	Velo \leftrightarrow Tor	q Velocity-to-torque switc	h type		3 Ch	
			200	Posi ↔ Tore	q Position-to-torque switc	h type		ton's	
		- Bar		Posi ↔ Velo	Position-to-velocity swit	ch type		Son Son	
140.9	4	the second	CO	ntrol mode fro	rpe, you can specify a desir m CN1-36 pin or 35 pin.	red		K	and A
0.1	5	ANI-GOOL	0.0	nen nc3, bit 7 is	0 : 36 pin is enabled. 1 : 35 pin is enabled.	Soul Strat		, chattomac,	
34a.Q	4		\$\$\$\$		ard value varies according cations employed at the tim nt.			and the second sec	1 C
		L Changin	g Fun	c allows swi	tching the servo gain du	ring ope	ration.	chauterter	
		baramet I Turn 2 Chan	ers): off the ge is	e control pov effective onl	nges to be conducted on ver before change. y after Func6 bit7 is set (Func6 bit7 to "1") is igno	at "1" fro	m Screen M	lode 2.	4 ()
			anov "		LUDG6 bit / to "1"\ 10 100				


Mode	Page	Abbre- viation	Na	me and description	Standard value	Setting range	Remarks
4	4	ENKD	Encoder type Selects the ty 	pe of encoder used.	\$\$\$\$	4 types	5.
		1005	Indication	Contents		10000	
	3	AND CO.	INC.E	Incremental encoder with reduced wiring	ANN'S		ACC.
			ABS.E(1M)	Absolute encoder (1 Mbps)			
			ABS.E(2M)	Absolute encoder (2 Mbps)	332		2
3			ABS.E S1.2	Wiring-saved absolute sensor	C.S.S.	Carlot	
	4	and GDau's		ndard value varies according to cifications employed at the time nent.	14.44 ⁴	ligosuro.	ANNO STAND
2	5	ABSF	ABS sensor form	nat	\$\$\$\$	11 formats	
N. 9.2			 A desired form following. 	nat can be selected from the	CONVO.P.	Card to	5.
0	ł.	and the sub	6 9	2048FMT 4096FMT 8192FMT 16384FMT 32768FMT 65536FMT	9. 2.	diganto.	Al Al Al
Her.		and to David		131072FMT 262144FMT 524288FMT 1048576FMT 2097152FMT	STREEN CO.	doutonathe	
340.Q	6	MOT.	N.O.	otor used (in each series). otor types vary with the amplifier	\$\$\$\$	A motor from the P1, P2, P3, P5, P6 and P8 series.	
	7	MOKD	•	tion t except for rotary motor.	Rotary	Rotary only	hn.
		oaramet 1 Turn 2 Char	ers): off the control p nge is effective o	nanges to be conducted on Pa power before change. only after Func6 bit7 is set at " n (Func6 bit7 to "1") is ignored	1" from Screen M	lode 2.	alid and,
			r type (ENKD) o re type.	n page 4 may not be able to b	e displayed or se	et according t	0
			e ijpeli	28			8

	Page	Abbre- viation	Name and description	Standard value	Setting range	Remarks
4	8	PSKD	Power supply type	\$\$\$\$	2 types	PY2Axxx
		8	 Selects the type of power supply for the servo amplifier's main power supply circuit. 	S.C. S.C.	1 type	PY2Exxx
		WIGDON	 Selectable power supplies differ depending on the amplifier series. 		1000	
	4	2	PY2A series (200 VAC input type) 200 VAC, 3ph (200 VAC, 3-phase)			44
			200 VAC, 1ph (200 VAC, single-phase)	N2.9	NO	Q.
		. Leboard	PY2E series (100 VAC input type) Only 100 VAC, 1ph (100 VAC, single-phase) can be used, and changing to another power supply is impossible.	50.855	(dpaulomats	
	- A		 In the case of special motors (motor code: FF), the type of power supply cannot be selected. Motor codes are indicated on the initial screen. (Refer to 7.1.3 Basic Operating Procedure.) 	and and a start		ardi S
	9	RGKD	Regenerative resistor type	\$\$\$\$	2 types	
		3	Selecting regenerative resistor to use.	55	JION .	
		ANI GOO	 Selectable Motor differs according to Servo Amplifier capacity. 	4	1.80°	
	3	6	None/ Ext.R : Regenerative resistor is not connected, or external regenerative resistor.	10 10		4 ²
			Built-in R : Built-in regenerative resistor	Stor.	Nº	s
		CALIGORIA	Refer to 9.5 Built-in Regenerative resistor (Built-in R) for detail of parameter setting on regenerative resistor.	550	idoautorne	
		egenera With this protectio connecte of built-ir	ing regenerative resistor built-in the Servo An ative resistor type (RGKD) on page 9 to "built-in parameter setting, enable/ disable of built-in n detection processor is judged. In case tha ed or external regenerative resistor (None/ Ext n regenerative resistor will not be executed. may be burn or smoke occurs.	in regenerative resi regenerative resi t "regenerative re t.R)" is selected,	esistor (built- stor overhea esistor is not overheat det	t ection
<u></u>			\$\$\$\$: The standard value varies according to			
<u>}</u>			\$\$\$\$: The standard value varies according to the specifications employed at the time of shipping.	Casho.R	A. M.	2
		1 Turn 2 Chai 3 If the	the specifications employed at the time	'1" from Screen N	Mode 2.	S. S.
	4	 Turn Chai If the and, 	the specifications employed at the time of shipping. following for changes to be conducted on Pag off the control power before change. nge is effective only after Func6 bit7 is set at ' e above operation (Func6 bit7 to "1") is ignore	'1" from Screen N d, the parameter	Mode 2. change is in	valid

Mode	Page	Abbre- viation	Name and description	Standard value	Setting range	Remark s	Mode
8	0	Kp2	Position loop gain 2Proportional gain of the position controller.Enabled during gain switching.	45 (30)	rad/S	1 to 1000	Position control
10. 20.	1 %	Kvp2	 Velocity loop proportional gain 2 Proportional gain of the velocity controller (proportional integral controller). Setting unit represents the value when the load inertial is 0. Enabled during gain switching. 	100 (70)	Hz	10 to 3000	Position/ Velocity contro
10. 10.	2	Tvi2	 Velocity loop integral time constant 2 Integral time constant of the velocity controller (proportional integral controller). Velocity Velocity Velocity loop output Kvp(1+ ∫ 1 / Tvi dt) loop output Enabled during gain switching. 	15 (20)	mSec	1 to 1000	Position/ Velocity contro (🋦)
14. 19. 19.	3	Tn_F	 User setting value of current command when automatic notch filter tuning: User setting value of current command when executing automatic notch filter tuning at test mode. Selecting Ic=Ist on Tune IBEF setting screen enables automatic notch tuning execution at current command of user setting value (Tn_F). 	100	%	30 to (IP/IR) × 100	101 101 101
19. 19. 19.	4	O_JL	 Observer • load inertia ratio Parameter to estimate load torque used for real time automatic tuning processor. Setting the value of "load inertia / motor inertia × 100". Refer to chapter 11 for detail. 	100	%	0 to 3000	50 Hard
			nsec is specified, the proportional control is tune parentheses apply to motors not belonging t		or P5 se	eries.	and a second

MAINTENANCE

8.1	Troubleshooting (Alarm)	
8.2	Troubleshooting (Non-Alarm)	
8.3	Switching of Velocity Loop Proportional	
	Gain Using Rotary Switch	
	8.3.1 Overview	
	8.3.2 Setting Procedure	
8.4	Maintenance	8-24
8.5	Overhaul Parts	

8.1 Troubleshooting

In the following pages, explanations will be provided on the possible causes of each alarm and malfunction, and of the investigative methods and corrective measures. To avoid injury, please ensure that the cause is rectified and safety is ensured before attempting to resume operation in the event of an alarm or malfunction.

It is highly dangerous to proceed with an investigation into the causes of a malfunction without ensuring the safety of the servo amplifier, motors, mechanical devices and the surrounding area. Understanding the conditions prevailing at the time of a malfunction will help in narrowing down the possible causes of the malfunction and shorten the troubleshooting process. Ensure that it is safe to do so before attempting to reenact the malfunction, and pay close attention to the prevailing conditions during the reenactment.

In replacing Servo Amplifier and Servomotor, confirm that there should be no external parameter causing any trouble to prevent dual breakage.

Please consult your Sanyo Denki dealer should the malfunction persist even after following the troubleshooting procedures recommended in this guide.

When alarm status "8", "F" or "P" is displayed, the alarm cannot be reset. Rectify the cause first and turn on the control power in this case.

When an alarm occurs, the 7-segment LED status display at the front panel of the servo amplifier will start blinking, and an alarm outputs from CN1. When an alarm occurs, execute the corrective measures indicated for each alarm display in the following procedure.

- 1. See the consensus status in the "Operating State when Alarm Occurred" and find the circle under the possible cause number.
- 2. Execute the corrective measures in the "Corrective Measures" corresponding to the number above (with circle).
- 3. If the malfunction persists after the process above, execute the corrective measures of number with triangle.
- 4. If the malfunction still persists after No.3 above, consult with us.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0001	OC (MOC)	Power element error (Over current)	Possible	 Error detected in internal power module (IPM) of Amplifier Abnormal value detected in current detection module of Amplifier.
10	6	IFBE	Current detector error	Possible	 Current detector error of Servo Amplifier was detected.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	POSSIBLE CAUSES							
OPERATING STATE	1	2	3	4	5			
When control power supply is turned on	Δ		0		Δ°			
When servo ON is inputted	0	0	0	Δ				
When motor is started or stopped	Δ	$^{\circ}$ Δ	Δ	0				
After operating for a short period	Δ	Δ	Δ	Ser.	0			

10.9	CAUSES	CORRECTIVE MEASURES
1	 U, V, W phases of wiring between amplifier and motor is short-circuited or grounded. UVW phases between amplifier and motor is not connected, or contact failure. 	Check wiring between amplifier and motor. Correct or replace wiring.
2	U, V, W phases of servomotor is short-circuited or grounded.	Replace servomotor.
3	Faulty PC board Faulty power module	Replace amplifier.
4	Incorrect combination of amplifier and motor	Check if servomotor conforms to motor code. Replace with correct motor if necessary.
5	Overheating of power module (IPM)	 Check if cooling fan in amplifier is rotating. Replace amplifier if fan is not operating. Check if temperature of control board (ambient temperature of amplifier) is exceeding 131°F (55°C). If exceeding, review installation and cooling methods of amplifier to ensure temperature stays below 55°C.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
° 2 °	0010	OL	Overload	Possible	• Overload was detected in servo amplifier and motor combination
		1000		100	

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	POSSIBLE CAUSES								
OPERATING STATE	1	2	3	4	5	6	7	8	9
When control power supply is turned on	0	.8					<i>°</i>		
When servo ON is inputted	0	0			2	la la			0
After position command input (when motor is not rotating)		0		~	0	0	0	2	0
After position command input (after operating for a short period)			0	0	0		Δ	0	

Corrective Measures

	CAUSES	CORRECTIVE MEASURES
1	Faulty amplifier control board or power module	Replace servo amplifier.
2	Faulty servomotor sensor circuit	Replace servomotor.
3	Effective torque is exceeding rated torque	 Monitor torque generated by motor using the estimated effective torque (Trms) of MODE5/ page12 of remote operator to check if effective torque is exceeding rated torque. Or, calculate effective torque of motor from the load and operating conditions → If effective torque is higher than rated torque, review operating or load conditions, or replace with larger capacity motor.
4	Incorrect combination of amplifier and motor.	Check if motor code of Mode4/ page6 of remote controller conforms to servomotor. Correct if necessary.
5	Holding brake of servomotor is not released	Check brake wiring for errors. Replace servomotor if brake wiring is found to be correct (and voltage is applied as specified),
6	Incorrect wiring of U, V, W phases between amplifier and motor	Check and correct wiring.
7	One or all of the U, V, W phase wirings between amplifier and motor is disconnected	Check and correct wiring.
8	Mechanical interference	Review operating conditions and limit switch.
9	Encoder pulse does not meet motor	Set to encoder pulse number of motor

<Overload cause #3: Effective torque is exceeding rated torque>

Repeatedly turning the control power OFF→ON may cause the servomotor to burn.

While investigating this cause, please ensure that sufficient time is allowed for cooling down after power OFF (30 minutes or more).

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0011	АОН	Amplifier Overheat	Possible	 Overheat was detected in Amplifier. Overheat was detected in regenerative resistor of Amplifier.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	POSSIBLE CAUSES							
OPERATING STATE	1	2	3	4	5			
When control power supply is turned on	Δ		0 <	Δ				
During operation	Δ	0	0	0				
After emergency stoppage	1				0			

Corrective Measures

	CAUSES	CORRECTIVE MEASURES
1	Faulty internal circuit of Servo Amplifier	Replace amplifier.
2	Regenerative power is too large	 Review operational conditions Use external regenerative resistor
3	Although regenerative power is within specification, ambient temperature of Servo Amplifier is too high.	Review cooling method so that temperature in control board not become over 131°F (55°C).
4	Although regenerative power is within specification, cooling fun in Servo Amplifier stops.	Check if cooling fan in amplifier is rotating. Replace amplifier if fan is not operating.
5	Regenerative power when emergency stoppage was too large.	Replace Amplifier Review load condition

After overheat was detected, thermal SW in regenerative resistor will not recover to normal operation without cooling down period for a while.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0101	ov	Over voltage	Possible	DC voltage of main circuit of amplifier exceeded allowable voltage

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

		POSSIBLE CAUSES								
OPERATING STATE		2	3	4	5	6				
When control power supply is turned on		2000		20	80					
When main circuit power supply is turned on		0		Jul!						
When motor is started or stopped		Δ	0	0	0	0				

	CAUSES	CORRECTIVE MEASURES
1	Faulty amplifier control board	Replace servo amplifier.
2	Power voltage of main circuit is exceeding allowable voltage	Reduce voltage to within allowable range.
3	Load inertia is too high	Reduce load inertia to within allowable range.
4	Subject to not connecting regenerative resistor:Operational pattern requires regenerative resistor.	 Review operational pattern and load inertia, change to operational pattern not requiring regenerative resistor. Install external regenerative resistor
5	Subject to using built-in regenerative resistor: • Faulty wiring of connector CND, or • Regenerative circuit is faulty	 Wiring built-in regenerative resistor correctly: [15A/30A] Connect built-in regenerative resistor wires to P and Y terminals of connector CND. [50A] Short circuit between P- X terminals of connector CND. Replace Servo Amplifier if malfunction persists.
6	Subject to using external regenerative resistor: • Regenerative resistor is not connected • Regenerative resistor is broken • Regenerative circuit is faulty	Turn power OFF, check wiring and resistance value of regenerative resistor. Replace amplifier if malfunction persists.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
000	0110	OS	Over speed		Rotating speed of servomotor exceeded allowable speed (1.2 times maximum rotating speed) during operation.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	POSSIBLE CAUSES							
OPERATING STATE	1	2	3	4	5			
When control power supply is turned on	0	Δ	3	80				
Upon command input after Servo ON	Δ	0	and		0			
When motor is started	~		0	0				
During operation (except when motor is started)		0	0		à			

	CAUSES	CORRECTIVE MEASURES
1	Faulty amplifier control board	Replace servo amplifier.
2	Faulty servomotor sensor	Replace servomotor
3	Overshoot is too large during motor start.	 Use the analog monitor of the remote controller to check the velocity. → If over shoot is too large, adjust the servo parameter → Change the acceleration/deceleration speed pattern command → Reducing the load inertia.
4	Incorrect wiring of U, V, W phases between amplifier and motor	Check and correct wiring.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0111	PE	Control power supply error	Possible	Control power supply input voltage is below specified range

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	PO	SSIBLE CAUSI	ES N
OPERATING STATE	1,50	2	<u>ک</u>
When control power supply is turned on	Δ	0	0
During operation	Δ	Le la	0

5	CAUSE	CORRECTIVE MEASURES
1	Faulty amplifier internal circuit	Replace servo amplifier.
2	Power supply input voltage is below specified range	Set voltage within specified range.
3	Fluctuation or momentary interruption of input power voltage	Check power supply

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
S.	~automatyle.	DE1	Encoder disconnection (sensor error)	Not possible	Disconnection of sensor signal (A, B, C or PS signal) line was detected
	1000	DE2	Serial disconnection (sensor error)	Not possible	Disconnection of sensor signal (PS signal) line was detected
		DE3	Encoder initial error (sensor error)	Not possible	Initial data of motor sensor can not be read in.
and the second		DE4	Serial receiving stop (sensor error)	Not possible	No feedback of absolute position data from absolute sensor
342.91	613 ^{40,1}		External encoder disconnection	Possible	Disconnection of full close sensor signal line was detected.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE When control power supply is turned on After servo ON	POSSIBLE CAUSES							
		2	3	4	5	6		
When control power supply is turned on	0	0	0	0	0	0		
After servo ON		250		0	0			
During operation	Δ	5		0	0			

Nº.	CAUSE	CORRECTIVE MEASURES
1	Encoder wiring: • Incorrect wiring • Loose connector • Poor connector contact • Encoder cable is too long • Encoder cable is too thin	 Check and correct wiring. Check if sensor power voltage of motor is over 4.75V. Correct if necessary.
2	Wrong sensor classification setting of amplifier	Correct setting.
3	Sensor classification setting differs from actual sensor.	Replace with servomotor attached with correct sensor.
4	Faulty amplifier control circuit	Replace servo amplifier.
5	Faulty servomotor sensor	Replace servomotor.
6	Parameter setting is for full close servo system.	Set parameters for semi-close system (Mode2-page0 Func0-bit7).

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	1001	MPE	Main power supply drop	Possible	Main circuit power supply voltage drop

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	POSSIBLE CAUSES						
OPERATING STATE	1	<u> </u>	3	4	5		
When control power supply is turned on	. Š	9		00	Δ		
After main circuit power supply is turned on	0	0	Sala a	-			
During motor operation (alarm can be reset)		Δ	0				
During motor operation (alarm can not be reset)		0	2		à		

	CAUSE	CORRECTIVE MEASURES
1	Power supply voltage is below specified range	Set power supply to within specified range.
2	Main circuit rectifier is broken	Replace servo amplifier.
3	Input voltage dropped. Or momentary interruption occurred.	Check main power supply not to occur momentary interruption or power drop.
4	Low voltage of out of specification is supplying to main circuit (R.S.T)	Check main circuit voltage not to supply around power from other to R. S. T when main circuit OFF.
5	Faulty internal circuit of servo amplifier	Replace servo amplifier

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	1010	FP	Main power supply phase loss		Phase loss detected in 3-phase main power supply input

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	POSSIBLE CAUSES							
OPERATING STATE	100	2	3					
When control power supply is turned on	Star .	0						
When main power supply is turned on	0	4	0					
During motor operation	Δ	6	6					
Alarm occurred although specified single phase power input	6	Č.	0					

	CAUSE	CORRECTIVE MEASURES							
1 à	Faulty input contact on one of the R, S, T phases	Check and correct wiring.							
2	Faulty amplifier internal circuit	Replace servo amplifier							
3	Servo amplifier is not specified for single phase	 Confirm model number and delivery specification of servo amplifier. Replace with amplifier for single phase, if necessary. Change parameter for single phase Amplifier (Mode4-page8 PSKD) 							

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
Display	ALIVI0,4,2,1		Name		
	1100	SE	Velocity	Possible	Velocity control is not functioning normally
			control		Stor.
	-3 ⁵⁵	-3 ⁵⁵	error		

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	POSSIBLE CAUSES								
OPERATING STATE	1	2	3	4	5				
When control power supply is turned on		57		1000	0				
Upon servo ON input	0		0	di la constante da la constante					
Upon command input	0	0	0						
When motor is started or stopped				0	~				

Corrective Measures

	CAUSE	CORRECTIVE MEASURES
1	Incorrect wiring of U, V, W phases between amplifier and motor	Check and correct wiring.
2	Incorrect wiring of A, B phases between INC-E and ABS-E encoder connection	Check and correct wiring.
3	Motor is vibrating (oscillating)	Adjust servo parameter to stop vibration (oscillation).
4	Overshoot and/or undershoot is too large	 Use the analog monitor of the remote controller to check the velocity Adjust servo parameter to reduce overshoot and/or undershoot. Increase acceleration/deceleration command time. Or, mask the alarm by setting Func2 of remote
4	Faulty servo amplifier control circuit	controller. Replace servo amplifier.

Velocity control error alarm is set to "not detecting" as standard, but can be change to "detecting" by setting bit5 of Func2 to "0" when necessary.

This alarm may be detected during motor start or stop in cases where load inertia is high or for applications with G-force axis. In these cases, set bit5 of Func2 to "1" for "not detecting".

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents				
	1101	OVF	Excess	Possible	Position loop deviation counter exceeded				
$\sim d \sim$			position		allowable value				
	1. ALE	and the second s	deviation						

Operating State when alarm occurred

OPERATING STATE	POSSIBLE CAUSES												
OPERATING STATE	1	2	3	4	5	6	7	8	9	10	11	12	13
When control power supply is turned on				.8	0					0			
During stoppage at servo ON			3	22		0		2	22		0		~
When command input is started	0	Δ	0	0	0		0	Δ	0		Δ		A. 10
During high speed start or stoppage	0	0					0	0	0		Δ	0	2
During operation with a long command		0					0	Δ			Δ		
After JOG/ Tune	Q.				.18	2				-	2		0

	CAUSE	CORRECTIVE MEASURES
1	Position command frequency is too high, or acceleration/deceleration time is too short.	Review controller position command.
2	Load inertia is too high or motor capacity is too low	Review load conditions, or change to larger capacity motor.
3	Holding break is not released	Check and correct wiring. Replace servomotor if wiring is correct (and voltage is applied as specified),
4	Motor is mechanically locked, or there is mechanical interference	Review mechanics
5	One or all of the U, V, W phases between amplifier and motor is disconnected.	Check and correct wiring.
6	Motor rotation caused by external force (gravity, etc.) during stoppage (completion of positioning).	Review load or change to larger capacity motor.
7	 Current limiter is activated by command from controller, with limit value set too low. Set encoder pulse number does not match motors. 	 Increase limit value or switch off current limiter. Change to the encoder pulse number of motor
8	Improper servo parameter setting (position loop gain, etc.)	Revise parameter setting (increase position loop gain, etc.).
9	Excess deviation setting is too low	Increase excess deviation value from controller.
10	Faulty amplifier control board	Replace servo amplifier.
11	Faulty servomotor sensor	Replace servomotor.
12	Power supply voltage drops	Check power supply voltage again.
13	Normal and no problem	This is in considering to deviation left at controller after JOG operation or tuning from remote controller. Clear alarm to recover, or stop alarm by setting MODE2/ page7/ bit4 to "1" with remote controller to stop alarm.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0011	EXOH	External overheat	Possible	External overheat was detected.
		Spanne		. 30 ⁰¹⁰	a there are a set

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

		POSSIBLE CAUSES							
OPERATING STATE	1	2	3	4					
When control power supply is turned on	0	0		Δ					
After operating for a short period	14		0 1	Δ					

	CAUSE	CORRECTIVE MEASURES
1	Although the system is of not connecting external thermal, Amplifier sets to external overheat detection valid.	Change parameter setting to external overheat detection invalid (Mode2-Page4 Func3-bit4,5)
2	In case of system connecting external thermal, wiring is disconnected.	Check and correct wiring.
3	External thermal terminal (external regenerative resistor) operated.	 Review operational conditions. Increase capacity of external regenerative resistor
4	Faulty servo amplifier control board	Replace servo amplifier

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	1111	DSPE	Servo	Not	Built-in servo processor (DSP) of amplifier
\sim $F \sim$			processor	possible	is malfunctioning.
		5355	error		Sauce Sau

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	OPERATING STATE	POSSIBLE	CAUSES
Alarm history	OPERATING STATE	1	2
DSPE	When control power supply is turned on	Δ	0
DOFE	During operation	S. S	0

5	CAUSE	CORRECTIVE MEASURES
1	Faulty amplifier control board	Replace servo amplifier
2	Malfunction due to noise	 Check that amplifier earth cable should be correctly grounded. Add ferrite core as noise measure.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0101	RGOH	Overheat of built-in regenerative resistor	. 66	Overheating detected in internal regenerative resistor module.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	, Ó	POSSIBLE CAUSES						
OPERATING STATE	1,000	2	3	4				
When control power supply is turned on	Δ		0	0				
During operation	Δ^{ab}	0	1 ¹ 0	0				

Corrective Measures

	CAUSE	CORRECTIVE MEASURES
1	Faulty amplifier internal circuit	Replace servo amplifier
2	Regenerative power is too high	 Review operating conditions. Use an external regenerative resistor module
3	Faulty parameter setting (page9 of mode8) regenerative resistor type (RGKD)	 Check parameter setting: In case regenerative resistor is not connected; regenerative resistor type (RGKD) = "None/Ext.R" In case of using external regenerative resistor; regenerative resistor type (RGKD) = "None/Ext.R" In case of using built-in regenerative resistor; regenerative resistor type (RGKD) = "Built-in R"
4	Faulty wiring of built-in regenerative resistor.	 Wire according to Chapter 9 Regenerative Resistor. [Amplifier capacity of 15A/ 30A] Connect built-in regenerative resistor wire to P and Y terminals of CND connector. [Amplifier capacity of 50A] Short circuit between P-X terminals of CND connector. Connector. Replace Servo Amplifier if malfunction persists.

When using regenerative resistor built in Servo Amplifier, make sure to set page9 Regenerative Resistor type (RGKD) to "built-in regenerative resistor (Built-in R). With this setting, validity of overheat protection detection process of built-in regenerative resistor is judged. In case "no regenerative resistor connection or external regenerative resistor (None/ Ext.R) is selected, overheat detection of built-in regenerative resistor will not function. Therefore, built-in regenerative resistor may be burn or smoke occurs.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	0101	RGOL	Regenerative	Possible	Overload detected in regenerative
		10	error		resistor

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

		POSSIBLE CAUSES							
OPERATING STATE	1	2	3	4	5	6	7	8	
When control power supply is turned on		1000				500		0	
When main circuit power supply is turned on	5	2			in in		0	0	
During operation	0	0	0	0	0	0		Δ^{\sim}	

	CAUSE	CORRECTIVE MEASURES
1	 Allowable regeneration power of built-in regenerative resistor is exceeded. Load inertia is too high, or conducted time (for one cycle) is too short 	 Review load inertia and operational pattern Use an external regenerative resistor module. Lower load inertia within specified range Increase deceleration time Increase conducted time
2	External regenerative resistor is specified, but bit4 of Func2 is not set properly.	Set bit4 of Func0 to "1" by allowable absorbing power of external regenerative resistor.
3	Built-in regenerative resistor module is specified, but faulty wiring.	Check and correct wiring.
4	External regenerative resistor module is specified, but faulty wiring.	Check and correct wiring.
5	Faulty regenerative resistor.	 Replace servo amplifier if using built-in regenerative resistor module. Replace resistor if using external regenerative resistor module.
6	Resistance value of external regenerative resistor module is too high	Change to resistor that meets specification.
7	Input power voltage is over 280V AC	Review input power voltage
8	Faulty amplifier control circuit	Replace servo amplifier.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
No.	1111	MEME	Memory	Not	Amplifier capacity does not match motor
			error	Possible	code
$\sim P \sim$		~355			Motor code change alarm
		10		100	 Error detected in the built-in non-volatile
Sec. Sec.		Ser. Ser.		State -	memory of amplifier

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

OPERATING STATE	POSSIBLE CAUSES						
OPERATING STATE	Y	2	3				
When control power supply is turned on	1 ¹⁰ 0	Δ					
During remote controller operation		Δ	0				

	CAUSE	CORRECTIVE MEASURES
1	CPU is unable to read correct value from built-in non-volatile memory in amplifier.	Replace servo amplifier
2	Faulty amplifier control board	Replace servo amplifier
3	Bit0 of Func6 was changed to "1" from remote controller.	 Reset remote controller and turn ON power again → Confirm no alarm occurs.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
	1000	AEE	Absolute sensor battery failure	Possible	Multiple-rotation data is indefinite due to battery back-up failure of absolute sensor.

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	POSSIBLE CAUSES				
OPERATING STATE	1 🕈	2	3 🔊	4	
When control power supply is turned ON	0	0	0	Δ	
During operation	and		0	Δ	

Corrective Measures

52	CAUSE	CORRECTIVE MEASURES
1	Weak battery (Lithium battery)	Replace the (lithium) battery →Encoder clear over 4 seconds
2	 No current flow over 20 hrs while battery is not connected to sensor. Battery wiring is faulty 	Check and correct wiring, or connect battery. →Encoder clear over 4 seconds
3	Faulty servo motor sensor	Replace servomotor
4	Faulty amplifier control board	Replace amplifier

At the initial setting of motor with absolute sensor (initial current flow), battery failure alarm will be displayed even in case of not week battery. Input encoder clear over 4 seconds to release the failure.

In case of wiring-saved absolute sensor (ABS-E.S1) with application not using multiple rotational data without connecting lithium battery, set bit5 of Func6 to "1" and turn on the control power again. Then alarm "U" (battery error) will not be detected in turning on the control power.

Alarm Status

Segment LED Display	Alarm Code ALM8,4,2,1	Abbreviation	Alarm Name	Alarm Clear	Contents
3 ^{6°} 🗆	1111	CPUE	Amplifier	Not	Built-in CPU of amplifier is malfunctioning
5		. 6	error	Possible	Strati
(Comes off)		(Daure		3000	C. Barre Barre

Alarm code 0,1 indicates: when Func2/ bit7,6 ="0,0", "0"= output open and "1"= output short.

Operating state when alarm occurred

	POSSIBLE CAUSES					
OPERATING STATE	1	2	3	4		
When control power supply is turned on	Δ	0		0		
During operation	Δ	0	1 ¹⁰ O			

2	CAUSE	CORRECTIVE MEASURES
1	Faulty amplifier control circuit	Replace servo amplifier
2	Weak internal 5V power due to short-circuit of input/output wiring of signal line of amplifier	 Disconnect all connectors and turn power supply on → If 7 segment LED blinks, check and repair short-circuit on signal line.
3	Faulty operation due to noise	 Check if earth cable of amplifier is correctly grounded. Add ferrite core as noise measure.
4	In maintenance mode.	 Maintenance mode SW on the front of Amplifier (see Chapter 3 front view of Servo Amplifier) is at maintenance mode. → Shut down the control power and return the SW
Nº.S	10 ^{.2} 10 ^{.2}	to normal mode.

8.2 Troubleshooting (Non-Alarm)

The following are the causes and corrective measures for troubleshooting non-alarm malfunctions. Consult your Sanyo Denki dealer should the malfunctions persist even after performing these troubleshooting measures. Please take note that it is dangerous to perform some of these procedures without first switching off the main power supply.

No	Malfunction	Inspection	Causes and corrective measures
ional S	7-segment LED does not display"≡ " after control power supply is switched on	 (1) Check voltage of control power input terminals 	 Check power supply if voltage is low Check wiring and tightening of screws if there is no voltage
	Art Art	(2) Check if red "CHARGE" LED is on	 Faulty power supply circuit → Replace servo amplifier
2	7 segment LED is displaying a flashing "8" (servo ON status), but	(1) Check if position command is inputted	Input position command.
200	motor is not rotating	(2) Check if servo lock is on	 Check tightening of screw as motor power line is not connected
74	North North Star	(3) Check if current limit is inputted	 Motor does not rotate, since current limiter is on and motor cannot output the torque over load torque.
10matel	NHOM2DY	(4) Check if deviation clear remains on	Chancel the deviation clear input (CN1-34 pin)
3	Unstable servomotor rotation. Lower than command.	(1) Check if proportional control is on	Switch off proportional control
	6 6 4	(2) Check if current limiter is on	Switch off current limiter
seccord	er antonadiker	(3) Check if 7 segmentLED is displaying " = "	 EMR of serial communication line is on → Remove EMR
4	Servomotor rotates momentarily before stopping	(1) Check motor power lines	One of the power lines is disconnected.
		(2) Check sensor dividing number setting	Correct the setting and turn on the power.
5	Motor vibrates at frequencies over 200Hz	contensite south many	 Reduce velocity loop gain Set current command low pass filter and notch filter.

Table 8-2 (1/2) Troubleshooting (Non-Alarm)

	No	Malfunction	Inspection	Causes and corrective measures
50	6	Excessive overshoot/undershoot during start/stop	Conformation and a state of the	 Servo tuning at "High" Lower velocity loop gain Increase integral time constant Loosen acceleration / deceleration command pattern Use position command low pass filter
5	7	Abnormal noise	(1) Check for mechanical faults	 Operate servomotor by itself Check centering and balance on coupling
50	marth	**************************************	(2) Operate at low speed and check for random abnormal noise	 Check if sensor signal line is pair-twisted and shielded. Check if sensor and power lines are connected to the same duct Check if power supply voltage drops

Table 8-2 (2/2) Troubleshooting (Non-Alarm)

Alarm history will be displayed with Select

switch after switching slider on front panel to "HISTORY".

Switch No.	Status	
0	Display current alarm and status (Normal setting)	
A 1 A	Display the last alarm	
2	Display the second alarm to the last	
3	Display the third alarm to the last	
4	Display the fourth alarm to the last	
5	Display the fifth alarm to the last	
6	Display the sixth alarm to the last	
7	Display the seventh alarm to the last	
14	· 4. · · · · · · · · · · · · · · · · · ·	

Table 8-2-2 Alarm History Display

- In case that alarm occurred when select switch was set at other than "0", current alarm will be displayed. Return to "0" before setting to see alarm history.
- If there is no alarm in the alarm history,

will be displayed.

• Battery warning cannot be displayed during alarm history is displayed on segment LED. When slider switch is at "HISTORY" side, set rotary switch at "0" as standard.

8.3 Switching of Velocity Loop Proportional Gain Using Rotary Switch

8.3.1 Overview

The PY or PY2 amplifier allows for easy switching of the velocity loop gain with its 8-position rotary switch located on the front of the amplifier.

8.3.2 Setting Procedure

Set the slide switch on the front of the amplifier to GAIN. Then, set the following parameters.

Operator

Mode0-12 Veloc

Velocity loop proportional gain add value (KvpA) This parameter sets a weight per rotary switch 1. The following shows the velocity loop gain actually set: Kvp + (KvpA × RSW) or Kvp 2 + (KvpA × RSW). Where, RSW is a rotary switch position.

You can check the Kvp actually set on the Kvp monitor (KvpM) for operator mode5-14.

Switching of Gain Using External Input Signal

Using external input signal (CN1-36 pin or 35 pin), this function performs switching of the position loop gain, velocity loop proportional gain and velocity loop integral time constant.

Input signal OFF : Kp, Kvp and Tvi are valid. Input signal ON : Kp2, Kvp2 and Tvi2 are valid.

This function is enabled when the parameter servo function select (Mode 4, Page 2) is set to "Gain_sel". The Func3 bit6 parameter is used for selecting the CN1 input signal (0: 36 pin and 1: 35 pin).

Note 1: There is a 2 msec maximum time lag between switching of the input signal and that of the gain.

Note 2: The gain automatically set by the test mode servo tuning function is set at Kp, Kvp, Tvi and ILPF irrespective of the above selection.

Note that setting the slide switch to HISTORY clears your setting and returns to the original one.

8. MAINTENANCE

8.4 Maintenance

The Servomotor and amplifier do not require any special inspection. To ensure optimum performance over their lifetimes, however, the user is expected to implement a reasonable level of inspection and maintenance, paying attention to the following points .

- Performing of megger test of the Servo Amplifier may damage the amplifier.
- 2 We recommend that you conduct a continuity check using the tester.
- 3 Do not remove the cover from the detector of the Servomotor.
- 4 Do not overhaul the Servo Amplifier and the Servomotor.

[Inspection	Procedure]
-------------	-------------

1

Check	Ch	eck condition	is 🖉	Check item	Check method	Corrective
point	Timing	In-operatio n	Out-of-ope ration	n.	all and	measure
Servomotor	Routine	0		Vibration	Check if vibration is larger than usual.	Contact us.
a short	Routine	0		Noise	Check if abnormal noise unlike in normal status is present.	onashar
4	As needed		0	Cleaning	Check for dirt or dust.	Clean the Servomotor using a cloth or blow down with air. \rightarrow 1
alko.pl	Yearly	dra.d	0	Insulation resistance measurement	all	attend
	Every 5000 hours $\rightarrow \land 2$		O COLOR	Replacement of oil seal	Contact us.	
Servo amplifier	As needed	360.9	0	Cleaning	Check the parts for settling of dust.	Clean by blowing down with air. $\rightarrow \mathbf{A} 1$
	Yearly		O	Looseness of screws	Check external terminals and CN1, 2, A, B, C and D connectors for looseness.	Tighten loose terminals or connectors.
Battery on absolute encoder	As needed \rightarrow \land 3		0	Battery voltage	Check if the battery voltage is 3.6 VDC or above.	If not, replace the battery.
Temper-atu re	As needed	0	ANALODAU	Temperature	Check ambient temperature and motor frame temperature.	Ambient temperature must be within the specification. Check the load condition operating pattern and conduct necessary correction.

Table 8-3 Inspection Procedure

- $\begin{array}{c}
 1 \\
 2
 \end{array}$
 - Prior to cleaning, make sure that the air does not contain water or oil.
 - 2 This check/replacement interval is when a water-proof or oil-proof function is required.3 Users are requested to constantly monitor the battery voltage.
 - Be advised that that estimated life of our recommended battery (Toshiba lithium battery ER6V: 3.6V, 2000 mAh) is about 6 years.

8. MAINTENANCE

8.5 Overhaul Parts

The parts listed in Table 8.4 will deteriorate with age. For maintenance, inspect periodically.

No.	Parts		Parts Average replacement interval		Method of replacement and others		
1	Capacitors for main circuit smoothing		5 years		Replace with new one. Load rate: 50% maximum of the amplifier's rated output current. Working condition: Year-round average temp. 106°F (40°C)		
2	Cooling fan motor		5 years	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	Replace with new one. Working condition: Year-round average temp. 106°F (40°C)		
	Lithium battery for ER3V		3 years		Replace with new one.		
SHO.	absolute sensor	bsolute sensor ER6V 6 years		Replace with new one.			

Table 8-4 Periodical Parts Inspection

1. Capacitor for main circuit smoothing

- If the Servo Amplifiers have been stored for over 3 years, consult us. The capacity of the capacitor for main circuit smoothing is reduced depending on the motor output current and the frequency of on-off switching of the power supply during operation. This can cause the capacitor to malfunction.
- If the capacitor is used under conditions in which the average temp. is 106°F (40°C), and the Servo Amplifier's rated output current exceeds 50% on average, replace it with a new one every 5 years.
- If the capacitor is used in an application requiring the frequency of on-off switching the power to exceed 30 times a day, consult us.
- 2. Cooling fan motor
 - The PY2 Servo Amplifier is designed to comply with pollution level 2 (IEC 664-1/2.5.1). Since it is not designed to be oil- or dust-proof, use the Servo Amplifier in a pollution level 2 or better (i.e. pollution level 1 or 2) environment.
 - The PY0A050, PY0A100 and PY0A150 Servo Amplifiers have built-in cooling fan motors. Be sure to maintain a 50-mm spaces upper and below amplifier. If the space is narrower, the static pressure of the cooling fun will be reduced and the parts will
 - deteriorate, causing the motor to malfunction.
 - When an abnormal noise is heard, or oil or dust adheres to the cooling fan, it must be replaced. The estimated life of the cooling fan is 5 years under a year-round average temp. of 106° F (40° C).
- 3. Lithium battery
 - The normal replacement interval of our recommended lithium battery is its estimated life. The life of the lithium battery will be reduced if the frequency of power supply on-off switching is high or if the motor remains unused for a long time.

If the battery voltage is 3.6 V or less when inspected, replace with new one.

Since all overhauled Servo Amplifiers are shipped with the user settings left as they are, be sure to confirm them before operating these Servo Amplifiers.

SPECIFICATIONS

9.1		Amplifier	
	9.1.1	Common Specifications	9-3
	9.1.2	Acceleration and Decelerate Time	9-5
	9.1.3	Allowable Repetition Frequency	9-6
	9.1.4	Precautions on Load	9-9
	9.1.5	CN1 Input/Output Interface Circuit Configuration	9-10
	9.1.6	Position Signal Output	9-13
	9.1.7	Monitor Output	9-26
	9.1.8	Position Control Type Specifications	9-29
	9.1.9	Velocity/Torque Control Type Specifications	9-37
	9.1.10) Switching of the Control Mode	9-44
	9.1.11	Internal Velocity Command	9-45
	9.1.12	Power Supply Capacity	9-46
	9.1.13	3 Servo Amplifier/Servomotor Leakage Current	9-48
		Calorific Value	
	9.1.15	5 Dynamic Brake	9-51
		Regenerative Processing	
9.2	Servo	motor	
	9.2.1	Common Specifications	9-58
	9.2.2	Revolution Direction Specifications	9-59
	9.2.3	Motor Mechanical Specifications	9-60
		Holding Brake Specifications	
	9.2.5	Motor Data Sheet	

	10 A		- CO
1000 M	<i>ò</i> ,	walton walton walton	5
9.3 (Combi	ination Specifications	0 111
		Ination Specifications	
		P1 Series (B Coil) + PY2	
		P1 Series (H Coil) + PY2	
		P2 Series (H Coil) + PY2	
		P2 Series (D Coil) + PY2	
		P3 Series (D Coil) + PY2	
		P5 Series (H Coil) + PY2	
		P5 Series (D Coil) + PY2	
		P6 Series (H Coil) + PY2	
		P8 Series (H Coil) + PY2	
		P3 Series (P Coil) + PY2	
S S	9.3.11	P5 Series (P Coil) + PY2	9-115
9.4 E	Extern	al Views	
ç	9.4.1	Servo Amplifier	
g	9.4.2	Servomotor	
S	9.4.3	Remote Operator (Option)	
9.5 F	Reger	nerative Resistor	9-138
ç	9.5.1	Built-in Regenerative Resistor	9-138
ç	9.5.2	Parameter Setting for Regenerative Resistor	9-138
g	9.5.3	How to Connect and Set External	
		Regenerative Resistor (Optional)	
Sec. 5	9.5.4	External Regenerative Resistor Combination Table	9-142
g	9.5.5	External Regenerative Resistor List	
Ş	9.5.6	Detailed Connecting Methods of External	
		Regenerative Resistors	
S S	9.5.7	External Regenerative Resistor Outline Drawings	
9.6 V	Narniı	ng	
g	9.6.1	Overtravel Warning	
g	9.6.2	Battery Warning	
g	9.6.3	Overload Warning	

9.1 Servo Amplifier

9.1.1 Common Specifications

Table 9-1 Common Specifications

2			Model No.	PY2A015	PY2A030	PY2A050	PY2E015	PY2E030		
	Contro	l function	1. CO.	V V	elocity, torque or position	on control (through	switching of parame	eters).		
	Contro	l method	20 ° 20	2	IGBT PV	VM control, sine wa	ve drive.			
Basic specification	(*1) Inj	(*1) Input power		 3-phase, 200 VAC to 230 VAC +10%, - 15%, 50/60 Hz±3Hz. Single-phase, 200 VAC to 230 VAC +10%, - 15%, 50/60 Hz±3Hz. Single-phase, 200 VAC to 230 VAC +10%, - 15%, 50/60 Hz±3Hz. 						
	à		Control circuit	 Single-phase, 	200 VAC to 230 VAC 50/60 Hz±3Hz.	+10%, - 15%,	• Single-phase, VAC +10%, - 1	100 VAC to 115 5%, 50/60Hz±3Hz.		
			Operating ambient temperature (*2)	Aler		0 to 55°C	8	14°		
sp			Storage temperature	and the second sec		–20 to +65°C	a de la companya de l	v 1		
Basic			Operating/storage humidity	23	90% RH	maximum (no cond	ensation) 💉			
ш	Enviro	nment	Altitude	2	Up to 1,	000 meters above s	ea level.			
			Vibration	0.5G when tes to 55 Hz.	sted in the X, Y and Z d	irections for 2 hours	s in the frequency ra	ange between 10 Hz		
		20	Shock		24	2G	9	24		
	Structu	ure			Equipped with	a built-in, tray-type	power supply.			
	Mass	kg	ð	1.5 🔿	2.0	2.7	1.5	2.0		
e	, it		ity control range	No		1:5000		Nº.		
Performance	or the velocity control specification	(*4)	Load variation (0 to 100%)	A.	±0.1% maxir	num/maximum revo	olution speed	-) 		
orm	the v contr ecific	Velocity	Voltage variation (170V to 253V)	.O`	±0.1% maxir	num/maximum revo	olution speed			
Perf	For the con con	variations	Temperature variation (0°C to 55°C)	25	±0.5% maxir	num/maximum revo	olution speed			
	ш́ П	(*6) Frequ	ency characteristics	,	S.	400 Hz (JL=JM)	S.			
Protection fu		tion functio	n alan	control power velocity contro	Overcurrent, overload, amplifier overheating, excessive main circuit power, over-speed, control power error, sensor error, low main circuit voltage, main circuit open-phase, velocity control error, excessive deviation, external overheating, servo processor error, regeneration error, memory error, battery error, CPU error.					
ctior	LED di	isplay	a State	2	Inte	ernal status and alar	ms.	S.		
D	Dynam	nic brake	Mrs.	No		Built-in		14-0		
Built-in functions	Regen	erative pro	cessing	Circuit built in	(resistor is optional)	Regenerative resistor built-in	Circuit built-in (r	esistor is optional)		
ш	Applica	able load in	ertia	201	Within the applicat	le inertia of the Ser	vomotor combined.			
	(*5)		Velocity monitor (VMO)		0.5 V±20% (at 1000 min ⁻¹)					
	Monito	or output	Current monitor (IMO)		C	0.5 V±20% (at 100%	b)	.54		
	_	Velocity comman	Command voltage		1000 min ^{-1} command, t it voltage ±10 V).	forward motor revol	ution with positive c	ommand,		
	atior	d	Input impedance	~ ~	A	Approximately 10 k	2.	~		
	ifice	Torque	Command voltage	±2.0	VDC (at 100% torque,	forward motor rotat	tion with positive co	mmand)		
	spec	comman d	Input impedance	Approximately 10 kΩ.						
	to	Current lir	nit input	±2.0 VDC±15% (at rated armature current)						
	ty / torque control specification		input signals	current limit ve	Servo on, alarm reset, forward rotation inhibit, reverse rotation inhibit, proportional control, current limit velocity command zero, control mode switching, gain switching, external overheating, current limit and encoder clear.					
s	city / to	Sequence	e output signals		Current limit status, low velocity, high velocity, velocity match, command receive enabled, servo ready, holding brake timing and alarm code (4 bits).					
gna.	Veloci	Position o	utput signals (pulse dividing)		N/8192 (N=1 to 819	91), 1/N (N=1 to 64)	or 2/N (N=3 to 64)	<u>_</u>		
Input / output signals	2.2	Absolute	position output signal (serial output)		-stop synchronization o blute sensor is used)	or 1 Mbps/2 Mbps M	lanchester method	Hr.S.		
out / on	c	Position	Max. input pulse frequency	2M pulse/seco difference 2-pl	ond (backward + forwar hase pulse)	d pulse, code + puls	se), 1M pulse/secor	nd (90° phase		
h	ificatio	comman d	Input pulse form	C.	Forward + reverse command pulses or code + pulse train command, 90° phase difference 2-phase pulse train command.					
	bec	420	Electronic gear		N/D (N=1 to 32767, D=1 to 32767), where 1/32767≦N/D≦32767.					
		Current lin	nit input		±2.0 VDC±	15% (at rated armat	ture current)	54		
	For the position control specification	Sequence	e input signal	current limit, c	m reset, forward rotatio ommand multiplication, , external overheating a	command pulse inl				
	he pos	Sequence	e output signal		ol status, low velocity, hi eive enabled, servo rea			le (4 bits).		
	ort	Position o	utput signal (pulse dividing)	.5	N/8192 (N=1 to 819	91), 1/N (N=1 to 64)	or 2/N (N=3 to 64)			
	Absolute position output (serial output)			9600 bps start-stop synchronization or 1Mbps/2Mbps Manchester method (when an absolute sensor is used)						

*1: The supp	ly voltage shall be w	ithin the specified range.		
	power supply input t			
	ed voltage range: 170			
		t exceed 230 VAC+10% (2	253 V)	
	power supply input t			
	ed voltage range: 85			
		t exceed 115 VAC+10% (*	127 V).	
rd .		ecified range, install a step	·	
*2: When the	amplifier is housed	in a box, the temperature	in the box should not e	exceed t
specified	level.			
	30 ⁵	HOL.	ALC .	
		nit in the velocity control ra		
	·	p for a load (full load) equ	ivalent to the maximun	n
continuol	us torque.			
* 4	city variation (load va	ariation) is defined by the f	ollowing expression:	
*4: The veloc	Juy variation (load va	ination, is defined by the r		
^4: The veloc	20 ¹¹		5°	
	20 ¹¹	revolution – No-load revo	5°	(%)
	Full load		lution speed	(%)
Velocity v	variation =	revolution – No-load revo	lution speed × 100 (、
Velocity v	variation = Full load	revolution – No-load revo Maximum speed	lution speed × 100 (also defined and speci	、
Velocity v The veloc ratio of th	variation = Full load	revolution – No-load revo Maximum speed he input power voltage is a on speeds to the maximum	lution speed × 100 (also defined and speci n speed.	ified by t
Velocity v The veloc ratio of th	variation = Full load city variation due to the change in revolution of calculating the spec	revolution – No-load revo Maximum speed he input power voltage is on speeds to the maximum ed (N) and load torque (TI	lution speed × 100 (also defined and speci n speed.	ified by 1
Velocity v The veloc ratio of th *5: Method c	variation = Full load city variation due to the change in revolution of calculating the spec	revolution – No-load revo Maximum speed he input power voltage is on speeds to the maximum ed (N) and load torque (TI	lution speed × 100 (also defined and speci n speed.	ified by 1
Velocity v The veloc ratio of th *5: Method c • Speed of	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the species (N) : N = 100	revolution – No-load revo Maximum speed he input power voltage is a on speeds to the maximum	lution speed × 100 (also defined and speci n speed.	ified by t
Velocity v The veloc ratio of th *5: Method c • Speed o <mir< td=""><td>variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n⁻¹></td><td>revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed for speeds to the maximum ed (N) and load torque (The second second</td><td>Iution speed × 100 (also defined and speci n speed. _) from each monitor (e</td><td>ified by t</td></mir<>	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n ⁻¹ >	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed for speeds to the maximum ed (N) and load torque (The second	Iution speed × 100 (also defined and speci n speed. _) from each monitor (e	ified by t
Velocity v The veloc ratio of th *5: Method c • Speed o <mir (When</mir 	Variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 1000 n^{-1} > in the standard Vm 0.	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed the input power voltage is a conspeeds to the maximum ed (N) and load torque (The speed of the spe	Iution speed × 100 (also defined and speci n speed. _) from each monitor (e	ified by t
Velocity v The veloc ratio of th *5: Method c • Speed o <mir (When</mir 	Variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 1000 n^{-1} > in the standard Vm 0.	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed the input power voltage is a conspeeds to the maximum ed (N) and load torque (The speed of the spe	Iution speed × 100 (also defined and speci n speed. _) from each monitor (e	ified by 1
Velocity v The veloc ratio of th *5: Method c • Speed o <mir (When</mir 	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 1000 n ⁻¹ > n the standard Vm 0. rque (TL) : TL= TR	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed for speeds to the maximum ed (N) and load torque (The second	Iution speed × 100 (also defined and speci n speed. _) from each monitor (e	ified by t
Velocity v The veloc ratio of th *5: Method c • Speed o <mir (When • Load to <n•< td=""><td>variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n⁻¹> n the standard Vm 0. rque (TL) : TL= TR m></td><td>revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed he input power voltage is a conspeeds to the maximum ed (N) and load torque (The ed (N) and load</td><td>Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)</td><td>ified by 1</td></n•<></mir 	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n ⁻¹ > n the standard Vm 0. rque (TL) : TL= TR m>	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed he input power voltage is a conspeeds to the maximum ed (N) and load torque (The ed (N) and load	Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)	ified by 1
Velocity v The veloc ratio of th *5: Method c • Speed o <mir (When • Load to <n•< td=""><td>variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n⁻¹> n the standard Vm 0. rque (TL) : TL= TR m></td><td>revolution – No-load revo Maximum speed the input power voltage is a on speeds to the maximum ed (N) and load torque (Th $00 \times \frac{(Vm \text{ voltage}) < V>}{0.5}$ 5 mV/min⁻¹ is selected for $x = \frac{(Im \text{ voltage}) < V>}{0.5}$</td><td>Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)</td><td>ified by t</td></n•<></mir 	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n ⁻¹ > n the standard Vm 0. rque (TL) : TL= TR m>	revolution – No-load revo Maximum speed the input power voltage is a on speeds to the maximum ed (N) and load torque (Th $00 \times \frac{(Vm \text{ voltage}) < V>}{0.5}$ 5 mV/min ⁻¹ is selected for $x = \frac{(Im \text{ voltage}) < V>}{0.5}$	Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)	ified by t
Velocity v The veloc ratio of th *5: Method o • Speed o <mir (When • Load to <n•1 (When</n•1 </mir 	variation = $\frac{\text{Full load}}{\text{city variation due to the change in revolution of calculating the spect (N) : N = 1000 m^{-1} > m the standard Vm 0. True (TL) : TL= TR m> m the standard Im 0.5$	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed he input power voltage is a conspeeds to the maximum ed (N) and load torque (The ed (N) and load	Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)	ified by t
Velocity v The veloc ratio of th *5: Method o • Speed o <mir (When • Load to <n•1 (When</n•1 </mir 	variation = $\frac{\text{Full load}}{\text{Full load}}$ city variation due to the change in revolution of calculating the spect (N) : N = 100 n ⁻¹ > n the standard Vm 0. rque (TL) : TL= TR m> n the standard Im 0.5 e depends on how th	revolution – No-load revolution – No-load revolution – No-load revolution – No-load revolution speed he input power voltage is a conspeeds to the maximum ed (N) and load torque (The ed (N)) an	Iution speed × 100 (also defined and speci n speed. _) from each monitor (r the monitor output.)	ified by t

9.1.2 Acceleration and Deceleration Time

The acceleration time (t_a) and deceleration time (t_b) under certain load conditions are calculated using the following expressions.

The expressions, however, are for within the rated speed, ignoring the viscosity torque and friction torque of the motor.

 $\frac{N_2 - N_1}{T_P - T_L}$ (sec) Acceleration time : $t_a = (J_M + J_L) \cdot \frac{2\pi}{60}$ $\frac{N_2 - N_1}{T_P + T_L}$ (sec) Deceleration time : $t_b = (J_M + J_L) \cdot \frac{2\pi}{dt_b}$ Acceleration time (sec) ta Deceleration time (sec) tb JM Motor inertia $(kg \cdot m^2)$ Load inertia $(kg \cdot m^2)$ JL Motor speed (min⁻¹) N₁, N₂ Instantaneous maximum stall torque (N·m) TΡ ΤL Load torque (N·m)

Fig. 9-1 Motor Revolution Speed Time Chart

For actually determining t_a and t_b , it is recommended that the above $T_P \leq 0.8 T_P$ be limited, making allowance for load.

Time

Note that when power supply voltage is below 200V, the instantaneous torque in high speed zone drops.

9.1.3 Allowable Repetition Frequency

Start and stop repetition is limited by both the Servomotor and Servo Amplifier. Consideration is required to satisfy the requirements of both at the same time.

Allowable repetition frequency based on the Servo Amplifier

For use with a high frequency of starting and stopping, check that it is within the allowable frequency beforehand.

The allowable repetition frequency varies with each combined motor type, capacity, load inertia, acceleration/deceleration current value and motor speed.

When the starting/stopping repetition frequency up to the maximum speeds exceeds $\frac{20}{m+1}$ times/min under "load inertia = motor inertia × m" conditions, the effective torque and regenerative power must be accurately calculated.

In this case, consult us.

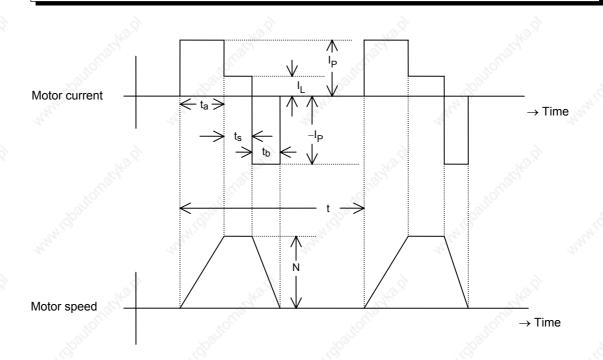
Allowable repetition frequency based on the type of motor used

The starting/stopping frequency varies with motor working conditions including load conditions and operating duration.

Accordingly, this cannot be specified uniformly.

In the following, typical examples will be explained.

(1) When the motor repeats a constant-speed status and a stop status


When the operating state is as in Fig. 9-2, use the motor at a frequency in which the effective motor armature current effective value is at the motor rated armature current (IR) or lower. Supposing the operating cycle is t, the usable range is represented in the following expression.

$$t \ge \frac{|P^{2}(t_{a} + t_{b}) + |L^{2}t_{S}|}{|R^{2}|}$$
 [s]

- IP: Instantaneous maximum stall
 - armature current
- I_R: Rated armature current
- IL : Current equivalent to load torque

When the cycle time (t) has already been determined, find I_P , t_a and t_b satisfying the above expression.

When actually determining the system driving mode, you are recommended to limit Trms $\leq 0.7T_R$ approximately, making allowance for load.

Fig. 9-2 Motor Current and Speed Timing Chart

(2) When the motor repeats acceleration, deceleration and stop statuses

This operating status is shown in Fig. 9-3, and the allowable value n (time/min) of repetition frequency can be obtained by the following expression.

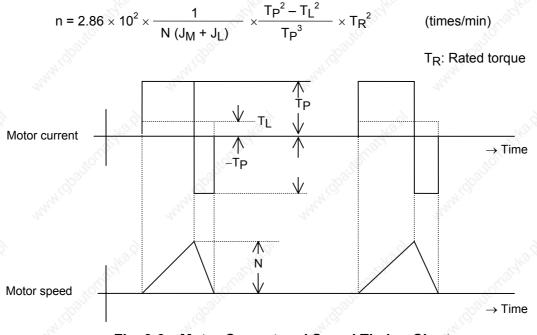
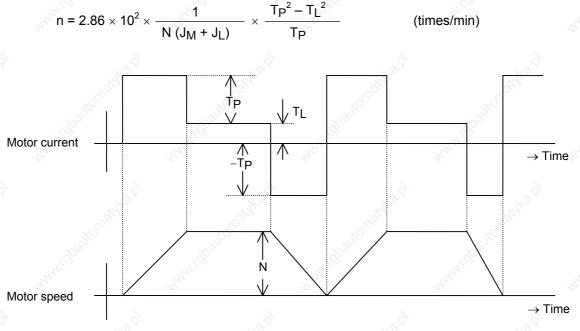



Fig. 9-3 Motor Current and Speed Timing Chart

(3) When the motor repeats acceleration, constant-speed and deceleration statuses

This operating status is shown in Fig. 9-4, and the allowable value n (times/min) of the repetition frequency can be obtained by the following expression.

Fig. 9-4 Motor Current and Speed Timing Chart

9.1.4 Precautions on Load

(1) Negative load

The Servo Amplifier cannot perform such negative load operation as causes the motor to rotate continuously.

(Examples)

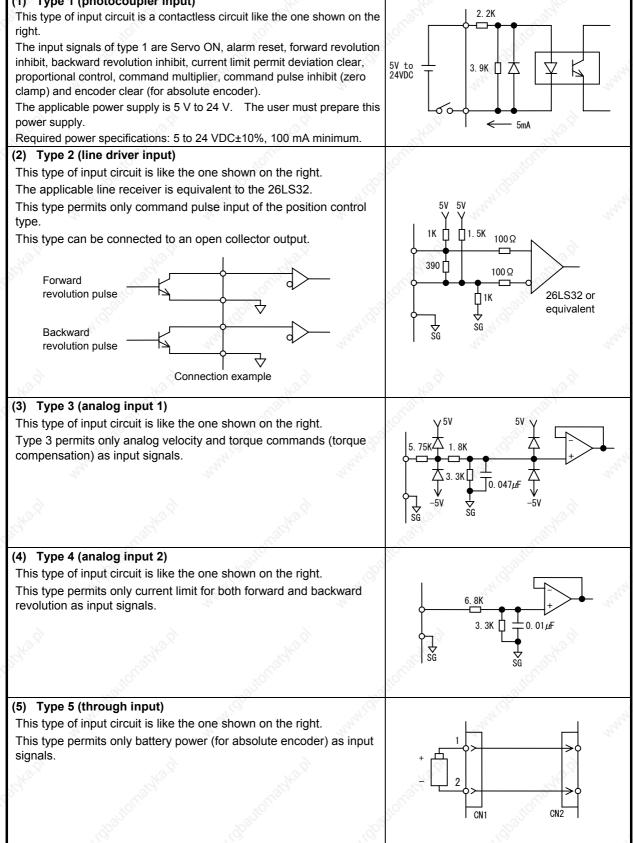
- Downward motor drive (when no counterweight is provided).
- Use like a generator, for example, the wind-out spindle of a winder.

When applying the amplifier to a negative load, consult us.

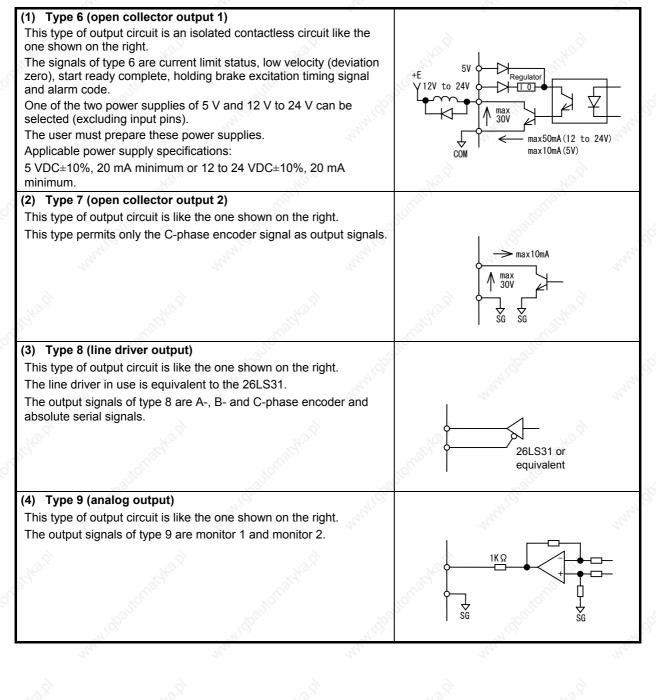
(2) Load inertia (JL)

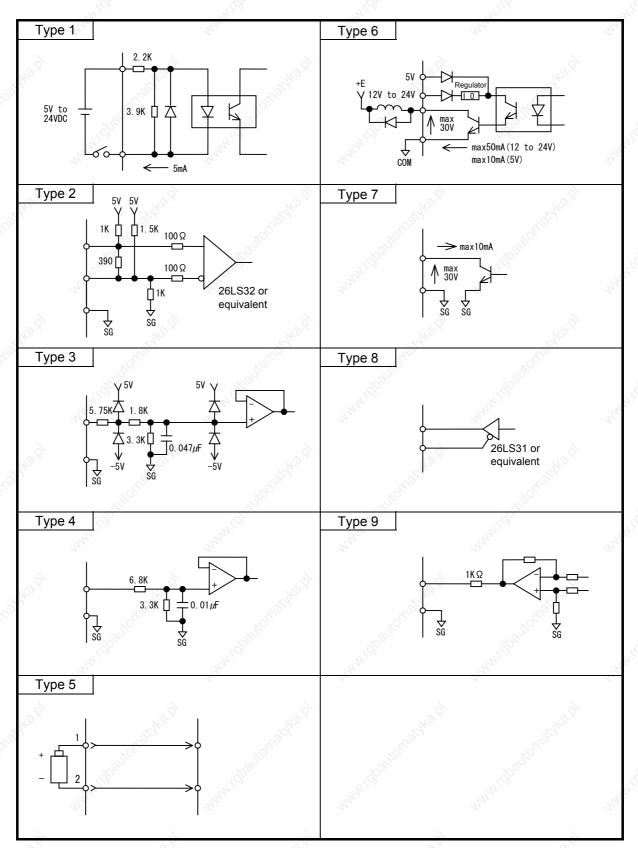
When the Servo Amplifier is used with a load inertia exceeding the allowable load inertia calculated in terms of the motor shaft, a main circuit power overvoltage detection or regenerative error function may be activated at the time of deceleration.

In this case, the following measures must be taken.


- ① Lower the current limit.
- 2 Make the acceleration/deceleration time longer (slow down).
- ③ Reduce the maximum motor speed to be used.
- ④ Install an external regenerative resistor (optional).

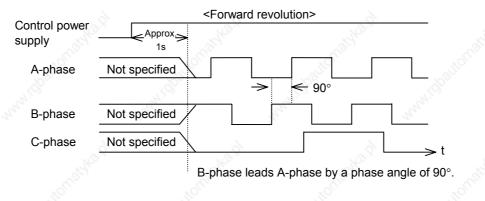
For details, ask us for information.


9.1.5 CN1 Input/Output Interface Circuit Configuration


Input circuit configuration

Output circuit configuration

Fig. 9-5 CN1 Circuit Type


9.1.6 Position Signal Output

This section explains the position signal output specifications.

Chapter	Contents	and the second	Relevant Sensors
9.1.6.1	Pulse output	Fig. 9-6	Wiring-saved incremental encoder INC-E Request-signal unavailable absolute encoder ABS-E Request-signal available absolute sensor ABS-R II Wiring-saved absolute sensor ABS-E.S1
9.1.6.2	Serial output (When absolute encoder ABS-E is used.)	Fig. 9-7-1 Fig. 9-7-2 Fig. 9-7-3	Request-signal unavailable absolute encoder ABS-E
9.1.6.3	Serial output (When absolute sensor ABS-R II is used.)	Fig. 9-8-1 Fig. 9-8.2 Fig. 9-8-3	Request-signal available absolute sensor ABS-R I
9.1.6.4	Serial output (When wiring-saved absolute sensor ABS-E.S1 is used.)	Fig. 9-9-1 Fig. 9-9-2 Fig. 9-9-3	Wiring-saved absolute sensor ABS-E.S1

9.1.6.1 Pulse Output

CN1-3 to 8 output 90° phase difference 2-phase pulses (A- and B-phases) and the home position (C-phase) pulse .

Not specified for about 1s after the control power is turned on.

9.1.6.2 Serial Output (When the ABS-E Absolute Encoder Is Used)

One of the two position signal outputs can be selected using the remote operator. When FUNC5 bit 7 on Page 6 in Mode 2 of the remote operator is set at 0, start-stop synchronization is selected. When bit 6 is set at 1, Manchester coding synchronization is selected. For details, refer to Func5 in "7.2.3 Parameter List". The specifications are as follows:

(1) Output specifications (9600 bps • 1 Mbps)

Table 9-2 (1) Start-stop Synchronization Output (9600 bps) Specifications

Transmission system	Start-stop synchronization
Baud rate	9600 bps
Number of transfer frames	6 frames (11 bits/frame)
Transfer format	See Fig. 9-7-1
Transmission error check	(1 bit) even parity
Transfer time	6.9 ms (Typ.)
Transfer cycle	9.2 ms (See Fig. 9-7-3 (1).)
Incremental direction	Increased at forward revolution

Table 9-2 (2) Manchester Coding Synchronization Output (1 Mbps) Specifications

Transmission system	Manchester coding synchronization
Baud rate	1 Mbps
Number of transfer frames	2 frames (25 bits/frame)
Transfer format	See Fig. 9-7-2.
Transmission error check	(3 bits) CRC error check
Transfer time	66 μs (Typ.)
Transfer cycle	84 μs±2 μs(See Fig. 9-7-3 (2).)
Incremental direction	Increase at forward revolution

Forward revolution means counterclockwise rotation as viewed from the motor shaft. When the absolute value increases to the maximum, it returns to the minimum (0).

- (2) Transfer format (9600 bps 1 Mbps)
- (2-1) Start-stop synchronization (9600 bps)
- ① Configuration in a frame

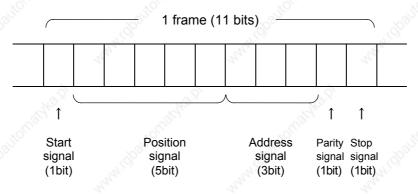


Fig. 9-7-1 (1) Frame Configuration of Start-stop Synchronization (9600 bps)(ABS-E)

2 Configuration in each frame

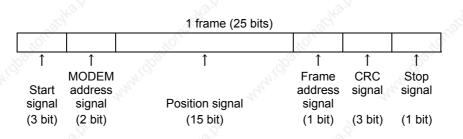
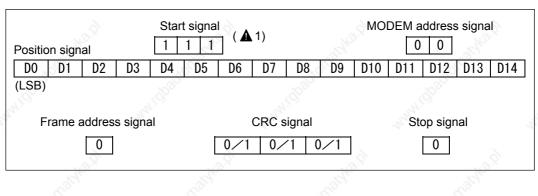

Start signal		Pos	sition sig	gnal			Addres signa		Parity signal	Stop signal
•Frame 1 0	DO	D1	D2	D3	D4	0	0	0	0/1	1
74	(LSB)				24				24	
·Frame 2 0	D5	D6	D7	D8	D9	1	0	0	0⁄1	1
·Frame 3 0	D10	D11	D12	D13	D14	0	NP.	0	0/1	1 34
·Frame 4 0	D15	D16	D17	D18	D19	1	1	0	0/1	J.
·Frame 5 0	D20	D21	D22	D23	BATE	0	0	1	0/1	1
				(MSB)						
•Frame 6 0	SOT	0	WAR	0	0	1	0	1	0/1	1

Fig. 9-7-1 (2) Transfer Format of Start-stop Synchronization (9600 bps)(ABS-E)

	D0 to D10	One-revolution absolute va	alue
	D11 to D23		alue
	BATE	Battery alarm	
	SOT	Absolute value range over	
Š	WAR	Battery warning	
100	" Par	Sec.	Sec.


(2-2) Manchester coding synchronization (1 Mbps)

① Configuration in a frame

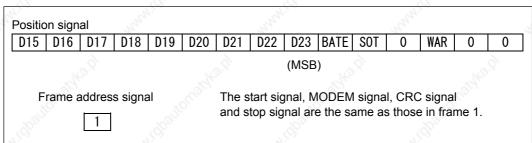
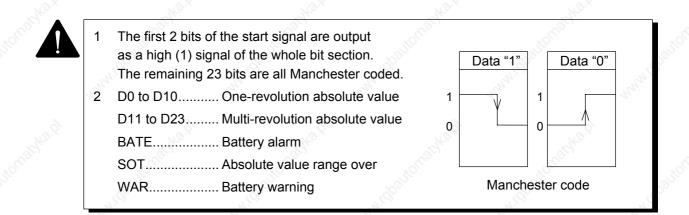
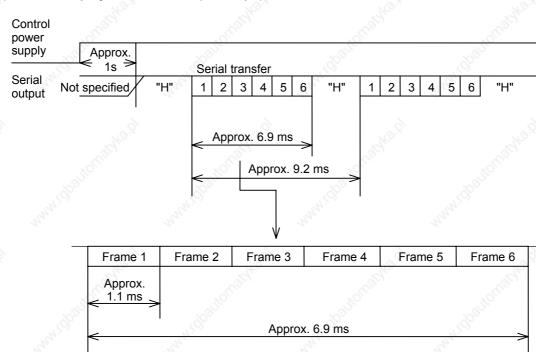


Fig. 9-7-2 (1) Frame Configuration of Manchester Coding Synchronization (1Mbps) (ABS-E)


- 2 Configuration in each frame
 - Frame 1

• Frame 2



9-16

(3) Transfer cycle (9600 bps • 1 Mbps)

(3-1) Start-stop synchronization (9600 bps)

Fig. 9-7-3 (1) Transfer Cycle of Start-stop synchronization (9600 bps) (ABS-E)

(3-2) Manchester coding synchronization (1 Mbps)

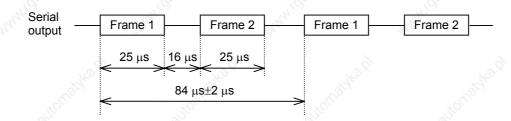


Fig. 9-7-3 (2) Transfer Cycle of Manchester Coding Synchronization (1 Mbps) (ABS-E)

The serial output is not specified for about 1 sec after the power is turned on. Communication does not always start with frame 1 in 1 sec.

9.1.6.3 Serial Output (When the ABS-R I Absolute Sensor Is Used)

One of the two position signal outputs can be selected using the remote operator. When FUNC5 bit 7 on Page 6 in Mode 2 of the remote operator is set at 0, start-stop synchronization is selected. When bit 6 is set at 1, Manchester coding synchronization is selected. For details, refer to Func5 in "7.2.3 Parameter List". The specifications are as follows:

(1) Serial output specifications

Table 9-3 (1) Start-stop Synchronization Output (9600 bps) Specifications

Transmission system	Start-stop synchronization					
Baud rate	9600 bps					
Number of transfer frames	6 frames (11 bits/frame)					
Transfer format	See Fig. 9-8-1.					
Transmission error check	(1 bit) even parity					
Transfer time	6.9 ms (Typ.)					
Transfer cycle	9.2 ms (See Fig. 9-8-3 (1).)					
Incremental direction	Increased at forward revolution					

Table 9-3 (2) Manchester Coding Synchronization Output (1 Mbps) Specifications

Transmission system	Manchester coding synchronization					
Baud rate	1 Mbps					
Number of transfer frames	2 frames (25 bits/frame)					
Transfer format	See Fig. 9-8-2.					
Transmission error check	(3 bits) CRC error check					
Transfer time	66 μs (Typ.)					
Transfer cycle	84 μs±2 μs(See Fig. 9-8-3 (2).)					
Incremental direction	Increase at forward revolution					

Forward revolution means counterclockwise rotation as viewed from the motor shaft.

- (2) Transfer format
- (2-1) Start-stop synchronization (9600 bps)
- ① Configuration in a frame

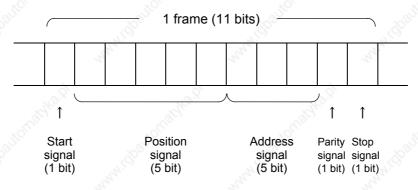
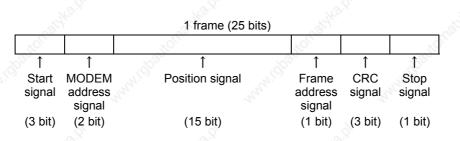


Fig. 9-8-1 (1) Frame Configuration of Start-stop Synchronization (9600bps) (ABS-RI)

2 Configuration in each frame

Start signal		Pos	ition sig	gnal	300	50		ldres igna		Parity signal	Stop signal
·Frame 1 0	D0	D1	D2	D3	D4	Γ	0	0	0	0/1	1
4	(LSB)			4						6	
•Frame 2 0	D5	D6	D7	D8	D9		1	0	0	0⁄1	1
·Frame 3 0	D10	D11	D12	D13	D14	Ľ	0	્યો	0	0⁄1	1
·Frame 4 0	D15	D16	D17	D18	D19		1	1	0	0⁄1	1
all a second		25			à	57				25	<u> </u>
·Frame 5 0	D20	D21	D22	D23	D24		0	0	1	0/1	1
	25				355	_				all a	
·Frame 6 0	D25	0	0	AW0	AW1		1	0	1	0⁄1	1
	(MSB)										


Fig. 9-8-1 (2) Start-stop Synchronization (9600 bps) Transfer Format (ABS-RI)

	S.	50	.20		Q°	
	D0 to D1	2One-rev	olution abso	lute value		
	D13 to D	25Multi-rev	olution abso	olute value		
		(In the case o	f 8192FMT s	sensor)		
of ab			AW0	AW1	-offer	
13 ⁰³⁵		Battery alarm	0	1	Constant of the second s	
and C.		Sensor error	Outp	ut low	0	
19.		Normal	0	0		
L	. À	, à		<u>è</u>	2	

9-19

(2-2) Manchester coding synchronization (1 Mbps)

① Configuration in a frame

Fig. 9-8-2 (1) Frame Configuration of Manchester Coding Synchronization (1Mbps)(ABS-RI)

- ② Configuration in each frame
 - Frame 1

Position sign	al		Start 1	t signa 1 1	ا مُ (۱	.1)		24	MODEM address signal				
D0 D1 (LSB)	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14
Frame a	addres	s signa	al			CRC s	signal			Stop	o signa	I	
	0	2		[0/1	0/	´ 1 (0⁄1		2	0		

• Frame 2

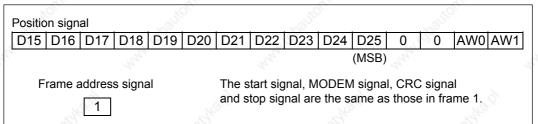
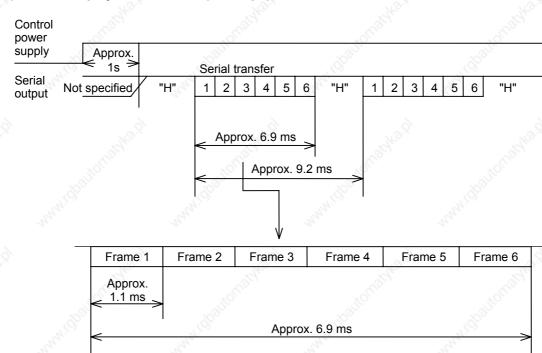



Fig. 9-8-2 (2) Transfer Format of Manchester Coding Synchronization (1 bps) (ABS-R I)

The first 2 bits of the start signal are output as a high (1) signal of the whole bit section. 1 The remaining 23 bits are all Manchester coded. Data "1" Data "0" 2 D0 to D12...... One-revolution absolute value D13 to D25...... Multi-revolution absolute value 1 (In the case of 8192FMT sensor) 0 0 AW0 AW1 Battery alarm 0 1 Manchester code Output low Sensor error Normal 0 0

9-20

(3) Serial PS Transfer Cycle

(3-1) Start-stop synchronization (9600 bps)

Fig. 9-8-3 (1) Transfer Cycle of Start-stop Synchronization (9600 bps) (ABS-R II)

(3-2) Manchester coding synchronization (1 Mbps)

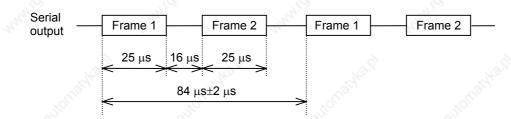


Fig. 9-8-3 (2) Transfer Cycle of Manchester Coding Synchronization (1 Mbps) (ABS-R II)

The serial output is not specified for about 1 sec after the power is turned on. Communication does not always start with frame 1 in 1 sec.

9.1.6.4 Serial Output (When the ABS-E.S1 Absolute Sensor Is Used)

One of the two position signal outputs can be selected using the remote operator. When FUNC5 bit 7 on Page 6 in Mode 2 of the remote operator is set at 0, start-stop synchronization is selected. When bit 6 is set at 1, Manchester coding synchronization is selected. For details, refer to Func5 in "7.2.3 Parameter List". The specifications are as follows:

(1) Serial output specifications

Table 9-4 (1) Start-stop Synchronization Output (9600 bps) Specifications

Transmission system	Start-stop synchronization
Baud rate	9600 bps
Number of transfer frames	6 frames (11 bits/frame)
Transfer format	See Fig. 9-9-1.
Transmission error check	(1 bit) even parity
Transfer time	6.9 ms (Typ.)
Transfer cycle	9.2 ms (See Fig. 9-9-3 (1).)
Incremental direction	Increased at forward revolution

Table 9-4 (2) Manchester Coding Synchronization Output (1 Mbps) Specifications

Transmission system	Manchester coding synchronization						
Baud rate	2 Mbps						
Number of transfer frames	2 frames (25 bits/frame)						
Transfer format	See Fig. 9-9-2.						
Transmission error check	(3 bits) CRC error check						
Transfer time	25 μs (Typ.)						
Transfer cycle	42 μs±2 μs(See Fig. 9-9-3 (2).)						
Incremental direction	Increase at forward revolution						

Forward revolution means counterclockwise rotation as viewed from the motor shaft.

Specifications for the ABS-E.S1 Wiring-saved Absolute Sensor are as follows:
One revolution: 32768 divisions (15 bits), Mutli-revolution: 65536 rotations (16 bits)
When combined with the PY2 Servo Amplifier, however, the product will be operated in the following specifications because of the limited communication specifications:
One revolution: 32768 divisions (15 bits), Multi-revolution: 8192 rotations (13 bits)

When the product is used in the application requiring no multi-revolution data under the setting of Func6 Bit5 = 1 (Mode2 Page7) without battery connected (when used in one-revolution mode);

- Even if one revolution mode is set, error or warning bit may be set at the data output from the serial position signal (CM1-9, 10 pins). This causes no problem in the operation of the Servo system. When one revolution mode is set, make the upper system exclude these bits.
- When one revolution mode is set, multi-revolution data may change suddenly. Do not use the multi-revolution data at the upper system.

(2) Transfer format

(2-1) Start-stop synchronization (9600 bps)

① Configuration in a frame

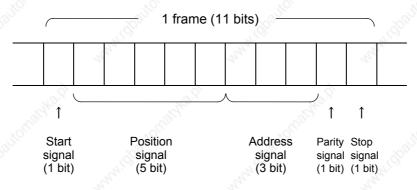
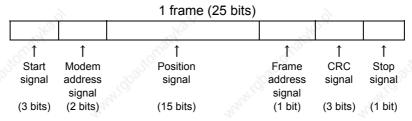


Fig. 9-9-1 (1) Start-stop Synchronization (9600bps) Frame Configuration (ABS-E.S1)

2 Configuration in each frame

Start signal		Pos	ition się	gnal	.8°	55		ddres ignal	-	Parity signal	Stop signal
·Frame 1 0	D0	D1	D2	D3	D4		0	0	0	0/1	1
	(LSB)										
•Frame 2 0	D5	D6	D7	D8	D9		1	0	0	0⁄1	1
·Frame 3 0	D10	D11	D12	D13	D14	Ľ	0	1	0	0⁄1	1
·Frame 4 0	D15	D16	D17	D18	D19	Ľ	ি	1	0	0⁄1	্শি
					. d	37	· .	-	-		9
•Frame 5 0	D20	D21	D22	D23	D24		0	0	1	0/1	1
alar.			-		And Carl	-				And Carl	
•Frame 6 0	D25	D26	D27	AW0	AW1		1	0	1	0/1	1
	(MSB)										


Fig. 9-9-1 (2) Start-stop Synchronization (9600 bps) Transfer Format (ABS-E.S1)

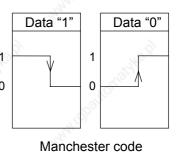
	- A A A A A A A A A A A A A A A A A A A			
aballe .	D0 to D14One-rev	olution absolut	e value(15bit)
and the second	D15 to D27Multi-rev	olution absolu	te value(13bi	t)
(*) (*)	(In the case	of 8192FMT s	ensor)	
		AW0	AW1	12 and
E.	Battery alarm	0	1	St.
10.		1 5	1	1000
apar.	Sensor error	Outp	ut low	and and a second
and in the second second	Battery Warning	1	0	
	Normal	0	0]
		•	2	
	. (b [*])		-3°	. B.

9-23

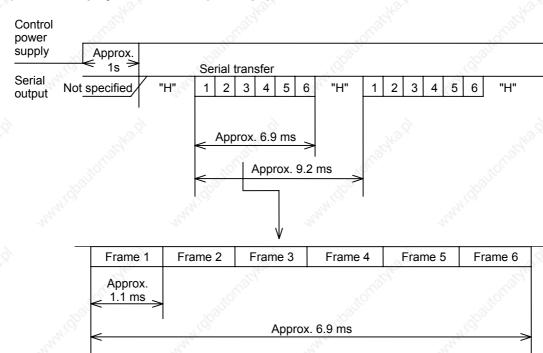
(2-1) Manchester Coding Synchronization (2 bps)

① Configuration in a frame

Fig. 9-9-2 (1) Manchester Coding Synchronization (2 Mbps) Frame Configuration (ABS-E.S1)


(2) Configuration in each frame

				Start	signa	∣ ⊣ (▲	1)			MO	DEM a	ddres	s signa	I
Positio	n sign	al		1	1 1	(0	0		
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D1
(LSB)														
Ę	rame a	ddres	s signa	al 🛒			CRC s	ignal			Sto	op sigi	nal	
		0			[0⁄1	0/	(1 0	/1			0		
Frame	e 2		22				14				200			
	n sign	al			N	2			24	<u>,</u> 2			NO	Ì,
Positio		D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	AW0	AW
	D16													
	D16			, Dauth	55					(MSB)				
D15	D16 rame a		s signa	i Sparte	5					1 signa	I, CRC			


Fig. 9-9-2 (2) Manchester Coding Synchronization (2 Mbps) Transfer Format (ABS-E.S1)

Λ	10	The first 2 bits of the start signal are output as a hi The remaining 23 bits are all Manchester coded.	gh (1) signal of	the	whole bit section.	Ş
	2	D0 to D14One-revolution absolute value	Data "1"		Data "0"	
		D15 to D27Multi-revolution absolute value	1	1	NP N	

<i>S</i>	AW0	AW1			
Battery alarm	0 %	1			
Sensor error	1	1 .1			
Sensor error	Output low				
Battery warning	1	0			
Normal	0	0			

(3) Serial PS Transfer Cycle

(3-1) Start-stop synchronization (9600 bps)

Fig. 9-9-3 (1) Transfer Cycle of Start-stop Synchronization (9600 bps) (ABS-E.S1)

(3-2) Manchester coding synchronization (2 Mbps)

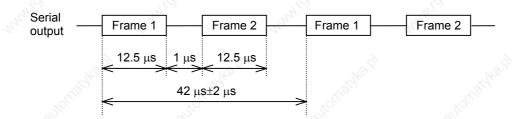
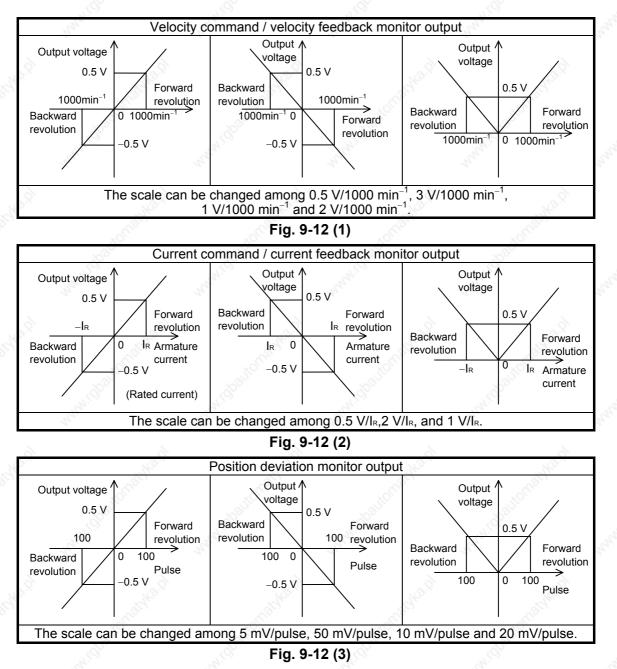


Fig. 9-9-3 (2) Transfer Cycle of Manchester Coding Synchronization (2 Mbps) (ABS-E.S1)

The serial output is not specified for about 1 sec after the power is turned on. Communication does not always start with frame 1 in 1 sec.

9.1.7 Monitor Output

- The contents of outputs from monitor 1 (MON1) and monitor 2 (MON2) can be selected by the remote operator.
- Monitor 1 and 2 outputs are convenient for selecting a check pin on the controller.
- Outputs can be changed on Page 3 in Mode 2 (Func2) or Page 0 or 1 in Mode 4 of the remote operator. See Pages 1 and 2 in Mode 4 in "7.2.3 Parameter List".


(1) Velocity, torque and position deviation monitor

Refer to Fig 9-12 (1) to (3).

The velocity command outputs internal data of the amplifier, which are different from the values generated by the VCMD monitor of the remote operator.

In the SOFF state, the monitor output value is zero.

When the control power is turned on or off, the monitor output is unfixed.

(2) Regenerative load factor monitor output

The regenerative load factor monitor output is convenient for checking the effective power of the regenerative resistor.

Regenerative load factor monitor signals are output as follows:

Effective power of regenerative resistor/Monitor reference power (W) = 0.3 V (The monitor reference power is set at the value listed in Table 9-5.) The output voltage is updated every second.

The effective power of the regenerative resistor is typically calculated as follows:

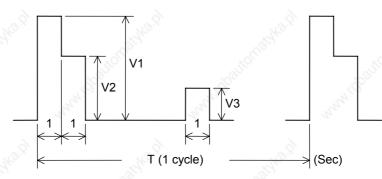


Fig. 9-12 (4)

When the power is measured as in the figure above, the following calculation is possible:

Effective power of regenerative resistor (W) = $\frac{V1 + V2 + V3}{T \times 0.3}$ × Monitor reference power (W)

The result is acceptable if it is within the allowable effective power of the regenerative resistor.

When T (1 cycle) is 1 second or shorter, measure the effective power by repeating cycles for more than 1 second.

The regenerative resistor load factor monitor assumes that the regenerative resistor values are as in the table below.

Table 9-5 Regenerative Resistor Value and Monitor Reference Power of Each Amplifier Capacity

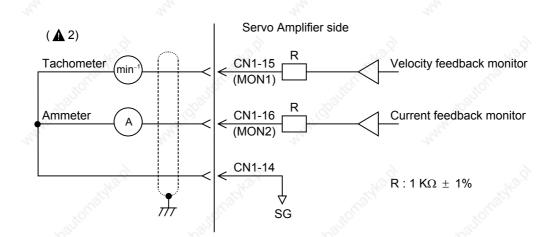
Type of amp	PY2A015 PY2E015	PY2A030 PY2E030	PY2A050		
Resistance value (Ω)	100 Ω	50 Ω	20 Ω		
Monitor reference power	Func2 bit 4 = 0	5 W	5 W	20 W	
	Func2 bit 4 = 1	10 W	10 W	40 W	

* For the allowable effective power of an external regenerative resistor, refer to "Table 9-21 External Regenerative Resistor Combination Table".

* After switching, Func2 bit 4 is enabled by turning on the control power supply again.

2 Since the maximum output voltage of the analog monitor is 3 V, if the power consumption with a regenerative resistor in a second exceeds 10 times of the reference power, it will continue for the next 1 second.

3 The regenerative load factor monitor may cause errors of $\pm 30\%$.


- 4 The monitor reference power changes depending on the regenerative resistor OL time select in Func2 bit 4.
- 5 When the built-in regenerative resistor is used, use the built-in regenerative resistor absorbing power monitor RegP (Mode5 Page17) of the remote operator.

(3) Typical monitor applications

This section explain typical applications of the velocity and current monitor.

Speed and current measurement

When connecting a measuring instrument to the velocity or current feedback monitor, use a both-swing type CD voltmeter and connect it as in Fig. 9-12 (5). In this case, use a shielded wire and make the wiring as short as possible.

Fig. 9-12 (5) Typical Connection of Monitor and Measuring Instrument

- Current feedback monitor output (CN1 16) ±0.5 V±20%/rated armature current.
- Velocity feedback monitor output (CN1 15) ±0.5 V±20%/1000 min⁻¹.
- The maximum monitor output voltage is ±3 V.

- When the contents of the monitor output are changed using the remote operator or PC interface, the contents of CN1-15 and CN1-16 are also changed. So, When the above use is employed for CN1-15 and CN1-16, change the contents carefully so as not to damage the measuring instrument.
- 2 For measuring the velocity/current monitor, use a DC voltmeter (both-swing type) of 10 k Ω or more.
- 3 When the control power is turned on or off, the monitor output becomes unfixed, outputting about ± 5.5 V.

When any measuring instrument is connected, be careful not to damage it.

9-28

9.1.8 Position Control Type Specifications

This section explains how to handle command pulses and other signals for the position control type.

(1) Command pulses

Three types of signals can be input as command pulses

ANNA C	Command pulse type	Input pin No. CN1-	For motor forward revolution command	For motor backward revolution command	PMOD in Mode 2 on Page 0 of remote operator 1 2
<u>,</u>	Backward revolution pulse train	28 29	"L"	<u>È</u>	Bit 6 = 0
ware good	+ forward revolution pulse train	26 27		L"	Bit 5 = 0
direction bit		28 29			Bit 6 = 1
	forward revolution pulse	26 27	"H"	"L"	Bit 5 = 0
dif two	"90°" phase difference	28 29	90° - 7 K - 	90° **	Bit 6 = 0
	two-phase pulse train 🛕 1	26 27			Bit 5 = 1

Fig. 9-13 Command Pulse Type

In case of a 90° phase difference two-phase train input, the multiplier is basically set at 4.
 For details, see page 7-43 of this manual.

(2) Command pulse timing

Each command pulse timing is as follows .

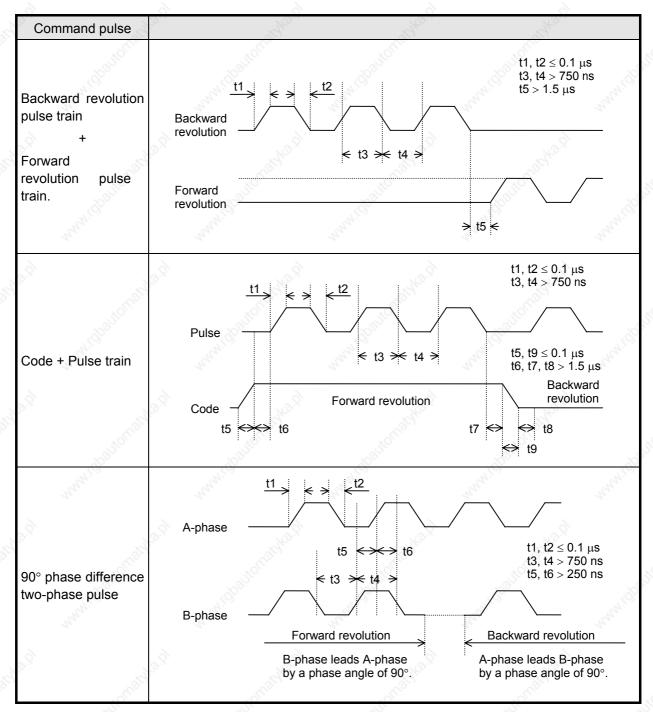
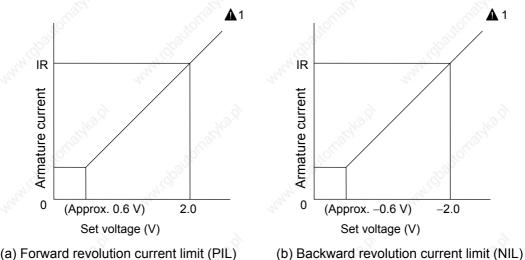


Fig. 9-14 Command Pulse Timing

The above values apply only when screen mode 2-0 (PMOD) (digital filter DFC1 and $0 = 00^{\circ}$, and bit 7 = 0°) is selected.


(3) External analog current limit input

Both the forward revolution driving current (positive side current) and the backward revolution driving current (negative current) can be independently limited externally (when parameter Func1 bit0 is set at "1").

Regarding the relationship with the motor armature current, the current is limited to 2 V/rated current (IR) by the applied motor.

The same limit value for the backward revolution driving current as that for forward revolution can be selected. Switching of the polarity between positive and negative (see the Func1 parameter in Chapter 7) is also possible.

Fig. 9-15 shows the relationship between the set voltage and the current limit value.

(when negative polarity is selected)

Fig. 9-15 Set Voltage and Current Limit Value

- 1 If a value exceeding the instantaneous maximum stall armature current (Ip) of the Servomotor is set, the system is saturated at Ip.
- 2 To lock the motor by means of a bump stop by applying an external current limit, set the current limit value below the rated armature current.

(4) Torque compensation input

For the characteristics of the torque compensation input and motor generation torque, see Fig. 9-17 (the same as the torque command input of the torque command type). This input is effective for decreasing the acceleration time or switching the quadrant.

(5) General specifications of CN1 input/output signals

This section explains the general specifications of CN1 input/output signals of the position control type. Fig. 9-16 shows the circuit types of CN1 input/output signals and Tables 9-6 and 9-7 describe the general specifications.

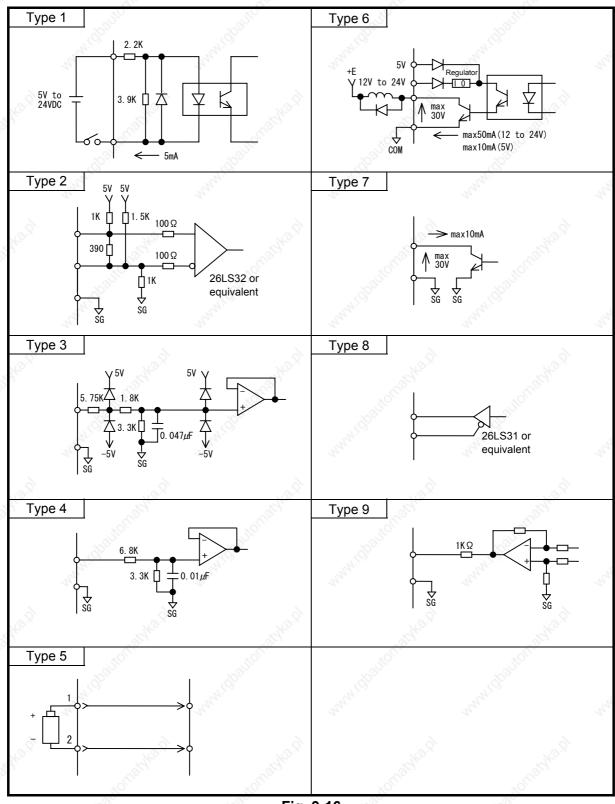


Fig. 9-16

Table 9-6General Specifications of Position Control Type Input Signals
(Incremental Encoder) 1/2

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specification	
Forward revolution pulse train command	PPC PPC	26 27	Type 2	Pulse train for forward revolution	
Backward revolution pulse train command	NPC NPC	28 29	Type 2	Pulse train for backward revolution	
Torque compensation	TCOMP	22 (20)	Type 3	The rated torque (TR) is obtained by inputting $\pm 2V$, bu is limited by the maximum instantaneous stall torque. To enable torque compensation, Func1 bit 6 must be set at 1.	
Servo ON	SON	37 (23)	Type 1	Servo ON status is provided by closing the contact, ar entering the pulse train waiting status.	
Alarm reset	RST	30 (23)	Type 1	With this signal input, alarm code or alarm bit outputs and an error display are reset.	
Deviation clear	CLE	34 (50)	Type 1	By inputting the contact close signal for 2 ms or more, the contents of the deviation counter can be cleared to zero.	
Forward revolution overtravel Backward revolution overtravel	PROT NORT	32 (23) 33 (23)	Type 1	Contact open status is provided upon occurrence of overtravel. Input both the forward and backward revolution signals. When overtravel occurs, a 120% current limit is automatically applied, inhibiting the commands to the side to which this signal has been input. (This function can be canceled or changed into an a-contact input by setting the remote operator.)	
WWI COST		Mary 1 BOOT			
External overheating detection	EOH	35 (50) 36 (23)	Type 1 For 35 and 36 pins, one	Normal operation while input is on. The external overheating alarm state is assumed when input is turned off.	
Proportional control (standard)	PCON		of the four functions can be selected by	With this signal input, the velocity lo proportional control.	oop becomes
Command multiplier	PMUL	4 ⁴⁴ ⁴¹ , BO	setting the remote operator.	With this signal input, command pu the magnification ratio set on page screen mode 1.	
Command pulse inhibit	INH		2	Inputting command pulses is inhibited.	
Forward revolution current limit	PIL	18 (17)	Type 4	The current is limited to the rated current at +2 V (effective when ILM is input).	To enable the external current
Backward revolution current limit	NIL	19 (17)	Type 4	Current is limited to the rated current at -2 V (effective when ILM is input).	limit, Func1 bit 0
Current limit permit	ILM	31 (23)	Type 1	The current is limited by closing the contact. It is ineffective during JOG or overtravel (the limit method is based on Func1 parameter).	
Input sequence power supply 1	5 to	23	Call No. Y	External power supply for CN1-30, 31, 32, 33, 36 and 37.	
Input sequence power supply 2	24 VDC	50	or	External power supply for CN1-34 and 35.	

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-16.

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specification	
Monitor 1	MON1	15 (14)	Туре 9	0.5V±20%/1000 min ⁻¹ (velocity monitor).	
		3	S	Load: less than 2 mA. Output resistance: 1 K Ω .	
		.88		Positive voltage at forward revolution	
Monitor 2	MON2	16 (14)	Туре 9	0.5V±20%/rated current (current monitor).	
4		24		Load: Less than 2 mA. Output resistance: 1 K Ω .	
10.	2		12.2	Positive voltage when forward revolution power is output.	
Start ready completes	SRDY	41 (24) (25)	Type 6	When the "Servo ON signal" is ready to receive after the DC power supply of the main circuit is turned on, this comes on and goes low impedance.	
Current limit status	ILIM	40 (24) (25)	Туре 6	This signal comes on in current limit status and is effective as a bump end input or a standard for prevention against current saturation at acceleration/deceleration.	
Encoder signal	$A, \overline{\overline{A}}$	3, 4	Type 8	Output by the line driver (26LS31) after the encoder pulse is divided.	
		5, 6 7, 8	5, 6 7, 8	The signal is received by the line receiver (26LS32).	
Encoder channel C signal	COP	11 (13)	Type 7	Output by the open collector (the logic can be reverse using the Func5 bit 6 parameter).	
Alarm code output or alarm bit output	ALM1	43 (24) (25)	Туре 6	Alarm code output and alarm bit output (ALM1) are switched by Func2 bit 6 of the remote operator. The	
	ALM2 ALM4 ALM8	44 45 46	542.0	alarm bit signal turns off in an alarm status. The alarm code outputs various alarms as 4-bit binary codes.	
Positioning complete	INP	39 (24) (25)	Type 6	This signal indicates that the contents of the deviation counter have come within the setting range.	
Holding brake relay excitation timing output	HBON	42 (24) (25)	Туре 6	This signal outputs holding brake relay excitation timing.	
Output sequence power supply	12 to 24 VDC 5 V	49 38		External power supply for CN1-39, 40, 41, 42, 43, 44, 45 and 46.	
Velocity addition	VCOMP	21 (20)	Туре 3	1000 min ^{-1} is selected with entry of ±2 V (standard setting). In order to enable velocity addition, Func1 bit 7 must be set at 1.	

Table 9-6General Specifications of Position Control Type Input Signals
(Incremental Encoder) 2/2

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-16.

The output contents depend on the Func4 parameter setting.

(6) General Specifications of CN1 Input/Output Signals (ABS-E Absolute Encoder, ABS-R II Absolute Sensor and ABS-E.S1 Wiring-saved Absolute Sensor)

This section explains the general specifications of CN1 input/output signals of the position control type

Table 9-7 General Specifications of Position Control Type Input Signal

(ABS-E Absolute Encoder, ABS-R I Absolute Sensor and ABS-E.S1 Wiring-saved Absolute Sensor) 1/2

<u> </u>		. S.		0, 0,	
Signal name	Abbr.	Pin No. *1	Circuit type *2	General specificati	on
Forward revolution pulse train command	PPC PPC	26 27	Type 2	Pulse train for forward revolution.	6
Backward revolution pulse train command	NPC NPC	28 29	Type 2	Pulse train for backward revolution.	and the
Torque compensation	TCOMP	22 (20)	🔊 Туре 3	The rated torque (TR) is obtained by is limited by the maximum instantan To enable torque compensation, Fun at "1".	eous stall torque.
Servo ON	SON	37 (23)	Type 1	Servo ON status is provided by closi entering the pulse train waiting statu	
Alarm reset	RST	30 (23)	Type 1	With this signal, alarm code or alarm error display are reset.	bit outputs and an
Deviation clear	CLE	34 (50)	Type 1	By inputting the contact close signal the contents of the deviation counter zero.	for 2 ms or more, can be cleared to
Forward revolution overtravel Backward revolution overtravel	PROT	32 (23) 33 (23)	Type 1	Contact open status is provided upo overtravel. Input both the forward a revolution signals. When overtrave current limit is automatically applied, commands to the side to which this (This function can be canceled or ch a-contact input by setting the remote	and backward I occurs, a 120% inhibiting the signal has been inpu anged into an
Encoder clear (standard)	ECLR	35 (50) 36 (23)	Type 1	Inputting this signal for over 4 secon encoder revolution counter (multiple a battery alarm ("U") occurs, input th the alarm.	ds will clear the revolution). When
External overheating detection	EOH		36 pins, one of the five functions can be	Normal operation while input is on. The external overheating alarm state input is turned off.	e is assumed when
Proportional control (standard)	PCON		selected by setting the remote	With this signal input, the velocity loo proportional control.	op becomes
Command multiplier	PMUL		operator.	With this signal input, command puls the magnification ratio set on page 5 screen mode 1.	ses are multiplied by in Parameter set
Command pulse inhibit	INH			Inputting command pulses is inhibite	d.
Forward revolution current limit	PIL	18 (17)	Type 4	The current is limited to the rated current at +2 V (effective when ILM is input).	To enable the external current
Backward revolution current limit	NIL	19 (17)	Type 5	Current is limited to the rated current at -2 V (effective when ILM is input).	limit, Func1 bit0 must be set at "1".
Current limit permit	ILM	31 (23)	Type 1	The current is limited by closing the ineffective during JOG or overtravel based on the Func1 parameter).	contact. It is (the limit method is
Battery power	BAT+ BAT–	1 2	Type 10	This signal connects a 3.6 VDC equ 2000 mAH from Toshiba Battery is r	
Input sequence power supply 1	5 to	23	10.D	External power supply for CN1-30, 3 37.	
Input sequence power supply 2	24 VDC	50	on ab	External power supply for CN1-34 a	nd 35.

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-16.

Table 9-7General Specifications of Position Control Type Input Signal(ABS-E Absolute Encoder, ABS-RII Absolute Sensor and ABS-E.S1 Wiring-savedAbsolute Sensor) 2/2

A	20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Signal name	Abbr.	Pin No. *1	Circuit type *2	General specification
Monitor 1	MON1	15 (14)	Type 9	0.5 V \pm 20%/1000 min ⁻¹ (velocity monitor). Load: less than 2 mA. Output resistance: 1 K Ω . Positive voltage at Forward revolution
Monitor 2	MON2	16 (14)	Туре 9	0.5 V±20%/rated current (current monitor). Load: Less than 2 mA. Output resistance: 1 KΩ. Positive voltage when forward revolution power is output.
Start ready complete	SRDY	41 (24) (25)	Type 6	When the "Servo ON signal" is ready to receive after the DC power supply of the main circuit is turned on, this comes on and goes low impedance.
Current limit status	ILIM	40 (24) (25)	Type 6	This signal comes on in current limit status and is effective as a bump end input or a standard for prevention against current saturation at acceleration / deceleration.
Encoder signal	A, <u>A</u> B, <u>B</u> C, C	3, 4 5, 6 7, 8	Type 8	Output by the line driver (26LS31) after the encoder pulse is divided. The signal is received by the line receiver (26LS32).
Absolute value signal	PS PS	9 10	Type 8	The absolute value signal is output in serial form (9600 bps or 1 M/2 Mbps) by the line driver (26LS31). The signal is received by the line receiver (26LS32).
Encoder channel C signal	COP	11 (13)	Type 7	Output by the open collector (the logic can be reversed using the Func5 bit6 parameter).
Alarm code output or Alarm bit output	ALM1 ALM2 ALM4 ALM8	43 (24) (25) 44 45 46	Type 6	Alarm code output and alarm bit output (ALM1) are switched by Func2 bit6 of the remote operator. The alarm bit signal turns off in an alarm status. The alarm code outputs various alarms as 4-bit binary codes.
Positioning complete	INP	39 (24) (25)	Туре 6	This signal indicates that the contents of the deviation counter have come within the setting range.
Holding brake excitation timing output	HBON	42 (24) (25)	Туре 6	This signal outputs holding brake relay excitation timing.
Output sequence power supply	12 to 24 VDC 5 V	49 38	on ¹⁰	External power supply for CN1 - 39, 40, 41, 42, 43, 44, 45, and 46.
Velocity addition	VCOMP	21 (20)	Туре 3	1000 min ^{-1} is selected with entry of ±2 V (standard setting). In order to enable velocity addition, Func1 bit7 must be set at 1.

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-16.

The output contents depend on the Func4 parameter setting.

9.1.9 Velocity/Torque Control Type Specifications

This section explains how to handle input commands and other signals for the velocity/torque control type.

(1) Input command specifications

① Torque command input

Fig. 9-17 shows the torque command/motor-generated torque characteristics. The torque command voltage is a voltage input from torque terminals CN1 - 22 and 20. Positive motor torque (+) means torque that is generated in the counterclockwise direction when viewed from the load side.

The polarity can be switched by parameter Func5 bit0.

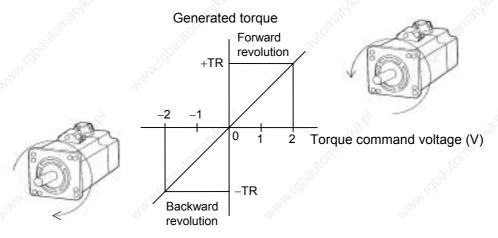


Fig. 9-17 Torque Command - Generated Torque

2 Velocity command input

Fig. 9-18 shows the velocity command/motor revolution speed characteristics. The velocity command voltage is a voltage input from velocity command input terminals CN1 - 21

and 20. The positive motor revolution (+) means counterclockwise revolution when viewed from the load side. The polarity can be switched by Func5 bit1 parameter.

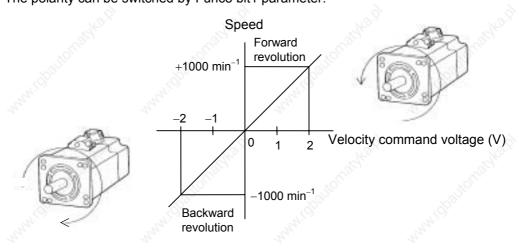
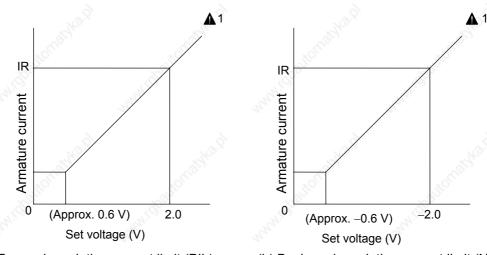


Fig. 9-18 Velocity Command - Speed Characteristics



When the velocity command voltage is tens of mV or less, the motor lock current may pulsate. If this is problematic, the current pulsation can be reduced by increasing the velocity command scale (VCMD).

(2) External analog current limit input

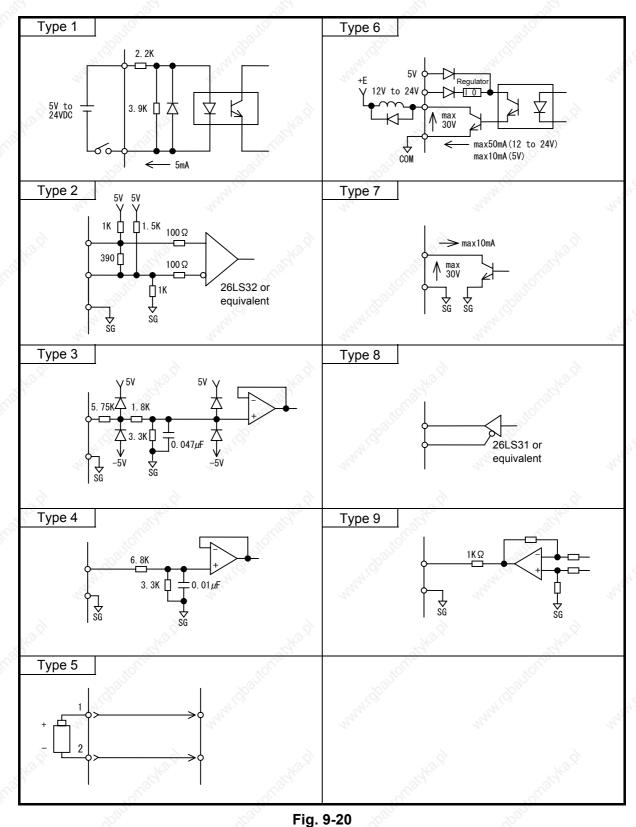
The forward revolution driving current (positive side) and the backward revolution driving current (negative side) can both be independently limited externally (when parameter Func1 bit0 is set at "1"). Regarding the relationship with the motor armature current, the current is limited to 2 V/the rated current (IR) by the applied motor. The same limit value for the backward revolution driving current as that for forward revolution can be selected. Switching of the polarity between positive and negative is also available (see the description of Func1 in chapter 7).

Fig. 9-19 shows the relationship between the set voltage and the current limit value.

(a) Forward revolution current limit (PIL)

(b) Backward revolution current limit (NIL) (when negative polarity is selected)

Fig. 9-19 Relationship Between Set Voltage and Current Limit Value


- 1 If a set value exceeds the instantaneous maximum stall armature current (Ip) of the Servomotor, it is saturated at Ip.
- 2 To lock the motor by means of a bump stop by applying an external current limit, the current limit value must be below the rated armature current.

(3) Torque compensation input

For the torque compensation input/motor-generated torque characteristics, refer to Fig. 9-17 (the same as the torque command input of the torque control type). This input is effective for increasing the acceleration time or switching the quadrant.

(4) General specifications of CN1 input/output signals

This section explains the general specifications of CN1 input/output signals of the position control type. Fig. 9-20 shows the circuit types of CN1 input/output signals, and Tables 9-8 and 9-9 describe the general specifications.

5

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specifica	ation
Speed command	VCMD	21 (20)	💛 Туре 3	With a ±2 V input, the velocity bec the standard setting (maximum inp	
Torque compen- sation Torque command	TCOMP TCMD	22 (20)	Type 3	With a ± 2 V input, the velocity bec (TR) and is limited to the instantar torque.	
Servo ON	SON	37 (23)	Type 1	Servo ON status is provided by clo entering the velocity command inp status.	
Alarm reset	RST	30 (23)	Type 1	With this signal input, alarm code and error display are reset.	or alarm bit outputs
Forward revolution current limit	PIL	18 (17)	Type 4	The current is limited to the rated current at +2 V (effective when ILM is input).	To enable the external current
Backward revolution current limit	NIL	19 (17)	Type 4	The current is limited to the rated current with -2 V (effective when ILM is input).	
Current limit permit	ILM	31 (23)	Type 1	The current is limited by closing the contact. It is ineffective during JOG or overtravel (The limit method is based on the Func1 parameter).	
Forward revolution overtravel Backward revolution overtravel	PROT	32 (23) 33 (23)	Type 1	Contact open status is provided upon occurrence of overtravel. Input both forward and backward revolu signals. When overtravel occurs, a 120% current lin is automatically applied, making the speed of the sid which this signal has been input zero. (This function can be canceled or changed into an a-contact input by setting the remote operator.)	
External overheating detection	EOH	35 (50) 36 (23)	Type 1	Normal operation while input is on The external overheating alarm sta input is turned off.	
Proportional control (standard)	PCON	wat boat	36 pins, one of the four functions can be selected by setting the remote	When the motor drifts during a lon command input zero, inputting this motor by friction torque. (Functio control type)	signal stops the
Zero clamp	ZCMD		operator.	Inputting this signal makes the spe (zero). (Function disabled for tor	
Internally set velocity select	VCS2 / VCS1		onabkal	Combining CN1 - 35 and 36 input desired internally set velocity to be disabled for torque control type)	
Input sequence power supply 1	5 to 24 VDC	23	—	External power supply for CN1 - 3 37.	0, 31, 32, 33, 36 and
Internal velocity command revolution direction	ROTS	34 (50)	Type 1	This signal specifies the revolution internal velocity command is turne	

Table 9-8 General Specifications of Velocity Control Type Input Signal (Wiring-saved Incremental Encoder) 1/2

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-20.

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specification
Monitor 1	MON1	15 (14)	⊻ Туре 9	0.5 V \pm 20%/1000 min ⁻¹ (velocity monitor). Load: less than 2 mA. Output resistance: 1 k Ω . Positive voltage at foreword revolution
Monitor 2	MON2	16 (14)	Type 9	0.5 V \pm 20%/rated current (current monitor). Load: Less than 2 mA. Output resistance: 1 k Ω . Positive voltage when forward revolution power is output.
Start ready completes	SRDY	41 (24) (25)	Type 6	When the "Servo ON signal" is ready to receive after the DC power supply of the main circuit is turned on, this comes on and goes low impedance.
Current limit status	ILIM	40 (24) (25)	Type 6	This signal comes on in current limit status and is effective as a bump end input or a standard for prevention against current saturation at acceleration / deceleration.
Encoder signal	A, <u>A</u> B, <u>B</u> C, C	3, 4 5, 6 7, 8	Type 8	Output by the line driver (26LS31) after the encoder pulse is divided. The signal is received by the line receiver (26LS32).
Encoder channel C signal	COP	11 (13)	Type 7	Output by the open collector (the logic can be reversed using the Func5 bit6 parameter).
Alarm code output or Alarm bit output	ALM1 ALM2 ALM4 ALM8	43 (24) (25) 44 45 46	Type 6	Alarm code output and alarm bit output (ALM1) are switched by Func2 bit6 of the remote operator. The alarm bit signal turns off in an alarm status. The alarm code outputs various alarms as 4-bit binary codes.
Low velocity	LTG	39 (24) (25)	Type 6	When the motor speed becomes lower than the set value, this signal goes to low impedance.
Holding brake relay excitation timing output	HBON	42 (24) (25)	Туре 6	This signal outputs holding brake relay excitation timing.
Output sequence power supply	12 to 24 VDC	49	1. Hand	External power supply for CN1 - 39, 40, 41, 42, 43,
10 ¹⁰	5 V	38	of Carrie	44,45 and 46.

Table 9-8General Specifications of Velocity Control Type Input Signal
(Wiring-saved Incremental Encoder) 2/2

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-20.

The output contents depend on the Func4 parameter setting.

(5) General Specifications of CN1 Input/Output Signals (ABS-E Absolute Encoder, ABS-R I Absolute Sensor and ABS-E.S1 Wiring-saved Absolute Sensor)

This section explains the general specification of CN1 input/output signals of the velocity control type.

Table 9-9 General Specifications of Velocity Control Type Input Signal (ABS-E Absolute Encoder, ABS-R I Absolute Sensor and ABS-E.S1 Wiring-saved Absolute Sensor) 1/2

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specificati	on
Speed command	VCMD	21 (20)	Туре 3	With a ±2 V input, the velocity becon the standard setting (maximum input	
Torque compen- sation Torque command	TCOMP TCMD	22 (20)	Туре 3	With a ± 2 V input, the velocity becom (TR). It is limited to the instantaneous torque.	nes the rated one
Servo ON	SON	37 (23)	Type 1	Servo ON status is provided by closi entering the velocity command input status.	ng the contact and (VCMD) waiting
Alarm reset	RST	30 (23)	Type 1	With this signal input, alarm code or and an error display are reset.	alarm bit outputs
Forward revolution current limit	PIL	18 (17)	Type 4	The current is limited to the rated current at +2 V (effective when ILM is input).	To enable the external current
Backward revolution side current limit	NIL	19 (17)	Type 5	The current is limited to the rated current with -2 V (effective when ILM is input).	limit, Func1 bit0 must be set at "1".
Current limit permit	ILM	31 (23)	Type 1	The current is limited by closing the It is ineffective during JOG or overtra method is based on the Func1 parar	avel (the limit 📣
Forward revolution overtravel Backward revolution overtravel	PROT NORT	32 (23) 33 (23)	Type 1	Contact open status is provided upo overtravel. Input both the forward a revolution signals. When overtrave current limit is automatically applied, of the side to which this signal has b (This function can be canceled or ch a-contact input by setting the remote	nd backward l occurs, a 120% making the speed een input zero. anged into an
Encoder clear (standard)	ECLR	35 (50) 36 (23)	Type 1 For 35 and 36 pins, one	Inputting this signal for over 4 secon encoder revolution counter (multiple a battery alarm ("U") occurs, input th the alarm.	ds will clear the revolution). When
External overheating detection	EOH		of the five functions can be selected by	Normal operation while input is on. The external overheating alarm state input is turned off.	e is assumed when
Proportional control (standard)	PCON		setting the remote operator.	When the motor drifts during a long s command input zero, inputting this s motor by friction torque. (Function control type)	ignal stops the disabled for torque
Zero clamp	ZCMD			Inputting this signal makes the speed (zero). (Function disabled for torqu	e control type)
Internally set velocity select	VCS2 / VCS1		adhard	Combining CN1 - 35 and 36 input sig desired internally set velocity to be s disabled for torque control type)	gnals enables a elected. (Function
Battery power	BAT+ BAT–	1 2	Type 10	This signal connects a 3.6 VDC equi (ER6 2000 mAH from Toshiba Batter	y is recommended).
Input sequence power supply 1	5 to	23		External power supply for CN1 - 30, 37.	31, 32, 33, 36 and
Input sequence power supply 2	24 VDC	50		External power supply for CN1 - 35.	24
Internal velocity command revolution direction	ROTS	34 (50)	Type 1	This signal specifies the revolution d internal velocity command is turned	

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-20.

Table 9-9General Specifications of Velocity Control Type Input Signal(ABS-E Absolute Encoder, ABS-R IAbsolute Sensor and ABS-E.S1 Absolute Sensor) 2/2

Signal name	Abbr.	Pin No. *1	Circuit type *2	General specification
Monitor 1	MON1	15 (14)	[∞] Type 9	0.5 V \pm 20%/1000 min ⁻¹ (velocity monitor). Load: less than 2 mA. Output resistance: 1 k Ω . Positive voltage at foreword revolution
Monitor 2	MON2	16 (14)	Type 9	0.5 V±20%/rated current (current monitor). Load: Less than 2 mA. Output resistance: 1 kΩ. Positive voltage when forward revolution power is output.
Start ready complete	SRDY	41 (24) (25)	Type 6	When the "Servo ON signal" is ready to receive after the DC power supply of the main circuit is turned on, this comes on and goes low impedance.
Current limit status	ILIM	40 (24) (25)	Туре 6	This signal comes on in current limit status and is effective as a bump end input or a standard for prevention against current saturation at acceleration/deceleration.
Encoder signal	A, Ā B, <u>B</u> C, C	3, 4 5, 6 7, 8	Type 8	Output by the line driver (26LS31) after the encoder pulse is divided. The signal is received by the line receiver (26LS32).
Absolute value signal	PS PS	9 10	Type 8	The absolute value signal is output in serial form (9600 bps or 1 M/2 Mbps) by the line driver (26LS31). The signal is received by the line receiver (26LS32).
Encoder channel C signal	COP	11 (13)	Type 7	Output by the open collector (the logic can be reversed using the Func5 bit6 parameter).
Alarm code output or Alarm bit output	ALM1 ALM2 ALM4 ALM8	43 (24) (25) 44 45 46	Type 6	Alarm code output and alarm bit output (ALM1) are switched by Func2 bit6 of the remote operator. The alarm bit signal turns off in an alarm status. The alarm code outputs various alarms as 4-bit binary codes.
Low velocity	LTG	39 (24) (25)	Type 6	When the motor speed becomes lower than the set value, this signal goes to low impedance.
Holding brake relay excitation timing output	HBON	42 (24) (25)	Туре 6	This signal outputs holding brake relay excitation timing
Output sequence power supply	12 to 24 VDC	49		External power supply for CN1 - 39, 40, 41, 42, 43, 44
and C.	5 V	38		45 and 46.

*1 The pin numbers in parentheses denote the ground or common side of each signal.

*2 For the circuit type, see Fig. 9-20.

The output contents depend on the Func4 parameter setting.

9.1.10 Switching of the Control Mode

This section explains how to switch the control mode between velocity and torque control, torque and position control, and position and velocity control. This section also provides precautions on implementing the switching.

9.1.10.1 Switching the Control Type

CN1 input signal is used for the switching. When switching the control type using the input to CN1 - 35 pins, set Func3 bit7 at "1". When CN1 - 36 pin input is used, Func3 bit7 is set at "0". Each control mode switching pattern and its input signal equivalent are shown in the following table.

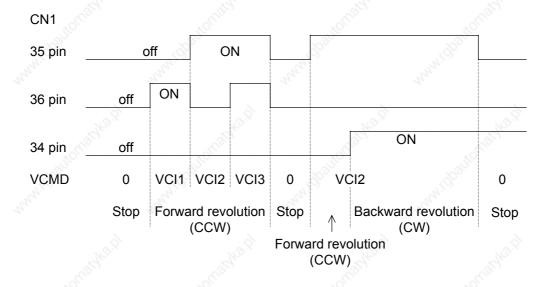
Switching pattern	OFF	ON
$Velocity \leftrightarrow Torque$	Velocity	Torque
Position \leftrightarrow Torque	Position	Torque
Position \leftrightarrow Velocity	Position	Velocity

9.1.10.2 Precautions

- Utmost care must be taken in the switching procedure.
- During the test mode (JOG or Tune) is on, switching of the control mode is not available.
- When the switching takes place from velocity or position control to torque control, the velocity will be limited in accordance with the set value of speed limit on the parameter (Mode 1 Page 6).

(As the motor speed exceeds this set value, the torque command is forced to zero.)

The speed limit is provided for the purpose of error detection when a radical change develops under a given load (to no load or light load status) to prevent motor runaway.


This function, however, is not capable of running the motor at a constant speed.

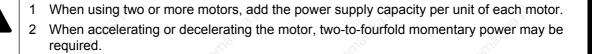
If a relatively small value is set as the speed limit, and if the torque command value is large relative to the load inertia and load torque, the motor speed may exceed this set value. Do not keep using the motor in this situation over a long time period. When you don't turn on the speed limit, the speed limit value must be set at 32767 min^{-1} .

- Note that there is a maximum of 12 msec delay between changing the input signal and completion of control mode switching.
- During the switching of control mode (input signal is ON), the test mode (JOG or Tune) is not available. The screen will display the "Not Ready" message.

9.1.11 Internal Velocity Command

Combining external input signals (3 bits), this command is capable of selecting speed (parameter) and direction.

The CN1 35 and 36 pins are used for selecting the speed, and 34 pin is used for selecting the revolution direction.


- Note 1: This function is enabled when parameter Func3 bits3, 2, 1 and 0 are all set at "1010" in the velocity control mode. In this case, the polarity reverse function of the external analog velocity command, the velocity command scale and the velocity command are all disabled.
- Note 2: If there is a lag between input timing to the CN1 35 and 36 pins, another speed can be selected. Switching of the signal must take place simultaneously.
- Note 3: Note that there is a 12 msec maximum delay from changing the input signal to completion of control mode switching.

9.1.12 Power Supply Capacity

Table 9-10 shows the input power supply capacity under load at the rated output.

C.o.	C.	Power supply capa	acity per unit
Amplifier model No.	Motor model No.	Main circuit power supply (KVA)	Control power supply (VA)
Ser.	P10B10030H	1.0	State State
254	P30B04003D	0.2	
	P30B04005D	0.2	
3	P30B04010D	0.3	
in the second	P30B06020D	0.5	
PY2A015	P50B03003D	0.2	
(When 200 VAC)	P50B04006D	0.3	40
	P50B04010D	0.4	
State -	P50B05005D	0.3	
22	P50B05010D	0.4	
-	P50B05020D	0.8	
2	P50B07020D	0.8	
3	P50B07030D	1.0	
	P10B10075H	1.9	all and a second s
30	P10B13050H	1.3	
30	P10B13050B	1.3	
- Arres	P10B13100B	2.5	
12	P20B10100H	2.5	
PY2A030	P30B06040D	1.0	
(When 200 VAC)	P30B08075D	1.7	40
(P50B07040D	1.3	Store Store
See.	P50B08040D	1.3	
1 ⁵⁰	P50B08050D	1.5	
S.	P50B08075H	2.0	
and a state of the	P50B08100H	2.2	
24	P60B13050H	1.4	
	P80B15075H	1.8	
8	P10B13100H	2.5	S. 6.
E.	P10B13150H	3.0	
- Sho	P10B13150B	3.0	
and the second s	P20B18200B	4.0	
S.S.	P20B10100D	2.5	
PY2A050	P20B10150D	3.0	40
(When 200 VAC)	P20B10150H	3.0	
(P20B10200H	4.0	
2	P50B08075D	2.0	
29	P50B08100D	2.5	
. St.	P60B13100H	2.5	
waller -	P60B13150H	3.9	
S. S. S.	P80B18120H	3.5	

Table 9-10 Power Supply Capacity (1/2)

6	8	Power supply cap	bacity per unit 💦 👌
Amplifier model No.	Motor model No.	Main circuit power supply (KVA)	Control power supply (VA)
NO.	P30B04003P	0.2	10
100	P30B04005P	0.3	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
PY2E015	P30B04010P	0.5	A.C.
(When 100 VAC)	P50B03003P	0.2	40
	P50B04006P	0.3	40
6	P50B04010P	0.5	6
N. S.	P50B05005P	0.3	No
C. C	P50B05010P	0.5	S. C. C.
30	P30B06020P	1.0	350
PY2E030	P50B05020P	1.0	40
(When 100 VAC)	P50B07020P	1.0	40
32	P50B07030P	1.5	4

 Table 9-10
 Power Supply Capacity (1/2)

When using two or more motors, add the power supply capacity per unit of each motor.
 When accelerating the motor, two-to-fourfold momentary power may be required.

Table 9-11 Rush Current

		B B B
Amplifier model name	Control circuit (maximum value within 1mS after power on) *3	Main circuit (maximum value within 600mS after power on)
PY2A015	40 A (0 - P) * ¹	23 A (0 - P) * ¹
PY2A030	40 A (0 - P) * ¹	23 A (0 - P) * ¹
PY2A050	40 A (0 - P) * ¹	23 A (0 - P) * ¹
PY2E015	20 A (0 - P) * ²	17.2 A (0 - P) * ²
PY2E030	20 A (0 - P) *2	17.2 A (0 - P) * ²

1 The leakage current is maximum when 230 VAC is supplied.

2 The leakage current is the maximum when 115 VAC is supplied.

3 A thermistor is used for the leakage current prevention circuit of the control power supply.

If the temperature of the thermistor remains high such as when turning the power supply on immediately after turning it off, or when turning the power supply on and off repeatedly in a short period, a leakage current higher than that given in the above table may flow.

9.1.13 Servo Amplifier/Servomotor Leakage Current

Since the PY2 servo amplifier drives the motor under the PWM control of the IGBT, high frequency leakage current can flow through the ground floating capacity of the motor winding, power cable or amplifier, thereby causing a malfunction of the leakage circuit breaker or leakage protective relay installed on the power line on the power supply side. Therefore, use a leakage circuit breaker that matches the inverter so as not to cause such a malfunction.

Amplifier model No.	Motor model No.	Leakage current per motor
to the	P10B□□□□□□◇▽▽	0.5 mA
PY2A015	P20B□□□□□□◇▽▽	0.5 mA
PY2A030	P30B□□□□□□◇▽▽	0.5 mA
PY2E015	P50B□□□□□□\$▼▼	0.5 mA
PY2E030	P60B□□□□□□◇▽▽	0.5 mA
	P80B□□□□□□◇▽▽	0.5 mA
S. S	P10B□□□□□□◇▽▽	1.5 mA
	P20B□□□□□□◇▽▽	1.5 mA
PY2A050	P30B□□□□□□\$▽▽	1.5 mA
PTZAUSU	P50B□□□□□□◇▽▽	1.5 mA
	P60B□□□□□□◇▽▽	1.5 mA
and the	P80B□□□□□□◇▽▽	1.5 mA
*0,	×0`` ×0``	*0

Table 9-12 Leakage Current

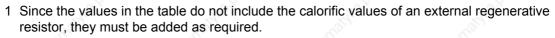
1 When using two or more motors, add the leakage current per unit of each motor.

- 2 Since the above table shows the values in the case of a 2-meter cabltyre cable, the leakage current will increase or decrease if a shorter or longer cable is used. Therefore, the values shown in Table 9-12 are just the reference values.
- 3 Be sure to execute grounding (Class 3) of the machine so that a dangerous voltage may not leak to the machine body or operating panel.
- 4 The values shown in Table 9-12 are those measured with an ordinary leak checker with filter 700 Hz).

9.1.14 Calorific Value

Table 9-13 shows the calorific values of the PY2 Servo Amplifier under the rated load.

Motor model No	Total calorific values of Servo Amplifier (W)	
Wotor moder No.		
P30B04003D	15	
P30B04005D	16	
P30B04010D	19	
P30B06020D	26	
P50B03003D	15	
P50B04006D	16	
	18	
	17	
	19 🛇	
	22	
	26	
	27	
	30	
	48	
	40	
	34	
	50	
	45	
	32	
	45	
	34	
	35	
	39	
	41	
	46	
	43	
	54	
	78	
	103	
	75	
	97	
	68	
	82	
	70	
	88	
	59	
	67	
	74	
	89	
P80B18120H	94	
	P30B04005D P30B04010D P30B06020D P50B03003D P50B04006D P50B05005D P50B05005D P50B050020D P50B07020D P50B07020D P50B07030D P10B10030H P10B10075H P10B13050B P10B13050B P10B13050B P10B13050B P10B13050B P10B13050B P10B13050B P10B13050B P10B13050B P10B13100B P20B10100H P30B06040D P30B08075D P50B08005D P50B08005D P50B08005D P50B08100H P60B13050H P60B13050H P10B13150H P10B13150H P10B13150H P10B13150H P10B13150H P20B1010D P20B10150D P20B10150H P20B10200H P50B08075D P50B08100D P6	


Table 9-13 Calorific Values of PY2 Servo Amplifiers (1/2)

Δ

- 1 Since the values in the table do not include the calorific values of an external regenerative resistor, they must be added as required.
- 2 When an external regenerative resistor is used, change the addition term of the external regenerative resistor calorific value depending on the installation place.
- 3 Regarding installation, strictly observe the installation procedure described in "5. Installation".

Amplifier model No.	Motor model No.	Total calorific values of Servo Amplifier (W)
- Chico	P30B04003P	19
and the second sec	P30B04005P	22
S. S.	P30B04010P	27
PY2E015	P50B03003P	19
PT2E015	P50B04006P	21
~	P50B04010P	25
N.C.S.	P50B05005P	23
and a	P50B05010P	26
201	P30B06020P	43
DV2E020	P50B05020P	37
PY2E030	P50B07020P	42
et est	P50B07030P	48


Table 9-13 Calorific Values of PY2 Servo Amplifiers (2/2)

- 2 When an external regenerative resistor is used, change the addition term of the external regenerative resistor calorific value depending on the installation place.
- 3 Regarding installation, strictly observe the installation procedure described in "5. Installation".

9.1.15 Dynamic Brake

(1) Slowing-down revolution angle by dynamic brake

- N : Motor speed (min⁻¹)
- I₁ : Slowing-down revolution angle (rad) by AMP internal processing time t_D.
- I₂ : Slowing-down revolution angle (rad) by dynamic brake operation.
- t_D : Delay time (sec) from occurrence of a signal until the start of operation.

(Based on AMP capacity. Refer to the following table.)

[Standard expression] Supposing the load torque (T_L) is zero

I

L

$$= \frac{2\pi N \cdot t_D}{60} + (J_m + J_L) \times (\alpha N + \beta N^3) \times 2$$

- : Overall slowing-down revolution angle (rad)
- J_m : Motor inertia (kg·m²)
- J_L : Load inertia (calculated in terms of motor shaft) (kg · m²)
- $\alpha \cdot \beta$: Constant related to motor. See Table 9-16.

Table 9-14

Amplifier model No.	Delay time t _D (S)
PY2A015 PY2E015	10 × 10 ⁻³
PY2A030 PY2E030	10 × 10 ⁻³
PY2A050	24 × 10 ⁻³

The slowing-down revolution angle of the PY2 amplifier is twice that of our conventional PY, PZ or PE series in the worst case.

(2) Instantaneous resistance of dynamic brake

When the load inertia (J_L) substantially exceeds the applicable load inertia, dynamic brake resistance may abnormally increase, causing an overheating alarm or damage of the dynamic brake resistance. Consult with us if such operating conditions are assumed.

The energy E_{RD} consumed by the dynamic brake operation at a single time is represented by the following expression.

E _{RD} =	2 R∳ -	$\frac{.5}{+2.5} \times \left\{ \frac{1}{2} \left(J_{m} + J_{L} \right) \times \left(\frac{2\pi}{60} N \right)^{2} - I \cdot T_{L} \right\}$
R∳ J _m	:	Motor phase winding resistance (Ω) Motor inertia (kg · m²)
J_L	:8	Load inertia (calculated in terms of motor shaft) (kg·m ²)
N	30.5	Motor speed at the feed speed V (min^{-1})

- : Overall slowing-down revolution angle (rad)
- T_L : Load torque (N·m)

Be sure to keep E_{RD} below the value in the following table.

Table 9-15

	-S-	-S*	
A	mplifier model No.	E _{RD} (J)	30
	PY2A015 PY2E015	360	hr.
10: 10:	PY2A030 PY2E030	360	
6	PY2A050	1330	
	100	10.4	

When the energy consumed by dynamic brake resistance during one dynamic braking exceeds the specified value indicated in Table 9-15, the dynamic brake may be damaged. Consult us if such operating conditions are anticipated.

(The dynamic brake will not be damaged if the load is within the range of the applicable load inertia.)

(3) Allowable frequency of dynamic brake

The allowable frequency (frequency of turning main circuit power supply on or off) of the dynamic brake should be a maximum of 10 times per hour and 50 times per day under the applicable load inertia and at the maximum speed.

As a rule of thumb, a six-minute interval shall be provided between the preceding and succeeding dynamic brake operations. If more frequent use is anticipated, the motor speed must be substantially reduced.

The following expression can be used to compute an appropriate speed.

6 minutes

(Rated motor speed/ Maximum motor speed when operating)²

(4) Dynamic brake constant table

Table 9-16 Dynamic Brake Constant Table (1/2)

Amplifier model No.	Motor model No.	α	β	J _M (Kg-m ²)
185 B	P30B04003D	114.00	60.5 × 10 ⁻⁷	0.024×10^{-4}
	P30B04005D	66.00	37.3 × 10 ⁻⁷	0.031 × 10 ⁻⁴
~300	P30B04010D	25.00	12.2 × 10 ⁻⁷	0.051×10^{-4}
	P30B06020D	12.70	17.2 × 10 ⁻⁷	0.144 × 10 ⁻⁴
and the second sec	P50B03003D	170.00	9.20 × 10 ⁻⁷	0.02×10^{-4}
DV0A045	P50B04006D	43.90	8.00×10^{-7}	0.054×10^{-4}
PY2A015	P50B04010D	27.00	5.01 × 10 ⁻⁷	0.079×10^{-4}
No.x	P50B05005D	59.20	22.8×10^{-7}	0.060×10^{-4}
S. A. S.	P50B05010D	23.00	9.29 × 10 ⁻⁷	0.098 × 10 ⁻⁴
	P50B05020D	9.78	3.86 × 10 ⁻⁷	0.173×10^{-4}
200	P50B07020D	13.00	6.14 × 10 ⁻⁷	0.398×10^{-4}
and the second sec	P50B07030D	7.27	4.41×10^{-7}	0.507×10^{-4}
23	P10B10030H	4.29	3.08 × 10 ⁻⁷	3.9 × 10 ⁻⁴
	P10B10075H	1.69	0.75×10^{-7}	14 × 10 ⁻⁴
1.8 ²	P10B13050H	1.29	1.65 × 10 ⁻⁷	12×10^{-4}
ST _ 35	P10B13050B	0.58	2.41 × 10 ⁻⁷	12 × 10 ⁻⁴
*0 ¹⁰ *	P10B13100B	0.54	1.06 × 10 ⁻⁷	25×10^{-4}
10 ⁷⁰	P20B10100B	1.61	3.59×10^{-7}	1.55×10^{-4}
	P30B06040D	4.32	6.80×10^{-7}	0.255×10^{-4}
PY2A030	P30B08075D	2.97	3.68×10^{-7}	0.635×10^{-4}
	P50B07040D	5.63	2.08×10^{-7}	0.74×10^{-4}
6 6	P50B08040D	6.34	2.95×10^{-7}	0.828×10^{-4}
He. He.	P50B08050D	4.84	1.44 × 10 ⁻⁷	1.17 × 10 ⁻⁴
Carl	P50B08075H	2.36	0.88×10^{-7}	1.93 × 10 ⁻⁴
3 ⁵⁰	P50B08100H	1.49	0.62 × 10 ⁻⁷	2.66×10^{-4}
8	P60B13050H	2.37	4.74×10^{-7}	2.8×10^{-4}
and it	P80B15075H	1.54	3.39 × 10 ⁻⁷	5.3 × 10 ⁻⁴
19	P10B13100H	1.69	0.46×10^{-7}	25×10^{-4}
S	P10B13150H	1.29	0.27 × 10 ⁻⁷	35×10^{-4}
18 ²	P10B13150B	0.58	0.61×10^{-7}	35×10^{-4}
10 A	P10B18200B	0.54	0.48 × 10 ⁻⁷	73 × 10 ⁻⁴
10	P20B10100D	3.33	1.81 × 10 ⁻⁷	1.55×10^{-4}
10 ⁰¹⁰¹	P20B10150D	2.19	1.05×10^{-7}	2.04×10^{-4}
PY2A050	P20B10150H	1.44	1.59×10^{-7}	2.04×10^{-4}
and the second s	P20B10200H	1.28	0.93×10^{-7}	2.83×10^{-4}
	P50B08075D	4.61	0.49×10^{-7}	1.93×10^{-4}
à à	P50B08100D	2.99	0.30×10^{-7}	2.66×10^{-4}
the.	P60B13100H	1.57	1.19 × 10 ⁻⁷	5.6×10^{-4}
	P60B13150H	1.08	0.60×10^{-7}	8.3 × 10 ⁻⁴
NO ¹	P80B18120H	1.63	2.06 × 10 ⁻⁷	12.1×10^{-4}

The α and β values are obtained on the assumption that the resistance value of the power line is 0 Ω .

If the combination with the amplifier is not listed in the above table, a different constant applies. In this case, consult with us.

Amplifier model No.	Motor model No.	α	β	J _M (Kg-m ²)
the star	P30B04003P	159.18	0.39 × 10 ⁻⁷	0.024×10^{-4}
- SUIS	P30B04005P	117.73	0.26 × 10 ⁻⁷	0.031 × 10 ⁻⁴
~3 ³³	P30B04010P	49.27	7.63 × 10 ⁻⁷	0.051 × 10 ⁻⁴
PY2E015	P50B03003P	210.53	7.50 × 10 ⁻⁷	0.02×10^{-4}
PTZEUIS	P50B04006P	63.32	5.55 × 10 ⁻⁷	0.054×10^{-4}
	P50B04010P	40.15	3.42×10^{-7}	0.079 × 10 ⁻⁴
- A - A	P50B05005P	86.16	0.16 × 10 ⁻⁷	0.060×10^{-4}
PX KOX	P50B05010P	39.20	5.45 × 10 ⁻⁷	0.098 × 10 ⁻⁴
	P30B06020P	39.68	5.45 × 10 ⁻⁷	0.144 × 10 ⁻⁴
PY2E030	P50B05020P	22.20	1.67 × 10 ⁻⁷	0.173 × 10 ⁻⁴
P12E030	P50B07020P	30.48	2.57 × 10 ⁻⁷	0.398 × 10 ⁻⁴
245 C	P50B07030P	24.25	1.29 × 10 ⁻⁷	0.507×10^{-4}

Table 9-16 Dynamic Brake Constant Table (2/2)

The α and β values are obtained on the assumption that the resistance value of the power line is 0 $\Omega.$

If the combination with the amplifier is not listed in the above table, a different constant applies. In this case, consult with us.

9.1.16 Regenerative Processing

Although the PY2 (15 A/30 A) has a built-in regenerative processing circuit, no regenerative resistor is provided. So, externally connect a regenerative resistor as necessary. It is recommended that one be externally connected when a 300 W or higher motor is to be driven.

Mount it between the P and Y (or COM) terminals of connector CND on the front of the amplifier. The PY2 (50 A) has a built-in regenerative resistor. However, regenerative power that cannot be absorbed by the built-in resistor may occur depending on the load inertia or the operating pattern. In such cases, connect an external regenerative resistor.

If inertia is large and sudden starting or stopping is applied without a regenerative resistor, an overvoltage alarm ("5" displayed in the 7-segment LED, alarm code "05H") may be issued. In this case, externally connect a regenerative resistor (the Servo Amplifier will not break even if an overvoltage alarm is issued).

On the Servo Amplifier without an external regenerative resistor, the main circuit power smoothing electrolytic capacitor is not instantaneously discharged when the R, S or T terminal of the main circuit power is turned off. In this case, allow more than five minutes after the main circuit power is turned off and make sure that the red LED on the front of the amplifier, which indicates whether the main circuit power is charged or not, is turned off (discharged) before removing the amplifier.

Available external regenerative resistors are introduced in 9.5. Select according to your specifications by referring to the following method of calculating regenerative power PM.

(1) Calculation of regenerative power PM

- Step 1: Calculate the regenerative energy The following is an example of how to calculate regenerative energy EM.
 - ① For horizontal shaft driving

EM	= EHb	=8	$\frac{1}{2} \times N \times 3 \cdot KE\phi \times \frac{Tb}{KT} \times tb - (\frac{Tb}{KT})^2 \times 3 \cdot R\phi$	o × tb
	EM	:	Regenerative energy at horizontal shaft driving	[J]
	EHb	:	Regenerative energy at deceleration	[J]
	KΕφ	:	Induced voltage constant	[Vrms/
	KT	:	Torque constant	[N · m//
	Ν	:	Motor speed	[min ⁻¹]
	Rφ	: 8	Armature resistance	[Ω] (m
	tb 🔬	5	Deceleration time	[s]
	Tb	:	Torque at deceleration	[N·m]
	Тс	:	Acceleration/deceleration torque	[N·m]
	тг		Eviation tanuna	TNI JAN

TF : Friction torque

[Vrms/min⁻¹] (motor constant) [N·m/Arms] (motor constant) [min⁻¹] [Ω] (motor constant) [s] [N·m] (Tb = Tc – TF) [N·m] [N·m]

② For vertical shaft driving (when a gravitational load is applied)

$EM = EVUb + EVD + EVDb$ $= \frac{1}{2} \times N \times 3 \cdot KE\phi \times \frac{TUb}{KT} \times tUb - (\frac{TUb}{KT})^2 \times 3 \cdot R\phi \times tUb$
$= \frac{1}{2} \times N \times 3 \cdot KE\phi \times \frac{TUb}{KT} \times tUb - (\frac{TUb}{KT})^2 \times 3 \cdot R\phi \times tUb$
+ N × 3 • KE ϕ × $\frac{TD}{KT}$ × tD – $(\frac{TD}{KT})^2$ × 3 • R ϕ × tD
+ $\frac{1}{2}$ × N × 3 • KE ϕ × $\frac{TDb}{KT}$ × tDb – ($\frac{TDb}{KT}$) ² × 3 • R ϕ × tDb
EM : Regenerative energy at vertical shaft driving [J]
EVUb : Regenerative energy at decelerated upward driving [J]
EVD : Regenerative energy at downward driving [J]
EVDb: Regenerative energy at decelerated downward driving [J]
TUb : Torque at decelerated upward driving [N·m]
tUb : Decelerated upward drive time [s]
TD : Torque at downward driving $[N \cdot m] (TD = TM - TF)$
tD : Downward drive time [s]
TDb : Torque at decelerated downward move [N·m]
(TDb = TC - TF + TM)
tDb : Downward drive time [s]
TM : Gravitational load torque [N·m]

If EVUb, EVD or EVDb becomes negative as a result of calculation, calculate EM after changing the value 0.

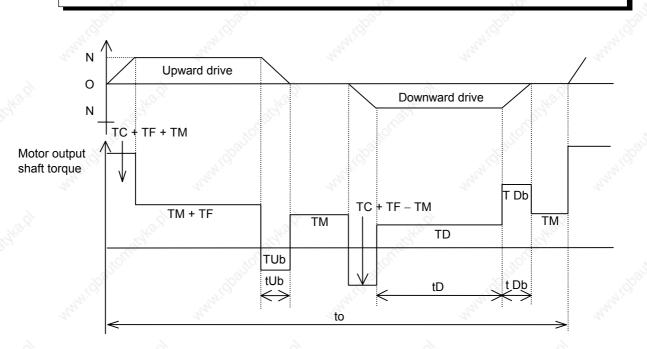


Fig. 9-22

Step 2 : Calculate the effective regenerative power

Based on the calculation obtained during regeneration, check the regenerative capacity of the regenerative resistor connected to the PY2 amplifier.

① For horizontal shaft driving

PM =	EM		
350	to		
PM	1:	Effective regenerative power	[W]
EM	1:	Regenerative energy at deceleration	[J] 🚽
to	: 5	Cycle time	[s]
Farmer	and all	aft debute a	

For vertical shaft driving

$PM = \frac{E}{t}$	M			
PM	:	Effective regenerative power	[W]	
EM	:00	Regenerative energy at upward driving, down	ward	
		driving and decelerated downward driving	[J]	
to	:	Cycle time	[s]	

(2) Selection of external regenerative resistor

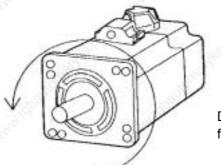
Compare the regenerative effective power obtained in steps 1 and 2 in (1) with the values in "9.5 External Regenerative Resistor Combination Table" and select an appropriate resistor.

9.2 Servomotor

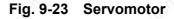
9.2.1 Common Specifications

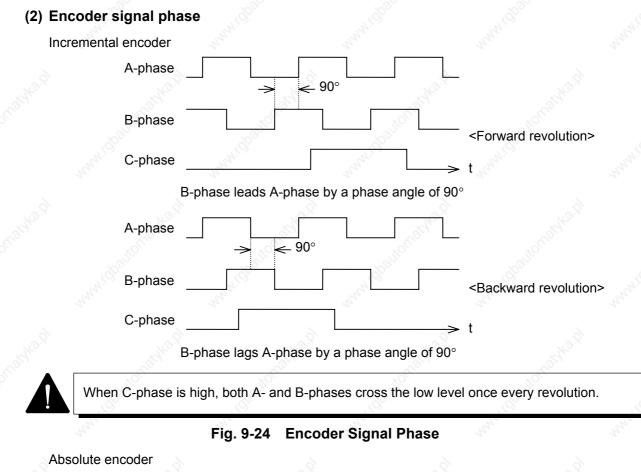
Table 9-17 Common Specifications of P3, P5, P6 and P8 Series Servomotors

Series	P1	P2	P3	P5	P6	P8
Time rating	and the second	5	Cont	inuous	. CA !! O.	
Insulation class	24		Cla	iss F	2 da	~
Dielectric strength	5	0	1500 VAC	for 1 minute		6
Insulation resistance		50	0 VDC and	10 M Ω minimu	m	Sto.
Protective system		Totally	y-enclosed a	nd self-cooling	g type 🛒 🚿	
www.dbor	IP	67 A	IP40	P50B03,04:IP40 Other than the above: IP55	IP6	57 🛦
Sealing	Prov	ided	Not provided	P50B03,04: Not provided Other than the above: Provided	Provi	ded
Ambient temperature	0 to +40°C				JION	
Storage temperature	1	8.	– 20 t	o 65°C	1900	
Ambient humidity	444	20	% to 90% (n	o condensatio	n)	1
Vibration class	V1	0	V15			2
Coating color	2	Mur	nsell N1.5 ec	uivalent (outsi	ide)	A.S.S.
Excitation system		.550	Permanent	magnet type	3.	Q
Installation method		Str. St.	Flanç	ge type	100 ⁰⁰	
		7				


Conforms to IP67 using a waterproof connector, conduit, shell, clamp, etc. for the other side.

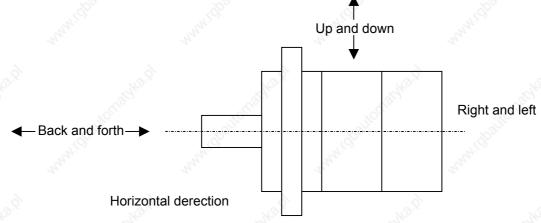
9.2.2 Revolution Direction Specifications


This section explains the direction of revolution for the Servomotor and the encoder respectively.


(1) Servomotor

The Servomotor rotates counterclockwise (forward revolution) when viewed from the load side after a command to increase a position command is input.

Direction of motor forward revolution



Forwared revolutionPosition data incremental output. Backward revolutionPosition data decremental output.

9.2.3 Motor Mechanical Specifications

(1) Vibration resistance

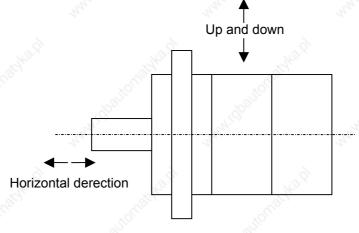

Install the Servomotor shaft horizontally as shown in Fig. 9-25 and apply vibration in 3 directions, up/down, left/right and back/forth. At this time, the Servomotor should withstand a vibration acceleration of 2.5G.

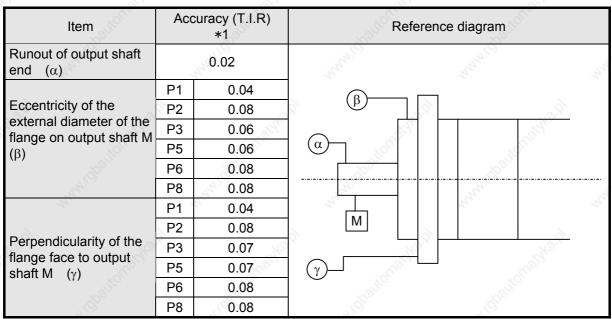
Fig. 9-25 Vibration Resistance Measurement

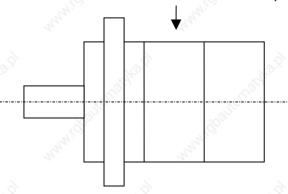
(2) Shock resistance

Install the motor shaft in the horizontal direction as shown in Fig. 9-26 and apply a shock in the up/down direction. At this time, the Servomotor should withstand an impact acceleration of 10G up to 2 times. However, since the Servomotor is provided with a precision detector on the counter-load side, if a shock is applied to the shaft, the detector may be damaged. So do not apply shock to the shaft under any circumstances.

(3) Working accuracy

Table 9-18 shows the accuracy of the Servomotor output shaft and installation.




Table 9-18

*1: T.I.R (Total Indicator Reading)

(4) Vibration class

The vibration class of the Servomotor is V 15 or less at the maximum speed when measured as a single Servomotor unit as in Fig. 9-27.

Vibration measurement position

Fig. 9-27 Vibration Measurement

(5) Mechanical strength

The output strength of the Servomotor can endure the instantaneous torque of 300% of the maximum continuous torque.

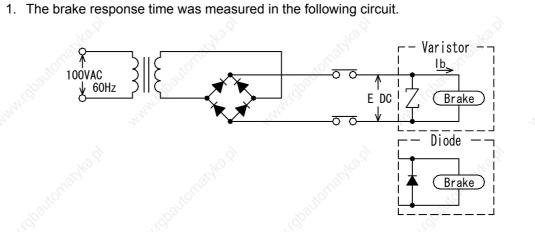
(6) Oil seal

An S-shaped oil seal as in Table 9-19 is mounted to the output shaft of the Servomotor. Use an oil seal made by NOK or equivalent.

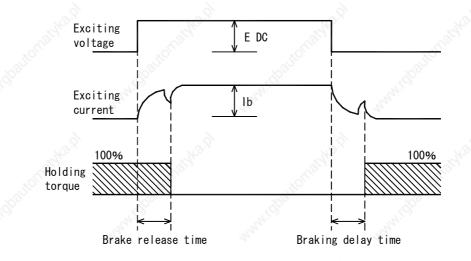
	X0. X0.
Servomotor model	Oil seal model No. (S type)
P10B10OOO□◊∇∇	AE1538E5
P10B13OOOO□◇▽▽	AE2230E0
P10B182000□◇∇∇	~
P10B18350〇□◇▽▽	AE2965F1
P10B18450〇□◇▽▽	
P10B18550〇□◇▽▽	AE3459A5
P20B10OOO□◇▽▽	AC1306E0
P30BOOOOO□◇▽▽	AN AN
P50B03OOO□◇▽▽	(None)
P50B04OOO□◇▽▽	No.
P50B05OOO□◇▽▽	AC0382A0
P50B07OOO□◇▽▽	AC0687A0
P50B08OOOO□◇▽▽	AC0875A0
P60B13OOO□◊∇∇	AND IN AND
P60B15OOOO□◇▽▽	AC1677E1
P80B15OOOO□◇▽▽	
P60B18OOOO□◇▽▽	AC2368E1
P80B18OOOO□◇▽▽	AC2368E0

Table 9-19 Oil Seals

9.2.4 Holding Brake Specifications


An optional holding brake is available for each motor. Since this brake is used for holding, it cannot be used for braking except in an emergency. Turn brake excitation on and off using the holding brake timing signal output.

When the signal is used, forcibly set the command to 0 min^{-1} in the Servo Amplifier while the brake is released.


To externally control the holding brake, a response time as in Table 9-20 is required. When using a motor with a brake, determine the timing sequence taking this response delay time into account.

	Model No.	Static friction	Brake release	Braking delay	time (msec)
		torque	time	Varister	Diode
	P10B10030	3.9	40	30	120
	P10B10075	5.9	40	50	120
P1	P10B13050		4	2	
ГТ	P10B13100	8.8	100	30	140
	P10B13150	2		2	
	P10B18200	32.4	120	40	150
	P20B10100	3.92	40	30	120
P2	P20B10150	7.84	100	30	140
	P20B10200	/.04	100	30	140
550	P30B04003	0.098	and a second	24	
1	P30B04005	0.157	25	15	100
P3	P30B04010	0.32		8	
P3	P30B06020	0.637	30	20	120
	P30B06040	1.274	30	20	120
	P30B08075	2.38	40 💉	20	200
	P50B03003	0.098	25	15	60
3	P50B04006	0.191	25	15	100
252	P50B04010	0.319	25	15	100
	P50B05005	0.167			
	P50B05010	0.252	15	10	100
	P50B05020	0.353	3	3	
P5	P50B07020	0.69	S.		- Allo
	P50B07030	0.09	25	15	100
	P50B07040	0.98	, S	. Č	
34	P50B08040	1.37	1998	, chart	
2	P50B08050	1.96	20	20	200
	P50B08075	2.94	30	20	200
	P50B08100	2.94		N. O.X.	
	P60B13050	3.5	40 📈	30	120
	P60B13100	9.0	70 💉	30	130
P6	P60B13150	9.0	200	8	8
Po	P60B13200	10.0	100	30	140
- Sal	P60B18200	12.0	All	44	
	P60B18350	32.0	120	40	150
De	P80B15075	0.0	70	20	400
P8	P80B18120	9.0	70	30	130

Table 9-20 Holding Brake Specifications

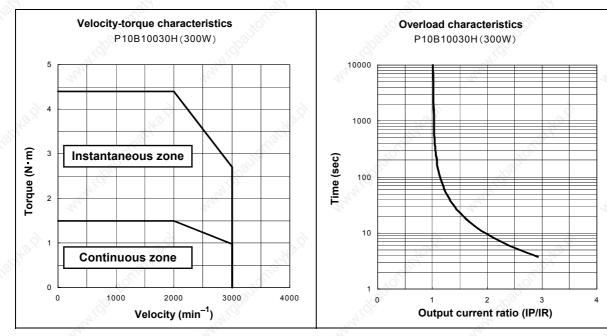
2. The brake release and braking delay time refers to those in the Fig. below.

3. The brake release time is the same for both the varistor and the diode.

9.2.5.1 Motor Data Sheet

The following tables show the various constants for each motor. When the motor is used beyond the applicable load inertia, make sure that the dynamic brake instantaneous resistance is not exceeded.

	and the			P10B10030H		
Name	Symbol	Data	Unit	Data	Unit	
* Rated output	P _R	300	V Solution	300	W	
Rated revolution speed	NR	2000	∭ min ^{−1}	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm 🔬	
* Rated torque	T _R	1.5	N∙m	15	kg∙cm	
 Continuous stall torque 	Ts	1.5	N∙m	15	kg∙cm	
* Instantaneous maximum stall torque	T _P	4.4	N·m 🔗	45	kg∙cm	
 Rated armature current 	I _R	2.7	Arms	2.7	Arms	
* Continuous stall armature current	ls	2.5	Arms	2.5	Arms	
 Instantaneous maximum stall armature current 	I _P	7.9	Arms	7.9	Arms	
Torque constant	KT	0.67	N ⋅ m/Arms	6.8	kg∙cm/Arms	
Induced voltage constant	Κ _{Εφ}	23.4	mV/min ⁻¹	23.4	V/krpm	
Phase armature resistance	R_{ϕ}	3.63	Ω	3.63	Ω	
Electrical time constant	t _e	1.9	msec	1.9	msec	
Mechanical time constant (not including sensor)	t _m	9.6	msec	9.6	msec	
Inertia (including wiring-saved INC)	J _M	3.98×10^{-4}	kg⋅m²(GD²/4)	4.08	g·cm·s ²	
Inertia (including ABS-E)	JM	4.0×10^{-4}	kg⋅m²(GD²/4)	4.1	g·cm·s ²	
Inertia (including ABS-RII)	J _M	3.98×10^{-4}	kg⋅m²(GD²/4)	4.08	g∙cm∙s²	
Applicable load inertia	JL	$J_{M}\times 5$	kg⋅m²(GD²/4)	$J_{M} \times 5$	g∙cm∙s²	
Weight (including wiring-saved INC)	W _E	5.1	kg	5.1	kg	
Weight (including ABS-E)	W _E	5.0	kg	5.0	kg	
Weight (including ABS-RII)	WE	5.2	kg	5.2	kg	


Holding Brake Data Sheet (Option)

Holding torque	T _B	3.9 or more	N·m	40 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	IB	0.76/0.23	A(DC)	0.76/0.23	A(DC)
Inertia	JB	0.34×10^{-4}	kg⋅m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg	0.8	kg

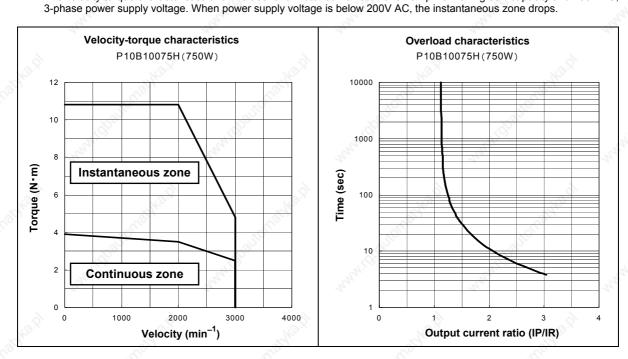
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
 Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.

The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P1

P10B10075H


19. · · · · · · · · · · · · · · · · · · ·						
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	750	W	750	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm 💦	
Rated torque	TR	3.5	N∙m	36	kg∙cm	
Continuous stall torque	Ts	3.9	N·m	40 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	10.8	N∙m	110	kg∙cm	
Rated armature current	. S I _R	5.1	Arms	5.1	Arms	
Continuous stall armature current	Is	5.2	Arms	5.2	Arms	
Instantaneous maximum stall armature current	I _P	15.5	Arms	15.5	Arms	
Torque constant	Κ _T	0.81	N·m/Arms	8.3	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	28.5	mV/min ⁻¹	28.5	V/krpm	
Phase armature resistance	R _φ	1.05	Ω	1.05	Ω	
Electrical time constant	te	3.0	msec	3.0 🔬	msec	
Mechanical time constant (not including sensor)	tm	6.5	msec	6.5	msec	
Inertia (including wiring-saved INC)	J _M	14.08×10^{-4}	kg⋅m²(GD²/4)	14.08	g∙cm∙s²	
Inertia (including ABS-E)	J _M	14.1×10^{-4}	kg⋅m²(GD²/4)	14.1	g∙cm∙s²	
Inertia (including ABS-RII)	J _M	14.08×10^{-4}	kg⋅m²(GD²/4)	14.08	g∙cm∙s²	
Applicable load inertia	J_{L}	$J_{M} \times 4$	kg·m²(GD²/4)	$J_M \times 4$	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	9.9	kg	9.9	kg	
Weight (including ABS-E)	W _E	9.8	kg	9.8	kg	
Weight (including ABS-RII)	WE	10.0	kg	10.0	kg	

Holding Brake Data Sheet (Option)

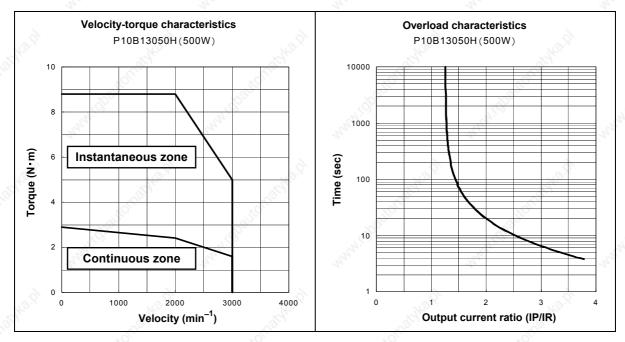
Holding torque	Τ _B	3.9 or more	N∙m	40 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.76/0.23	A(DC)	0.76/0.23	A(DC)
Inertia	J _B	0.34×10^{-4}	kg⋅m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg 🔬	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P10B13050H

	and and a second s			I TOD TOOOO		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	500	W	500	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	TR	2.4	N∙m	24	kg∙cm	
Continuous stall torque	Ts	2.9	N·m	30 💉	kg∙cm	
Instantaneous maximum stall torque	TP	8.8	N∙m	90	kg∙cm	
Rated armature current	l _R	4.0	Arms	4.0	Arms	
Continuous stall armature current	Is	4.6	Arms	4.6	Arms	
Instantaneous maximum stall armature current	I _P	15.1	Arms	15.1	Arms	
Torque constant	K _T	0.72	N·m/Arms	7.3	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	25.1	mV/min ⁻¹	25.1	V/krpm	
Phase armature resistance	Rø	1.31	Ω	1.31	Ω	
Electrical time constant	te	3.2	msec	3.2	msec	
Mechanical time constant (not including sensor)	tm	9.0	msec	9.0	msec	
Inertia (including wiring-saved INC)	J _M	12.08×10^{-4}	kg⋅m²(GD²/4)	12	g·cm·s ²	
Inertia (including ABS-E)	J _M	12.1×10^{-4}	$kg \cdot m^2 (GD^2/4)$	12.1	g·cm·s ²	
Inertia (including ABS-RII)	J_{M}	12.08×10^{-4}	kg⋅m²(GD²/4)	12	g·cm·s ²	
Applicable load inertia	J_L	$J_{M} imes 5$	kg⋅m²(GD²/4)	$J_M \times 5$	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	7.6	kg	7.6	kg	
Weight (including ABS-E)	W _E	7.5	kg	7.5	kg kg	
Weight (including ABS-RII)	WE	7.7	kg	8.7	kg	


Holding Brake Data Sheet (Option)

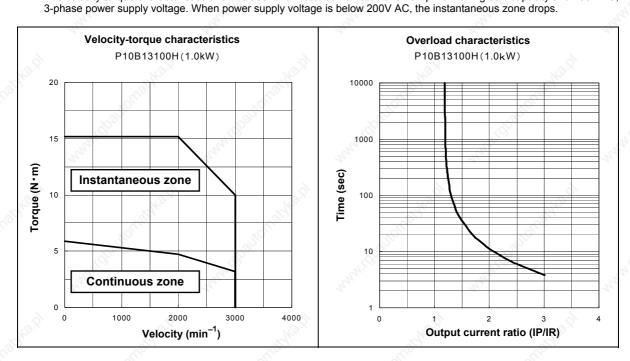
Holding torque	Тв	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	Ι _Β	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	J _B	$0.5 imes 10^{-4}$	kg∙m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
 Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.

The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P10B13100H


Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1000	W	1000	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm 📈	
Rated torque	T _R	4.7	N·m	48	kg∙cm	
Continuous stall torque	Ts	5.9	N·m	60 💉	kg∙cm	
Instantaneous maximum stall torque	TP	15.2	N∙m	155	kg∙cm	
Rated armature current	. S I _R	8.3	Arms	8.3	Arms	
Continuous stall armature current	I _S	9.0	Arms	9.0	Arms	
Instantaneous maximum stall armature current	I _P	25.0	Arms	25.0	Arms	
Torque constant	Κ _T	0.75	N·m/Arms	7.6	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	25.8	mV/min ⁻¹	25.8	V/krpm	
Phase armature resistance	Rø	0.44	Ω	0.44	Ω	
Electrical time constant	te	4.5	msec	4.5	msec	
Mechanical time constant (not including sensor)	tm	5.9	msec	5.9	msec	
Inertia (including wiring-saved INC)	J _M	25.08×10^{-4}	kg⋅m²(GD²/4)	25	g·cm·s ²	
Inertia (including ABS-E)	J _M	25.1×10^{-4}	kg⋅m²(GD²/4)	25.1	g·cm·s ²	
Inertia (including ABS-RII)	J_M	25.08×10^{-4}	kg⋅m²(GD²/4)	25	g·cm·s ²	
Applicable load inertia	J_L	$J_{\text{M}} imes 5$	kg⋅m²(GD²/4)	$J_M \times 5$	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	11.7	kg 🖉	11.7	kg	
Weight (including ABS-E)	W _E	11.6	kg	11.6	kg	
Weight (including ABS-RII)	W _E	11.8	kg	11.8	kg	

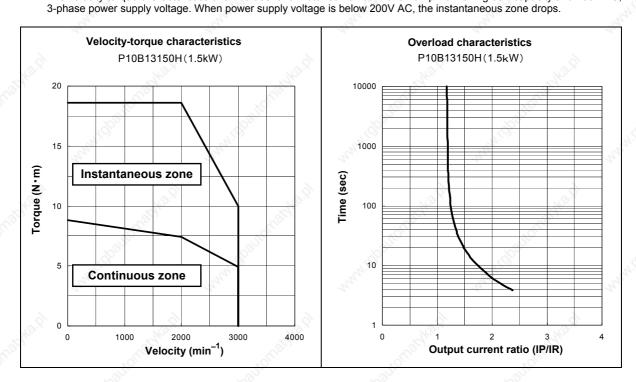
Holding Brake Data Sheet (Option)

Holding torque	Тв	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg∙m ^² (GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

P10B13150H


Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1500	W	1500	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	T _R	7.4	N·m	75	kg∙cm	
Continuous stall torque	Ts	8.8	N·m	90 🔬	kg∙cm	
Instantaneous maximum stall torque	TP	18.6	N∙m	190	kg∙cm	
Rated armature current	S [⊘] I _R	11.2	Arms	11.2	Arms	
Continuous stall armature current	ls	12.0	Arms	12.0	Arms	
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms	
Torque constant	Κ _T	0.83	N·m/Arms	8.5	kg·cm/Arms	
Induced voltage constant	Κ _{Eφ}	28.9	mV/min ⁻¹	28.9	V/krpm	
Phase armature resistance	R_{ϕ}	0.32	Ω	0.32	Ω	
Electrical time constant	te	5.3	msec	5.3 🔬	msec	
Mechanical time constant (not including sensor)	tm	4.9	msec	4.9	msec	
Inertia (including wiring-saved INC)	J _M	35.08×10^{-4}	kg⋅m²(GD²/4)	36.08	g·cm·s ²	
Inertia (including ABS-E)	J _M	35.1×10^{-4}	$kg \cdot m^2 (GD^2/4)$	36.1	g·cm·s ²	
Inertia (including ABS-RII)	J _M	35.08×10^{-4}	$kg \cdot m^2 (GD^2/4)$	36.08	g·cm·s ²	
Applicable load inertia	J_L	$J_{\text{M}} imes 5$	kg⋅m ² (GD ² /4)	$J_M \times 5$	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	16.1	kg 🖉	16.1	kg	
Weight (including ABS-E)	WE	16.0	kg	16.0	kg	
Weight (including ABS-RII)	We	16.2	kg	16.2	kg	

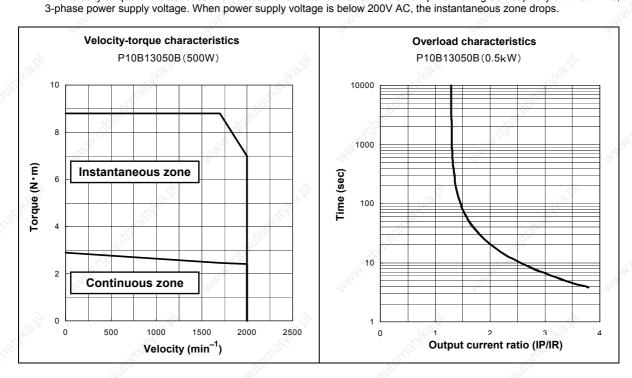
Holding Brake Data Sheet (Option)

Holding torque	Τ _B	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg∙m ^² (GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

P10B13050B


				1 10010000		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	500	W	500	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	2000	min ⁻¹	2000	rpm 🔊	
Rated torque	T _R	2.4	N∙m	24	kg∙cm	
Continuous stall torque	Ts	2.9	N·m	30 🔬	kg∙cm	
Instantaneous maximum stall torque	TP	8.8	N∙m	90	kg∙cm	
Rated armature current	S I _R	2.9	Arms	2.9	Arms	
Continuous stall armature current	ls	3.4	Arms	3.4	Arms	
Instantaneous maximum stall armature current	I _P	11.0	Arms	11.0	Arms	
Torque constant	Κ _T	0.98	N·m/Arms	10.0	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	34.3	mV/min ⁻¹	34.3	V/krpm	
Phase armature resistance	R _o	2.43	Ω	2.43	Ω	
Electrical time constant	te	3.2	msec	3.2	msec	
Mechanical time constant (not including sensor)	tm	9.0	msec	9.0	msec	
Inertia (including wiring-saved INC)	J _M	12.08×10^{-4}	kg⋅m²(GD²/4)	12.08	g·cm·s ²	
Inertia (including ABS-E)	J _M	12.1×10^{-4}	kg·m ² (GD ² /4)	12.1	g·cm·s ²	
Inertia (including ABS-RII)	J _M	12.08×10^{-4}	kg⋅m²(GD²/4)	12.08	g·cm·s ²	
Applicable load inertia	J_L	$J_{M} \times 5$	kg·m ² (GD ² /4)	$J_{M} \times 5$	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	7.6	kg 🔬	7.6	kg	
Weight (including ABS-E)	WE	7.5	kg	7.5	kg	
Weight (including ABS-RII)	WE	7.7	kg	7.7	kg	

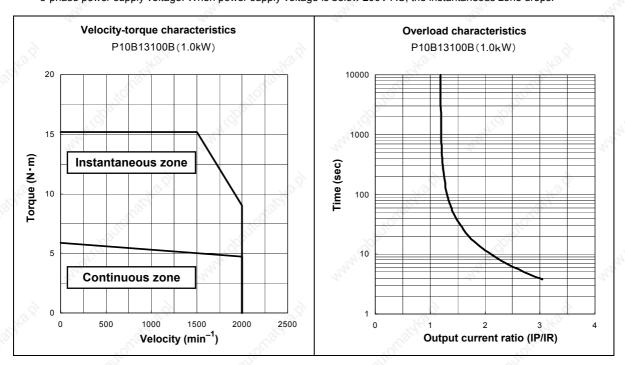
Holding Brake Data Sheet (Option)

Holding torque	Тв	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg⋅m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 300 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P10B13100B


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1000	W	1000	W
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm
Maximum revolution speed	N _{max}	2000	min ⁻¹	2000	rpm
Rated torque	TR	4.7	N∙m	48	kg∙cm
Continuous stall torque	Ts	5.9	N·m	60 🔊	kg∙cm
Instantaneous maximum stall torque	TP	15.2	N∙m	155	kg∙cm
Rated armature current	I _R	4.8	Arms	4.8	Arms
Continuous stall armature current	ls	5.2	Arms	5.2	Arms
Instantaneous maximum stall armature current	I _P	14.6	Arms	14.6	Arms
Torque constant	Κ _T	1.27	N·m/Arms	13.0	kg·cm/Arms
Induced voltage constant	Κ _{Eφ}	44.6	mV/min ⁻¹	44.6	V/krpm
Phase armature resistance	R _φ	1.32	Ω	1.32	Ω
Electrical time constant	te	4.5	msec	4.5	msec
Mechanical time constant (not including sensor)	tm	5.9	msec	5.9	msec
Inertia (including wiring-saved INC)	J _M	25.08×10^{-4}	kg⋅m²(GD²/4)	25.08	g·cm·s ²
Inertia (including ABS-E)	J _M	25.1×10^{-4}	kg⋅m²(GD²/4)	25.1	g·cm·s ²
Inertia (including ABS-RII)	J _M	25.08×10^{-4}	kg⋅m²(GD²/4)	25.08	g∙cm∙s²
Applicable load inertia	J_L	$J_{M} \times 5$	kg⋅m²(GD²/4)	$J_{M} \times 5$	g·cm·s ²
Weight (including wiring-saved INC)	W _E	11.7	kg 🔬	11.7	kg
Weight (including ABS-E)	W _E	11.6	kg	11.6	kg
Weight (including ABS-RII)	We	11.8	kg	11.8	kg

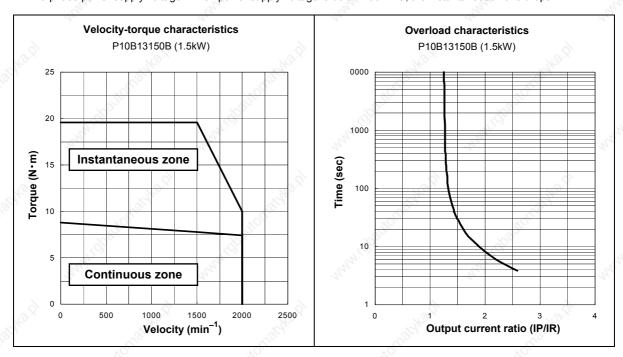
Holding Brake Data Sheet (Option)

Holding torque	Тв	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	J _B	0.5×10^{-4}	kg⋅m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P10B13150B


					0101001
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1500	W	1500	W
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm
Maximum revolution speed	N _{max}	2000	min ⁻¹	2000	rpm
Rated torque	TR	7.4	N∙m	75	kg∙cm
Continuous stall torque	Ts	8.8	N·m	90 🔊	kg∙cm
Instantaneous maximum stall torque	T _P	19.6	N∙m	200	kg∙cm
Rated armature current	. S I _R	6.9	Arms	6.9	Arms
Continuous stall armature current	Is	7.9	Arms	7.9	Arms
Instantaneous maximum stall armature current	I _P	17.9	Arms	17.9	Arms
Torque constant	Κ _T	1.34	N·m/Arms	13.7	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	47.0	mV/min ^{_1}	47.0	V/krpm
Phase armature resistance	R _φ	0.84	Ω	0.84	Ω
Electrical time constant	te	5.3	msec	5.3 🔬	msec
Mechanical time constant (not including sensor)	tm	4.9	msec	4.9	msec
Inertia (including wiring-saved INC)	J _M	35.08×10^{-4}	kg⋅m²(GD²/4)	36.08	g·cm·s ²
Inertia (including ABS-E)	J _M	35.1×10^{-4}	kg⋅m²(GD²/4)	36.1	g·cm·s ²
Inertia (including ABS-RII)	J _M	35.08×10^{-4}	kg⋅m²(GD²/4)	36.08	g·cm·s ²
Applicable load inertia	J_L	$J_{M} \times 5$	kg⋅m²(GD²/4)	$J_M \times 5$	g·cm·s ²
Weight (including wiring-saved INC)	W _E	16.1	kg 🔬	16.1	kg
Weight (including ABS-E)	W _E	16.1	kg	16.0	kg
Weight (including ABS-RII)	WE	16.2	kg	16.2	kg

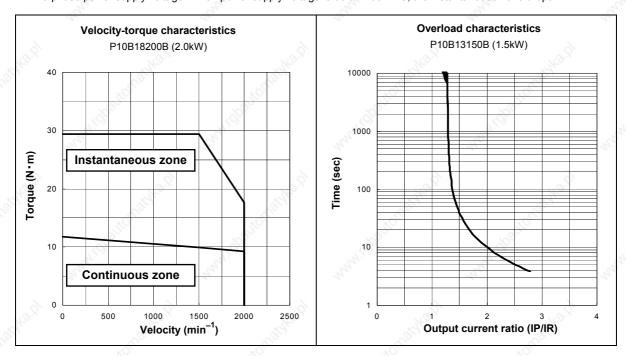
Holding Brake Data Sheet (Option)

Holding torque	Тв	8.8 or more	N∙m	90 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg∙m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P10B18200B


					1 102 10200			
Name	Symbol	Data	Unit	Data	Unit			
Rated output	P _R	2000	W	2000	W			
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm			
Maximum revolution speed	N _{max}	2000	min ⁻¹	2000	rpm			
Rated torque	T _R	9.3	N·m	95	kg∙cm			
Continuous stall torque	Ts	11.8	N·m	120 🔊	kg∙cm			
Instantaneous maximum stall torque	TP	29.4	N·m	300	kg∙cm			
Rated armature current	. S I _R	9.5	Arms	9.5	Arms			
Continuous stall armature current	Is	11.1	Arms	11.1	Arms			
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms			
Torque constant	Κ _T	1.32	N·m/Arms	13.5	kg·cm/Arms			
Induced voltage constant	Κ _{Εφ}	46.0	mV/min ⁻¹	46.0	V/krpm			
Phase armature resistance	R _o	0.50	Ω	0.50	Ω			
Electrical time constant	te	7.5	msec	7.5	msec			
Mechanical time constant (not including sensor)	tm	6.3	msec	6.3	msec			
Inertia (including wiring-saved INC)	J _M	73.08×10^{-4}	kg⋅m²(GD²/4)	74.08	g·cm·s ²			
Inertia (including ABS-E)	J _M	73.1×10^{-4}	$kg \cdot m^2 (GD^2/4)$	74.1	g·cm·s ²			
Inertia (including ABS-RII)	J _M	73.08×10^{-4}	$kg \cdot m^2 (GD^2/4)$	74.08	g·cm·s ²			
Applicable load inertia	J_L	$J_{M} \times 5$	kg⋅m²(GD²/4)	$J_{M} \times 5$	g·cm·s ²			
Weight (including wiring-saved INC)	W _E	23.1	kg 🔬	23.1	kg			
Weight (including ABS-E)	W _E	23.0	kg	23.0	kg			
Weight (including ABS-RII)	W _E	23.2	kg	23.2	kg			

Holding Brake Data Sheet (Option)

Holding torque	Тв	32.4 or more	N∙m	330 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	1.4/0.37	A(DC)	1.4/0.37	A(DC)
Inertia	JB	$3.4 imes 10^{-4}$	kg∙m²(GD²/4)	3.5	g·cm·s ²
Weight	W	5.0	kg 🔬	5.0	kg

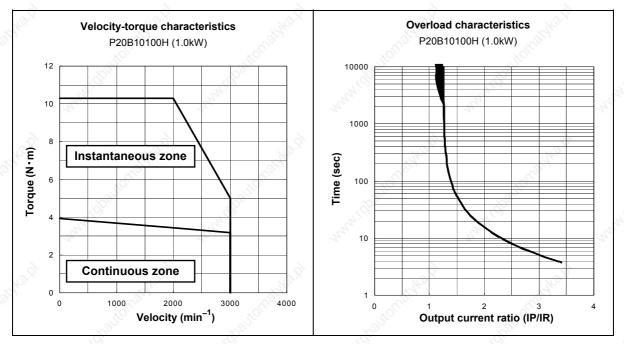
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 470 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

9.2.5.2 Motor Data Sheet

P20B10100H

	-				
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1000	W	1000	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm
Rated torque	T _R	3.19	, N · m	32.5	kg∙cm
Continuous stall torque	Ts	3.92	N∙m	40	kg∙cm
Instantaneous maximum stall torque	T _P	10.3	N∙m	10.5	kg∙cm
Rated armature current	I _R	4.1	Arms	4.1	Arms
Continuous stall armature current	ls	4.7	Arms	4.7	Arms
Instantaneous maximum stall armature current	I _P	14 × 14	Arms	14	Arms
Torque constant	K	0.89	N ⋅ m/Arms	9.1	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	31.2	mV/min ⁻¹	31.2 💉	V/krpm
Phase armature resistance	R_{ϕ}	1.6	Ω	1.6	Ω
Electrical time constant	t _e	10	msec	10	msec
Mechanical time constant (not including sensor)	t _m	0.89	msec	0.89	msec
Inertia (including wiring-saved INC)	J _M	1.55×10^{-4}	kg⋅m²(GD²/4)	1.58	g·cm·s ²
Inertia (including ABS-E)	J _M	1.57×10^{-4}	$kg \cdot m^2 (GD^2/4)$	1.6	g·cm·s ²
Inertia (including ABS-RII)	J _M	1.55×10^{-4}	kg · m ² (GD ² /4)	1.58	g·cm·s ²
Applicable load inertia	JL	15.5×10^{-4}	$kg \cdot m^2 (GD^2/4)$	15.8	g·cm·s ²
Weight (including wiring-saved INC)	WES	5.4	kg	5.4 🔬	kg
Weight (including ABS-E)	W _E	5.3	kg	5.3	kg
Weight (including ABS-RII)	WE	5.5	് kg	5.5	kg


Holding Brake Data Sheet (Option)

Holding torque	Τ _B	3.92 or more	N∙m	40 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.60/0.16	A(DC)	0.60/0.16	A(DC)
Inertia	J _B	0.15×10^{-4}	kg⋅m²(GD²/4)	0.15	g·cm·s ²
Weight	W	1.3	kg	1.3 🔬	kg

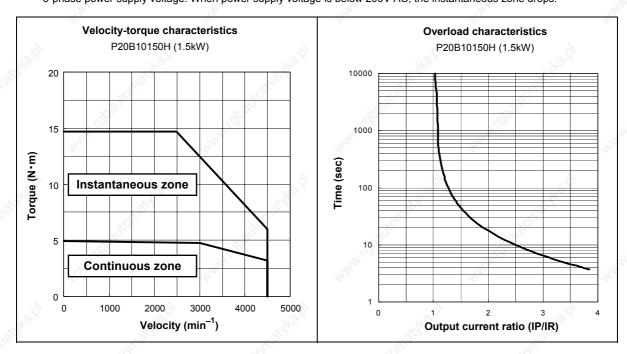
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.

 The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P2

P20B10150H


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1500	W	1500	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm
Rated torque	T _R	4.79	N·m	48.8	kg∙cm
Continuous stall torque	Ts	4.90	N·m	50 💉	kg∙cm
Instantaneous maximum stall torque	TP	17.7	N∙m	180	kg∙cm
Rated armature current	S [™] I _R	6.5	Arms	6.5	Arms
Continuous stall armature current	ls	6.3	Arms	6.3	Arms
Instantaneous maximum stall armature current	I _P	25	Arms	25	Arms
Torque constant	Κ _T	0.83	N·m/Arms	8.5	kg·cm/Arms
Induced voltage constant	Κ _{Eφ}	29.0	mV/min ⁻¹	29.0	V/krpm
Phase armature resistance	R _o	0.67	Ω	0.67	Ω
Electrical time constant	te	13	msec	13 🔬	msec
Mechanical time constant (not including sensor)	t _m	0.57	msec	0.57	msec
Inertia (including wiring-saved INC)	J _M	2.04×10^{-4}	kg⋅m²(GD²/4)	2.08	g·cm·s ²
Inertia (including ABS-E)	J _M	2.06×10^{-4}	kg⋅m²(GD²/4)	2.1	g·cm·s ²
Inertia (including ABS-RII)	J _M	2.04×10^{-4}	kg⋅m²(GD²/4)	2.08	g·cm·s ²
Applicable load inertia	JL	20.4×10^{-4}	kg⋅m²(GD²/4)	20.8	g·cm·s ²
Weight (including wiring-saved INC)	WE	6.5	kg 🔬	6.5	kg
Weight (including ABS-E)	W _E	6.4	kg	6.4	kg
Weight (including ABS-RII)	W _E	6.6	kg	6.6	kg

Holding Brake Data Sheet (Option)

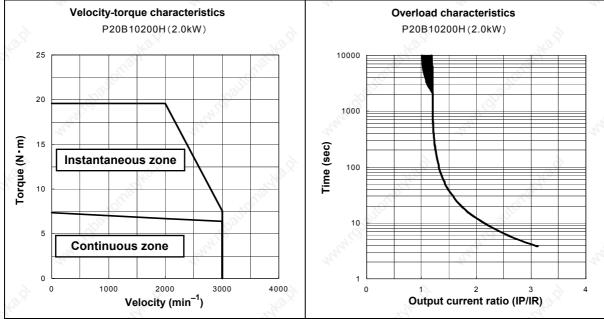
Holding torque	Тв	7.84 or more	N∙m	80 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.83/0.22	A(DC)	0.83/0.22	A(DC)
Inertia	J _B	0.40×10^{-4}	kg∙m²(GD²/4)	0.39	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P20B10200H

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	2000	W	2000	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm
Rated torque	T _R	6.37	N∙m	65	kg∙cm
Continuous stall torque	Ts	7.36	N∙m	75 💉	kg∙cm
Instantaneous maximum stall torque	TP	19.6	N∙m	200	kg∙cm
Rated armature current	S [⊗] I _R	8.5	Arms	8.5	Arms
Continuous stall armature current	ls	9.3	Arms	9.3	Arms
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms
Torque constant	Κ _T	0.85	N·m/Arms	8.7	kg ⋅ cm/Arms
Induced voltage constant	Κ _{Εφ}	30.0	mV/min ⁻¹	30.0	V/krpm
Phase armature resistance	R _o	0.50	Ω	0.50	Ω
Electrical time constant	te	13	msec	13 🔬	msec
Mechanical time constant (not including sensor)	t _m	0.56	msec	0.56	msec
Inertia (including wiring-saved INC)	J _M	2.83×10^{-4}	kg⋅m²(GD²/4)	2.88	g·cm·s ²
Inertia (including ABS-E)	J _M	2.85×10^{-4}	kg⋅m²(GD²/4)	2.9	g·cm·s ²
Inertia (including ABS-RII)	J _M	2.83×10^{-4}	kg⋅m²(GD²/4)	2.88	g·cm·s ²
Applicable load inertia	JL	28.3×10^{-4}	kg⋅m²(GD²/4)	28.8	g·cm·s ²
Weight (including wiring-saved INC)	W _E	8.7	kg 🔬	8.7	kg
Weight (including ABS-E)	WE	8.6	kg	8.6	kg
Weight (including ABS-RII)	W _E	8.8	kg	8.8	kg


Holding Brake Data Sheet (Option)

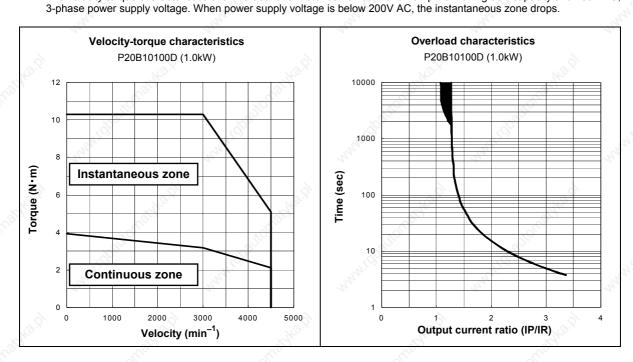
Holding torque	Тв	7.84 or more	N∙m	80 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.83/0.22	A(DC)	0.83/0.22	A(DC)
Inertia	JB	0.40×10^{-4}	kg∙m²(GD²/4)	0.39	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 470 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P20B10100D


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1000	W	1000	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	3.19	N·m	32.5	kg·cm
Continuous stall torque	Ts	3.92	N·m	40 💉	kg∙cm
Instantaneous maximum stall torque	TP	10.3	N∙m	105	kg∙cm
Rated armature current	S I _R	6.9	Arms	6.9	Arms
Continuous stall armature current	ls	8.0	Arms	8.0	Arms
Instantaneous maximum stall armature current	I _P	23.2	Arms	23.2	Arms
Torque constant	Κ _T	0.53	N·m/Arms	5.4	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	18.6	mV/min ⁻¹	18.6	V/krpm
Phase armature resistance	R _o	0.51	Ω	0.51	Ω
Electrical time constant	te	11	msec	11 🔬	msec
Mechanical time constant (not including sensor)	t _m	0.80	msec	0.80	msec
Inertia (including wiring-saved INC)	J _M	1.55×10^{-4}	kg⋅m²(GD²/4)	1.58	g∙cm∙s²
Inertia (including ABS-E)	J _M	1.57×10^{-4}	kg⋅m²(GD²/4)	1.6	g⋅cm⋅s²
Inertia (including ABS-RII)	J _M	1.55×10^{-4}	kg⋅m²(GD²/4)	1.58	g·cm·s ²
Applicable load inertia	J_L	15.5×10^{-4}	kg·m²(GD²/4)	15.8	g·cm·s ²
Weight (including wiring-saved INC)	WE	5.4	kg 🔬	5.4	kg
Weight (including ABS-E)	WE	5.3	kg	5.3	kg
Weight (including ABS-RII)	W _E	5.5	kg	5.5	kg

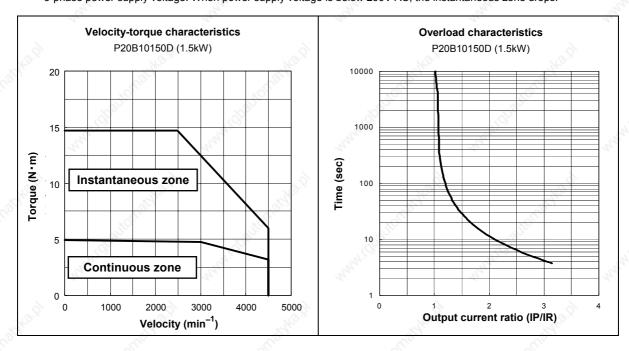
Holding Brake Data Sheet (Option)

Holding torque	Тв	3.92 or more	N∙m	40 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.60/0.16	A(DC)	0.60/0.16	A(DC)
Inertia	JB	0.15×10^{-4}	kg⋅m²(GD²/4)	0.15	g·cm·s ²
Weight	W	1.3	kg 🔬	1.3	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

P20B10150D


				= = =	
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1500	W	1500	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	4.79	N∙m	48.8	kg∙cm
Continuous stall torque	Ts	4.90	N·m	50 🔊	kg∙cm
Instantaneous maximum stall torque	TP	14.7	N∙m	150	kg∙cm
Rated armature current	S [™] I _R	8.4	Arms	8.4	Arms
Continuous stall armature current	I _S	8.1	Arms	8.1	Arms
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms
Torque constant	K _T	0.65	N·m/Arms	6.6	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	22.6	mV/min ⁻¹	22.6	V/krpm
Phase armature resistance	R_{ϕ}	0.42	Ω	0.42	Ω
Electrical time constant	test	13	msec	13 🔬	msec
Mechanical time constant (not including sensor)	tm	0.59	msec	0.59	msec
Inertia (including wiring-saved INC)	J _M	2.04×10^{-4}	kg⋅m²(GD²/4)	2.08	g·cm·s ²
Inertia (including ABS-E)	J _M	2.06×10^{-4}	kg⋅m²(GD²/4)	2.1	g·cm·s ²
Inertia (including ABS-RII)	J _M	2.04×10^{-4}	kg⋅m²(GD²/4)	2.08	g·cm·s ²
Applicable load inertia	J_L	20.4×10^{-4}	kg⋅m²(GD²/4)	20.8	g·cm·s ²
Weight (including wiring-saved INC)	WE	6.5	kg 🔬	6.5	kg
Weight (including ABS-E)	WE	6.4	kg	6.4	kg
Weight (including ABS-RII)	W _E	6.6	kg	6.6	kg

Holding Brake Data Sheet (Option)

Holding torque	Тв	7.84 or more	N∙m	80 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.83/0.22	A(DC)	0.83/0.22	A(DC)
Inertia	JB	0.40×10^{-4}	kg∙m²(GD²/4)	0.39	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

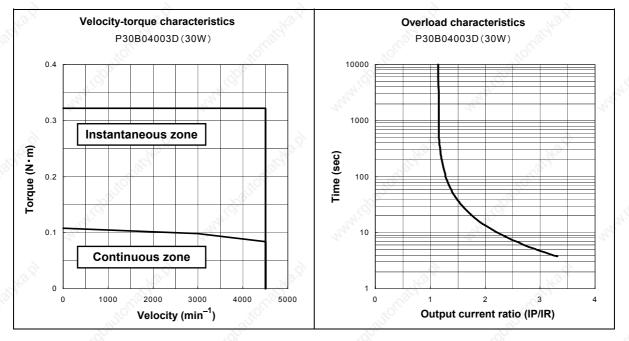
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

9.2.5.3 Motor Data Sheet

P30B04003D

Name	Symbol	Data	Unit	Data	Unit
 Rated output 	P _R	30	W	30	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
 Rated torque 	T _R	0.098	N∙m	1.0	kg∙cm
 Continuous stall torque 	Ts	0.108	N∙m	1.1	kg∙cm
 Instantaneous maximum stall torque 	Τ _P	0.322	N∙m	3.3	kg∙cm
 Rated armature current 	I _R	0.54	Arms	0.54	Arms
 Continuous stall armature current 	Is	0.56	Arms	0.56	Arms
 Instantaneous maximum stall armature current 	I _P	1.79	Arms	1.79	Arms
Torque constant	K _T	0.2	N ⋅ m/Arms	2.08	kg·cm/Arms
Induced voltage constant	Κ Εφ	7.1	mV/min ⁻¹	7.1 🔊	V/krpm
Phase armature resistance	R_{ϕ}	12.5	Ω	12.5	Ω
Electrical time constant	t _e	1.2	msec	1.2	msec
Mechanical time constant (not including sensor)	t _m	1.8	msec	1.8	msec
Inertia (including wiring-saved INC)	J _M	0.024×10^{-4}	kg⋅m²(GD²/4)	0.025	g∙cm∙s²
Inertia (including ABS-E)	J _M	0.049×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.05	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.021×10^{-4}	kg⋅m²(GD²/4)	0.0223	g·cm·s ²
Applicable load inertia	JL	0.24×10^{-4}	kg · m ² (GD ² /4)	0.25	g·cm·s ²
Weight (including wiring-saved INC)	WEO	0.3	kg	0.3	kg
Weight (including ABS-E)	WE	0.63	kg	0.63	kg
Weight (including ABS-RII)	WF	0.39	🚫 kg	0.39	kg


Holding Brake Data Sheet (Option)

Holding torque	Τ _B	0.098 or more	N∙m	1 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.26/0.07	A(DC)	0.26/0.07	A(DC)
Inertia	J _B	0.0078×10^{-4}	kg⋅m²(GD²/4)	0.008	g·cm·s ²
Weight	W _x O	0.24	kg	0.24	kg

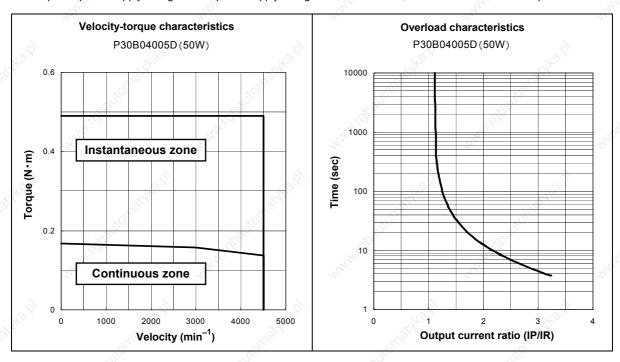
The mark * denotes the value after a temperature rise. The others are values a 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate

installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P3

P30B04005D


					001000
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	50	W	50	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	TR	0.157	N∙m	1.6	kg∙cm
Continuous stall torque	Ts	0.167	N·m	1.7 🔊	kg∙cm
Instantaneous maximum stall torque	TP	0.49	N∙m	5.0	kg∙cm
Rated armature current	I _R	0.74	Arms	0.74	Arms
Continuous stall armature current	I _S	0.75	Arms	0.75	Arms
Instantaneous maximum stall armature current	I _P	2.4	Arms	2.4	Arms
Torque constant	Κ _T	0.235	N·m/Arms	2.4	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	8.2	mV/min ⁻¹	8.2	V/krpm
Phase armature resistance	R _{\phi}	9.1	Ω	9.1	Ω
Electrical time constant	te	1.2	msec	1.2 🔬	msec
Mechanical time constant (not including sensor)	tm	1.3	msec	1.3	msec
Inertia (including wiring-saved INC)	J _M	0.031×10^{-4}	kg⋅m²(GD²/4)	0.032	g·cm·s ²
Inertia (including ABS-E)	J _M	0.056×10^{-4}	kg⋅m²(GD²/4)	0.057	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.028×10^{-4}	kg⋅m²(GD²/4)	0.029	g·cm·s ²
Applicable load inertia	J_L	0.31×10^{-4}	kg⋅m²(GD²/4)	0.32	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.35	kg 🔬	0.35	kg
Weight (including ABS-E)	W _E	0.68	kg	0.68	kg
Weight (including ABS-RII)	W _E	0.44	kg	0.44	kg

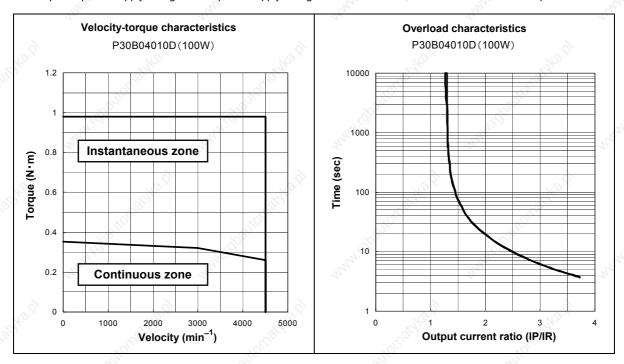
Holding Brake Data Sheet (Option)

Holding torque	Тв	0.157 or more	N∙m	1.6 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.26/0.07	A(DC)	0.26/0.07	A(DC)
Inertia	J _B	0.0078×10^{-4}	kg∙m²(GD²/4)	0.008	g∙cm∙s²
Weight	W	0.24	kg 🕠	0.24	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P30B04010D


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	100	W	100	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm 📈
Rated torque	TR	0.32	N∙m	3.25	kg∙cm
Continuous stall torque	Ts	0.353	N·m	3.6 💉	kg∙cm
Instantaneous maximum stall torque	TP	0.98	N∙m	10	kg∙cm
Rated armature current	I _R	1.1	Arms	1.1	Arms
Continuous stall armature current	Is	1.3	Arms	1.3	Arms
Instantaneous maximum stall armature current	I _P	4.1	Arms	4.1	Arms
Torque constant	Κ _T	0.292	N·m/Arms	2.98	kg ⋅ cm/Arms
Induced voltage constant	Κ _{Εφ}	10.2	mV/min ⁻¹	10.2	V/krpm
Phase armature resistance	R _o	4.3	Ω	4.3	Ω
Electrical time constant	te	1.4	msec	1.4 🔬	msec
Mechanical time constant (not including sensor)	tm	0.7	msec	0.7	msec
Inertia (including wiring-saved INC)	J _M	0.051×10^{-4}	kg⋅m²(GD²/4)	0.052	g·cm·s ²
Inertia (including ABS-E)	J _M	0.076×10^{-4}	kg⋅m²(GD²/4)	0.077	g⋅cm⋅s²
Inertia (including ABS-RII)	J _M	0.048×10^{-4}	kg⋅m²(GD²/4)	0.049	g·cm·s ²
Applicable load inertia	J_L	0.51×10^{-4}	kg⋅m²(GD²/4)	0.52	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.5	kg 🔬	0.5	kg
Weight (including ABS-E)	W _E	0.83	kg	0.83	kg
Weight (including ABS-RII)	W _E	0.59	kg	0.59	kg

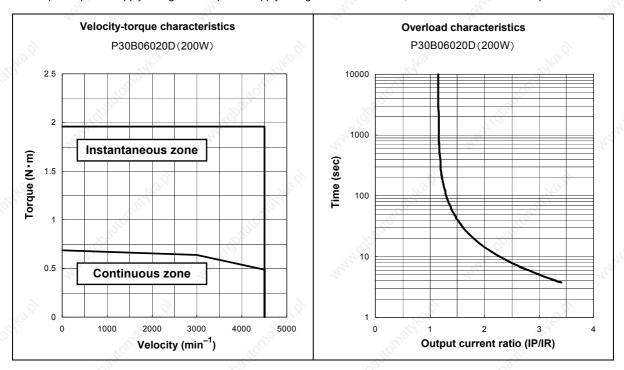
Holding Brake Data Sheet (Option)

Holding torque	Тв	0.32 or more	N∙m	3.25 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.26/0.07	A(DC)	0.26/0.07	A(DC)
Inertia	J _B	0.0078×10^{-4}	kg∙m²(GD²/4)	0.008	g∙cm∙s²
Weight	W	0.24	kg 🔬	0.24	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P30B06020D


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	200	W	200	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm 📈
Rated torque	TR	0.637	N∙m	6.5	kg∙cm
Continuous stall torque	Ts	0.686	N·m	7 🔊	kg∙cm
Instantaneous maximum stall torque	TP	1.96	N∙m	20	kg∙cm
Rated armature current	l _R	2.2	Arms	2.2	Arms
Continuous stall armature current	ls	2.3	Arms	2.3	Arms
Instantaneous maximum stall armature current	I _P	7.5	Arms	7.5	Arms
Torque constant	Κ _T	0.316	N·m/Arms	3.22	kg ⋅ cm/Arms
Induced voltage constant	Κ _{Εφ}	11.0	mV/min ⁻¹	11.0	V/krpm
Phase armature resistance	R _o	1.5	Ω	1.5	Ω
Electrical time constant	te	3.8	msec	3.8	msec
Mechanical time constant (not including sensor)	tm	0.63	msec	0.63	msec
Inertia (including wiring-saved INC)	J _M	0.144×10^{-4}	kg⋅m²(GD²/4)	0.147	g·cm·s ²
Inertia (including ABS-E)	J _M	0.169×10^{-4}	kg⋅m²(GD²/4)	0.172	g·cm·s ²
Inertia (including ABS-RII)	J_M	0.141×10^{-4}	kg⋅m²(GD²/4)	0.144	g·cm·s ²
Applicable load inertia	J_{L}	1.44×10^{-4}	kg⋅m²(GD²/4)	1.47	g·cm·s ²
Weight (including wiring-saved INC)	W _E	1.15	kg 🔬	1.15	kg
Weight (including ABS-E)	W _E	1.37	kg	1.37	kg
Weight (including ABS-RII)	W _E	1.35	kg	1.35	kg

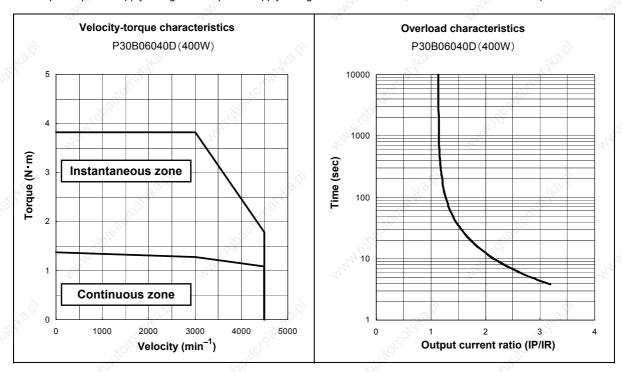
Holding Brake Data Sheet (Option)

Holding torque	Тв	0.637 or more	N∙m	6.5 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.31/0.07	A(DC)	0.31/0.07	A(DC)
Inertia	JB	0.06×10^{-4}	kg∙m²(GD²/4)	0.061	g·cm·s ²
Weight	W	0.44	kg 🔬	0.44	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P30B06040D


				1.00	000010
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	400	W	400	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm 📈
Rated torque	TR	1.274	N∙m	13	kg∙cm
Continuous stall torque	Ts	1.372	N·m	14 🔊	kg∙cm
Instantaneous maximum stall torque	T _P	3.82	N∙m	39	kg∙cm
Rated armature current	I _R	2.7	Arms	2.7	Arms
Continuous stall armature current	Is	2.8	Arms	2.8	Arms
Instantaneous maximum stall armature current	I _P	8.6	Arms	8.6	Arms
Torque constant	Κ _T	0.533	N·m/Arms	5.44	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	18.6	mV/min ⁻¹	18.6	V/krpm
Phase armature resistance	R _φ	1.4	Ω	1.4	Ω
Electrical time constant	te	4.6	msec	4.6	msec
Mechanical time constant (not including sensor)	tm	0.38	msec	0.38	msec
Inertia (including wiring-saved INC)	J _M	0.255×10^{-4}	kg⋅m²(GD²/4)	0.265	g∙cm∙s²
Inertia (including ABS-E)	J _M	0.280×10^{-4}	kg⋅m²(GD²/4)	0.290	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.252×10^{-4}	kg⋅m²(GD²/4)	0.262	g∙cm∙s²
Applicable load inertia	J_L	2.55×10^{-4}	kg⋅m²(GD²/4)	2.65	g·cm·s ²
Weight (including wiring-saved INC)	W _E	1.7	kg 🔬	1.7	kg
Weight (including ABS-E)	W _E	1.92	kg	1.92	kg
Weight (including ABS-RII)	WE	1.90	kg	1.90	kg

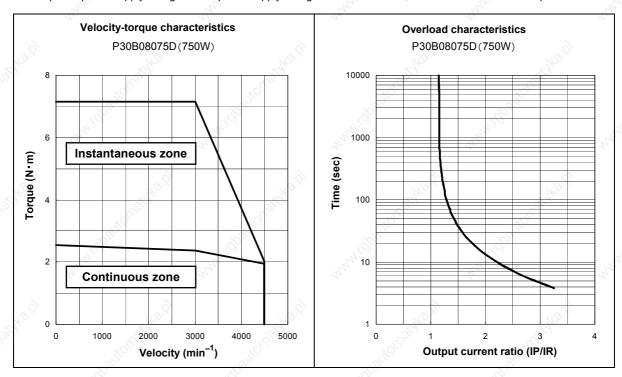
Holding Brake Data Sheet (Option)

Holding torque	Тв	1.274 or more	N∙m	13 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.31/0.07	A(DC)	0.31/0.07	A(DC)
Inertia	J _B	0.06×10^{-4}	kg∙m²(GD²/4)	0.061	g·cm·s ²
Weight	W	0.44	kg 🔬	0.44	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P30B08075D


Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	750	W	750	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	TR	2.38	N∙m	24.3	kg∙cm
Continuous stall torque	Ts	2.55	N·m	26 💉	kg∙cm
Instantaneous maximum stall torque	TP	7.15	N∙m	73	kg∙cm
Rated armature current	. S I _R	4.6	Arms	4.6	Arms
Continuous stall armature current	ls	4.8	Arms	4.8	Arms
Instantaneous maximum stall armature current	I _P	15.0	Arms	15.0	Arms
Torque constant	Κ _T	0.565	N·m/Arms	5.77	kg ⋅ cm/Arms
Induced voltage constant	Κ _{Εφ}	19.74	mV/min ^{_1}	19.74	V/krpm
Phase armature resistance	R _o	0.52	Ω	0.52	Ω
Electrical time constant	te	8.3	msec	8.3	msec
Mechanical time constant (not including sensor)	tm	0.3	msec	0.3	msec
Inertia (including wiring-saved INC)	J _M	0.635×10^{-4}	kg⋅m²(GD²/4)	0.645	g·cm·s ²
Inertia (including ABS-E)	J _M	0.78×10^{-4}	kg·m ² (GD ² /4)	0.79	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.647×10^{-4}	kg·m ² (GD ² /4)	0.657	g·cm·s ²
Applicable load inertia	J_L	6.35×10^{-4}	kg⋅m²(GD²/4)	6.45	g·cm·s ²
Weight (including wiring-saved INC)	W _E	3.3	kg 🔬	3.3	kg
Weight (including ABS-E)	W _E	3.71	kg	3.71	kg
Weight (including ABS-RII)	W _E	3.49	kg	3.49	kg

Holding Brake Data Sheet (Option)

Holding torque	Тв	2.38 or more	N∙m	24.3 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.37/0.08	A(DC)	0.37/0.08	A(DC)
Inertia	JB	0.343×10^{-4}	kg∙m²(GD²/4)	0.35	g∙cm∙s²
Weight	W	0.8	kg 🔬	0.8	kg

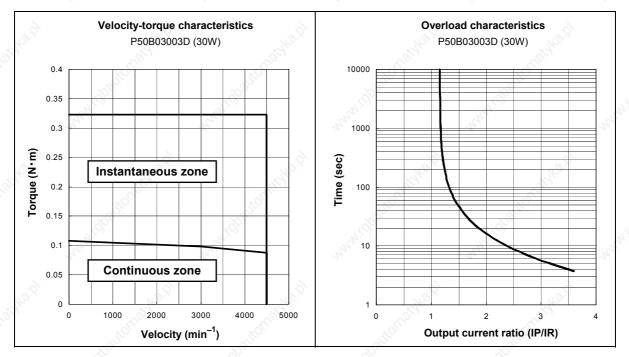
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

9.2.5.4 Motor Data Sheet

P50B03003D

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	30	W	30	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.098	N∙m	1 🔊	kg·cm
Continuous stall torque	Ts	0.108	N⋅m	1.1	kg∙cm
Instantaneous maximum stall torque	T _P	0.323	N∙m	3.3	kg∙cm
Rated armature current	I _R	0.5	Arms	0.5	Arms
Continuous stall armature current	Is	0.53	Arms	0.53	Arms
Instantaneous maximum stall armature current	I _P	1.8	Arms	1.8	Arms
Torque constant	K _T	0.206	N ⋅ m/Arms	2.11	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	7.2	mV/min ⁻¹	7.2	V/krpm
Phase armature resistance	R _o	20.5	Ω	20.5	Ω
Electrical time constant	te	0.7	msec	0.7	msec
Mechanical time constant (not including sensor)	t _m	2.1	msec	2.1	msec
Inertia (including wiring-saved INC)	J _M	0.0197×10^{-4}	kg⋅m²(GD²/4)	0.02	g∙cm∙s²
Inertia (including ABS-E)	J _M		kg · m ² (GD ² /4)		g·cm·s ²
Inertia (including ABS-RII)	J _M	0.0167×10^{-4}	kg⋅m²(GD²/4)	0.0173	g·cm·s ²
Applicable load inertia	JL	0.197×10^{-4}	kg·m ² (GD ² /4)	0.2	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.24	kg	0.24	kg kg
Weight (including ABS-E)	WE		kg	8	kg
Weight (including ABS-RII)	WE	0.31	kg	0.31	kg


Holding Brake Data Sheet (Option)

Holding torque	Τ _B	0.098 or more	N∙m	1 or more	kg•cm 🚿
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	Ι _Β	0.25/0.07	A(DC)	0.25/0.07	A(DC)
Inertia	Jв	0.0021×10^{-4}	kg∙m²(GD²/4)	0.0022	g·cm·s ²
Weight	W	0.15	kg	0.15	kg

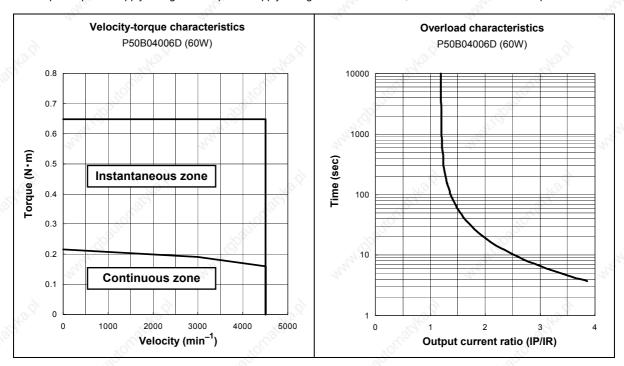
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.

 Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P5

P50B04006D


			1 00001000		
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	60	W	60	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.191	N∙m	1.95	kg∙cm
Continuous stall torque	Ts	0.216	N∙m	2.2 💉	kg∙cm
Instantaneous maximum stall torque	TP	0.647	N∙m	6.6	kg∙cm
Rated armature current	. S ^O I _R	0.7	Arms	0.7	Arms
Continuous stall armature current	Is	0.76	Arms	0.76	Arms
Instantaneous maximum stall armature current	I _P	2.7	Arms	2.7	Arms
Torque constant	Κ _T	0.304	N·m/Arms	3.1	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	10.6	mV/min ⁻¹	10.6	V/krpm
Phase armature resistance	Rø	10.4	Ω	10.4	Ω
Electrical time constant	te	1.4	msec	1.4 🔬	msec
Mechanical time constant (not including sensor)	tm	1.6	msec	1.6	msec
Inertia (including wiring-saved INC)	J _M	0.054×10^{-4}	kg⋅m²(GD²/4)	0.055	g·cm·s ²
Inertia (including ABS-E)	J _M	0.054×10^{-4}	kg·m ² (GD ² /4)	0.08	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.051×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.0520	g·cm·s ²
Applicable load inertia	J_L	0.54×10^{-4}	kg⋅m²(GD²/4)	0.55	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.46	kg 🔬	0.46	kg
Weight (including ABS-E)	W _E	0.76	kg	0.76	kg
Weight (including ABS-RII)	W _E $<$	0.52	kg	0.52	kg

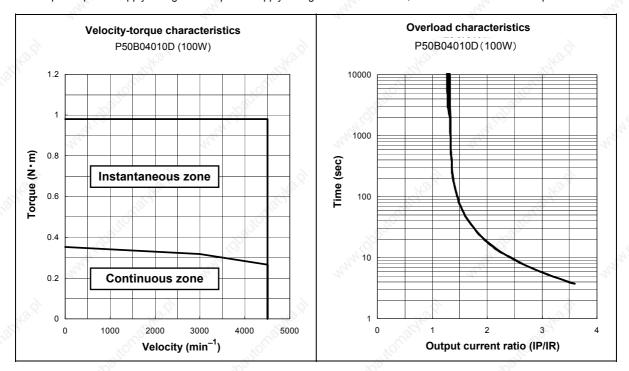
Holding Brake Data Sheet (Option)

Holding torque	Тв	0.191 or more	N∙m	1.95 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.26/0.07	A(DC)	0.26/0.07	A(DC)
Inertia	J _B	0.0078×10^{-4}	kg∙m²(GD²/4)	0.008	g∙cm∙s²
Weight	W	0.24	kg 🔬	0.24	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B04010D


	-				
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	100	W	100	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm 💦
Rated torque	T _R	0.319	N∙m	3.25	kg∙cm
Continuous stall torque	Ts	0.353	N·m	3.6 🔊	kg∙cm
Instantaneous maximum stall torque	TP	0.98	N∙m	10	kg∙cm
Rated armature current	S ^O I _R	1.0	Arms	1.0	Arms
Continuous stall armature current	Is	1.2	Arms	1.2	Arms
Instantaneous maximum stall armature current	I _P	3.6	Arms	3.6	Arms
Torque constant	KT	0.333	N·m/Arms	3.4	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	11.6	mV/min ⁻¹	11.6	V/krpm
Phase armature resistance	R _o	7.0	Ω	7.0	Ω
Electrical time constant	te	1.5	msec	1.5 🔬	msec
Mechanical time constant (not including sensor)	t _m	1.4	msec	1.4	msec
Inertia (including wiring-saved INC)	J _M	0.079×10^{-4}	kg⋅m²(GD²/4)	0.08	g∙cm∙s²
Inertia (including ABS-E)	J _M	0.104×10^{-4}	kg·m ² (GD ² /4)	0.105	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.0760×10^{-4}	kg·m ² (GD ² /4)	0.077	g·cm·s ²
Applicable load inertia	J_L	0.79×10^{-4}	kg·m ² (GD ² /4)	0.8	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.59	kg	0.59	kg
Weight (including ABS-E)	WE	0.89	kg	0.89	kg
Weight (including ABS-RII)	W _E	0.65	kg	0.65	kg

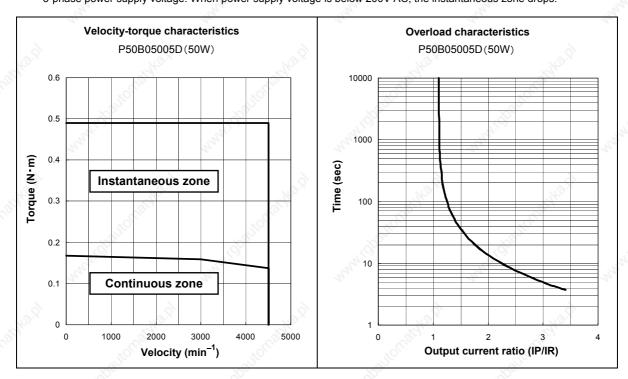
Holding Brake Data Sheet (Option)

Holding torque	Тв	0.319 or more	N∙m	3.25 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	Ι _Β	0.26/0.07	A(DC)	0.26/0.07	A(DC)
Inertia	JB	0.0078×10^{-4}	kg∙m²(GD²/4)	0.008	g∙cm∙s²
Weight	W	0.24	kg 🔬	0.24	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t6 × 250 mm square aluminum plate installed.

The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B05005D


			1 COBCCCC		
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	50	W	50	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.159	N∙m	1.62	kg∙cm
Continuous stall torque	Ts	0.167	N⋅m	1.7 🔊	kg∙cm
Instantaneous maximum stall torque	TP	0.49	N∙m	5	kg∙cm
Rated armature current	S I _R	0.85	Arms	0.85	Arms
Continuous stall armature current	ls	0.85	Arms	0.85	Arms
Instantaneous maximum stall armature current	I _P	2.9	Arms	2.9	Arms
Torque constant	Κ _T	0.249	N·m/Arms	2.54	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	8.7	mV/min ⁻¹	8.7	V/krpm
Phase armature resistance	R _o	9.2	Ω	9.2	Ω
Electrical time constant	te	2.1	msec	2.1 🦽	msec
Mechanical time constant (not including sensor)	tm	2.6	msec	2.6	msec
Inertia (including wiring-saved INC)	J _M	0.063×10^{-4}	kg⋅m²(GD²/4)	0.064	g·cm·s ²
Inertia (including ABS-E)	J _M	0.088×10^{-4}	kg · m ² (GD ² /4)	0.089	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.060×10^{-4}	kg⋅m²(GD²/4)	0.061	g·cm·s ²
Applicable load inertia	J_L	0.63×10^{-4}	kg·m ² (GD ² /4)	0.64	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.53	kg 🖉	0.53	kg
Weight (including ABS-E)	W _E	0.8	kg	0.8	kg
Weight (including ABS-RII)	W _E	0.61	kg	0.61	kg

Holding Brake Data Sheet (Option)

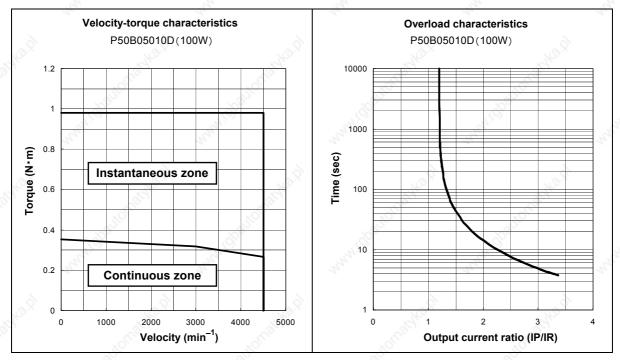
Holding torque	Тв	0.167 or more	N∙m	1.7 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.40/0.11	A(DC)	0.40/0.11	A(DC)
Inertia	JB	0.029×10^{-4}	kg∙m²(GD²/4)	0.03	g·cm·s ²
Weight	W	0.3	kg 🔬	0.3	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B05010D

			TOCECCOTO		
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	100	W	100	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.319	N·m	3.25	kg∙cm
Continuous stall torque	Ts	0.353	N·m	3.6 🔊	kg∙cm
Instantaneous maximum stall torque	TP	0.98	N∙m	10	kg∙cm
Rated armature current	. S I _R	1.1	Arms	1.1	Arms
Continuous stall armature current	ls	1.2	Arms	1.2	Arms
Instantaneous maximum stall armature current	I _P	3.7	Arms	3.7	Arms
Torque constant	K _T	0.319	N·m/Arms	3.25	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	11.1	mV/min ⁻¹	11.1	V/krpm
Phase armature resistance	R _o	4.9	Ω	4.9	Ω
Electrical time constant	te	2.5	msec	2.5	msec
Mechanical time constant (not including sensor)	tm	1.4	msec	1.4	msec
Inertia (including wiring-saved INC)	J _M	0.101 × 10 ⁻⁴	kg⋅m²(GD²/4)	0.103	g∙cm∙s²
Inertia (including ABS-E)	J _M	0.126×10^{-4}	kg·m ² (GD ² /4)	0.128	g⋅cm⋅s²
Inertia (including ABS-RII)	J _M	0.098×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.100	g·cm·s ²
Applicable load inertia	JL	1.01×10^{-4}	kg⋅m²(GD²/4)	1.03	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.74	kg 🖉	0.74	kg
Weight (including ABS-E)	W _E	1.01	kg	1.01	kg
Weight (including ABS-RII)	W _E $<$	0.82	kg	0.82	kg


Holding Brake Data Sheet (Option)

Holding torque	Тв	0.353 or more	N∙m	3.6 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.40/0.11	A(DC)	0.40/0.11	A(DC)
Inertia	JB	0.029×10^{-4}	kg∙m²(GD²/4)	0.03	g·cm·s ²
Weight	W	0.3	kg 🔬	0.3	kg

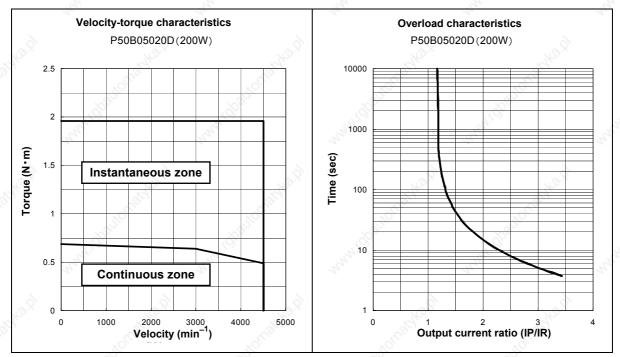
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B05020D

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	200	W	200	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	TR	0.637	N∙m	6.5	kg∙cm
Continuous stall torque	Ts	0.686	N·m	7 🔊	kg∙cm
Instantaneous maximum stall torque	TP	1.96	N∙m	20	kg∙cm
Rated armature current	. S I _R	1.6	Arms	1.6	Arms
Continuous stall armature current	ls	1.7	Arms	1.7	Arms
Instantaneous maximum stall armature current	I _P	5.5	Arms	5.5	Arms
Torque constant	Κ _T	0.436	N·m/Arms	4.45	kg ⋅ cm/Arms
Induced voltage constant	Κ _{Εφ}	15.2	mV/min ⁻¹	15.2	V/krpm
Phase armature resistance	R _{\u00fb}	3.4	Ω	3.4	Ω
Electrical time constant	te	2.9	msec	2.9	msec
Mechanical time constant (not including sensor)	tm	0.9	msec	0.9	msec
Inertia (including wiring-saved INC)	J _M	0.173×10^{-4}	kg⋅m²(GD²/4)	0.176	g·cm·s ²
Inertia (including ABS-E)	J _M	0.198×10^{-4}	kg⋅m²(GD²/4)	0.201	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.170×10^{-4}	kg⋅m²(GD²/4)	0.173	g·cm·s ²
Applicable load inertia	J_L	1.73×10^{-4}	kg⋅m²(GD²/4)	1.76	g·cm·s ²
Weight (including wiring-saved INC)	W _E	1.07	kg 🔬	1.07	kg
Weight (including ABS-E)	W _E	1.34	kg	1.34	kg
Weight (including ABS-RII)	We	1.20	kg	1.20	kg


Holding Brake Data Sheet (Option)

Holding torque	Тв	0.353 or more	N∙m	3.6 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.40/0.11	A(DC)	0.40/0.11	A(DC)
Inertia	JB	0.029×10^{-4}	kg∙m²(GD²/4)	0.03	g·cm·s ²
Weight	W	0.3	kg 🔬	0.3	kg

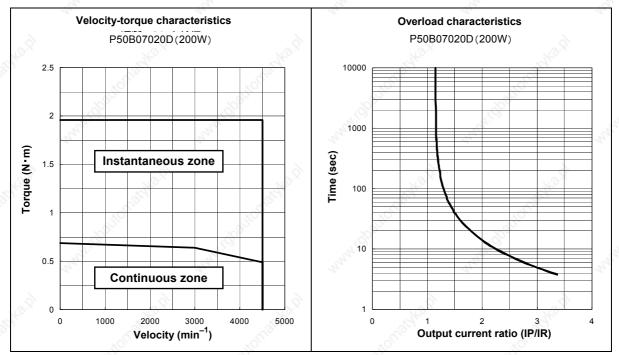
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B07020D

				·······································		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	200	W	200	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm	
Rated torque	T _R	0.637	N·m	6.5	kg∙cm	
Continuous stall torque	Ts	0.686	N·m	7 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	1.96	N∙m	20	kg∙cm	
Rated armature current	S I _R	2.2	Arms	2.2	Arms	
Continuous stall armature current	ls	2.3	Arms	2.3	Arms	
Instantaneous maximum stall armature current	I _P	7.4	Arms	7.4	Arms	
Torque constant	KT	0.348	N·m/Arms	3.55	kg·cm/Arms	
Induced voltage constant	Κ _{Eφ}	12.15	mV/min ⁻¹	12.15	V/krpm	
Phase armature resistance	R _o	2.5	Ω	2.5	Ω	
Electrical time constant	te	3.6	msec	3.6	msec	
Mechanical time constant (not including sensor)	tm	2.4	msec	2.4	msec	
Inertia (including wiring-saved INC)	J _M	0.386×10^{-4}	kg⋅m²(GD²/4)	0.394	g∙cm∙s²	
Inertia (including ABS-E)	J _M	0.531×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.539	g⋅cm⋅s²	
Inertia (including ABS-RII)	J _M	$0.398 imes 10^{-4}$	kg⋅m²(GD²/4)	0.406	g∙cm∙s²	
Applicable load inertia	J_L	3.86×10^{-4}	kg⋅m ² (GD ² /4)	3.94	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	1.57	kg 🖉	1.57	kg	
Weight (including ABS-E)	W _E	1.87	kg	1.87	kg	
Weight (including ABS-RII)	W _E	1.60	kg	1.60	kg	


Holding Brake Data Sheet (Option)

Holding torque	Тв	0.69 or more	N∙m	7 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.30/0.08	A(DC)	0.30/0.08	A(DC)
Inertia	JB	0.245×10^{-4}	kg∙m²(GD²/4)	0.25	g∙cm∙s²
Weight	W	0.57	kg 🔬	0.57	kg

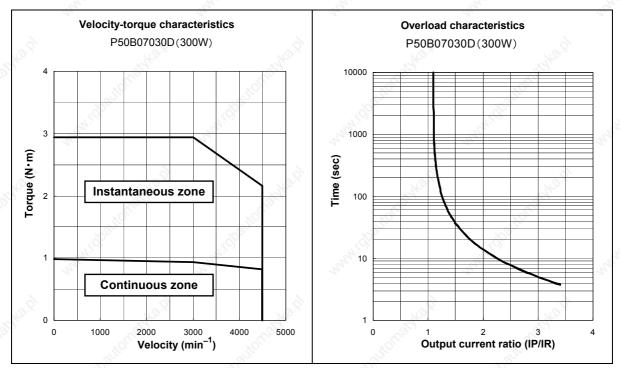
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B07030D

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	300	W	300	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	TR	0.931	N∙m	9.5	kg∙cm
Continuous stall torque	Ts	0.98	N·m	10 🔊	kg∙cm
Instantaneous maximum stall torque	TP	2.94	N∙m	30	kg∙cm
Rated armature current	I _R	2.2	Arms	2.2	Arms
Continuous stall armature current	ls	2.2	Arms	2.2	Arms
Instantaneous maximum stall armature current	I _P	7.5	Arms	7.5	Arms
Torque constant	Κ _T	0.483	N·m/Arms	4.93	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	16.86	mV/min ⁻¹	16.86	V/krpm
Phase armature resistance	R _{\u00fb}	2.9	Ω	2.9	Ω
Electrical time constant	te	3.8	msec	3.8	msec
Mechanical time constant (not including sensor)	tm	1.8	msec	1.8	msec
Inertia (including wiring-saved INC)	J _M	0.495×10^{-4}	kg⋅m²(GD²/4)	0.505	g·cm·s ²
Inertia (including ABS-E)	J _M	0.64×10^{-4}	kg⋅m²(GD²/4)	0.65	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.507×10^{-4}	kg⋅m²(GD²/4)	0.517	g·cm·s ²
Applicable load inertia	J_L	4.95×10^{-4}	kg⋅m²(GD²/4)	5.05	g·cm·s ²
Weight (including wiring-saved INC)	W _E	1.71	kg 🔬	1.71	kg
Weight (including ABS-E)	W _E	2.01	kg	2.01	kg
Weight (including ABS-RII)	W _E	1.80	kg	1.80	kg


Holding Brake Data Sheet (Option)

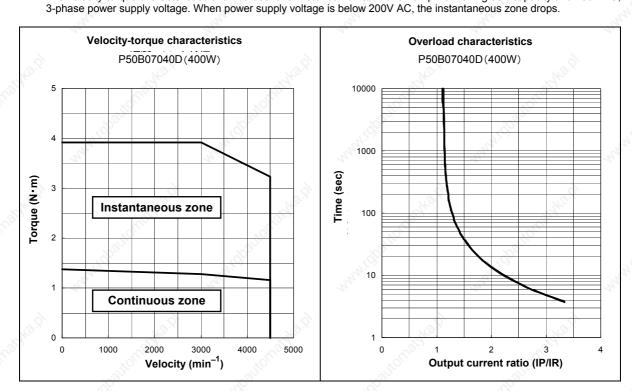
Holding torque	Тв	0.98 or more	N∙m	10 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.30/0.08	A(DC)	0.30/0.08	A(DC)
Inertia	J _B	0.245×10^{-4}	kg∙m²(GD²/4)	0.25	g·cm·s ²
Weight	W	0.57	kg 🔬	0.57	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 15A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B07040D


					2010101	
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	400	W	400	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm	
Rated torque	TR	1.274	N∙m	13	kg∙cm	
Continuous stall torque	Ts	1.372	N·m	14 🔊	kg∙cm	
Instantaneous maximum stall torque	T _P	3.92	N∙m	40	kg∙cm	
Rated armature current	I _R	3.0	Arms	3.0	Arms	
Continuous stall armature current	I _S	3.1	Arms	3.1	Arms	
Instantaneous maximum stall armature current	I _P	10	Arms	10	Arms	
Torque constant	Κ _T	0.481	N·m/Arms	4.91	kg∙cm/Arms	
Induced voltage constant	Κ _{Εφ}	16.8	mV/min ^{_1}	16.8	V/krpm	
Phase armature resistance	R _{\u00fb}	1.65	Ω	1.65	Ω	
Electrical time constant	teo	4	msec	4 🔬	msec	
Mechanical time constant (not including sensor)	tm	1.6	msec	1.6	msec	
Inertia (including wiring-saved INC)	J _M	0.74×10^{-4}	kg⋅m²(GD²/4)	0.755	g∙cm∙s²	
Inertia (including ABS-E)	J _M	0.885×10^{-4}	kg⋅m²(GD²/4)	0.9	g∙cm∙s²	
Inertia (including ABS-RII)	J _M	0.752×10^{-4}	kg⋅m²(GD²/4)	0.767	g∙cm∙s²	
Applicable load inertia	J_L	7.4×10^{-4}	kg⋅m²(GD²/4)	7.55	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	2.1	kg 🔬	2.1	kg	
Weight (including ABS-E)	W _E	2.4	kg	2.4	kg	
Weight (including ABS-RII)	We	2.10	kg	2.10	kg	

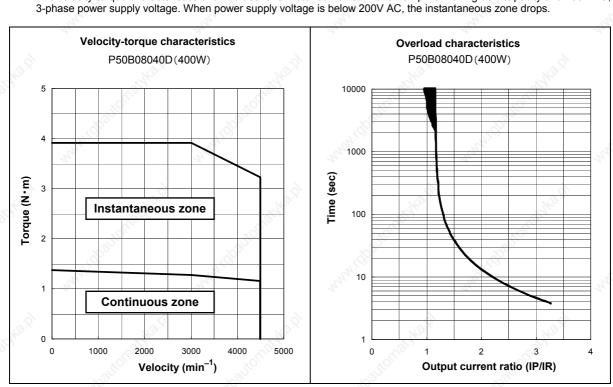
Holding Brake Data Sheet (Option)

Holding torque	Τ _B	0.98 or more	N∙m	10 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.30/0.08	A(DC)	0.30/0.08	A(DC)
Inertia	J _B	0.245×10^{-4}	kg∙m²(GD²/4)	0.25	g·cm·s ²
Weight	W	0.57	kg 🔬	0.57	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P50B08040D


				1 0000010		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	400	W	400	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm	
Rated torque	T _R	1.274	N·m	13	kg∙cm	
Continuous stall torque	Ts	1.372	N·m	14 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	3.92	N∙m	40	kg∙cm	
Rated armature current	S I _R	3.3	Arms	3.3	Arms	
Continuous stall armature current	ls	3.5	Arms	3.5	Arms	
Instantaneous maximum stall armature current	I _P	10.8	Arms	10.8	Arms	
Torque constant	K _T	0.438	N·m/Arms	4.47	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	15.29	mV/min ⁻¹	15.29	V/krpm	
Phase armature resistance	R _o	1.37	Ω	1.37	Ω	
Electrical time constant	te	5	msec	5 🔬	msec	
Mechanical time constant (not including sensor)	tm	1.8	msec	1.8	msec	
Inertia (including wiring-saved INC)	J _M	0.828×10^{-4}	kg⋅m²(GD²/4)	0.845	g·cm·s ²	
Inertia (including ABS-E)	J _M	0.973×10^{-4}	kg·m ² (GD ² /4)	0.99	g·cm·s ²	
Inertia (including ABS-RII)	J _M	0.840×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.857	g·cm·s ²	
Applicable load inertia	J_L	8.28×10^{-4}	kg⋅m²(GD²/4)	8.45	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	2.45	kg 🖉	2.45	kg	
Weight (including ABS-E)	W _E	2.71	kg	2.71	kg	
Weight (including ABS-RII)	W _E	2.45	kg	2.45	kg	

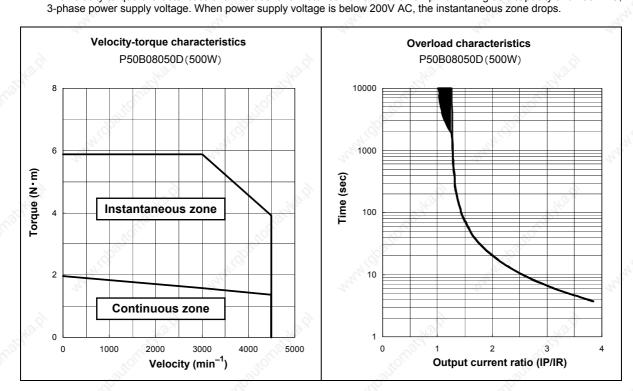
Holding Brake Data Sheet (Option)

Holding torque	Тв	1.37 or more	N∙m	14 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	JB	0.343×10^{-4}	kg⋅m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg 🔬 🕺	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P50B08050D


				1.00	
Name	Symbol	Data	Unit	Data	Unit
 Rated output 	P _R	500	W	500	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	1.589	N∙m	16.2	kg∙cm
Continuous stall torque	Ts	1.96	N⋅m	20 🔬	kg∙cm
Instantaneous maximum stall torque	TP	5.88	N∙m	60	kg∙cm
Rated armature current	S I _R	3.9	Arms	3.9	Arms
Continuous stall armature current	ls	4.5	Arms	4.5	Arms
Instantaneous maximum stall armature current	I _P	15	Arms	15	Arms
Torque constant	Κ _T	0.473	N·m/Arms	4.83	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	16.5	mV/min ⁻¹	16.5	V/krpm
Phase armature resistance	R _o	0.94	Ω	0.94	Ω
Electrical time constant	te	5.2	msec	5.2	msec
Mechanical time constant (not including sensor)	tm	1.5	msec	1.5	msec
Inertia (including wiring-saved INC)	J _M	1.161 × 10 ⁻⁴	kg⋅m²(GD²/4)	1.185	g·cm·s ²
Inertia (including ABS-E)	J _M	1.306×10^{-4}	kg · m ² (GD ² /4)	1.33	g·cm·s ²
Inertia (including ABS-RII)	J _M	1.173×10^{-4}	kg⋅m²(GD²/4)	1.197	g·cm·s ²
Applicable load inertia	J_L	11.6×10^{-4}	kg·m ² (GD ² /4)	11.9	g·cm·s ²
Weight (including wiring-saved INC)	W _E	3.0	kg	3.0	kg
Weight (including ABS-E)	W _E	3.26	kg	3.26	kg
Weight (including ABS-RII)	W _E	3.00	kg	3.00	kg

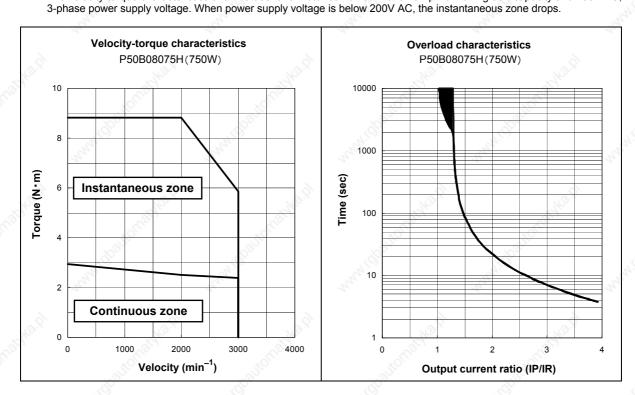
Holding Brake Data Sheet (Option)

Y	Τ _B	1.96 or more	N∙m	20 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	IB	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	JB	0.343×10^{-4}	kg⋅m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg 🔬	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P50B08075H


Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	750	W	750	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	T _R	2.381	N·m	24.3	kg∙cm	
Continuous stall torque	Ts	2.94	N·m	30 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	8.82	N∙m	90	kg∙cm	
Rated armature current	S I _R	3.9	Arms	3.9	Arms	
Continuous stall armature current	ls	4.6	Arms	4.6	Arms	
Instantaneous maximum stall armature current	I _P	15.3	Arms	15.3	Arms	
Torque constant	Κ _T	0.689	N·m/Arms	7.03	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	24.05	mV/min ⁻¹	24.05	V/krpm	
Phase armature resistance	R _o	1.07	Ω	1.07	Ω	
Electrical time constant	te	5.3	msec	5.3 🔬	msec	
Mechanical time constant (not including sensor)	tm	1.3	msec	1.3	msec	
Inertia (including wiring-saved INC)	J _M	1.926×10^{-4}	kg⋅m²(GD²/4)	1.965	g·cm·s ²	
Inertia (including ABS-E)	J _M	2.071×10^{-4}	kg·m ² (GD ² /4)	2.11	g·cm·s ²	
Inertia (including ABS-RII)	J _M	1.938×10^{-4}	$kg \cdot m^2 (GD^2/4)$	1.977	g·cm·s ²	
Applicable load inertia	J_L	19.26×10^{-4}	kg·m²(GD²/4)	19.65	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	3.9	kg	3.9	kg	
Weight (including ABS-E)	W _E	4.16	kg	4.16	kg kg	
Weight (including ABS-RII)	WE	3.90	kg	3.90	kg	

Holding Brake Data Sheet (Option)

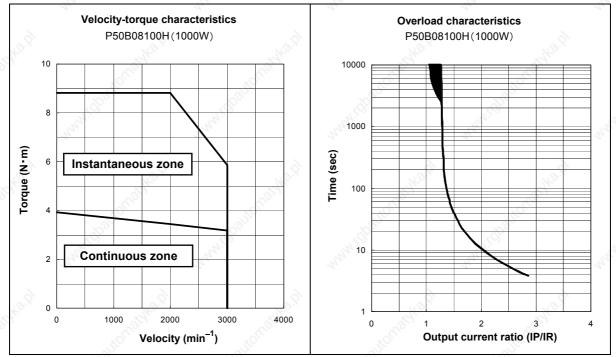
Holding torque	Тв	2.94 or more	N∙m	30 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	J _B	0.343×10^{-4}	kg⋅m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg 🔬	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

P50B08100H

					0001001
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	1000	W	1000	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm
Rated torque	T _R	3.185	N·m	32.5	kg∙cm
Continuous stall torque	Ts	3.92	N·m	40 🔬	kg∙cm
Instantaneous maximum stall torque	TP	8.82	N∙m	90	kg∙cm
Rated armature current	I _R	4.3	Arms	4.3	Arms
Continuous stall armature current	ls	5.0	Arms	5.0	Arms
Instantaneous maximum stall armature current	I _P	12.3	Arms	12.3	Arms
Torque constant	K _T	0.860	N·m/Arms	8.78	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	30.02	mV/min ⁻¹	30.02	V/krpm
Phase armature resistance	R _{\u00fb}	1.0	Ω	1.0	Ω
Electrical time constant	te	5.9	msec	5.9	msec
Mechanical time constant (not including sensor)	tm	1.1	msec	1.1	msec
Inertia (including wiring-saved INC)	J _M	2.651×10^{-4}	kg⋅m²(GD²/4)	2.705	g∙cm∙s²
Inertia (including ABS-E)	J _M	2.796×10^{-4}	kg⋅m²(GD²/4)	2.85	g∙cm∙s²
Inertia (including ABS-RII)	J_{M}	2.663×10^{-4}	kg⋅m²(GD²/4)	2.717	g∙cm∙s²
Applicable load inertia	J_L	26.5×10^{-4}	kg⋅m²(GD²/4)	27.1	g·cm·s ²
Weight (including wiring-saved INC)	W _E	5.05	kg	5.05	kg
Weight (including ABS-E)	W _E	5.31	kg	5.31	kg
Weight (including ABS-RII)	WE	5.1	kg	5.1	kg


Holding Brake Data Sheet (Option)

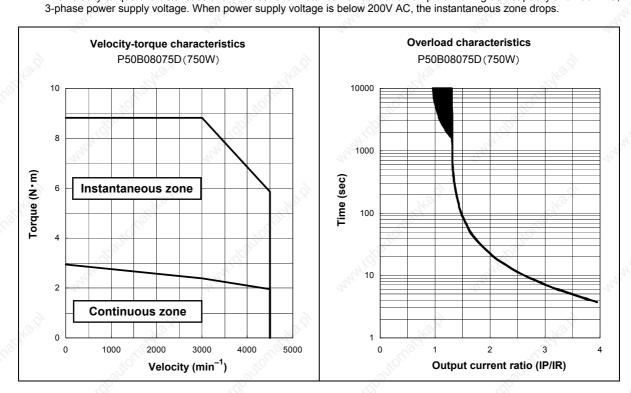
Holding torque	Тв	2.94 or more	N∙m	30 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	J _B	0.343×10^{-4}	kg∙m²(GD²/4)	0.35	g∙cm∙s²
Weight	W	0.8	kg 🔬	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P50B08075D


					0000101
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	750	W	750	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm 🔊
Rated torque	TR	2.381	N∙m	24.3	kg∙cm
Continuous stall torque	Ts	2.94	N·m	30 🔊	kg∙cm
Instantaneous maximum stall torque	TP	8.82	N∙m	90	kg∙cm
Rated armature current	S I _R	6.0	Arms	6.0	Arms
Continuous stall armature current	ls	7.1	Arms	7.1	Arms
Instantaneous maximum stall armature current	I _P	23.7	Arms	23.7	Arms
Torque constant	Κ _T	0.447	N·m/Arms	4.56	kg·cm/Arms
Induced voltage constant	Κ _{Eφ}	15.6	mV/min ⁻¹	15.6	V/krpm
Phase armature resistance	R _φ	0.43	Ω	0.43	Ω
Electrical time constant	tex	5.8	msec	5.8 🔬	msec
Mechanical time constant (not including sensor)	tm	1.2	msec	1.2	msec
Inertia (including wiring-saved INC)	J _M	1.926×10^{-4}	kg⋅m²(GD²/4)	1.965	g·cm·s ²
Inertia (including ABS-E)	J _M	2.071×10^{-4}	kg⋅m²(GD²/4)	2.11	g∙cm∙s²
Inertia (including ABS-RII)	J _M	1.938×10^{-4}	kg⋅m²(GD²/4)	1.977	g∙cm∙s²
Applicable load inertia	J_L	19.26×10^{-4}	kg⋅m²(GD²/4)	19.65	g·cm·s ²
Weight (including wiring-saved INC)	W _E	3.9	kg 🔬	3.9	kg
Weight (including ABS-E)	W _E	4.16	kg	4.16	kg
Weight (including ABS-RII)	W _E	3.90	kg	3.90	kg

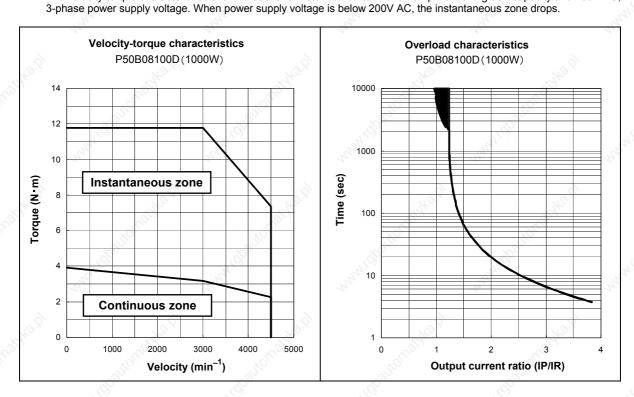
Holding Brake Data Sheet (Option)

Holding torque	Тв	2.94 or more	N∙m	30 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	JB	0.343×10^{-4}	kg∙m²(GD²/4)	0.35	g·cm·s ²
Weight	W	0.8	kg 🔬 🕺	0.8	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

P50B08100D


					000100	
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1000	W	1000	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm	
Rated torque	TR	3.185	N·m	32.5	kg∙cm	
Continuous stall torque	Ts	3.92	N·m	40 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	11.76	N∙m	120	kg∙cm	
Rated armature current	S [™] I _R	6.7	Arms	6.7	Arms	
Continuous stall armature current	ls	7.5	Arms	7.5	Arms	
Instantaneous maximum stall armature current	I _P	25.7	Arms	25.7	Arms	
Torque constant	Κ _T	0.553	N·m/Arms	5.65	kg·cm/Arms	
Induced voltage constant	Κ _{Eφ}	19.3	mV/min ⁻¹	19.3	V/krpm	
Phase armature resistance	Rø	0.41	Ω	0.41	Ω	
Electrical time constant	te	5.9	msec	5.9 🔬	msec	
Mechanical time constant (not including sensor)	tm	1.1	msec	1.1	msec	
Inertia (including wiring-saved INC)	J _M	2.651×10^{-4}	kg⋅m²(GD²/4)	2.705	g∙cm∙s²	
Inertia (including ABS-E)	J _M	2.796×10^{-4}	$kg \cdot m^2 (GD^2/4)$	2.85	g∙cm∙s²	
Inertia (including ABS-RII)	J _M	2.663×10^{-4}	kg⋅m²(GD²/4)	2.717	g∙cm∙s²	
Applicable load inertia	J_L	26.5×10^{-4}	kg⋅m ² (GD ² /4)	27.1	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	5.05	kg 🖉	5.05	kg	
Weight (including ABS-E)	W _E	5.31	kg	5.31	kg	
Weight (including ABS-RII)	W _E	5.05	kg	5.05	kg	

Holding Brake Data Sheet (Option)

Holding torque	Тв	2.94 or more	N∙m	30 or more	kg∙cm
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.33/0.08	A(DC)	0.33/0.08	A(DC)
Inertia	JB	0.343×10^{-4}	kg∙m²(GD²/4)	0.35	g∙cm∙s²
Weight	W	0.8	kg 🔬	0.8	kg

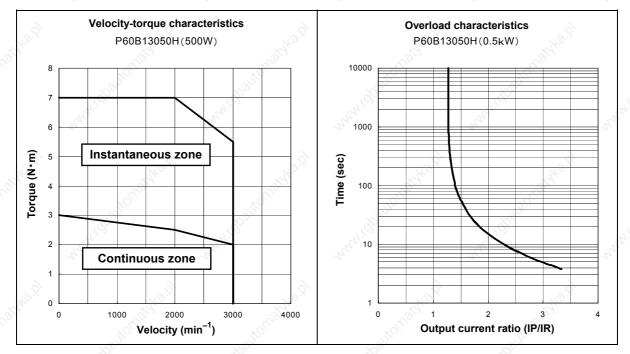
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t12 × 305 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

9.2.5.5 Motor Data Sheet

P60B13050H

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	500	W	500	W
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm
Rated torque	T _R	2.5	N·m	25	kg∙cm
Continuous stall torque	Ts	3.0	N ⋅ m	31	kg∙cm
Instantaneous maximum stall torque	T _P	7.0	N∙m	71	kg∙cm
Rated armature current	I _R	4.5	Arms	4.5	Arms
Continuous stall armature current	I _S	5.2	Arms	5.2	Arms
Instantaneous maximum stall armature current	I _P	15.0	Arms	15.0	Arms
Torque constant	KT	0.65	N ⋅ m/Arms	6.6	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	22.5	mV/min ⁻¹	22.5	V/krpm
Phase armature resistance	R _o	0.64	Ω	0.64	Ω
Electrical time constant	te	9.1	msec	9.1	msec
Mechanical time constant (not including sensor)	t _m	1.3	msec	1.3	msec
Inertia (including wiring-saved INC)	J _M	2.78×10^{-4}	kg⋅m²(GD²/4)	2.88	g∙cm∙s²
Inertia (including ABS-E)	J _M	2.85×10^{-4}	kg m^2 (GD ² /4)	2.95	g·cm·s ²
Inertia (including ABS-RII)	J _M	2.78×10^{-4}	kg·m ² (GD ² /4)	2.88	g·cm·s ²
Applicable load inertia	J_L	27.8×10^{-4}	kg⋅m ² (GD ² /4)	28.8	g·cm·s ²
Weight (including wiring-saved INC)	WE	4.7	kg	4.7	🖉 kg
Weight (including ABS-E)	WE	4.7	kg	4.7	kg
Weight (including ABS-RII)	WF	4.8	ຼິິ kg	4.8	kg


Holding Brake Data Sheet (Option)

Holding torque	Τ _B	3.5 or more	N∙m	36 or more	kg•cm 🚿
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	Ι _Β	0.91/0.25	A(DC)	0.91/0.25	A(DC)
Inertia	J _B	0.5×10^{-4}	kg∙m²(GD²/4)	0.5	g·cm·s ²
Weight	W	<u> </u>	kg	1.3	🔊 kg

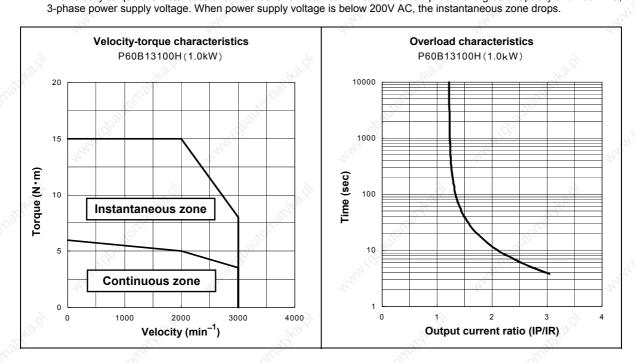
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.

Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum
plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P6

P60B13100H


				I COBICICO		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1000	W	1000	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	TR	5.0	N∙m	51	kg∙cm	
Continuous stall torque	Ts	6.0	N·m	61 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	15.0	N∙m	153	kg∙cm	
Rated armature current	I _R	7.8	Arms	7.8	Arms	
Continuous stall armature current	I _S	8.7	Arms	8.7	Arms	
Instantaneous maximum stall armature current	I _P	23.7	Arms	23.7	Arms	
Torque constant	Κ _T	0.76	N·m/Arms	7.7	kg∙cm/Arms	
Induced voltage constant	Κ _{Εφ}	26.2	mV/min ⁻¹	26.2	V/krpm	
Phase armature resistance	R _{\phi}	0.31	Ω	0.31	Ω	
Electrical time constant	te	10	msec	10 🔬	msec	
Mechanical time constant (not including sensor)	tm	0.90	msec	0.90	msec	
Inertia (including wiring-saved INC)	J _M	5.58×10^{-4}	kg⋅m²(GD²/4)	5.68	g∙cm∙s²	
Inertia (including ABS-E)	J _M	5.65×10^{-4}	kg⋅m²(GD²/4)	5.75	g∙cm∙s²	
Inertia (including ABS-RII)	J _M	5.580×10^{-4}	kg⋅m²(GD²/4)	5.680	g∙cm∙s²	
Applicable load inertia	J_L	55.8×10^{-4}	kg⋅m²(GD²/4)	56.8	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	6.6	kg 🔬	6.6	kg	
Weight (including ABS-E)	W _E	6.6	kg	6.6	kg	
Weight (including ABS-RII)	WE	6.7	kg	6.7	kg	

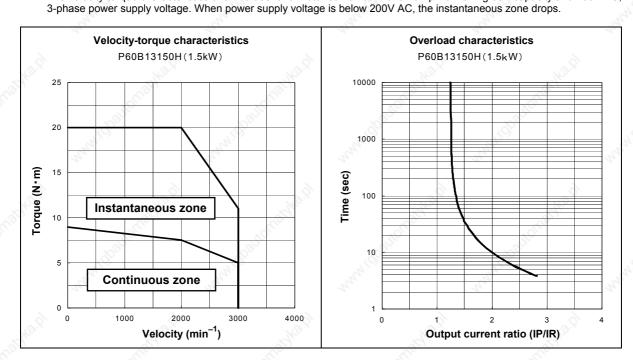
Holding Brake Data Sheet (Option)

Holding torque	Тв	9.0 or more	N∙m	92 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg⋅m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

P60B13150H


				I COBICICOI		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1500	W	1500	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	TR	7.5	N∙m	76	kg∙cm	
Continuous stall torque	Ts	9.0	N·m	92	kg∙cm	
Instantaneous maximum stall torque	TP	20.0	N∙m	204	kg∙cm	
Rated armature current	I _R	9.4	Arms	9.4	Arms	
Continuous stall armature current	I _S	10.7	Arms	10.7	Arms	
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms	
Torque constant	Κ _T	0.90	N·m/Arms	9.2	kg·cm/Arms	
Induced voltage constant	Κ _{Εφ}	31.4	mV/min ⁻¹	31.4	V/krpm	
Phase armature resistance	R _{\u00fb}	0.27	Ω	0.27	Ω	
Electrical time constant	te	10	msec	10	msec	
Mechanical time constant (not including sensor)	tm	0.82	msec	0.82	msec	
Inertia (including wiring-saved INC)	J _M	8.28×10^{-4}	kg⋅m²(GD²/4)	8.48	g⋅cm⋅s²	
Inertia (including ABS-E)	J _M	8.35×10^{-4}	kg⋅m ² (GD ² /4)	8.55	g·cm·s ²	
Inertia (including ABS-RII)	J _M	8.280×10^{-4}	kg⋅m²(GD²/4)	8.443	g·cm·s ²	
Applicable load inertia	J_L	82.8×10^{-4}	kg⋅m²(GD²/4)	84.8	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	7.8	kg 🔬	7.8	kg	
Weight (including ABS-E)	W _E	7.8	kg	7.8	kg	
Weight (including ABS-RII)	W _E	8.9	kg	8.9	kg	

Holding Brake Data Sheet (Option)

Holding torque	Тв	9.0 or more	N∙m	92 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	JB	0.5×10^{-4}	kg⋅m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

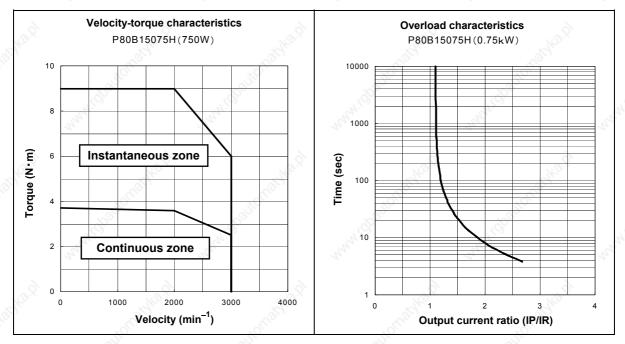
The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

9.2.5.6 Motor Data Sheet

P80B15075H

Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	750	W	750	W
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000 🔊	rpm
Rated torque	T _R	3.6	N·m	37	kg∙cm
Continuous stall torque	Ts	3.7	N ⋅ m	38	kg∙cm
Instantaneous maximum stall torque	T _P	9.0	N∙m	92	kg∙cm
Rated armature current	I _R	5.2	Arms	5.2	Arms
Continuous stall armature current	Is	5.2	Arms	5.2	Arms
Instantaneous maximum stall armature current	I _P	13.9	Arms	13.9	Arms
Torque constant	Κ _T	0.78	N ⋅ m/Arms	7.9	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	27.0	mV/min ⁻¹	27.0	V/krpm
Phase armature resistance	R _o	0.44	Ω	0.44	Ω
Electrical time constant	te	13	msec	13	msec
Mechanical time constant (not including sensor)	t _m	1.1	msec	1.1	msec
Inertia (including wiring-saved INC)	J _M	5.28×10^{-4}	kg⋅m²(GD²/4)	5.38	g∙cm∙s²
Inertia (including ABS-E)	J _M	5.35×10^{-4}	kg⋅m²(GD²/4)	5.45	g·cm·s ²
Inertia (including ABS-RII)	J _M	5.280×10^{-4}	kg⋅m²(GD²/4)	5.383	g·cm·s ²
Applicable load inertia	J_L	52.8×10^{-4}	kg⋅m ² (GD ² /4)	53.8	g·cm·s ²
Weight (including wiring-saved INC)	W _E	6.2	kg	6.2	kg kg
Weight (including ABS-E)	WE	6.2	kg	6.2	kg
Weight (including ABS-RII)	WF	6.3		6.3	kg


Holding Brake Data Sheet (Option)

Holding torque	Τ _B	9.0 or more	N∙m	92 or more	kg•cm 🚿
Exciting voltage	V _B	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	Ι _Β	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	J _B	0.5×10^{-4}	kg∙m²(GD²/4)	0.5	g·cm·s ²
Weight	W	🔊 1.5	kg	1.5	🔊 kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.

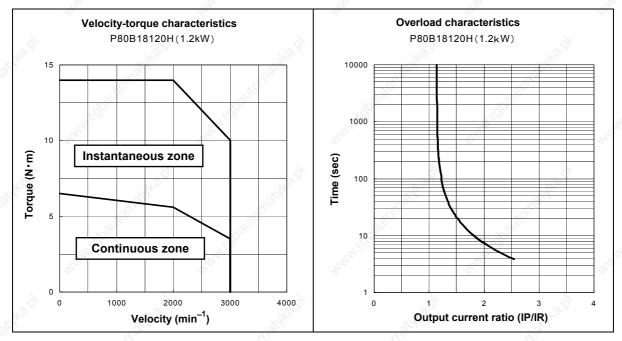
 Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

• The velocity-torque characteristics show values for a motor combined with an amplifier having 30A capacity and 200V AC, 3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

P8

P80B18120H

				I CODICIZOI		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	1200	W	1200	W	
Rated revolution speed	N _R	2000	min ⁻¹	2000	rpm	
Maximum revolution speed	N _{max}	3000	min ⁻¹	3000	rpm	
Rated torque	TR	5.6	N∙m	57	kg∙cm	
Continuous stall torque	Ts	6.5	N·m	66 🔊	kg∙cm	
Instantaneous maximum stall torque	TP	14.0	N·m	143	kg∙cm	
Rated armature current	. ⊘I _R	10.4	Arms	10.4	Arms	
Continuous stall armature current	I _S	10.8	Arms	10.8	Arms	
Instantaneous maximum stall armature current	I _P	26.5	Arms	26.5	Arms	
Torque constant	K _T	0.73	N·m/Arms	7.4	kg ⋅ cm/Arms	
Induced voltage constant	Κ _{Eφ}	25.3	mV/min ⁻¹	25.3	V/krpm	
Phase armature resistance	Rø	0.22	Ω	0.22	Ω	
Electrical time constant	te	18	msec	18 🔬	msec	
Mechanical time constant (not including sensor)	tm	1.5	msec	1.5	msec	
Inertia (including wiring-saved INC)	J _M	12.1 × 10 ⁻⁴	kg⋅m²(GD²/4)	12.1	g∙cm∙s²	
Inertia (including ABS-E)	J _M	12.2×10^{-4}	kg·m ² (GD ² /4)	12.2	g·cm·s ²	
Inertia (including ABS-RII)	J _M	12.10×10^{-4}	kg⋅m²(GD²/4)	12.34	g⋅cm⋅s²	
Applicable load inertia	J_L	121×10^{-4}	kg⋅m²(GD²/4)	121	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	10.0	kg 🔬	10.0	kg	
Weight (including ABS-E)	W _E	10.0	kg	10.0	kg	
Weight (including ABS-RII)	W _E	10.1	kg	10.1	kg	


Holding Brake Data Sheet (Option)

Holding torque	Тв	9.0 or more	N·m	92 or more	kg∙cm
Exciting voltage	VB	24/90	V(DC)±10%	24/90	V(DC)±10%
Exciting current	I _B	0.86/0.25	A(DC)	0.86/0.25	A(DC)
Inertia	J _B	0.5×10^{-4}	kg∙m²(GD²/4)	0.5	g·cm·s ²
Weight	W	1.5	kg 🔬	1.5	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 400 mm square aluminum

plate installed.
The velocity-torque characteristics show values for a motor combined with an amplifier having 50A capacity and 200V AC,

3-phase power supply voltage. When power supply voltage is below 200V AC, the instantaneous zone drops.

9.2.5.7 Motor Data Sheet

P3 (100V Motor)

				P30B04003		
Name	Symbol	Data	Unit	Data	Unit	
Rated output	P _R	30	W	30	W	
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm	
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm	
Rated torque	TR	0.098	N∙m	1.0	kg∙cm	
Continuous stall torque	Ts	0.108	N ⋅ m	1.1	kg∙cm	
Instantaneous maximum stall torque	Τ _Ρ	0.322	N∙m	3.3	kg∙cm	
Rated armature current	I _R	1.0	Arms	1.0	Arms	
Continuous stall armature current	ls	1.1	Arms	1.1	Arms	
Instantaneous maximum stall armature current	Ι _Ρ	3.6	Arms	3.6	Arms	
Torque constant	Κ _T	0.1	N ⋅ m/Arms	1.07	kg·cm/Arms	
Induced voltage constant	Κ _{Eφ}	3.65	mV/min ⁻¹	3.65	V/krpm	
Phase armature resistance	R _o	3.04	Ω	3.04	Ω	
Electrical time constant	te	1.2	msec	1.2	msec	
Mechanical time constant (not including sensor)	t _m	1.6	msec	1.6	msec	
Inertia (including wiring-saved INC)	J _M	0.024×10^{-4}	kg⋅m²(GD²/4)	0.025	g·cm·s ²	
Inertia (including ABS-RII)	J _M	0.021×10^{-4}	kg⋅m²(GD²/4)	0.0223	g·cm·s ²	
Applicable load inertia	J_{L}	0.24×10^{-4}	kg⋅m²(GD²/4)	0.25	g·cm·s ²	
Weight (including wiring-saved INC)	W _E	0.3	kg	0.3	kg	
Weight (including ABS-RII)	WE	0.39	kg	0.39	kg 🖉	

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P30B04005P

Name	Symbol	Data	Unit	Data	Unit
 Rated output 	P _R	50	W	50	W S
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
 Rated torque 	T _R	0.157	S N⋅m	1.6	kg∙cm
Continuous stall torque	Τs	0.167	N∙m	1.7	kg∙cm
Instantaneous maximum stall torque	T _P	0.49	N∙m	5.0	kg•cm 🔊
Rated armature current	I _R	1.5	Arms	1.5	Arms
Continuous stall armature current	Is	1.6	Arms	1.6	Arms
Instantaneous maximum stall armature current	I _P	5.1	Arms	5.1	Arms
Torque constant	K _T	0.113	N·m/Arms	1.15	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	3.93	mV/min ⁻¹	3.93	V/krpm
Phase armature resistance	R _ø	2.25	Ω	2.25	Ω
Electrical time constant	te	1.3	msec	1.3	msec
Mechanical time constant (not including sensor)	tm	1.4	msec	1.4	msec
Inertia (including wiring-saved INC)	J _M	0.031×10^{-4}	kg⋅m²(GD²/4)	0.032	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.028×10^{-4}	kg·m ² (GD ² /4)	0.0293	g·cm·s ²
Applicable load inertia	JL	0.31×10^{-4}	kg⋅m²(GD²/4)	0.32	g·cm·s ²
Weight (including wiring-saved INC)	WE	0.35	kg	0.35	kg
Weight (including ABS-RII)	W _E	0.44	kg	0.44	kg

• The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.

 Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P30B04010P

F30D04010F					
Name	Symbol	Data	Unit	Data	Unit
 Rated output 	P _R	100	W	100	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
 Rated torque 	T _R	0.32	N·m	3.25	kg∙cm
 Continuous stall torque 	Ts	0.353	N∙m	3.6	⊚ kg∙cm
 Instantaneous maximum stall torque 	Te	0.98	N∙m	10	kg∙cm
 Rated armature current 	I _R	2.2	Arms	2.2	Arms
 Continuous stall armature current 	Is	2.4	Arms	2.4	Arms
 Instantaneous maximum stall armature current 	Ι _Ρ	7.4	Arms	7.4	Arms
Torque constant	KT	0.162	N ⋅ m/Arms	1.65	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	5.63	mV/min ⁻¹	5.63	V/krpm
Phase armature resistance	R_{ϕ}	1.58	Ω	1.58	Ω
Electrical time constant	t _e	1.3	msec	1.3	msec
Mechanical time constant (not including sensor)	t _m	0.8	msec	0.8	msec
Inertia (including wiring-saved INC)	J _M	0.051×10^{-4}	kg⋅m²(GD²/4)	0.052	g∙cm∙s²
Inertia (including ABS-RII)	J _M	0.048×10^{-4}	kg·m ² (GD ² /4)	0.0493	g·cm·s ²
Applicable load inertia	JL	0.51×10^{-4}	kg·m²(GD²/4)	0.52	g∙cm∙s²
Weight (including wiring-saved INC)	WE	0.5	kg	0.5	kg
Weight (including ABS-RII)	WE	0.59	kg	0.59	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

				P30	B06020P
Name	Symbol	Data	Unit	Data	Unit
* Rated output	PR	200	W	200	W S
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
* Rated torque	T _R	0.637	N·m 👌	6.5	kg∙cm
 Continuous stall torque 	Ts	0.686	N·m 🔊	7.0	kg∙cm
* Instantaneous maximum stall torque	T _P	1.96	N·m	20	kg∙cm
 Rated armature current 	IR S	4.6	Arms	4.6	Arms
* Continuous stall armature current	ls	4.8	Arms	4.8	Arms
 Instantaneous maximum stall armature current 	NP.	15.8	Arms	15.8	Arms
Torque constant	Kτ	0.151	N ⋅ m/Arms	1.54	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	5.28	mV/min ⁻¹	5.28	V/krpm
Phase armature resistance	R_{ϕ}	0.39	Ω	0.39	Ω
Electrical time constant	te	3.6	msec	3.6	msec
Mechanical time constant (not including sensor)	t _m	0.71	msec	0.71	msec
Inertia (including wiring-saved INC)	JM	0.144×10^{-4}	kg⋅m²(GD²/4)	0.147	g·cm·s ²
Inertia (including ABS-RII)	J _M	0.141×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.1443	g·cm·s ²
Applicable load inertia	JL	1.44×10^{-4}	kg⋅m²(GD²/4)	1.47	g·cm·s ²
Weight (including wiring-saved INC)	W _E	1.15	kg	1.15	kg
Weight (including ABS-RII)	WE	1.35	kg	1.35	kg 📣

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one. Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.

9.2.5.8 Motor Data Sheet

P5 (100V Motor)

				D5()B03003
~ ~ ~		~~~~~			
Name	Symbol	Data	Unit	Data	Unit
Rated output	P _R	30	W	30	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.098	N∙m	1.0	kg∙cm
Continuous stall torque	Ts	0.108	N ⋅ m	1.1	kg∙cm
Instantaneous maximum stall torque	T _P	0.323	N∙m	3.3	kg∙cm
Rated armature current	I _R	1.0	Arms	1.0	Arms
Continuous stall armature current	I _S	1.1	Arms	1.1	Arms
Instantaneous maximum stall armature current	I _P	3.6	Arms	3.6	Arms
Torque constant	Κ _T	0.108	N ⋅ m/Arms	1.1	kg·cm/Arms
Induced voltage constant	Κ _{Eφ}	3.79	mV/min ⁻¹	3.79	V/krpm
Phase armature resistance	Rø	5.4	Ω	5.4	Ω
Electrical time constant	te	0.7	msec	0.7	msec
Mechanical time constant (not including sensor)	t _m	2.0	msec	2.0	msec
Inertia (including wiring-saved INC)	J _M	0.0197×10^{-4}	kg⋅m²(GD²/4)	0.02	g⋅cm⋅s²
Inertia (including ABS-RII)	J _M	0.0167×10^{-4}	kg⋅m²(GD²/4)	0.0173	g·cm·s ²
Applicable load inertia	J_L	0.197×10^{-4}	kg⋅m ² (GD ² /4)	0.2	g·cm·s ²
Weight (including wiring-saved INC)	W _E	0.24	kg	0.24	kg
Weight (including ABS-RII)	W _E	0.31	kg	0.31	kg

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

				I JU	
Name	Symbol	Data	Unit	Data	Unit
Rated output	PR	60	S W	60	W
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm
Rated torque	T _R	0.191	N∙m	1.95	kg∙cm
Continuous stall torque	Ts	0.216	N·m 🔿	2.2	kg∙cm
Instantaneous maximum stall torque	T _P	0.647	N·m	6.6	kg∙cm
Rated armature current	I _R	് 1.3	Arms	1.3	Arms
Continuous stall armature current	Is	1.4	Arms	1.4	Arms
Instantaneous maximum stall armature current	l _P	5.0	Arms	5.0	Arms
Torque constant	KT	0.164	N ⋅ m/Arms	1.68	kg·cm/Arms
Induced voltage constant	Κ _{Εφ}	5.74	mV/min ⁻¹	5.74	V/krpm
Phase armature resistance	R _o	2.95	Ω	2.95	Ω
Electrical time constant	t _e	1.5	msec	1.5	msec
Mechanical time constant (not including sensor)	tm	1.5	msec	1.5	msec
Inertia (including wiring-saved INC)	J _M	0.054 × 10 ⁻⁴	kg ⋅ m²(GD²/4)	0.055	_⊙ g∙cm∙s²
Inertia (including ABS-RII)	J _M	0.051×10^{-4}	kg⋅m ² (GD ² /4)	0.052	g·cm·s ²
Applicable load inertia	JL	0.54×10^{-4}	kg⋅m²(GD²/4)	0.55	g·cm·s ²
Weight (including wiring-saved INC)	WE	0.46	kg kg	0.46	kg
Weight (including ABS-RII)	W _E	0.52	kg	0.52	kg

P50B04006P

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P50B04010P

				T COBCICIO					
Name	Symbol	Data	Unit	Data	Unit				
 Rated output 	P _R	100	W	100	W				
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm				
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm				
 Rated torque 	T _R	0.319	N∙m	3.25	kg∙cm				
 Continuous stall torque 	Ts	0.353	N∙m	3.6 🔬	kg∙cm				
 Instantaneous maximum stall torque 	TP	0.98	N∙m	10	kg∙cm				
 Rated armature current 	l _R	1.8	🔗 Arms	1.8	Arms				
 Continuous stall armature current 	I _S	2.1	Arms	2.1	Arms				
 Instantaneous maximum stall armature current 	I _P	6.0	Arms	6.0	Arms				
Torque constant	KT	0.195	N ⋅ m/Arms	1.99	kg·cm/Arms				
Induced voltage constant	Κ _{Εφ}	6.8	mV/min ⁻¹	6.8	V/krpm				
Phase armature resistance	R_{ϕ}	2.35	Ω	2.35	Ω				
Electrical time constant	t _{e K}	1.6	msec	1.6	msec				
Mechanical time constant (not including sensor)	tm	1.3	msec	1.3	msec				
Inertia (including wiring-saved INC)	Ĵм	0.079×10^{-4}	kg⋅m²(GD²/4)	0.08	g·cm·s ²				
Inertia (including ABS-RII)	J _M	0.076×10^{-4}	kg⋅m²(GD²/4)	0.0773	g·cm·s ²				
Applicable load inertia	J_{L}	0.79×10^{-4}	kg⋅m²(GD²/4)	0.8	g · cm · s ² √				
Weight (including wiring-saved INC)	W _E	0.59	kg	0.59	kg				
Weight (including ABS-RII)	W _E	0.65	kg 👌	0.65	kg				

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P50B05005P

				F 30	FOUDUOUUOF			
Name	Symbol	Data	Unit	Data	Unit			
 Rated output 	PRO	50	Ŵ	50 🔬	W			
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm			
Maximum revolution speed	N _{max}	4500	S min ^{−1}	4500	rpm			
 Rated torque 	T _R	0.159	N∙m	1.62	kg∙cm			
 Continuous stall torque 	Ts	0.167	N∙m	1.7	kg•cm 📣			
Instantaneous maximum stall torque	T _P	0.49	N∙m	5.0	kg∙cm			
Rated armature current	I _R	1.6	Arms	1.6	Arms			
Continuous stall armature current	ls	1.6	Arms	1.6	Arms			
Instantaneous maximum stall armature current	l₽	5.0	Arms	5.0	Arms			
Torque constant	K	0.136	N ⋅ m/Arms	1.39	kg·cm/Arms			
Induced voltage constant	Κ _{Eφ}	4.76	mV/min ⁻¹	4.76	V/krpm			
Phase armature resistance	R _ø	2.6	Ω	2.6	Ω			
Electrical time constant	t _e	2.2	msec	2.2	msec			
Mechanical time constant (not including sensor)	t _m	2.4	msec	2.4	msec			
Inertia (including wiring-saved INC)	J _M	0.063×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.064	g⋅cm⋅s²			
Inertia (including ABS-RII)	J _M	0.060×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.0613	g·cm·s ²			
Applicable load inertia	JL	0.63×10^{-4}	kg⋅m²(GD²/4)	0.64	g · cm · s ²			
Weight (including wiring-saved INC)	WE	0.53	kg	0.53	kg			
Weight (including ABS-RII)	WE	0.61	kg	0.61	kg			

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.

P50B05010P

Name	Symbol	Data	Unit	Data	Unit			
Rated output	P _R	100	W	100	W			
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm			
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	📈 rpm			
Rated torque	T _R	0.319	N∙m	3.25	kg∙cm			
Continuous stall torque	Ts	0.353	N∙m	3.6 🔬	kg∙cm			
Instantaneous maximum stall torque	TP	0.98	N·m	10	kg∙cm			
Rated armature current	.⊘1 _R	2.1	Arms	2.1	Arms			
Continuous stall armature current	I _S	2.2	Arms	2.2	Arms			
Instantaneous maximum stall armature current	l _P	6.7	Arms	6.7	Arms			
Torque constant	K _T	0.176	N·m/Arms	1.8	kg ⋅ cm/Arms			
Induced voltage constant	Κ _{Εφ}	6.25	mV/min ⁻¹	6.25	V/krpm			
Phase armature resistance	R _o	1.5	Ω	1.5	Ω			
Electrical time constant	t _e	2.6	msec	2.6	msec			
Mechanical time constant (not including sensor)	tm	1.4	msec	1.4	msec			
Inertia (including wiring-saved INC)	JM	0.101×10^{-4}	kg⋅m²(GD²/4)	0.103	g·cm·s ²			
Inertia (including ABS-RII)	J _M	0.098×10^{-4}	kg⋅m ² (GD ² /4)	0.1003	g·cm·s ²			
Applicable load inertia	J_L	1.01×10^{-4}	kg⋅m²(GD²/4)	1.03	g·cm·s² ⊲			
Weight (including wiring-saved INC)	WE	0.74	kg	0.74	kg			
Weight (including ABS-RII)	W _E	0.82	kg 🔊	0.82	kg			

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P50B05020P

				F 30	FOUDUOUZUF			
Name	Symbol	Data	Unit	Data	Unit			
Rated output	PRO	200	Ŵ	200 🔬	W			
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm			
Maximum revolution speed	N _{max}	4500	S min ^{−1}	4500	rpm			
Rated torque	T _R	0.637	N∙m	6.5	kg∙cm			
Continuous stall torque	Ts	0.686	N∙m	7.0	kg•cm 📣			
Instantaneous maximum stall torque	T _P	1.96	N∙m	20	kg∙cm			
Rated armature current	I _R	3.4	Arms	3.4	Arms			
Continuous stall armature current	Is	3.5	Arms	3.5	Arms			
Instantaneous maximum stall armature current	l₽ _	^{مرم} 11	Arms	11	Arms			
Torque constant	K	0.218	N ⋅ m/Arms	2.223	kg·cm/Arms			
Induced voltage constant	Κ _{Eφ}	7.6	mV/min ⁻¹	7.6	V/krpm			
Phase armature resistance	R _o	0.85	Ω	0.85	Ω			
Electrical time constant	t _e	2.8	msec	2.8	msec			
Mechanical time constant (not including sensor)	t _m	0.9	msec	0.9	msec			
Inertia (including wiring-saved INC)	J _M	0.173×10^{-4}	kg⋅m²(GD²/4)	0.176	g⋅cm⋅s²			
Inertia (including ABS-RII)	J _M	0.170×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.1733	g·cm·s ²			
Applicable load inertia	J_L	1.73 × 10 ⁻⁴	kg⋅m²(GD²/4)	1.76	S ² g ⋅ cm ⋅ s ²			
Weight (including wiring-saved INC)	WE	1.07	kg	1.07	kg			
Weight (including ABS-RII)	WE	1.15	kg	1.15	kg			

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

plate installed.

P50B07020P

				1 00001020				
Name	Symbol	Data	Unit	Data	Unit			
 Rated output 	P _R	200	W	200	W			
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm			
Maximum revolution speed	N _{max}	4500	min ⁻¹	4500	rpm			
 Rated torque 	T _R	0.637	N·m	6.5	kg∙cm			
 Continuous stall torque 	Ts	0.686	N·m	17.0 📿	kg∙cm			
* Instantaneous maximum stall torque	TP	1.96	N∙m	20	kg∙cm			
 Rated armature current 	, ⊘l _R	4.3	Arms	4.3	Arms			
* Continuous stall armature current	Is	4.4	Arms	4.4	Arms			
 Instantaneous maximum stall armature current 	l _P	14.4	Arms	14.4	Arms			
Torque constant	Κ _T	0.18	N·m/Arms	1.84	kg ⋅ cm/Arms			
Induced voltage constant	Κ _{Εφ}	6.3	mV/min ⁻¹	6.3	V/krpm			
Phase armature resistance	R _o	0.66	Ω	0.66	Ω			
Electrical time constant	t _{e K}	3.6	msec	3.6	msec			
Mechanical time constant (not including sensor)	tm	2.3	msec	2.3	msec			
Inertia (including wiring-saved INC)	J _M	0.386×10^{-4}	kg⋅m²(GD²/4)	0.394	g∙cm∙s²			
Inertia (including ABS-RII)	J _M	0.398×10^{-4}	kg·m ² (GD ² /4)	0.406	g·cm·s ²			
Applicable load inertia	J_L	3.86×10^{-4}	kg⋅m²(GD²/4)	3.94	g·cm·s ²			
Weight (including wiring-saved INC)	W _E	1.57	kg	1.57	kg			
Weight (including ABS-RII)	W _E	1.61	kg 🔿	1.61	kg			

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum plate installed.

P50B07030P

				FU	F30D07030F				
Name	Symbol	Data	Unit	Data	Unit				
 Rated output 	PRO	300	Ŵ	300	S W				
Rated revolution speed	N _R	3000	min ⁻¹	3000	rpm				
Maximum revolution speed	N _{max}	4500	S min ^{−1}	4500	rpm				
 Rated torque 	T _R	0.931	N∙m	9.5	kg∙cm				
 Continuous stall torque 	Ts	0.98	N∙m	10	kg•cm 📣				
 Instantaneous maximum stall torque 	T _P	2.94	N∙m	30	kg∙cm				
Rated armature current	I _R	5.3	Arms	5.3	Arms				
 Continuous stall armature current 	Is	5.4	Arms	5.4	Arms				
 Instantaneous maximum stall armature current 	I _P	18.2	Arms	18.2	Arms				
Torque constant	K	0.197	N·m/Arms	2.01	kg·cm/Arms				
Induced voltage constant	Κ _{Eφ}	6.87	mV/min ⁻¹	6.87	V/krpm				
Phase armature resistance	R _o	0.49	Ω	0.49	Ω				
Electrical time constant	t _e	3.7	msec	3.7	msec 🔬				
Mechanical time constant (not including sensor)	t _m	1.8	msec	1.8	msec				
Inertia (including wiring-saved INC)	J _M	0.495×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.505	g·cm·s ²				
Inertia (including ABS-RII)	J _M	0.507×10^{-4}	$kg \cdot m^2 (GD^2/4)$	0.517	g·cm·s ²				
Applicable load inertia	JL	4.95×10^{-4}	kg⋅m²(GD²/4)	5.05	g·cm·s ²				
Weight (including wiring-saved INC)	WE	1.71	kg	1.71	kg				
Weight (including ABS-RII)	WE	1.75	kg	1.75	kg				

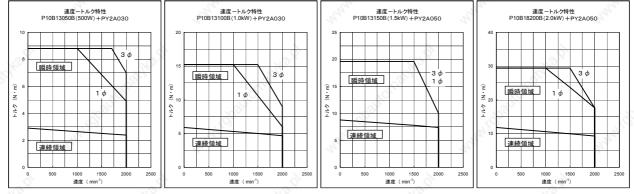
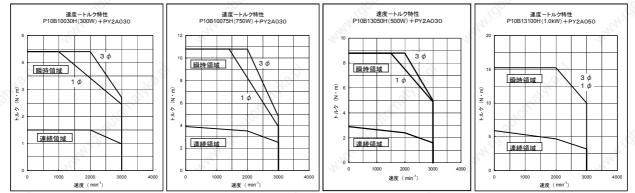
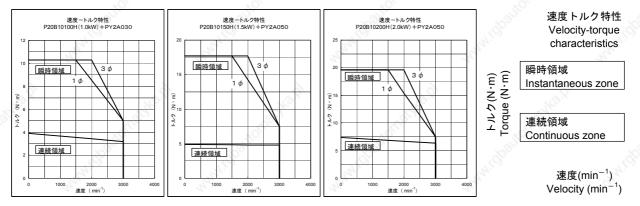

The mark * denotes the value after a temperature rise. The others are values at 68°F. Each value is a typical one.
Each value and characteristic was measured with a radiating plate equivalent or superior to a t20 × 305 mm square aluminum

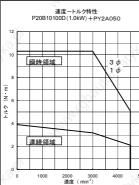
plate installed.

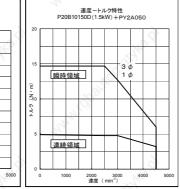

9.3 Combination Specifications

The velocity and torque characteristics differ depending on the amplifier capacity and power supply of the amplifier. The velocity and torque characteristics when combining Servomotors and PY2 type Servo Amplifiers normally are indicated below.


9.3.1 P1 Series (B Coil) + PY2

9.3.2 P1 Series (H Coil) + PY2

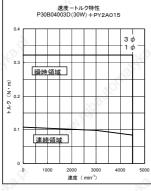

9.3.3 P2 Series (H Coil) + PY2

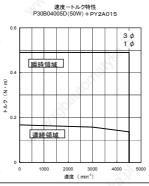


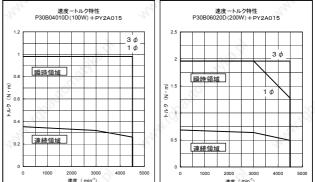
3 φ: Indicates the characteristics when 3-phase, 200 VAC is supplied to the Servo Amplifiers.
 1 φ: Indicates the characteristics when single-phase, 200 VAC is supplied to the Servo Amplifiers.

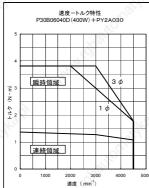
SPECIFICATIONS 9.

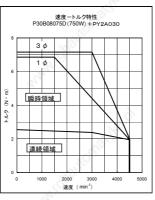
9.3.4 P2 Series (D Coil) + PY2

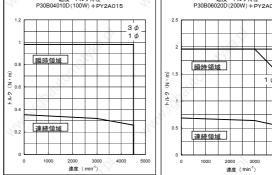



速度トルク特性 Velocity-torque characteristics

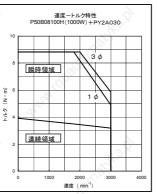



速度(min⁻¹) Velocity (min⁻¹)

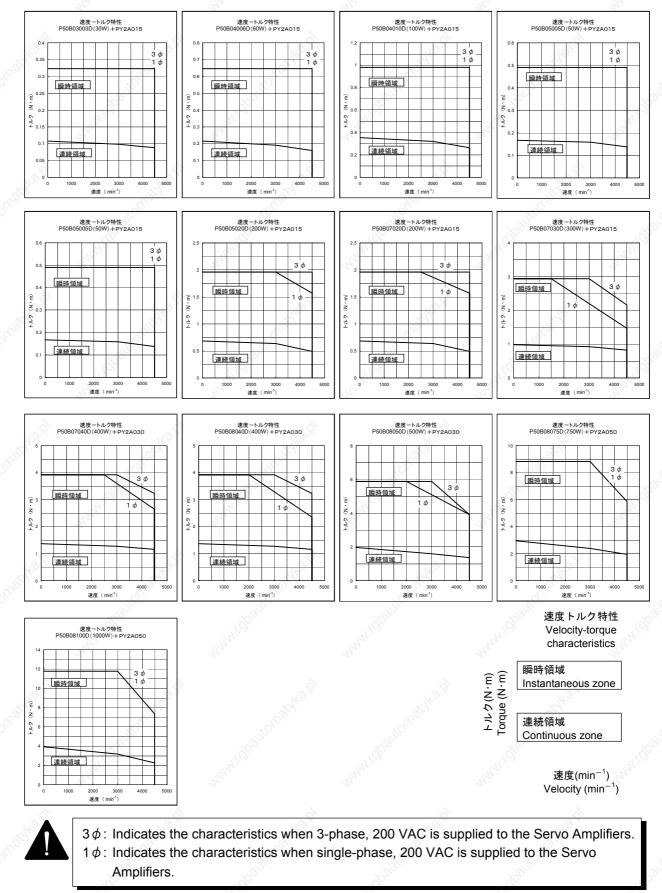

P3 Series (D Coil) + PY2 9.3.5

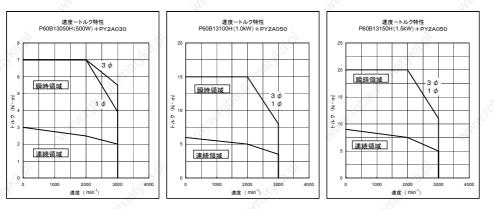




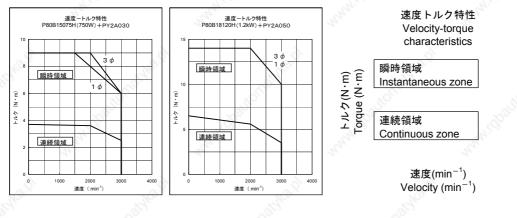


9.3.6 P5 Series (H Coil) + PY2



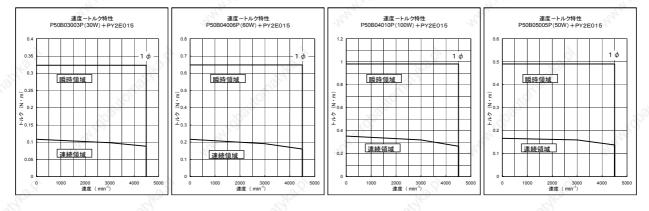


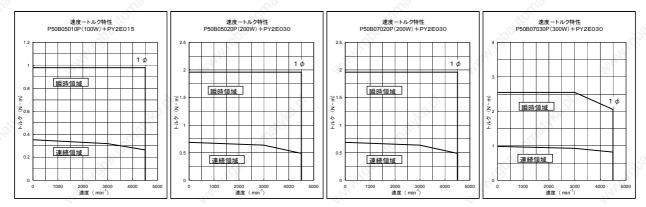
- 3ϕ : Indicates the characteristics when 3-phase, 200 VAC is supplied to the Servo Amplifiers.
- 1ϕ : Indicates the characteristics when single-phase, 200 VAC is supplied to the Servo Amplifiers.


9.3.7 P5 Series (D Coil) + PY2

9.3.8 P6 Series (H Coil) + PY2

9.3.9 P8 Series (H Coil) + PY2




3 φ : Indicates the characteristics when 3-phase, 200 VAC is supplied to the Servo Amplifiers. 1 φ : Indicates the characteristics when single-phase, 200 VAC is supplied to the Servo Amplifiers.

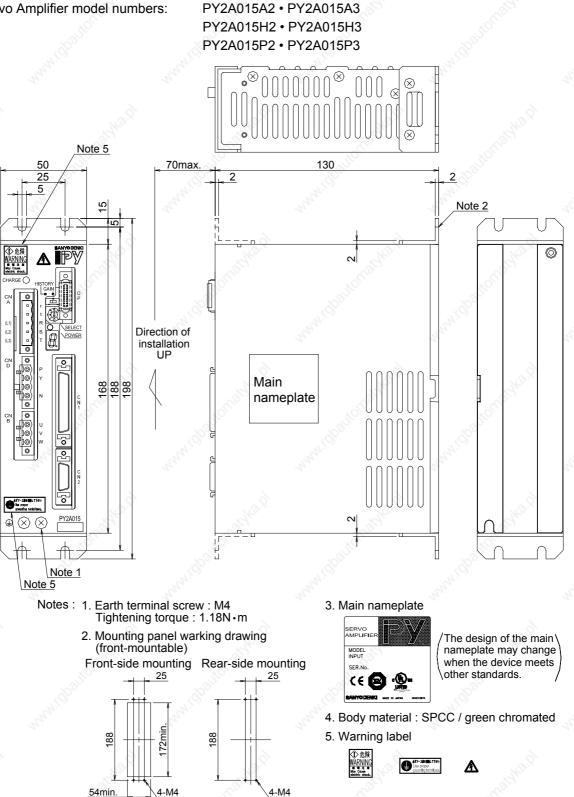
9.3.10 P3 Series (P Coil) + PY2

9.3.11 P5 Series (P Coil) + PY2

Δ

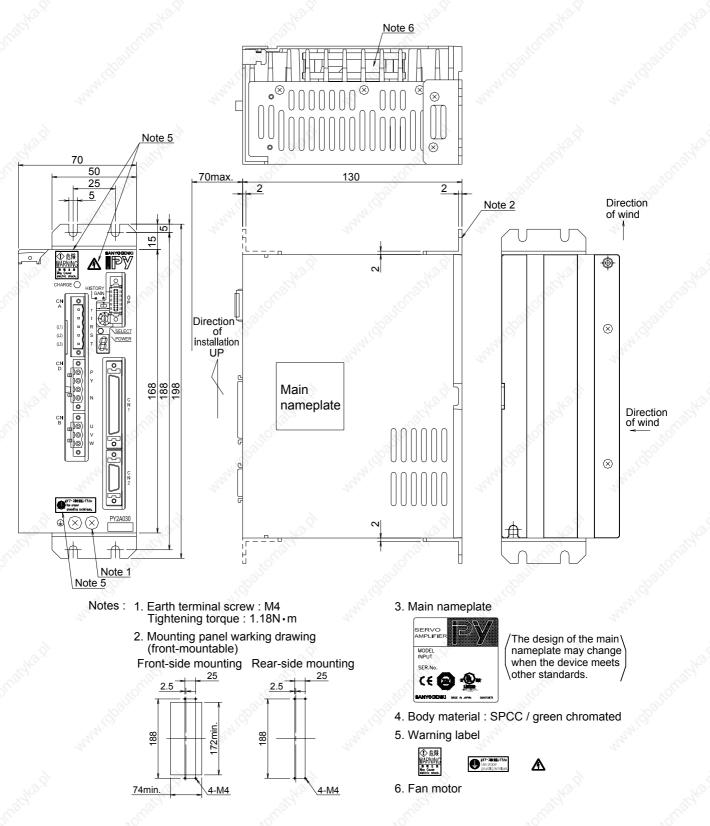
The above graphs indicate the characteristics when single-phase, 100 VAC is supplied to the Servo Amplifiers.

速度 トルク特性 Velocity-torque characteristics

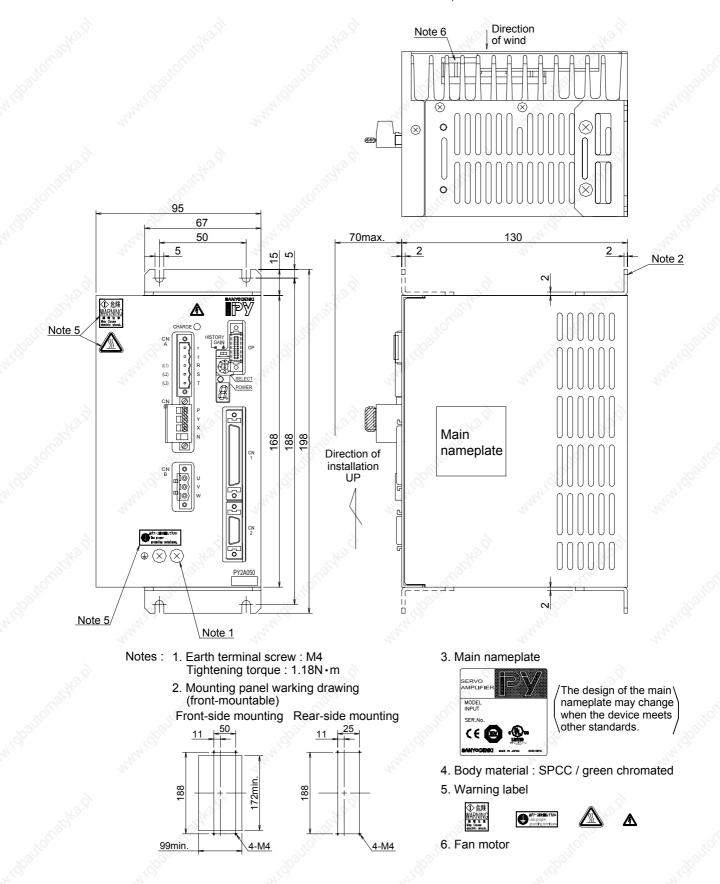

速度(min⁻¹) Velocity (min⁻¹)

SPECIFICATIONS 9.

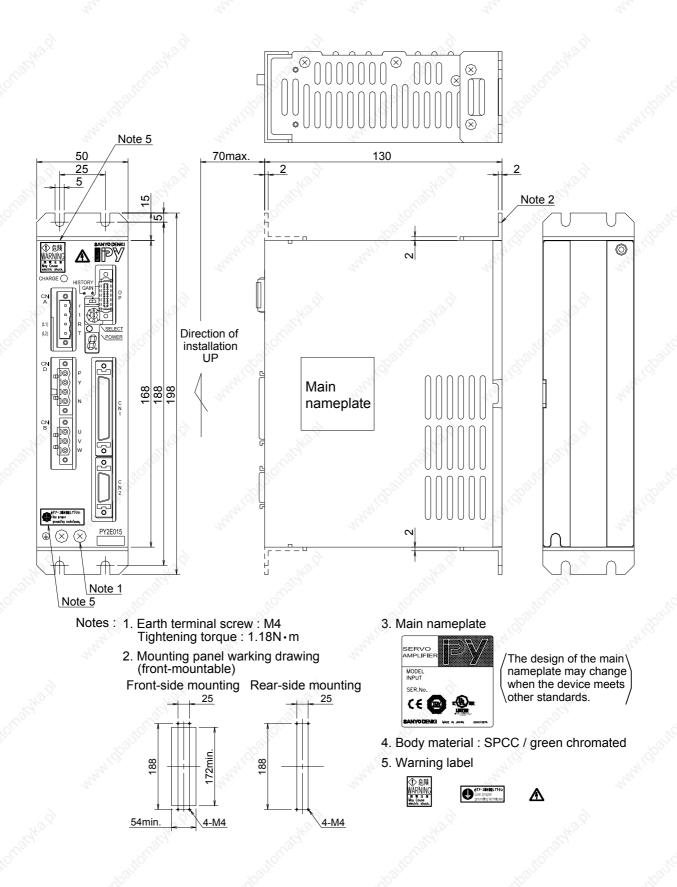
9.4 **External Views**


<u>9.4.1</u> Servo Amplifier

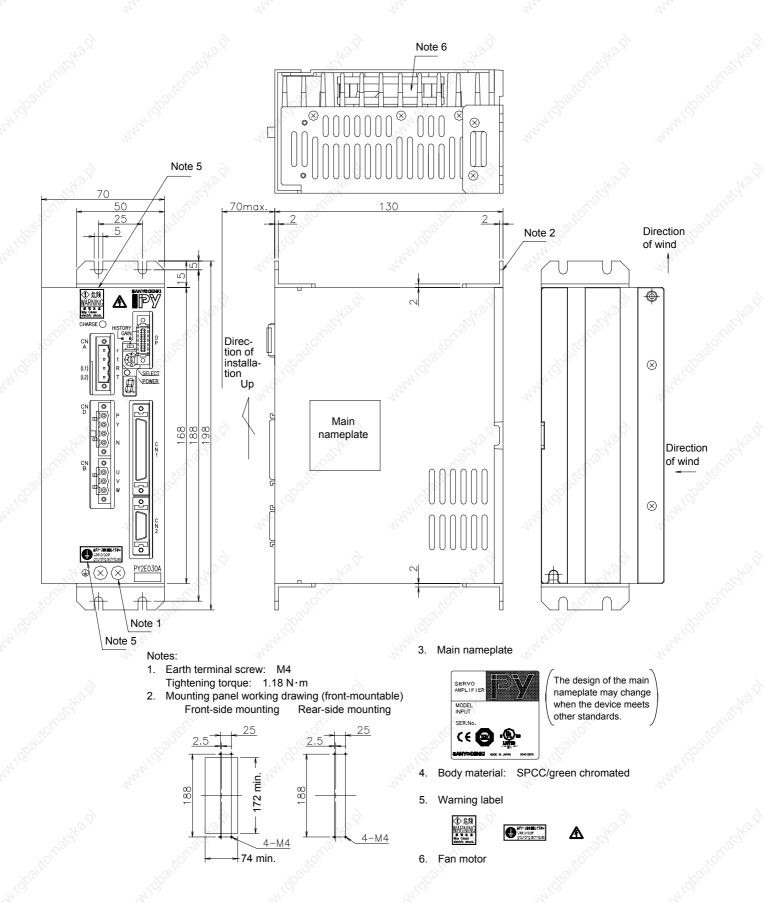
Servo Amplifier model numbers:


Servo Amplifier model numbers:

PY2A030A2 • PY2A030A3 PY2A030H2 • PY2A030H3 PY2A030P2 • PY2A030P3

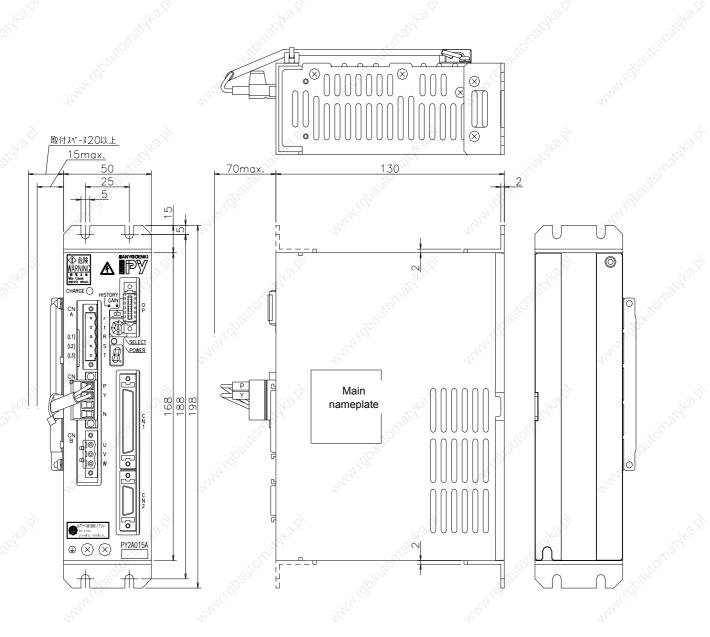

Servo Amplifier model numbers:

PY2A050A6 • PY2A050A7 PY2A050H6 • PY2A050H7, PY2A050P6 • PY2A050P7

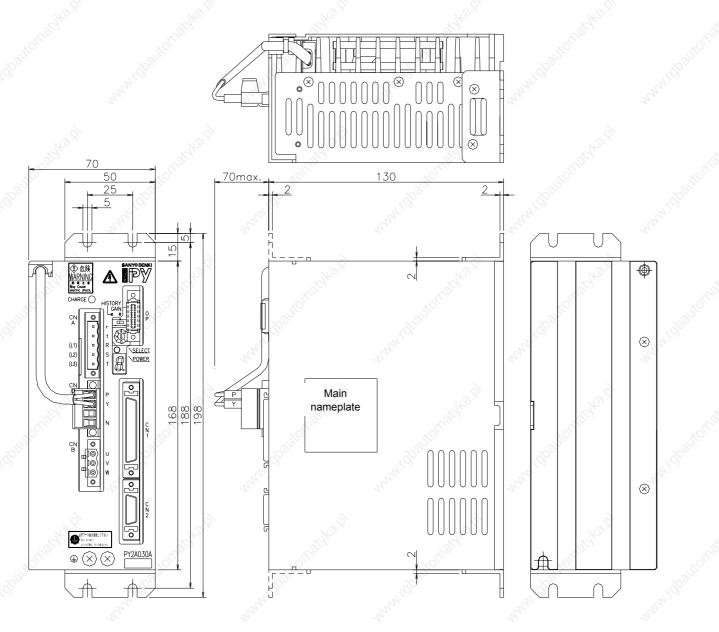

Servo Amplifier model numbers:

PY2E015A3 • PY2E015H3 • PY2E015P3

Servo Amplifier model numbers:

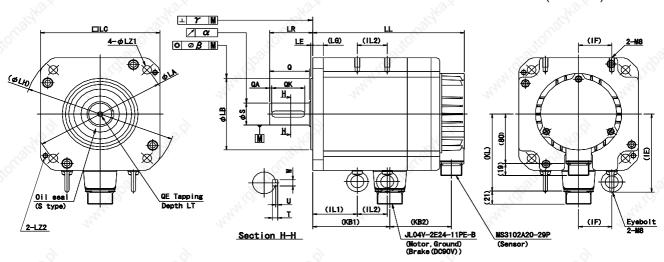

PY2E030A3 • PY2E030H3 • PY2E03P3

9-120


Servo Amplifier model numbers:

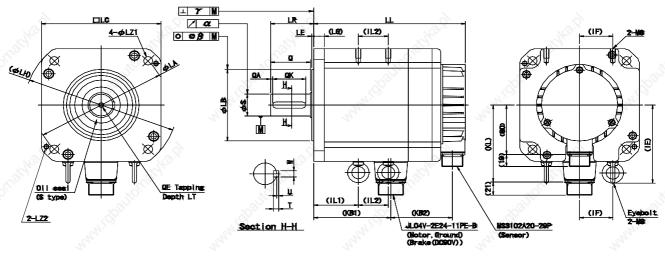
PY2A015A6 • PY2A015A7 PY2A015H6 • PY2A015H7 PY2A015P6 • PY2A015P7

Servo Amplifier model numbers:


PY2A030A6 • PY2A030A7 PY2A030H6 • PY2A030H7 PY2A030P6 • PY2A030P7

9.4.2 Servomotor

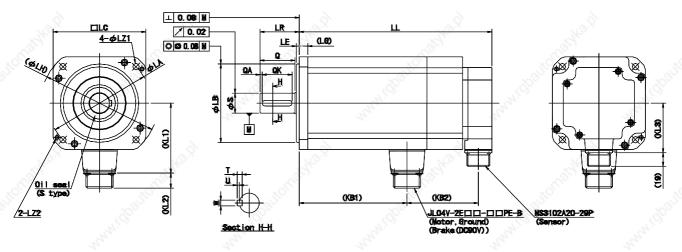
Incremental encoder (INC-E) Absolute sensor (ABS-RII)


		Increm ABS	nental S-RII	-	Å	Со	nnecto	or (motor)	20 h		Δ	,		Unit: mm		
S	W/O	brake	With	brake	Motor	earth		B (Type wi	ith B o	nly)			201			
MODEL	al.	KB2	LL	KB2	MS3102A	KL1	KL2	MS3102A	KL1	KL2	LG	LA	LB	LE	LH	
P10B10030△□◇	182	53	225	- 96	18-10P	76	19	20-15P	76	19	10	115	0	3	130	
P10B10075△□◇	272	55	315	90	10-10F		19	20-156	70	19	10	115	95-0.035	3	130	
P10B13050△□◇	176		216	20				a a a a a a a a a a a a a a a a a a a			20		0	,		
P10B13100△□◇	221	56	261	97	18-10P	91	19	20-15P	91	19	12	145	0 110-0.035	6	165	
P10B13150△□◇	272		312			2				0			110-0.035			
P10B18200△□◇	230	14	278		22-22P	Yes-			No	<i>p</i>			J.			
P10B18350△□◇	280	52	328	100	22-22P	110	19	04.440	110	21	16	20	0	_	220	
P10B18450△□◇	350	52	398		24 100	118		24-11P	118	21		20	114.3-0.035	3	230	
P10B18550△□◇	501		565	116	24-10P		21	100			19	- 18	22			

				3		Sh	aft	200]						
4				(61B	Standard M compatible	type)	Н	igh rigidity typ	e		20					2.
MODEL	LC	LZ1	LZ2	LR	S	Q	LR	S	Q	KB1	KL3	α	β	r	IL1	IL2
P10B10030△□◇	100	9	_	35	0	30	45	0 22-0.013	40	108	64	0.02	0.04	0.04	_	_
P10B10075△□◇	100			55	16-0.011	00	-10	0 25-0.013	40	198	04	0.02	0.04	0.04		
P10B13050△□◇	· · · ·				<u> </u>	52		0		100		S.				
P10B13100△□◇	130	9	M6	58	19-0.013	52	58	25-0.013	40	145	80	0.02	0.04	0.04	_	Per.
P10B13150△□◇	100	5	WIO	50	0 21-0.013	40		0 35-0.016		196	24.1	0.02	0.04	0.04	- -	
P10B18200△□◇			0		0.01	0		0		158				0		113
P10B18350△□◇		1	5°)	79	35.0	76	79	0 48-0.016	76	208		0.02	0.04	0.04	27	163
P10B18450△□◇	180	13.5	M8		35.0)		40-0.010	50	278	80		S.	5		233
P10B18550△□◇	350			110	0 42-0.016	110	110	0 63-0.019	110	429		0.04	0.04	0.04	30	381

Servomotor model No.: P1 motor

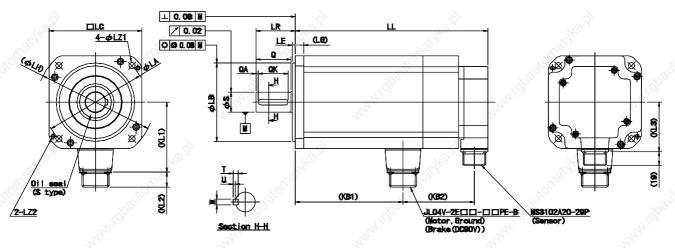
Absolute encoder (ABS-E type)


		ABS	З-Е		Connector								🔊 Unit: mm			
S.	W/O	brake	With	brake	Motor earth			B (Type with B only)				•	Onit: min			
MODEL	LL	KB2	LL	KB2	MS3102A	KL1	KL2	MS3102A	KL1	KL2	LG	LA	LB	LE	LH	
P10B10030△□◇	234	73	277	116	18-10P	76	19	20-15P	76	19	10	115	0	3	130	
P10B10075△□◇	324	13	367	110	10-10		19	20-136	70	19	10	115	95-0.035	5	130	
P10B13050△□◇	214		253		200			100				8	0			
P10B13100△□◇	259	61	298	100	18-10P	91	19	20-15P	91	19	12	145	0 110-0.035	6	165	
P10B13150△□◇	310		349	53				150			53	-h."	110-0.035		350	
P10B18200△□◇	269		317	1	22-22P			4			1					
P10B18350△□◇	319	58	367	106	22-225	118	19	24-11P	118	21	16	20	0	3	230	
P10B18450△□◇	389	00	437		24-10P	110		24-116	110	Se l		20	114.3-0.035	3	230	
P10B18550△□◇	554	de la	604	122	24-10P	Kr.	21		A		19		A.			

					50	Sh	aft	30								
j.	9 ⁰⁰				tandard (61Bl		F	ligh rigidity typ	be		2	1 der				5
MODEL	LC	LZ1	LZ2	LR	S	Q	LR	S	Q	KB1	KL3	α	β	r	IL1	IL2
P10B10030△□◇	100	9		35	0	30	45	0 22-0.013	- 40	108	96	0.02	0.04	0.04	_	_
P10B10075△□◇	100	3	2	55	16-0.011	30	45	0 25-0.013	40	198	90	0.02	0.04	0.04		
P10B13050△□◇		2			0 💉	52		0	3	100			2			
P10B13100△□◇	130	9	M6	58	19-0.013	52	58	25-0.013	40	145	96	0.02	0.04	0.04	_	_
P10B13150△□◇	130	5		50	0 21-0.013	40	50	0 35-0.016	40	196	30	0.02	0.04	0.04		3
P10B18200△□◇				24	0.01			0		158	22					113
P10B18350△□◇				79	35.0	76	79	48-0.016	76	208	20	0.02	0.04	0.04	27	163
P10B18450△□◇	180	13.5	M8		55.0			40-0.010		278	111					233
P10B18550△□◇		N	3	110	0 42-0.016	110	110	0 63-0.019	110	429		0.04	0.04	0.04	30	381

Servomotor model No.: P2 motor

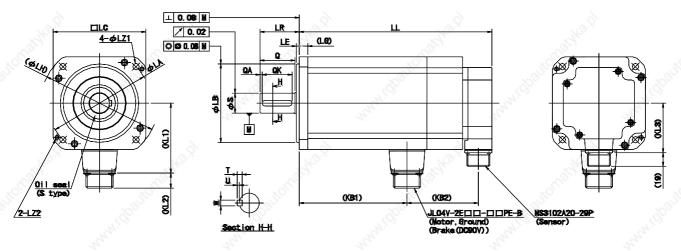
Incremental encoder (INC-E type)


			/O ake		'ith ake	Connector		•						Unit	: mm
М	ODEL	JLC)	KB2	LL	KB2	MS3102A	KL1	KL2	LG	LA	LB	LE	LH	LC	LZ1
P20B1	0100△□◇	147		191		5			6			.0			
P20B1	0150△□◇	172	40	216	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20.450	76	10	10	115	0	8	120	100	0
P20B1	0200△□◇	197	48	241	92	20-15P	76	(19	10	115	95-0.035	3	130	100	9
P20B1	0250△□◇	222		266			27								27
P20B1	3300△□◇	194	8	236		8				8				8	
P20B1	3400△□◇	228	58	270		24-11P	98	21	12	145	0 110-0.035	4	165	130	9
P20B1	3500△□◇	267	1	309					S.	5	110 0.000	3	E.		

MODEL	LZ2	LR	S	Q	QA	QK	W	T	U	KB1	KL3
P20B10100△□◇			4		4		24			80	4
P20B10150△□◇		45	0	40	3	32	0	6	2.5	105	
P20B10200△□◇	N.	40	22-0.013	4U	3	32	6-0.030	0	2.5	130	
P20B10250△□◇	20		C. C. C.				C.B.C.		Sec.	155	70
P20B13300△□◇			auto			8	ço.	2	6,	117	
P20B13400△□◇	M6	55	28-0.013	50	3	42	0 8-0.036	7	3	151	
P20B13500△□◇			the second se			1				190	54

Servomotor model No.: P2 motor

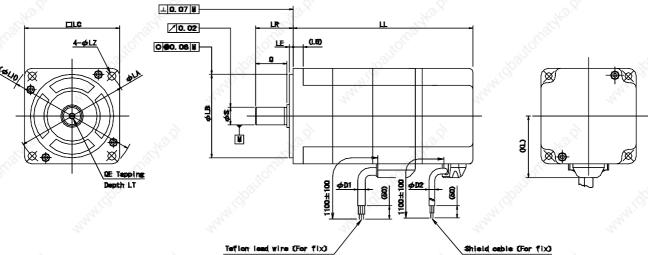
Absolute sensor (ABS-E type)


d'		/O ake		ith ake	Connector				ò				Unit	: mm
MODEL	LL	KB2	LL	KB2	MS3102A	KL1	KL2	LG	LA	LB	LE	LH	LC	LZ1
P20B10100△□◇	187		231	×	St.			6				0		
P20B10150△□◇	212		256	100	20-15P	76	10	10	445	0	32	100	100	0
P20B10200△□◇	237	88	281	132	20-15P	76	19	10	115	95-0.035	3	130	100	9
P20B10250△□◇	262		306			222								32
P20B13300△□◇	234		276											
P20B13400△□◇	268	98	310	140	24-11P	98	21	12	145	0 110-0.035	4	165	130	9
P20B13500△□◇	307		349		and and			2ª	25			30		

			207								
MODEL	LZ2	LR	S	Q	QA	QK	W	Ť	U	KB1	KL3
P20B10100△□◇			4		44		14			80	424
P20B10150△□◇		45	0	40	3	32	0	6	2.5	105	
P20B10200△□◇	-	S42	22-0.013	3.50	5	52	6-0.030	0	2.5	130	
P20B10250△□◇	20		and and				The second se		E.	155	80
P20B13300△□◇	5		NO.				0		0	117	
P20B13400△□◇	M6	55	28-0.013	50	3	42	0 8-0.036	7	3	151	
P20B13500△□◇			and .		3	i.	4	1		190	3

Servomotor model No.: P2 motor

Absolute sensor (ABS-RII type)


		/O ake		ith ake	Connector								Unit	: mm
MODEL	LE	KB2	LL	KB2	MS3102A	KL1	KL2	LG	LA	LB	LE	LH	LC	LZ1
P20B10100△□◇	177		221	2	S			S			. 20			
P20B10150△□◇	202	78	246	122	20-15P	76	19	10	115	0	3	120	100	9
P20B10200△□◇	227	/0	271	122	20-15P	10	19	10	115	95-0.035	3	130	100	9
P20B10250△□◇	252		296			27								27
P20B13300△□◇	224	8	266		8				0				2	
P20B13400△□◇	258	88	300	130	24-11P	98	21	12	145	0 110-0.035	4	165	130	9
P20B13500△□◇	297		339		S. C. C.			S.	с1 	110 0.000	2	S.		

MODEL	LZ2	LR	S	Q	QA	QK	W	Т	U	KB1	KL3
P20B10100△□◇			4		4		24			80	4
P20B10150△□◇		45	0	40	3	32	0	6	2.5	105	
P20B10200△□◇	Nº	45	22-0.013	4U	3	32	6-0.030	0	2.5	130	
P20B10250△□◇	C.S.		Claro -				C. S.C.		Sec.	155	80
P20B13300△□◇			auto.			à	6°.	2	0,	117	
P20B13400△□◇	M6	55	28-0.013	50	3	42	0 8-0.036	7	3	151	
P20B13500△□◇			. State			14	0 0.000	a		190	54

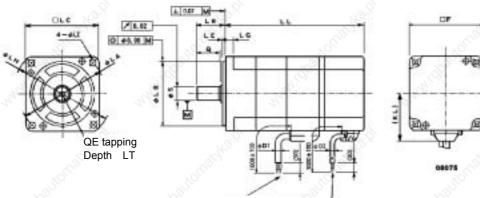
Servomotor model No.: P3 motor

Incremental encoder (INC-E type) Absolute sensor (ABS-RII type)

(Notor, Ground, Breke)

Shield cable (For fix (Sensor)

Incremental encoder (INC-E type)


	W/O brake	With brake	.8	30151				6000	5			.8	Saulte		ι	Jnit:	mm
MODEL	LL	LL	LG	KL	LA	LB	LE	LH	LC	LZ	LR	S	Q	QE	LT	D1	D2
P30B04003△□◇	64	102.5	_			0	0.5		10		0.5	0 6-0.008		-	_		24
P30B04005△□◇	70	108.5	5	30	46	30-0.021	2.5	54	40	4.5	25	0			2	6	
P30B04010△□◇	88	126.5			3					de.		8-0.009	_	3	_		4.7
P30B06020△□◇	95.5	133.5	6	41	70	0	3	81	60	5.5	30	0	. 3	10			4.7
P30B06040△□◇	123.5	161.5	0	40	70	50-0.025	3	01	00	5.5	30	14-0.011	250	M5	12	6.7	
P30B08075△□◇	140	180.5	8	52	90	0 70-0.030	3	107	80	6.6	40	0 16-0.011	35		12	0.7	Sa Car

Absolute sensor (ABS-RII type)

	W/O brake	With brake			Š	Stor.			2	S.S.				and N	91		
MODEL	LL	LL	L G	K L	L A	LB	LE	LH	LC	LZ	LR	S	Q	QE	LT	D1	D2
P30B04003△□◇	70	108.5	ap .		10	0		~	10			0 6-0.008					144
P30B04005△□◇	76	114.5	5	30	46	30-0.021	2.5	54	40	4.5	25	0	_	_	_	6	
P30B04010△□◇	94 👌	132.5				6					6	8-0.009			0		5.1
P30B06020△□◇	101	149.5	6	41	70	0	3	81	60	A CONTRACT	20	0		N.	0		5.1
P30B06040△□◇	129	167	0	41	70	50-0.025	3	01	60	5.5	30	14-0.011		M5	12	6.7	
P30B08075△□◇	140	180.5	8	52	90	0 70-0.030	3	107	80	6.6	40	0 16-0.011	35		12	0.1	

Servomotor model No.: P3 motor

Absolute encoder (ABS-E type)

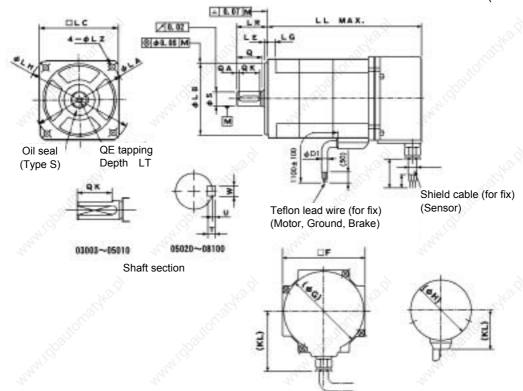
Teflon lead wire (For fix) (Motor, Ground, Brake) Shield cable (For fix) (Sensor)

Unit: mm

	W/O brake	With brake																	
MODEL	LE AL	LL	L G	KL	LA	LB	LE	LH	L C	LZ	L R	F	G	S	Q	QE	LT	D1	D2
P30B04003△□◇	0 101.5	140	_	al.	500	0		3	3	ř.,				0 6-0.008		-	_		al.
P30B04005△□◇	107.5	146	5	38	46	30-0.021	2.5	54	40	4.5	25	-	60	0				6	5
P30B04010△□◇	125	163.5												8-0.009	-				7.1
P30B06020△□◇	134	172	_	44	70	0.00	_	04	~~~		20	2	00	0	1	10	3.		
P30B06040△□◇	162	200	6	41	70	50-0.025	3	81	60	5.5	30	_	90	14-0.011	3	M5	12	6.7	
P30B08075△□◇	177	217.5	8	52	90	0 70-0.030	3	107	80	6.6	40	80	1	0 16-0.011	35			0.1	8

Servomotor model No.: P5 motor

Incremental encoder (INC-E type)



D2=4.7 mm Unit: mm

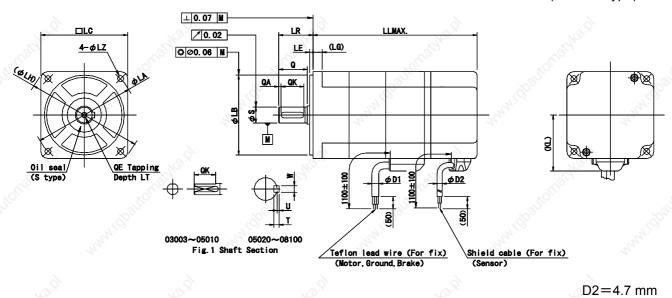
3 ²⁰¹¹		W/O brake	With brake				. Son	5				.3	Spanne -	_	÷		Ē	ð	98 ³³			D	1	ð	2au
MODEI	L 4	LL	LL	LG	KL	LA	LB	LE	LH S	LC	LZ	LR	S	Q	Q A		w	т	U	Q E	L	W/O brake & DC 90V brake	DC 24V brake	D 2	Oil seal
P50B030034	△□◇	67.5	98	4.5	27.5	40	0 30-0.021	2	47	35	3.5	15	0 5-0.008	-	_	11	2	120	ed, ces 0.2	-	-		7	10.	ed
P50B040064	$\Delta \Box \Diamond$	82	114				0				2		0					lotte				6	7		Not fitted
P50B040104	△□◇	95	127	5	31	48	34-0.025	2	57	42	3.5	24	7-0.009	20	-	15		•	ces 0.2	-	-0	2			ž
P50B050054	$\Box \diamond$	76	105	30				3	20				0	5				lotte		à	3				
P50B050104	△□◇	86	115	5	38	60	0 50-0.025	2.5	71.5	54	4.5	24	8-0.009	20	-	15		plao 5±	ces 0.2	M3	8			~	3
P50B050204	△□◇	105	134				00 0.020				3	30	ິ 0 11-0.011	25	2	20	4	4	1.5	M4	10		44	4.7)
P50B070204	$\Box \diamond$	97	124				_																		
P50B070304	$\Box \Diamond$	103	130	8	50	90	0 70-0.030	3	102.5	76	5.5	30	0 14-0.011	25	2	20	5	5	2	M5	12	6.7	7.5		-
P50B070404	$\Box \Diamond$	113	140	S.	÷				E.S.				-8	5						-è	d.				Fitted
P50B080404	$ \Box \diamond$	116	156					S					305						.3	5					3
P50B080504	$\Box \Diamond$	126	166	8	55	100	0.00	3	115	86	6.6	35	0	30	2	25	5	5	2	M5	12			.8	See.
P50B080754	$ \Box \Diamond $	149	189	0	55	100	80-0.030	5	115	00	0.0	55	16-0.011	50	2	20	3	5	2		12		al and	4	
P50B081004	$\Delta \Box \Diamond$	172	212				34				27					1	2						2		

Servomotor model No.: P5 motor

Absolute encoder (ABS-E type)

04006~05020

07020-08100

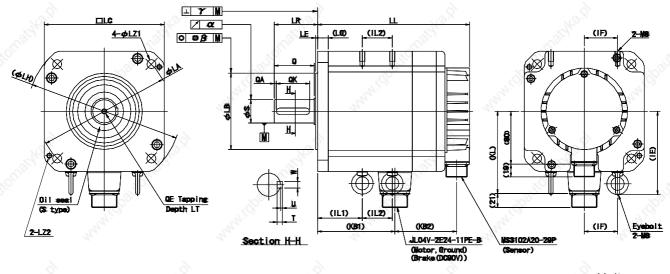

Unit: mm

	W/O brake	With brake																								
MODEL	LL	LL	L G	K L	L A	LB	L E	L H	L C	L Z	L R	E	G	н	S	Q	Q A	Q K	w	т	U	Q E	L T	D 1	D 2	Oil seal
P50B04006△□◇	114	146				0									0					lotte						Not
P50B04010△□◇	127	159	5	38	48	34-0.025	2	57	42	3.5	24	-	—	60	7-0.009	20	-	15			ces 0.2		3	6		fitted
P50B05005△□◇	111	139	5					3							~					lotte		2			7.1	
P50B05010△□◇	121	149	5	38	60	0 50-0.025	2.5	71.5	54	4.5	24	_	_	60	8-0.009	20	_	15		·	ces 0.2	М3	8			S.
P50B05020△□◇	140	169				50-0.025					30	33	S		0 11-0.011	25	2	20	4	4	1.5	M4	10		Å	1. ⁰
P50B07020△□◇	136	164				1					1				_			à."							-0, ⁻	
P50B07030△□◇	142	170	5	67	90	0 70-0.030	3	102.5	76	5.5	30	82	78	—	0 14-0.011	25	2	20	5	5	2	M5	12	6.7		Fitted
P50B07040△□◇	152	180	N.	25		10 0.000		8	3						14 0.011							13	2			
P50B08040△□◇	152	192	2					3							3						2	2			8	
P50B08050△□◇	162	202	5	67	10	0	3	115	96	66	35	22	70		0	30	2	20	5	5	2	M5	12			3
P50B08075△□◇	185	225	5	07	0	80-0.030	20	115	00	0.0	55	02	10	8	16-0.011	50	2	20	3	3	2	IVI3	12			.8
P50B08100△□◇	208	248				- All						3						3							ŝ	2.2

SPECIFICATIONS 9.

Servomotor model No.: P5 motor

Absolute sensor (ABS-RII type)



					d	Unit:	mm		
						D	1	.8	
Q	Q	"The		Q	L	ake & ' brake	' brake	D	seal

30 ⁵¹⁰		With brake		•		. Spar	50					100 July					.ð	50 ¹⁵	9		D	1	.8	Oand'
MODEL	LL	LL	LG	KL	LA	LB	LE	LH G	LC	LZ	LR	S	Q	QA	QK	×	т	U	QE	L	W/O brake & DC 90V brake	DC 24V brake	D 2	Oil seal
P50B03003△□◇	73	103.5	4.5	27.5	40	0 30-0.021	2	47	35	3.5	15	0 5-0.008	_	_	11	2	lotte plac 5±		_	_	0	7	10	p
P50B04006△□◇	86	118	5	31	48	0	2	57	42	3.5	24	0	20	_	15		lotte plac		_	_	6	1		Not fitted
P50B04010△□◇	99	131	Ŭ	e la	-10	34-0.025	2	N.	-72	0.0	27	7-0.009	D.		10		5±			Nº	2			N
P50B05005△□◇	82	111	197				2	3			~	0			45		lotte		5°.	5				
P50B05010△□◇	92	121	5	38	60	0 50-0.025	2.5	71.5	54	4.5	24	8-0.009	20	-	15		plac 5±		M3	8				Š
P50B05020△□◇	111	140				50-0.025				.5	30	ິ 0 11-0.011	25	2	20	4	4	1.5	M4	10		44	4.7	Š
P50B07020△□◇	97	124										-												
P50B07030△□◇	103	130	8	50	90	0 70-0.030	3	102.5	76	5.5	30	0 14-0.011	25	2	20	5	5	2	M5	12	6.7	7.5		
P50B07040△□◇	113	140	Z	5				de la					ter.						à	340				Fitted
P50B08040△□◇	116	156	C				5					. Shi						8	5					Ш Х
P50B08050△□◇	126	166	8	55	100	0	3	115	86	6.6	35	0	30	2	25	5	5	2	M5	12			.3	Ser.
P50B08075△□◇	149	189	Ŭ		100	80-0.030		110		0.0	00	16-0.011			20	20	5	-	1010				4.1	
P50B08100△□◇	172	212				14.				27					1	1						27		

Servomotor model No.: P6 motor

Incremental encoder (INC-E type) Absolute sensor (ABS-RII type)

Unit: mm

		्री		nenta S-RII	ŀ			Con	nector			Sir	nce the	e conr	nector	must	be w	vaterp	oroo	f whe	en
	W bra	/O ake	Ì	With	brak	e 20	Мо	otor earth	B (T with B				gaged ug on t	·							
MODEL	LL	KB2	LL	KB2	KB3	KB4	M	S3102A	MS31	02A	KL1	KL2	KL3	LG	LA		LB		LE	LH	LC
P60B13050△□◇	113	56	143	86	4	-				320					1200					1	1
P60B13100△□◇	133		166	90				24	-11P		98	21		12	145		0		4	165	130
P60B13150△□◇	152	57	185	90	_	_		24-	-11P		90	21		12	145	110	0-0.0	35	4	105	130
P60B13200△□◇	171		208	94	-	—							13.					10	8	1	
P60B15300△□◇	182	56	225	99	-	_	3	24	-11P		106	21	S	12	165	130	0)-0.0	40	4	190	150
P60B18200△□◇	144		179				, S. ~				6	5				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~				
P60B18350△□◇	169	56	204	91	_	. 29		24-	-11P		123	21	_	16	200	114.	0	005	3	230	180
P60B18450△□◇	192		227		.3	1									12	114.	3-0.0	035			A.
P60B18550△□◇	267	72	314	119	59	60	З	32-17P	10SL	-4P	144	22	115	19	200	114.	0 3-0.0	035	3	230	180
P60B22550△□◇	209	60	256	107				24	-11P		141	21	4	19	235		0		4	270	220
P60B22700△□◇	285	00	332	107				24	SUILE .		141	21	12	19	235	200	0.0-0	46	×4	270	220
20		2	5					12				2	3				- 2	S.			
MODEL	LZ1	LZ2	LR	5	3	Q	QA	QK	W	Т	U	KB1	α	β	r	QE	LT	IE	IF	IL1	IL2
P60B13050△□◇	S			C	`		S.		0		6	37				- 2					
P60B13100△□◇	P			22-0		8		6	-0.030	6	2.5	56			-	M6	20				3
P60B13150△□◇	9	M6	55	22-0	.010	50	3	42 0	0.000	S.	13.2	75	0.02	0.08	0.08			—	—	—	St.
P60B13200△□◇				(28-0				8-	0 -0.036	7	3	94			de la	M8	25			4.	2
P60B15300△□◇	11	M6	55	(22-0	-	50	3	42 8-	0 -0.036	7	3	106	0.02	0.08	0.08	M8	25		è-	-	-
P60B18200△□◇		2			`			25	0			68	3				.0	40	—	—	_
P60B18350△□◇	13.5	M8	65	(35-0	-	60	3	50 10	0	8	3	93	0.02	0.08	0.08	M8	25	124	50	64	20
P60B18450△□◇	S.			55-0	.010		32		-0.030			116]				×	124	50	62	45
P60B18550△□◇	13.5	M8	79	(42-0	-	75	3	67 12	0 -0.043	8	3	175	0.02	0.08	0.08	M10	25	124	50	60	70
P60B22550△□◇	12 5	M10	70	(- S	75	3	67	0	10	4	129	0.03	0.09	0.10	M10	25	142	60	53	40
P50B22700△□◇	13.5		19	55-0	.019	15	3	19	-0.043	-10	4	205	0.03	0.00	0.10		23	142	00	69	100

SPECIFICATIONS 9.

P60B18450△□◇

P60B18550△□◇

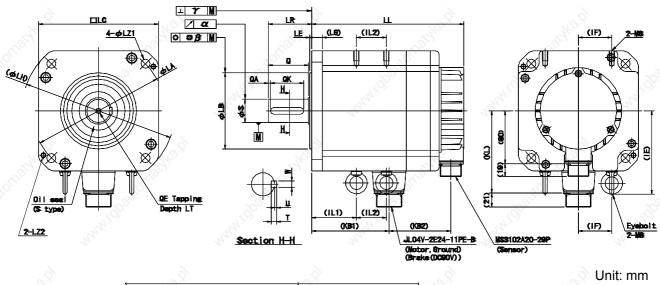
P60B22550△□◇

P60B22700△□◇

Servomotor model No.: P6 motor

Absolute encoder (ABS-E type)

124 50


25 142 60 62 45

60 70

53

40

69 100

		H.	2	ABS	- E			3 Ec		С	onnector			Λ .	Since	the co	nnect	or mu	ist b	e wat	erpr	oof v	vhen
	W/O) bra	1			brake	550	М	oto	r ea	rth B (Typ B or		ith	<u> </u>	engag plug o	ed, us	se a w	aterpr	roof	conne	ector	r for t	the
MODEL	ST LL	. K	(B2	LL	KB2	KB3	KB4	N	/IS3	3102	A MS31	102/	A K	(L1	KL2	KL3	LG	LA		LE	3		LE
P60B13050△□◇	12	3	66	153	96	91	—				10						3						14
P60B13100△□◇	14	3		176	100	_				4	2 - 11P			98	21		12	145		0		3	4
P60B13150△□◇	16	2	67	195	100					I	2-115			90	21	1	12	140	1	10-0	.03	5	4
P60B13200△□◇	18	1		218	104	—	-																
P60B15300△□◇	19	2	66	235	109	-	-	P.		2	4 - 11P		1	06	21	_	12	165	_1	0 30-0		5	4
P60B18200△□◇	15	4		189			20						20						0	-			
P60B18350△□◇	17	9	66	214	101	- 3	p)			2	4 - 11P		ົ 1	23	21	_	16	200	11	0 4.3-0	2 0 2	5	3
P60B18450△□◇	20	2	Ī	237		1000						õ.						8		4.5-0	J.03	5	
P60B18550△□◇	27	7	82	324	129	59	90		32-	-17F	9 10SL	4F	° 1	44	22	115	19	200	11	0 4.3-0		35	3
P60B22550△□◇	21	9.	70	266	447					~	4.440			44	04	10	10	005		0		- 1	
P60B22700△□◇	29	5	70	342	117	_	_			2	4 - 11P		1	41	21	_	19	235	2	00-0	.046	3	4
S			2					~	Q`					- 29						2			
MODEL	LH	LC	LZ	1 LZ2	2 L R	S	ă	Q	Q A	Q K	W	Т	U	KB 1	α	β	r	QE	L) T	IE	IF	IL 1	IL 2
P60B13050△□◇	10					ă	0				0	- 25		37				20			1	1	
P60B13100△□◇	1000					0 22-0.					0 6-0.030	6	2.5	56	1		1	M6	20				
P60B13150△□◇	165	130	9	M6	55	22-0.	013	50	3	42	6-0.030			75	0.02	0.08	0.08			—	—	—	-
P60B13200△□◇					5	0 28-0.					0 8-0.036	7	3	94		454		M8	25			3	E.S.
P60B15300△□◇	190	150	11	M6	55	0 28-0.		50	3	42	0 8-0.036	7	3	106	0.02	0.08	0.08	M8	25	0	-	_	-
P60B18200△□◇		14				~		×2°			0			68					3	10	-	—	—
P60B18350△□◇	230	180	13.	5 M8	65	0 35-0.		60	3	50	0 10-0.036	8	3	93	0.02	0.08	0.08	M8	25	124	50	64	20
P60B18450△□◇	3.5				1	55-0.	010				10-0.030			116	1			20,		124	50	62	45

0

12-0.043

0

16-0.043

0

42-0.016

0

55-0.019

75 3 67

3 75

67

79

230 180 13.5 M8

270 220 13.5 M10 79

116

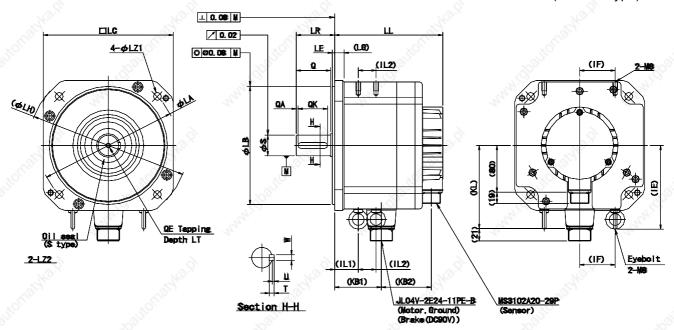
129

205

175 0.02 0.08 0.08 M10 25

0.03 0.08 0.10 M10

3

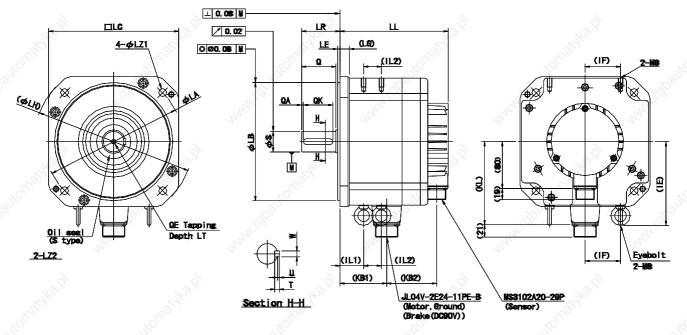

8

10 4

Servomotor model No.: P8 motor

Incremental encoder (INC-E type) Absolute sensor (ABS-RII type)

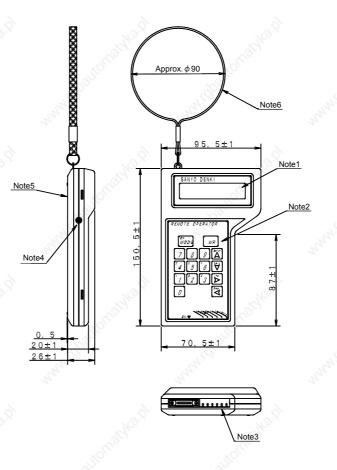
Unit: mm


	W/O brake	With brake	3											
MODEL	LLO	KB2	LL	KB2	LG	KL	LA	LB	LE	LH	LC	LZ1	LZ2	LR
P80B15075△□◇	116	56	150	90	12	106	165	0 130-0.040	4	190	150	11	M6	55
P80B18120△□◇	119	55	152	88	12	123	200	0 114.3-0.035	3	230	180	13.5	M8	55
P80B22250△□◇	122		154				44			44				h.
P80B22350△□◇	136	52	168	84	16	141	235	0 200-0.046	4	270	220	13.5	M10	65
P80B22450△□◇	151	2	183			2		200 0.010	2				2	

	C							- C				- 62		
MODEL	S	Q	QA	QK	W	Т	U	KB1	QE	LT	IE	IF	IL1	IL2
P80B15075△□◇	0 22-0.013	50	3	42	0 6-0.030	6	2.5	40	M6	20	<u>.</u> 0	-	-	- "
P80B18120△□◇	0 28-0.036	50	3	42	0 8-0.036	7	3	44	M8	25	-	-	_	- 1
P80B22250△□◇	10 ^{.2}				13.8			50	25				41	_
P80B22350△□◇	0 35-0.016	60	3	50	0 10-0.036	8	3	64	M8	25	142	60	40	15
P80B22450△□◇				30			3	79			3	0	40	30
	-	-			-	-		-	-			-	-	

Servomotor model No.: P8 motor

Absolute encoder (ABS-E type)


Unit: mm

		W/O	brake	With	brake										
Ī	MODEL	LL	KB2	LL	KB2	LG	KL	LA	LB	LE	LH	LC	LZ1	LZ2	LR
	P80B15075△□◇	126	66	150	90	12	106	165	0 130-0.040	े4	190	150	11	M6	55
5	P80B18120△□◇	129	65	152	88	12	123	200	0 114.3-0.035	3	230	180	13.5	M8	55
	P80B22250△□◇	132		154	2000				Ser.			200			
	P80B22350△□◇	146	62	168	84	16	141	235	0 200-0.046	4	270	220	13.5	M10	65
	P80B22450△□◇	161		183				354	200 0.010		124				- 22

MODEL	S	Q	QA	QK	w	Т	U	KB1	QE	LT	IE	IF	IL1	IL2
P80B15075△□◇	0 22-0.013	50	3	42	0 6-0.030	6	2.5	40	M6	20	1	<u>610</u>	_	_
P80B18120△□◇	0 28-0.036	50	3	42	0 8-0.036	7	3	44	M8	25	10	_	_	- 3
P80B22250△□◇		2				<u> </u>		50		2			41	12
P80B22350△□◇	0 35-0.016	60	3	50	0 10-0.036	8	3	64	M8	25	142	60	40	15
P80B22450△□◇	Nº.				North			79	ϕ_{N}			2	40	30

9.4.3 Remote Operator (Option)

Unit : mm

- 1 Liquid crystal display (Two line display)
- 2 Key (16 keys, Control Element)
- 3 Check pins (DM1, DM2, SG, M1, M2 and VCMD from the left)
- 4 Volume knob (for adjusting liquid crystal brightness)
- 5 Main nameplate

6

9.5 Regenerative Resistor

9.5.1 Built-in Regenerative Resistor

Some PY2 Servo Amplifiers have built-in regenerative resistors. When the regenerative power is lower than the permissible absorbing power of the built-in regenerative resistor, the system configuration can be simplified by using a regenerative resistor built-in Servo Amplifier (Amplifier of 50A has built-in regenerative resistor as standard).

Amplifier Model No.	Permissible Absorbing Power	Resistance
PY2A015	2W	100Ω
PY2E015	AND AND	
PY2A030	5W	50Ω 🔊
OY2E030	. 8°	. S
PY2A050	20W	20Ω

Table 9-21 Permissible Absorbing Power of Built-in Regenerative Resistor

1) Wiring for built-in regenerative resistor

Wiring has been done for the built-in regenerative resistor at time of shipping. However, in the case you wish to remove it to use an external regenerative resistor instead, or to re-connect the built-in regenerative resistor after removing it once, make sure to wire correctly observing 9.5.6 Connection of Regenerative Resistor.

2) Setting parameters

Abnormal overheating of the built-in regenerative resistor is detected through software (Overheat protection) at the PY2 Servo Amplifier. Therefore, correct parameter settings are required when using a built-in regenerative resistor (Parameters for regenerative resistor have been set at time of shipping for the built-in regenerative resistor).

9.5.2 Parameter Settings for Regenerative Resistor

Status of regenerative resistor(How to process the regenerative power)	Regenerative resistor type Abbreviation: RGKD, Mode4-Page9	Regenerative resistor OL time select Abbreviation: Func2 bit4, Mode2-Page3
Regenerative resistor not connected	None/Ext.R	Func2 bit4 = "0"
External regenerative resistor connected (External regenerative resistor with 20W or less permissible absorbing power is used.)	None/Ext.R	Func2 bit4 = "0"
External regenerative resistor connected (External regenerative resistor with larger than 20W permissible absorbing power is used.)	None/Ext.R	Func2 bit4 = "1"
Built-in regenerative resistor used	Built-in R	Func2 bit4 = "0"

Table 9-22 Parameters for Regenerative Resistor

When reconnecting or changing the regenerative resistor, observe the table 9-22, Parameter for Regenerative Resistor, to ensure correct settings of parameters.

1) Regenerative Resistor Type (RGKD)

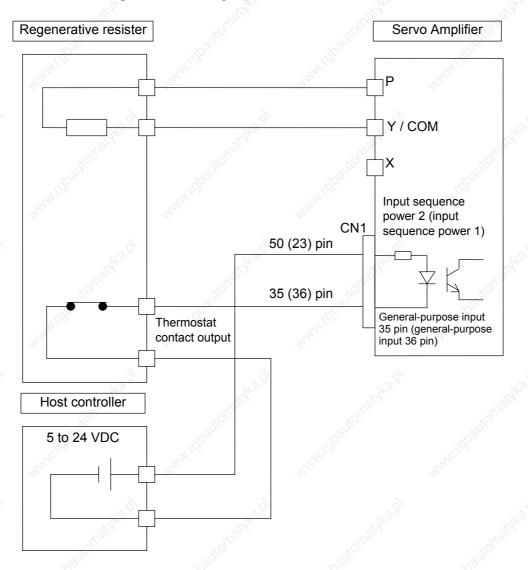
When absorbing power of the built-in regenerative resistor exceeds the permissible absorbing power over a long time period (ten seconds to several minutes), abnormal overheating is detected. (Alarm "H" • RGOH)

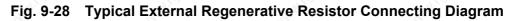
- When the built-in regenerative resistor is selected (RGKD = "Built-in R"), its absorbing power can be monitored by remote operator (Monitor for built-in regenerative resistor absorbing power: RegP Mode5-Page17). When the monitor value exceeds the permissible absorbing power, overheating alarm may be issued. In this case, take appropriate countermeasures, such as reviewing operation patterns or using an external regenerative resistor.
- When the main circuit power is turned off, the electrolysis capacitor energy inside the Servo Amplifier is discharged through regenerative resistor. Therefore, in case of frequent repetition of the main circuit power turn ON and OFF, an alarm may be issued (Main circuit power ON/OFF frequency must be within 10 times/hour and 50 times/day).
- When the control power is turned on, the built-in regenerative resistor absorbing power monitor is set at Hot Start to protect the built-in regenerative resistor. Therefore, the monitor value will not become "0.0 W" until some time after the control power is turned on.

2) Regenerative Resistor OL Time Select (Func2 bit4)

When the regenerative resistor absorbing power (built-in/external regenerative resistor) is extremely large, an error will be detected in a short period of time (in hundred msec. to 99 seconds), outputting regeneration error (alarm "J" \cdot RGOL).

When using a built-in regenerative resistor, correctly set the parameter as follows: Regenerative resistor type (RGKD): Mode4-Page9 Regenerative resistor OL time select Func2 bit4: Mode2-Page4


Incorrect settings may hamper proper error detection and cause burnt or damage of regenerative resistor.



Built-in regenerative resistor may be heated to high temperature, even when no overheat alarm is issued. Take care not to touch the Servo Amplifier while power is being supplied or soon after the power turn off (within 30 minutes), otherwise you may be burnt.

9.5.3 How to Connect and Set External Regenerative Resistor (Optional)

Select an external regenerative resistor according to the regenerative power calculated in "9.1.16 Regenerative Processing". The following explains how to use the resistor.

Set the general-purpose input to the external overheating detection input function (bits 4 and 5 of the Func3 parameter).

When connecting a thermostat contact output to the amplifier, use a B-contact type thermostat.

For amplifiers having a capacity of 50 A, be sure to remove the short-circuit bar across the P and X terminals before installing an external regenerative resistor.

Operational precautions

- 1 For the details of how to connect an external regenerative resistor, refer to "Fig. 9-29 Detailed Connecting Methods of External Regenerative Resistors".
- 2. Some terminals to be connected differ depending on the amplifier capacity.
 - Amplifier capacity of 15A to 30 A Connect an external regenerative resistor between the P and Y (or COM) terminals.
 - Amplifier capacity of 50 A Connect an external regenerative resistor between the P and Y terminals after removing the short-circuit bar across the P and Y terminals.
- 3 For an external regenerative resistor with a thermostat installed, protect the resistor by connecting it to the amplifier as in Fig. 9-28 or connecting the thermostat contact output to the host controller.
- 4 Be sure to use a twisted wire for wiring an external regenerative resistor and make wiring as short as possible (less than 5 m).
- 5 Use a non-combustible cable or perform non-combustible treatment (silicon tube, etc.) for a connecting cable and wire an external regenerative resistor so as not to come in contact with the built-in one.
- 6 Set Func2 bit 4 using the remote operator according to the allowable effective power of the external regenerative resistor.

When allowable effective power of regenerative resistor = 20 W or lower: Func2 bit 4 = 0 (default setting)

When allowable effective power of regenerative resistor = Higher than 20 W: Func2 bit4 = 1

9.5.4 External Regenerative Resistor Combination Table

Referring to Table 9-23, determine the type, number of pieces and connecting method of the external regenerative resistor based on the effective regenerative power obtained by the operation pattern and the Servo Amplifier type.

							A			- ANA			
PM *1 Amp- lifier type	Up to 2 W	Up to 5 W	Up to 10 W	Up to 20 W	Up to 30 W	Up to 55 W	Up to 60 W	Up to 110 W	Up to 125 W	Up to 220 W	Up to 250 W	Up to 500 W	Up to 1000 W
PY2A015 PY2E015	*2 Resistor A × 1pc.		sistor 1pc.		istor 1pc.	Resistor E × 1pc.	Resistor D × 2pcs.	Resistor F × 2pcs.	Res E × 4	istor Ipcs.	Corder.	Inquire	20
	Connectio n (I)	Conne	ection (I)	Connec	ction (I)	Connection (I)	Connec- tion (II)	Connec- tion (II)	Connec	tion (IV)			and S.
PY2A030 PY2E030		n (I) *2 Resistor $B \times 1pc.$ Connection (I) Resistor $B \times 1pc.$		Res D ×	istor 1pc.	Resistor F × 1pc.	Resistor C × 2pcs.	Resistor E × 2pcs.		istor Ipcs.	20	Inquire	
Lorno.	Connect	tion (I)	Connec- tion (I)	Connec	ction (I)	Connection (I)	Connec- tion (III)	Connec- tion (III)	Connec	tion (IV)	Sec		
PY2A050	- Standard		\langle	shered in the		Resistor 6 × 1pc.	41. ⁰⁰	Resistor H × 1pc.	444	C-9 - 11	istor 2pcs.	Resisto r H × 4pcs.	Inquire
and a		orated		Con	nection (I)	Co	onnection (I)	Conneo	ction (II)	Connec -tion (IV)		
Louin,	For conn Regenera	ecting me ative Res	ethods (I) f	:o (IV), r		9-24 Exteri "Fig. 9-29					External	1	Caral. OC

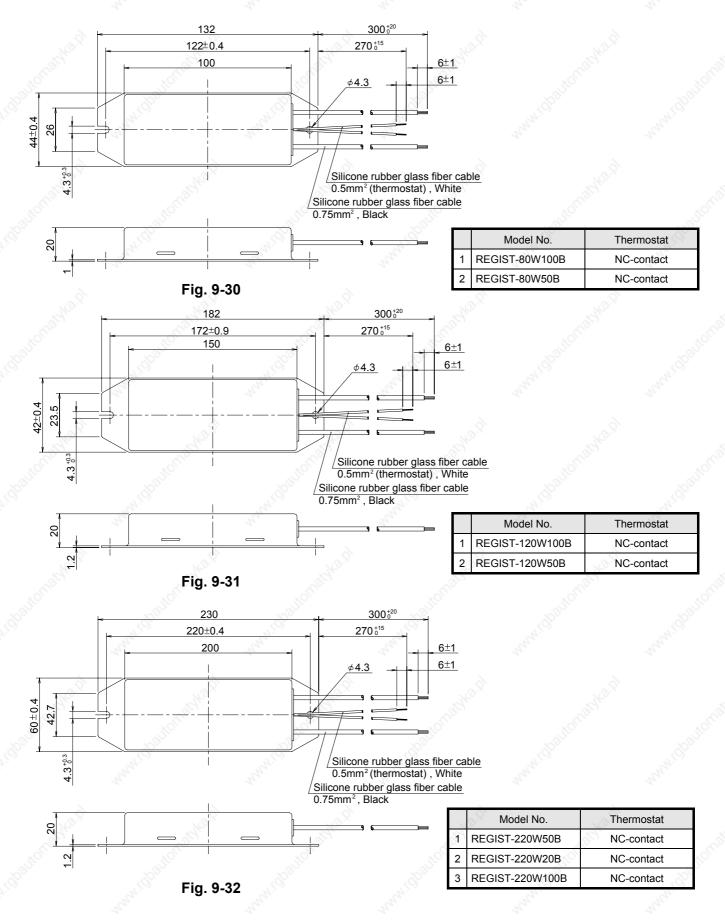
 Table 9-23
 External Regenerative Resistor Combination Table

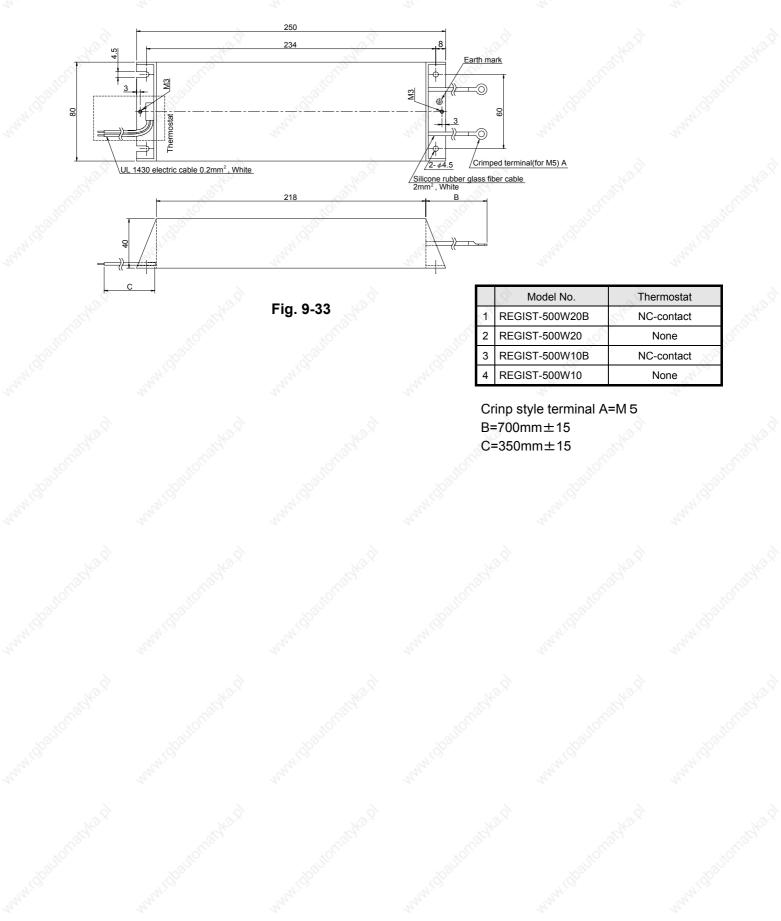
*1 PM : Effective regenerative power

*2 A built-in type regenerative resistor can be designated as optional for amplifiers having a capacity of 15A and 30 A. Refer to Chapter 1, Model Number of Servo Amplifier.

9.5.5 External Regenerative Resistor List

Table 9-24	External Regenerative Resistor
------------	--------------------------------


				-1.		
Symbol	Types	Permissible effective power (PM)	Resistance value	Outside dimensions	Thermostat	Outline drawing
А	REGIST-080W100B	10W	100 Ω	W44,L132,D20	Available (NC-contact)	See Fig. 9-30.
В	REGIST-080W50B	10W	50 Ω	W44,L132,D20	Available (NC-contact)	See Fig. 9-30.
С	REGIST-120W100B	30W	100 Ω	W42,L182,D20	Available (NC-contact)	See Fig. 9-31.
D	REGIST-120W50B	30W	50 Ω	W42,L182,D20	Available (NC-contact)	See Fig. 9-31.
E	REGIST-220W100B	55W	100 Ω	W60,L230,D20	Available (NC-contact)	See Fig. 9-32.
F	REGIST-220W50B	55W	50 Ω	W60,L230,D20	Available (NC-contact)	See Fig. 9-32.
G	REGIST-220W20B	55W	20 Ω	W60,L230,D20	Available (NC-contact)	See Fig. 9-32.
бн	REGIST-500W20B	125W	20 Ω	W60,L230,D20	Available (NC-contact)	See Fig. 9-33.
I	REGIST-500W10B	125W	10 Ω	W60,L230,D20	Available (b-contact)	See Fig. 9-33.


9.5.6 Detailed Connecting Methods of External Regenerative Resistors

The following figures describe detailed connecting methods of external regenerative resistors. When changing connections of the regenerative resistor, make sure to change the relevant parameters, too. Without regenerative resistor Connection (I) One external regenerative resistor Regenerative processing not required (Thermostat : b-contact) Thermostat Contact output Amplifier External РЦ Amplifier regenera-ti (Open) РΓ ve COM / Y resister COM / Y ХĊ X Built-in type regenerative resistor Connection (II) Two external regenerative resistors (series) Built-in type regenerative resistor with Thermostat amplifier capacity of 30A Contact output (Wiring completed on shipment) Amplifier Ρ Amplifier P COM / Y Built-in regenerative COM / Y resistor connecting ХС line ХĊ Connection (III) Two external regenerative resistors (parallel) But the thermostat is connected in series Built-in type regenerative resistor with amplifier Thermostat capacity of 50 A Contact output (Wiring completed on Amplifier shipment) Amplifier Ρ Ρ COM / Y ⊢ COM / Y Short-circuit bar between the P and Xr ХĻ X terminals. Connection (IV) Four external regenerative resistors Terminal differences depending on amplifier capacity (series, parallel) But the thermostat is connected in series. For amplifier capacity of 15 A or 30 A There are two connecting terminals for the Thermostat regenerative resistor, P and Y (or COM). Contact output (There is no X terminal.) Amplifier For amplifier capacity of 50 A There are three connecting terminals for the Ρ regenerative resistor, P, Y and X. (There is no COM terminal.) COM / Y When connecting an external regenerative resistor, be sure to remove the short-circuit bar across the P and X terminals before connecting it. ХĻ

Fig. 9-29 Detailed Connecting Methods of External Regenerative Resistors"

9.5.7 External Regenerative Resistor Outline Drawings

9.6 Warning Output

9.6.1 Overtravel Warning

For position control and velocity control types (including control mode switching type at the time of position control or velocity control), this function controls motor revolution in accordance with the external signal status.

Motor operation is controlled separately for forward revolution and backward revolution by overtravel signal.

- 1. Setting and connection
- 1) Set Func0-bit5,4,3 of Mode2-Page1 for overtravel warning
 - Bit5 : Select polarity of overtravel signal
 - Bit4 : Forcible setting of forward revolution overtravel signal
 - Bit3 : Forcible setting of backward revolution overtravel signal

In case of forcible setting (bit4, 3 = "1") at bit 4, 3, the signal always becomes ON regardless of the CN1-32, 33 pins input status. By combining with bit5, polarity select, the status of "forward/backward revolution overtravel ineffective" or "always forward/backward revolution overtravel" is possible.

- 2) Connect the forward overtravel signal to CN1-32 pin and the backward overtravel signal to CN1-33 pin.
- 2. Operation when overtravel warning is issued
 - Refer to chapter 6, Overtravel Sequence, for the motor operation.
 - Displays for 7-segment LED are for forward revolution overtravel, and for backward revolution overtravel. No alarm is output.
- 3. Precautions
 - 1) Overtravel warning is only effective during SON status. Even if the overtravel signal is input while in SOFF, the status or display will not change.
 - 2) Operation of command ineffective (forced zero) differs between the position and velocity control types.
 - For the position control type, command pulses are inhibited at the revolution side where overtravel signal is input.
 - For the velocity control type, the velocity command becomes zero (VCMD = 0) at the revolution side where overtravel signal is input. These settings are validated when the acceleration/deceleration time (Tvac, Tvde) or low pas filter parameter (VLPF) is set.
 - 3) For the torque control type (including control mode switching type at the time of torque control), overtravel is ineffective, therefore overtravel signal input does not control the motor operation.
 - 4) At test mode JOG operation, overtravel input is validated. Operation at the revolution side where overtravel signal is input is controlled.
 - 5) When the signal input is canceled, overtravel warning will automatically recover.

9.6.2 Battery Warning

This warning is issued when the battery power for keeping sensor data is lowered on the absolute encoder (ABS-E) and absolute sensor (ABS-RII). A dot in the 7-segment LED will be lighted when the warning is issued.

When the sensor data is lost due to low voltage of the battery, battery alarm "U" will be displayed. In this case, replace the battery or execute encoder clear procedure (either from CN-1 or remote operator). (Refer to 6.4, Encoder Clear Using Remote Operator for encoder clear procedure using remote operator.) Battery warning is automatically canceled if the battery voltage becomes normal (The battery alarm is not canceled unless the encoder clear or alarm clear procedure is executed).

9.6.3 Overload Warning

Prior to the overload alarm output, overload warning is issued.

- 1. Setting
- 1) Set Mode1-Page18 overload warning level (OLWL).
- 2) Available setting is ranged from 30% to 99%, when the overload alarm level is set at 100%.
- 3) When the overload warning level is set at 100%, the overload warning output will be invalidated.
- 4) Parameter setting being input by remote operator or PC interface for overload warning level will be validated by turning off the Servo Amplifier control power once.
- 2. Overload warning output
- 1) When overload warning is effective (e.g. OLWL = 80%)

Table 9-25-1 Output when overload warning is effective (e.g. OLWL = 80%)

Estimated motor	7-segment	CN-1	pin numbe	r for alarm	output	Nº.	Alarm/Warning
temperature increase	LED display	46 (ALM8)	45 (ALM4)	44 (ALM2)	43 (ALM1)	Abbreviation	Name
Up to 80% of overload alarm level	SUIDMAN	0	0	0	0	1080	No alarm No warning
80% or above up to 100% of overload alarm level	*3	0	1	0	0	OLW	Overload warning
100% or above of overload alarm level	tonable."	0	0	1	0	OL	Overload alarm

(Alarm output sequence = CODE *1)

Note 1. Set alarm output sequence at Func2 Bit6 of Mode2-Page3.

When Func2 Bit6 = "0", CODE is displayed, and when Func2 Bit6 = "1", BIT is displayed. Note 2. "0" and "1" in the alarm output are:

"0" = Output is short-circuit, "1" = Output is open, when Mode2 Page3 Func2 Bit7 = "0"

"0" = Output is open, "1" = Output is short-circuit, when Mode2 Page3 Func2 Bit7 = "1".

Note 3. 7-segment LED displays a flashing "4".

Estimated 7-segment		CN-1	pin numbe	r for alarm		Alarm/Warning	
motor temperature	I ED display		45 (ALM4)	44 (ALM2)	43 (ALM1)	Abbreviation	Name
Up to 80% of overload alarm level		0	0	0	0	4 <u>-</u>	No alarm No warning
80% or above up to 100% of overload alarm level	*3	0	0	1	000000	OLW	Overload warning
100% or above of overload alarm level		anna 1	1	12410	1	OL	Overload alarm

Table 9-25-2 Output when overload warning is effective (e.g. OLWL = 80%) (Alarm output sequence = BIT *1)

Note 1. Set alarm output sequence at Func2 Bit6 of Mode2-Page3. When Func2 Bit6 = "0", CODE is displayed, and when Func2 Bit6 = "1", BIT is displayed.

Note 2. "0" and "1" in the alarm output are:

"0" = Output is short-circuit, "1" = Output is open, when Mode2 Page3 Func2 Bit7 = "0" "0" = Output is open, "1" = Output is short-circuit, when Mode2 Page3 Func2 Bit7 = "1".

Note 3. 7-segment LED displays a flashing "4".

2) When overload warning is ineffective (e.g. OLWL = 100%)

Table 9-26-1 Output when overload warning is ineffective (e.g. OLWL = 100%) (Alarm output sequence = CODE *1)

Estimated	7-segment	CN-1	pin numbe	r for alarm	output		Alarm/Warning
motor temperature	LED display	46 (ALM8)	45 (ALM4)	44 (ALM2)	43 (ALM1)	Abbreviation	Name
Up to 80% of overload alarm level 80% or above up to 100% of overload alarm level	automatyle"	0	0	0	and O	and the second second	No alarm No warning
100% or above of overload alarm level	N3.9	0	0	1	0	OL	Overload alarm

Note 1. Set alarm output sequence at Func2 Bit6 of Mode2-Page3.

When Func2 Bit6 = "0", CODE is displayed, and when Func2 Bit6 = "1", BIT is displayed. Note 2. "0" and "1" in the alarm output are:

"0" = Output is short-circuit, "1" = Output is open, when Mode2 Page3 Func2 Bit7 = "0"

"0" = Output is open, "1" = Output is short-circuit, when Mode2 Page3 Func2 Bit7 = "1".

Table 9-26-2 Output when overload warning is ineffective(e.g. OLWL = 100%)(Alarm output sequence =BIT *2)

Estimated	7-segment	CN-1	pin numbe	r for alarm	output		Alarm/Warning
temperature		46 (ALM8)	45 (ALM4)	44 (ALM2)	43 (ALM1)	Abbreviation	Name
Up to 80% of overload alarm level 80% or above up to 100% of overload alarm level	automagnessed	0	0.0	0	0		No alarm No warning
100% or above of overload alarm level		1 1	1	1241.0	1	OL	Overload alarm

Note 1. Set alarm output sequence at Func2 Bit6 of Mode2-Page3.

When Func2 Bit6 = "0", CODE is displayed, and when Func2 Bit6 = "1", BIT is displayed.

Note 2. "0" and "1" in the alarm output are:

"0" = Output is short-circuit, "1" = Output is open, when Mode2 Page3 Func2 Bit7 = "0"

"0" = Output is open, "1" = Output is short-circuit, when Mode2 Page3 Func2 Bit7 = "1".

3. Precautions

- 1) This function only outputs warning, and does not execute sequence process such as Servo OFF in the alarm output or dynamic brake stop. In case of overload warning output, prevent overload alarm by reviewing the system operation cycle etc.
- 2) Warning output recovers automatically when the estimated motor temperature becomes lower than the set value for warning output (Overload alarm is not canceled without alarm reset procedure). Even in SOFF status, warning is output if the estimated motor temperature is higher than the set value.
- 3) When this function is validated, estimated motor temperature becomes Cold Start (Estimated motor temperature is 0% of the overload alarm level when the control power is turned on). Do not restart the system immediately after the power turn ON and OFF due to overload alarm, since the motor may not be cool enough. Otherwise, it may lead to burnt or damage of the motor or an accident. Secure enough time before restarting the system.
- 4) When overload warning and overtravel warning occur simultaneously, overtravel warning is prioritized in the 7-segment LED display.

INTERNATIONAL STANDARDS

10.1	Interna	tional Standard Compliance	
	10.1.1	Working Environment	
	10.1.2	Power Supply	
10.2	CE Ma	rking	
	10.2.1	The CE Marking Conformity Standards	
	10.2.2	How to Install the EMC	
	10.2.3	Structure of the Control Panel	
	10.2.4	Installation Inside the Control Panel	
	10.2.5	Wiring	
	10.2.6	Parts for EMC Countermeasures	10-9
10.3	UL Ma	rking	
	10.3.1	File Numbers	
	10.3.2	Fuse	

10.1 International Standard Compliance

Yes.	1 de la companya de la compa
International standard	Standard No.
ΤÜV	EN50178
UL	UL508C
CUL	UL508C
Low Voltage Directive	EN50178
EMC Directive	EN55011
<u> </u>	<u> </u>

The "PY2" Servo Amplifier complies with the following international standards.

10.1.1 Working Environment

Since the working environment for the "PY2" Servo Amplifiers must be pollution level 2 or above (i.e. level 1 or 2) as specified in EN50178, make sure to use them in a pollution level 1 or 2 environment.

10.1.2 Power Supply

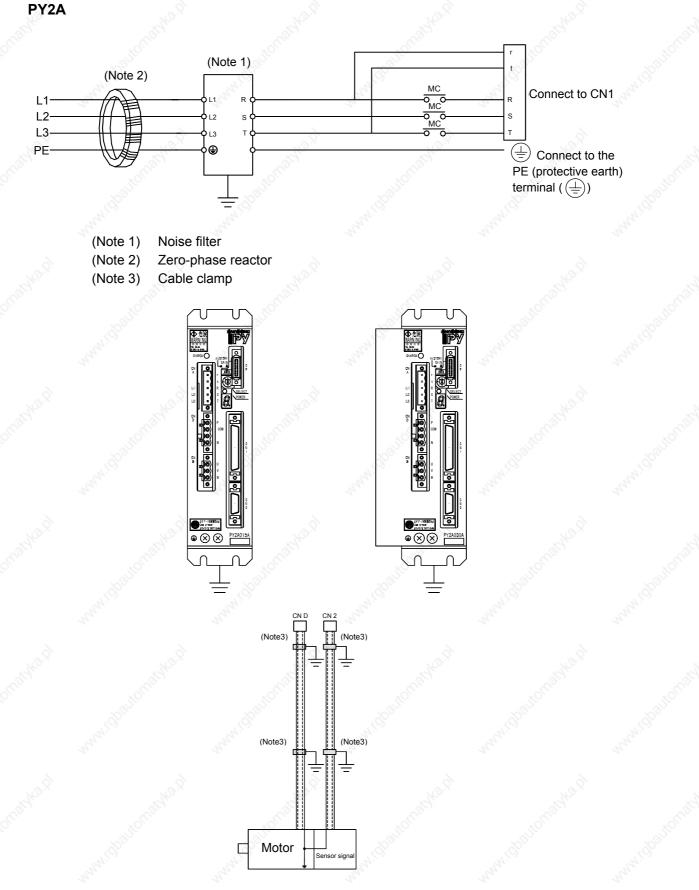
The "PY2" Servo Amplifiers must be used under the conditions specified in overvoltage category II, EN 50178. Use a reinforced insulation transformer conforming to the EN Standard for power supply input.

For the interface, use a DC power supply whose input and output sections have reinforced-insulation.

10.2 CE Marking

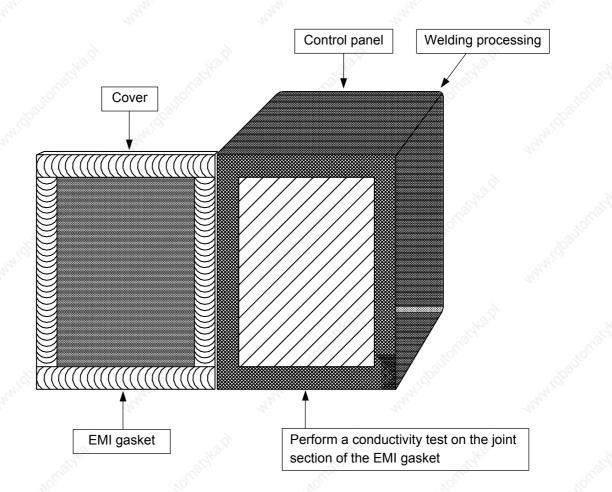
At Sanyo Denki, we are executing tests on the "PY2" Servo Amplifier for compliance with the CE marking at qualifying institutions. The CE mark is required to be attached all end products sold in EU countries. Only products conforming to the safety standards are permitted to have them. Accordingly, customers are requested to perform the final conformity test on their machines or systems incorporating our amplifiers.

10.2.1 The CE Marking Conformity Standards

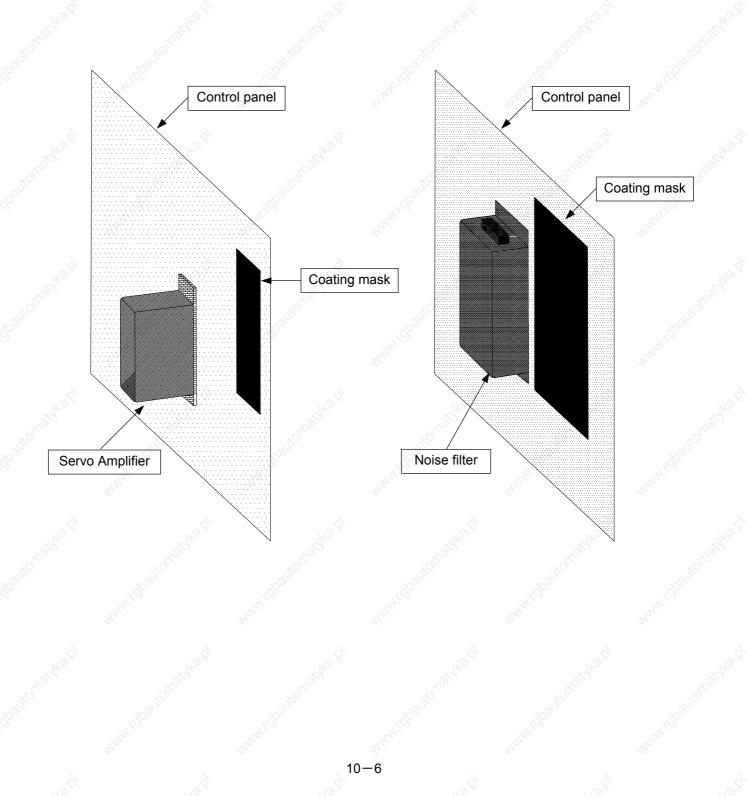

We execute conformity tests for the following standards on the "PY2" Servo Amplifier at qualifying institutions.

Classification of directive	Classification	Test	Test standard
Low Voltage Directive	_	à - à	EN50178
EMC Directive	Emission	Terminal interference voltage	EN55011
MARIE DOLL		Electromagnetic radiation interference	EN55011
14 14	Immunity	Radiation field immunity	EN61000-4-3/1996 ENV50204/1995
		Conductivity immunity	EN61000-4-6/1996
aballonia.		Electrostatic immunity	EN61000-4-2 EN61000-4-2: A1/1998
ward C		Electrostatic immunity	EN61000-4-2 EN61000-4-2: A1/1998
8 8		Burst immunity	EN61000-4-4/1995

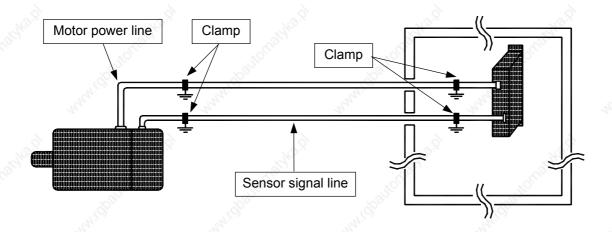
File numbers


Low Voltage Directiv	ve, Declaration	ð.	File No. C0002827C	
Low Voltage Directiv	ve, Certification	:	File No. B 01 05 21206 040	
			(Messrs. TÜV PRODUCT SERVICE)	
EMC Directive,	Declaration	:	File No. C0004056	
EMC Directive,	Certification	:	File No. E9 99 05 30982 005	
			(Messrs. TÜV PRODUCT SERVICE)	

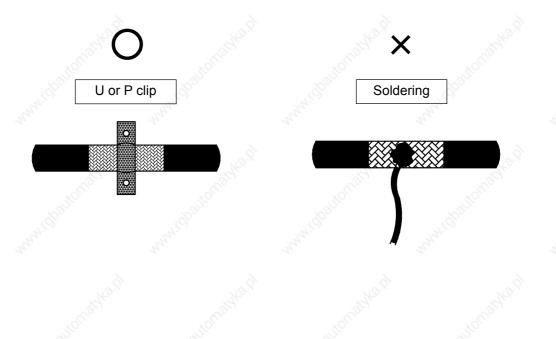
10.2.2 How to Install the EMC


10.2.3 Structure of the Control Panel

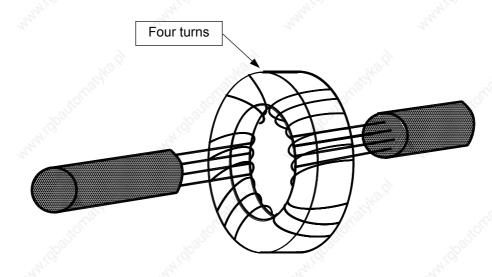
- 1. A metallic material is used for the control panel and its cover.
- 2. The joint of the roof and the side board shall be masked and welded.
- 3. The joint fixed with screws shall be welded to prevent noise from leaking from the gap in the joint.
- 4. In case of fixing with screws or spot welding, the welding space shall be within 10 cm.
- 5. Use an EMI gasket to prevent clearance between the cover and the control panel.
- 6. The EMI gasket shall be installed uniformly on the joint section of the cover and the control panel.
- 7. Perform a conductivity test on the EMI gasket, the cover and the control panel to make sure that they are conductive.

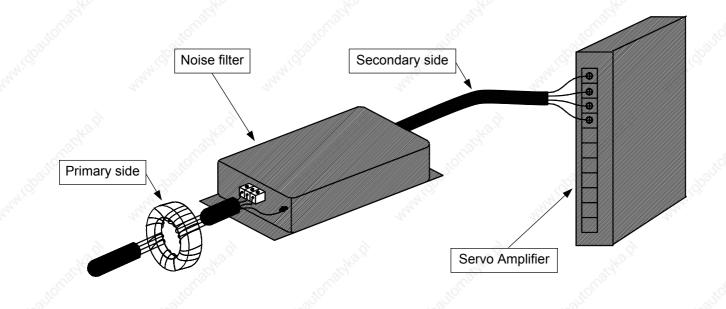

10.2.4 Installation Inside the Control Panel

- 1. Install the noise filter frame on the control panel.
- 2. Apply a coating mask on the control panel where the noise filter is installed.
- 3. The Servo Amplifier box must be grounded.
- 4. Perform coating mask on the control panel where the Servo Amplifier is installed.



10.2.5 Wiring


- 1. The motor power line shall be clamped on both the control panel and Servomotor sides.
- 2. The sensor signal line shall be clamped on both the control panel and the Servomotor sides.
- 3. Perform wiring of the motor power and sensor signal lines separately.



- 4. Install the clamp with a metal screw directly using a metal conductive P or U clip.
- 5. Do not clamp by soldering the power line to the shield.

- 6. Wind the zero-phase reactor four turns around the primary side of the noise filter.
- 7. Perform wiring from the secondary side of the noise filter to the Servo Amplifier, keeping it as short as possible.
- 8. The wiring for the primary and secondary sides of the noise filter must keep a certain distance apart.

10.2.6 Parts for EMC Countermeasures

We recommend the following parts for EMC countermeasures.

Noise filter

Model	Maker	Specifications
RF3020-DLC	RASMI ELECTRONICS LTD.	Rated voltage: Line-Line 440 - 550V Rated current: 20 A
3SUP-HK30-ER-6B	Okaya Electric Industry Co., Ltd.	Rated voltage: Line-Line 550V Rated current: 30 A

Zero-phase reactor

Model	Maker	Specifications
RZR-6020N	100 No. 100 No.	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Parts set for EMC countermeasures

Set name	Maker	Set contents		
Set name	IVIAKEI	Model	Quantity	
3SUP-HK30B60N	Okova Electric Industry Co. 1 td	3SUP-HK30-ER-6B	1 piece	
350P-FIK30BOUN	Okaya Electric Industry Co., Ltd.	RZR-6020N	1 piece	

10.3 UL Marking

The "PY2" series products are qualified to have the UL (U.S. version) and cUL (Canada version) marks of the Underwriters Laboratories attached.

10.3.1 File Numbers

File No.: E179775 Power Conversion Equipment (CCN: NMMS, NMMS7)

In case you need certification of the Servo Amplifiers for your machines or systems when obtaining UL standards, let our sales representative know the above file number so that it can be obtained.

10.3.2 Fuse

The "PY2" Servo Amplifiers are not equipped with fuses. Customers are requested to prepare a UL-approved fast-blown fuse and install it in the input section of the main circuit power supply.

Recommended fuses

Amplifier capacity 15 A to 30 A	:	CR2LS-30/UL (Fuji Electric)
Amplifier capacity 50 A	:	CR2LS-50/UL (Fuji Electric)

SPECIAL SERVO FUNCTION

11.1	Outline of Servo Function	<u> </u>
11.2	Control Mode Switch	11-3
11.3	Gain Switch	11-4
11.4	Real Time Automatic Tuning	11-5
11.5	Additional Function of Velocity Loop Proportional Gain	<u>.</u> 11-9
11.6	P-PI Control Automatic Switch	11-10
11.7	Full Close Function	11-11

11.1 Outline of Servo Function

"PY2" Servo Amplifier has variety of servo and tuning functions.

11.1.1 Tuning /Parameter Connection

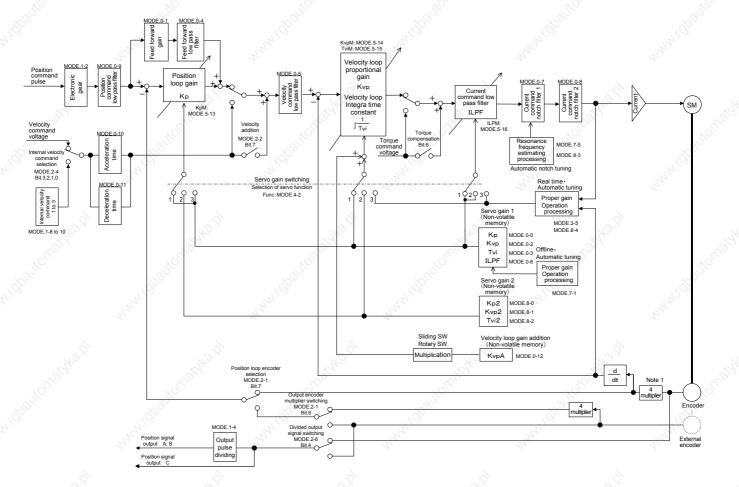


Fig. 11-1 Tuning/ Parameter Connection

- Note 1: Multiplication by 4 function is effective when encoder is INC-E or ABS-E. For ABS-R II, 1 multiplication will be fixed.
- Note 2: Servo system complying with full close is required in order to connect external encoder. Consult with us. If servo system does not complying with full close, set bit7,6 of Mode 2-1 and bit4 of Mode2-6 to "0".
- Note 3: Each low pass filter and notch filter becomes invalid when set at 1000Hz.

11.2 Control Mode Switch

"PY2" Servo Amplifier has "Control Mode Switch" function that can switch control mode to the most suitable one according to application requirements during operation.

11.2.1 Parameter Setting

(1) Control Mode (TYPE: Mode 4, Page 3)

TVDE Sotting	Control Turno	Rem	arks
TYPE Setting	Control Type	During switch signal OFF	During switch signal ON
Torque	Torque control	- 110	_1 ⁰ _
Velocity	Velocity control		
Position	Position control	4 ⁴⁴ -	44 - 44
Velo ↔ Torq	Velocity ←→ Torque switch	Velocity control	Torque control
Posi ↔ Torq	Position ←→ Torque switch	Position control	Torque control
Posi ↔ Velo	Position ↔ Velocity switch	Position control	Velocity control

Control mode (TYPE: Mode4 page3) is system parameter and set bit7 of Func6 to "1" before changes. It becomes effective after turning ON the control power again.

(2) Selecting control mode switch input signal

Setting	Procedure		
Func3 Bit7 = "0"	Input control mode switch signal by CN1-36 pin		
Func3 Bit7 = "1"	Input control mode switch signal by CN1-35 pin		

11.2.2 Control Mode Switch Procedure

When specified signal changes at bit7 of Func3, control mode will be switched within 12msec. Then the contents of general use input signal (the contents set at bit3, 2, 1, 0 of Func3) will be also changed according to the control mode.

(1) <u>Switching of Position control→Torque control, and Velocity control→Torque control</u>

In Torque control when enabling control mode switch, the speed will be limited by high speed set value (HTG: page6 of Mode1) to prevent the motor from rotating out of order (torque command will be "0" by force when motor speed exceeds the high speed set value (HTG), it automatically recovers when the speed becomes below the high speed set value.)

The velocity control is set as error detection level when sudden load change (to no load/ small load) in torque control. However, it cannot control at fixed speed. There is a case that motor rotates over set value in the status that the set HTG is low and inputted torque command is large in comparing with load inertia and load torque. Do not allow this status to continue in use. Set HTG to 32767min⁻¹ unless executing speed velocity control.

(2) Switching of Position control→Velocity control

When switching to velocity control mode, velocity command value changes inconsecutively. Therefore, if control mode is switched during motor operation, the operation may become unstable after switch. Be careful to switch modes during operation. Having velocity command LPF (VLPF: page5 of Mode0) effective (not at 1000Hz) will reduce the inconsecutiveness of velocity command value.

(3) Switching of Velocity control→Position control, and Torque control→Position control

Position deviation is cleared during control mode switching (when velocity control and torque control). Therefore, system restarts counting position command pulse after switched to position control. After tuning OFF the switch signal, input command pulse after switched to position control mode.

11.3 Gain Switch

The "PY2" series have "Gain switch" function that can switch servo gain (Kp/ Kvp/ Tvi) during operation. Servo gain can be changed by inputting switch signal into Servo Amplifier according to variations of device rigidity, load and inertia.

11.3.1 Parameter setting

Func setting	Servo function
Normal	Standard type
Gain_sel.	Gain switch type
Gain_Tun.	Real time automatic tuning type
Gsel&Gtun	Gain switch & real time automatic tuning type

(1) Servo function select (Func: Mode4 page2)

Gain switch function will be valid when selecting "Gain_Sel." or "Gsel&Gtun"

(2) Gain switch input signal select (Func3 bit6: Mode2 page4)

Setting	Procedure
Func3 bit6 = "0"	Input gain switch signal to CN-36pin.
Func3 bit6 = "1"	Input gain switch signal to CN-35pin.

11.3.2 Operation when gain switch is valid

Depending upon the external signal (CN1-36pin or 35pin) status "Servo gain switch (3 SWs)" in the middle of figure 11-1 varies. Servo gain will vary within two seconds after external signal change. After executing offline automatic tuning, estimated proper gain will be set into gain1 (Kp ; Mode0 page0/ Kvp ; Mode0 page2/ Tvi ; Mode0 page3/ ILPF ; Mode0 page6) regardless of gain switching status.

	i shari a shari				
(1)	In case of Func = "Gain_Sel."				
	When gain switch input is OFF, "Serv			middle of figure 11-1 w	ill be at
	the position of "1". The following part	rameters wil			
	Position loop gain	🔊: Kp	Mode0 – page0		
	Velocity loop proportional gain	🔪 : Kvp	Mode0 – page2		
	Velocity loop integral time const	ant : Tvi	Mode0 – page3		
	Current command LPF	: ILPF	Mode0 – page6		
	When gain switch input is ON, "Servo	aain switch	(3 SWs)" in the m	niddle of figure 11-1 wil	l be at
	the position of "2". The following part		· · · · · · · · · · · · · · · · · · ·	Ser Ser Ser	S
	Position loop gain	: Kp2	Mode8 – page0		
	Velocity loop proportional gain		Mode8 – page1		
	Velocity loop integral time const	•	~~··•		
	Current command LPF	: ILPF			
	42		4		
(2)	In case of Func = "Gsel&Gtun"				
	When gain switch input is OFF, "Serv	o gain swite	h (3 SWs)" in the	middle of figure 11-1 w	ill be at
	the position of "3" (real time automation		· · · · · · · · · · · · · · · · · · ·		
	be valid:	S. J	. 10		
	Position loop gain	: Kp	Mode0 – page0		
	Velocity loop proportional gain	: Kvp		e automatic tuning resu	ilt se ^{nt}
	Velocity loop integral time const			e automatic tuning resu	
	Current command LPF			e automatic tuning resu	
				e e e e e e e e e e e e e e e e e e e	
	When gain switch input is ON, "Servo	gain switch	n (3 SWs)" in the m	hiddle of figure 11-1 wil	l be at
	the position of "2". The following pa	2 -		30	
	Position loop gain	: Kp2	Mode8 – page0		
	Velocity loop proportional gain		Mode8 – page1		
	Velocity loop integral time const		. e)		
	Current command LPF	: ILPF			

11.4 Real Time Automatic Tuning

The "PY2" Servo Amplifier has "real time automatic tuning" function that estimates proper gain by driving motor operation and changes servo gain in real time. With large device of inertia variation, Motor can be operated at proper gain all the time.

11.4.1 Parameter setting

(1) Servo function select (Func: Mode4 page2)

Func setting	Servo function		
Normal	Standard type		
Gain_sel.	Gain switch type		
Gain_Tun.	Real time automatic tuning type		
Gsel&Gtun	Gain switch & real time automatic tuning type		

Real time automatic function will be valid when selecting "Gain_Tun." or "Gsel&Gtun"

Real time automatic tuning level (Tn_Lv: Mode3 page5)
 Setting level when executing tuning according to the device rigidity.

Tn_Lv setting	×.	Procedure
	Device rigidity	offer.
+5	High rigidity	Equivalent to "High" of offline automatic tuning
+4	3450	AND
18 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	\downarrow	AND AND
+1		
0	Middle rigidity	Equivalent to "Middle" of offline automatic tuning
-1	3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
↓ <u>_</u>	Ļ	Salar Salar
-4.000	202	and a second and a second a s
-5	Low rigidity	Equivalent to "Low" of offline automatic tuning

(3) Observer/ load inertia ratio (O_JL: Mode8 page4) The parameters to estimate load torque required when finding proper gain by real time automatic tuning.

Set O_JL[%] = load inertia JL / Motor inertia JM × 100

Normally, load inertia JL should be an average within variation range of load inertia (or most used value). If appropriate tuning cannot be done within "+5 to -5" range of real time automatic tuning level setting (Tn_Lv), High/ Low rigidity setting can be feasible by adjusting observer/ load inertia ratio.

- In case of making estimated gain larger though Tn_Lv = +5 is set
 - → Set the observer/ load inertia ratio (O_JL) to the maximum inertia value in the variation range of device inertia.
 - → Set the observer/ load inertia ratio (O_JL) over the maximum inertia value in the variation range of device inertia.
- In case of making estimated gain smaller though Tn_Lv = -5 is set
 - → Set the observer/ load inertia ratio (O_JL) to the minimum inertia value in the variation range of device inertia.
 - → Set the observer/ load inertia ratio (O_JL) smaller than the minimum inertia value in the variation range of device inertia
 - When changing observer/ load inertia ratio (O_JL) during operation, estimating load torque will be stopped momentary. Therefore, the operation may be momentary unstable after change.
 - When widely changing observer/ load inertia ration (O_JL) at once, estimated servo gain will increase outstandingly and may turn into oscillation status. Change gradually with monitoring operating status.
 - Change parameters related to real time automatic tuning, only after securing the safety around devices.

11.4.2 Operation when real time automatic tuning is valid

"Servo gain switch (3SWs)" in the middle of figure 11-1 will be at the position of "3". Then proper gain will be estimated according to the Servo Amplifier and Motor operational status, and servo gain will be changed at real time. Changing servo gains are three kinds of velocity loop proportional gain, and velocity loop integral time constant and current command LPF.

Servo gain when real time automatic tuning is valid is as follows:

result
result
result
r

The proper gain estimated by real time automatic tuning is used on RAM in the Servo Amplifier and is not memorized in non-volatilize memory. Proper gain is estimated during Motor operation (over certain value of acceleration/ declaration.) When no change on Motor speed, or servo OFF, the last (past) estimated result will be invalid. However, the parameters memorized in non-volatile memory will be valid in the following cases:

(1) In case of Func = "Gsel&Gtun"

When gain switch input is OFF, "Servo gain switch (3 SWs)" in the middle of figure 11-1 will be at the position of "3". The following parameters will be valid:

Position loop gain	: Kp	Mode0 – page0
Velocity loop proportional gain	: Kvp	Value of real time automatic tuning result
Velocity loop integral time constant	: Tvi	Value of real time automatic tuning result
Current command LPF	: ILPF	Value of real time automatic tuning result

When gain switch input is ON, "Servo gain switch (3 SWs)" in the middle of figure 11-1 will be at the position of "2". The following parameters will be valid:

Position loop gain	: Kp2	Mode8 – page0
Velocity loop proportional gain	: Kvp2	Mode8 – page1
Velocity loop integral time constant	: Tvi2	Mode8 – page2
Current command LPF	: ILPF	Mode0 – page6

Even if gain switch input is ON status (during gain switching), proper gain estimation process would be executed. Therefore, at the point of turning OFF the gain switch input, the latest proper gain estimation result will be valid.

(2) When turning ON the Control power

In case of parameter setting which enables real time automatic tuning, "Servo gain switch (3 SWs)" in the middle of figure 11-1 will be at the position of "3". However, proper gain cannot be estimated when turning ON the control power. And then the servo gain memorized in the non-volatile memory will be valid instead

: Kp	Mode0 – page0
: Kvp	Mode0 – page2
: Tvi	Mode0 - page3
ILPF	Mode0 – page6
	: Tvi

With Motor operation after servo ON, proper gain estimation will be started. After completing proper gain estimation, servo gain will be changed.

(3) When alarm occurs

In case of parameter setting which enables real time automatic tuning, "Servo gain switch (3 SWs)" in the middle of figure 11-1 will be at the position of "3". However, estimated gain cannot be judged whether it is proper or not when alarm occurs. Therefore the servo gain memorized in the non-volatile memory will be valid instead.

Position loop gain	: Кр	Mode0 – page0
Velocity loop proportional gain	: Kvp	Mode0 – page2
Velocity loop integral time constant	: Tvi	Mode0 – page3
Current command LPF	: ILPF	Mode0 – page6

With resuming Motor operation after alarm status is cleared, proper gain estimation will be started. After completing proper gain estimation, servo gain will be changed.

(4) When executing test mode

In case of parameter setting which enabling real time automatic tuning, "Servo gain switch (3 SWs)" in the middle of figure 11-1 will be at the position of "3". However, the servo gain memorized in the non-volatile memory will be valid when executing test mode (JOG operation, offline automatic tuning and automatic notch tuning).

Position loop gain	: Kp	Mode0 – page0
Velocity loop proportional gain	: Kvp	Mode0 – page2
Velocity loop integral time constant	: Tvi	Mode0 – page3
Current command LPF	: ILPF	Mode0 – page6

With resuming normal Motor operation after test mode, proper gain estimation will be started. After completing proper gain estimation, servo gain will be changed.

11.4.3 Ofline automatic tuning and parameter setting of non-volatile memory

In real time automatic tuning, servo gain is estimated all the time by motor operation and changed in real time. For this reason, even if the parameter that memorized in non-volatile memory (Kvp: Mode0-page2, Tvi: Mode0-page3 and ILPF: Mode0-page6) is set in order to enable high response, it becomes hardly effective. It is quite enough if velocity loop proportional gain (Kvp: Mode0-page2), velocity loop integral time constant (Tvi: Mode0-page3) and current command LPF (ILPF: Mode0-page6), that would operate stably against the set value of position loop gain (Kp: Mode0-page0), are set soon after turning on the control power.

It is recommended to set the non-volatile memory (Kvp: Mode0-page2, Tvi: Mode0-page3 and ILPF: Mode0-page6) to low in order for enabling real time automatic tuning setting.

Also, when setting non-volatile memory parameters by offline automatic tuning, low gain setting is appropriate with the same reason above. <u>It is recommended to select "low" of tuning mode and execute offline automatic tuning.</u> However, position loop gain will not be changed in real time automatic tuning. Set according to the required response.

Servo gain estimation may no be executed appropriately due to "sudden load fluctuation", "large backlash", "slow Motor acceleration/ deceleration" or so on. In this case, do not use real time automatic tuning function.

11.5 Additional Function of Velocity loop Proportional Gain

Velocity loop proportional gain can be easily changed by setting rotary and sliding switches on Servo Amplifier front. With using this function together with real time automatic tuning, the estimated proper gain Kvp with additional value can be used.

11.5.1 Parameter setting

 Velocity loop proportional gain additional value (KvpA: Mode0 page12) This parameter setting sets additional value of velocity loop proportional gain per 1 position of rotary SW.

11.5.2 Switch setting

 History / Gain switch (sliding switch on Servo Amplifier front) This switch sets valid/ invalid of velocity loop proportional gain additional function.

When this SW is at "History", velocity loop proportional additional function is invalid. Depending upon rotary SW position, alarm history will be shown on the 7-segment LED.

When this SW is at "Gain", velocity loop proportional gain additional function is valid. Depending upon rotary SW position, velocity loop proportional gain will be added.

(2) Select switch (rotary SW on Servo Amplifier front)

When History / Gain switch is set at "Gain", the multiplication result of "Rotary SW position × velocity loop proportional gain additional value (kvpA) will be added on the velocity loop proportional gain.

- Note that electric shock or breakage may occur when changing SW setting during operation (during power ON). Operate in safety as "changing SW setting after power OFF and CHARGE LED is turned off" or "changing SW setting with using isolated tool" etc,.
 When returning back the sliding SW setting to "History", velocity loop proportional gain
- additional function will be invalid.

11.6 P-PI Control Automatic Switch

The function that automatically switches between velocity loop proportional control and proportional integrate control according to the Motor speed is available. This function can shorten positioning time in position control.

11.6.1 Parameter setting

(1) P-PI automatic switch function (Func6 bit1: Mode2 page7)

Setting	Contents
Func6 bit = "0"	P-PI control automatic switch function is invalid
Func6 bit = "1"	P-PI control automatic switch function is valid

(2) Low speed setting (LTG: Mode1 page5)

In case that P-PI control automatic switching is valid:

- When Motor speed is low speed setting value (LTG) or lower, turning into the velocity loop proportional integrate control.
- When Motor speed is over low speed setting value (LTG), turning into the velocity loop proportional control.

There is an effect that positioning time will be shorter when setting the lower LTG. However, in case that there is a slight speed fluctuation even at Motor stoppage due to backlash or so on, too low LTG may result in counter effect. Normally set between 10 to 200rpm. Also, the low speed setting value (LTG) should differ enough from the fixed Motor speed. The speed will be unstable if switching P-PI control when fixed speed rotation.

11.6.2 The operation when P-PI control automatic switch function is valid

Velocity loop integrate process will be changed based upon the Motor speed.

- (1) When Motor accelerates and beyond the low speed setting value, the current command (torque command) generated by velocity loop integrate formula will be "0". Operation of proportional control is the same as that when velocity loop integrate time constant is invalid (1000Hz setting).
- (2) When Motor decelerates to or below low speed setting value, velocity loop integrate time constant will be valid.
- (3) When Motor rotates at fixed speed over low speed setting value in position control, position deviation will be wider (if position command pulse frequency is the same, there is no motor speed difference by proportional control and proportional integrate control).
- (4) When inputting the command over the low speed setting value in velocity control, Motor rotates at the speed with deviation against the command.

11.6.3 Notificaiton

In the position control, there is an effect that positioning time will be shortened. Depending upon device structure however, P-PI control switching will result in counter effects. Sufficient evaluation is required for the devices of which belt driver has low rigidity, etc.

When the motor speed exceeds LTG by vibration or disturbance during motor stoppage, P control is activated. Since the integral is cleared, motor output torque becomes smaller. Superficially, the operation looks as if the holding torque became smaller. When there is vibration or disturbance, adjust LTG. In the P-PI control switching, general-use input (CN1-35pin, 36pin) can be also used. Validate general-use input PCON at Func3 bit3, 2, 1 and 0 (Mode2 page4). For general-use input PCON, P-PI control will switch within 12msec. after input signal change.

11.7 Full Close Function

In this function, set external encoder for position control. As the hardware for this function is different from that for standard PY2 amplifier, need to decide whether or not to require this function before purchase.

11.7.1 Outline of full close function (optional)

(1) Full close specification (for reference)

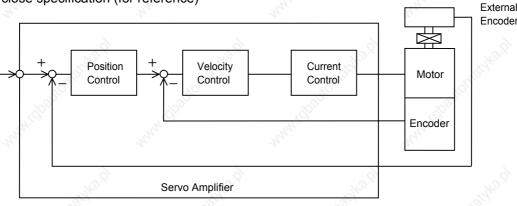


Fig. 11-2 Block Diagram of Full Close

(2) Standard PY2 (for reference)

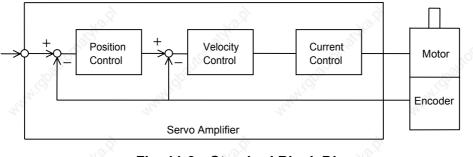
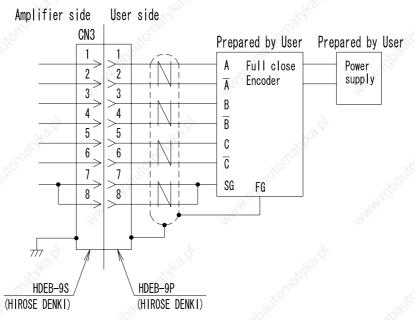


Fig. 11-3 Standard Block Diagram

In the full close function, device position is correctly obtained by getting feedback signal of position loop from external encoder, resulting in high accuracy control in positioning (control real position of device).


11.7.2 Hardware of full close function (optional)

(1) Configuration

Amplifiers of 15A, 30A and 50A are wider by 20mm.

(2) Additional connector

Connector CN3 will be added for connection with full close encoder. The wiring is as follows. Full close encoder, connector (HDEB-9P) and power supply should be prepared by customer.

Note) For the parts marked -, use a twisted pair shielded cable.

Fig. 11-4 Full Close Additional Wiring Diagram

(3) Maximum input frequency The maximum input frequency from full close encoder output to Amplifier is 2MHz (the frequency before multiplied by 4).

11.7.3 Parameter setting of full close function (optional)

(1)	Position loo	p encoder	select	(Func0	bit7:	Mode2	page1)

Setting	Contents		
Func0 bit7 = "0"	Use Motor encoder for position loop process		
Func0 bit7 = "1"	Use full close encoder for position loop process		

Normally use without changing this parameter setting, as it is already set according to the hardware specification at ex-factory.

(2) Setting of multiplication function (Func0 bit6: Mode2 page1)

Setting	Contents
Func0 bit6 = "0"	Use with multiplying full close encoder by 4.
Func0 bit6 = "1"	Use with multiplying full close encoder by 1.

(3) Setting of dividing function (Func5 bit4: Mode2 page6)

Setting	Contents
Func0 bit4 = "0"	Divide Motor encoder signal by CN1 position signal output (CN1-3 to 8, 11pin) and output.
Func0 bit4 = "1"	Divide full close encoder signal by CN1 position signal output (CN1-3 to 8, 11pin) and output.

Output pulse dividing ratio can be set by ENCR (Mode1 page4). Output pulse dividing ratio (ENCR) uses the same parameter for Motor encoder and full close encoder.

SANMOTION P series PY2

Instruction Manual

M0001584J Release: September, 1999 Rev.J: August,2003

Copyright 2002, SANYO DENKI Co., Ltd. All Rights Reserved.

SANYO DENKI CO., LTD.

URL http://www.sanyodenki.co.jp

	0.0			
JAPAN	SANYO DENKI CO., LTD.	1-15-1, Kita-Otsuka Toshima-KU Tokyo 170-	8451, Japan	
			PHONE:	+81 3 3917 5151
			FAX:	+81 3 3917 0643
U.S.A	SANYO DENKI AMERICA, INC.	486 Amapora Avenue Torrance, CA 90501,	U.S.A	
			PHONE:	+1 310 783 5400
			FAX:	+1 310 212 6545
	SANYO DENKI AMERICA, INC.	220 Kadir Womble Road, New Hill, NC 2756	2, U.S.A	
	R.T.P. Office		PHONE:	+1 919 367 9971
			FAX:	+1 919 367 9972
	SANYO DENKI AMERICA, INC.	1500 Wyatt Dr.Ste 10 Santa Clara, CA 9505	4, U.S.A	
	Silicon Valley Office		PHONE:	+1 408 988 1700
			FAX:	+1 408 982 1700
	SANYO DENKI AMERICA, INC.	2101A Kirksey Dr.Austin, TX 78741, U.S.A		
	Silicon Hills Office		PHONE:	+1 512 389 2143
			FAX:	+1 512 389 2147
	SANYO DENKI AMERICA, INC.	7 Copperwood Road, Suite 126 Vernon Hills	, IL 60061, U.S	S.A
	New England Office		PHONE:	° +1 508 242 9928
			FAX:	+1 775 855 9049
	SANYO DENKI AMERICA, INC.	100 Fairway Drive, Suite A Duluth, GA 3009	7-4902, U.S.A	
	Midwest Office		PHONE:	+1 847 362 3723
			FAX:	+1 847 362 4903
FRANCE	SANYO DENKI EUROPE SA.	BP. 50286 95958 Roissy Chares-De-Gaulle	Cedex, France	e Nor
			PHONE:	+33 1 48 63 26 61
			FAX:	+33 1 48 63 24 16
SANYO D	ENKI TAIWAN BRANCH Room	401,4F, No.96 Chung Shan N, Rd., Sec.2, Taip	ei 104, Taiwa	n, R.O.C.
			PHONE:	+886 2 2511 3938
			FAX:	+886 2 2511 3975
SANYO DE	ENKI HONG KONG BRANCH			
	1109, 11F N	lew East Ocean Centre, 9 Science Museum Ro	ad, TST East,	Kowloon, Hong Kong
			PHONE:	+852 2312 6250

FAX: +852 2312 6220

#