4. Screw terminal type (Single side stable)

Type	Coil voltage	1 Form A	2 Form A	Packing quantity	
		Part No.	Part No.	Carton	Case
DC type	6 V DC	HE1aN-S-DC6V	HE2aN-S-DC6V	10 pcs.	50 pcs.
	12V DC	HE1aN-S-DC12V	HE2aN-S-DC12V		
	24V DC	HE1aN-S-DC24V	HE2aN-S-DC24V		
	48 V DC	HE1aN-S-DC48V	HE2aN-S-DC48V		
	100 V DC	HE1aN-S-DC100V	HE2aN-S-DC100V		
	110 V DC	HE1aN-S-DC110V	HE2aN-S-DC110V		
AC type	12 V AC	HE1aN-S-AC12V	HE2aN-S-AC12V	10 pcs .	50 pcs.
	24 V AC	HE1aN-S-AC24V	HE2aN-S-AC24V		
	48 V AC	HE1aN-S-AC48V	HE2aN-S-AC48V		
	100/120V AC	HE1aN-S-AC100V	HE2aN-S-AC100V		
	200/240V AC	HE1aN-S-AC200V	HE2aN-S-AC200V		

Note: The TM type of the screw terminals are also available.

RATING

1. Coil data

1) AC coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
12 V AC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	138 mA	1.7VA	$110 \% \mathrm{~V}$ of nominal voltage
24 V AC			74 mA	1.8VA	
48 V AC			39 mA	1.9 VA	
100/120V AC			18.7 to 2.1 mA	1.9 to 2.7 VA	
200/240V AC			9.1 to 10.8 mA	1.8 to 2.6 VA	

2) $D C$ coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$)
6V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	320 mA	18.8Ω	1.92W	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC			160 mA	75Ω	1.92W	
24 V DC			80 mA	300Ω	1.92W	
48 V DC			40 mA	1,200 ${ }^{\text {a }}$	1.92W	
100 V DC			19 mA	5,200	1.92W	
110 V DC			18 mA	6,300	1.92W	

HE

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		1 Form A	2 Form A
	Initial contact resistance, max		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgSnO_{2} type	
Rating	Nominal switching capacity (resistive load)		30A 277V AC	25A 277V AC
	Max. switching power		8,310VA	6,925VA
	Max. switching voltage		277V AC, 30V DC	
	Max. switching current		30A	25A
	Nominal operating power		DC: $1.92 \mathrm{~W}, \mathrm{AC}: 1.7$ to 2.7VA	
	Min. switching capacity (Reference value)* ${ }^{*}$		100mA 5V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	2,000 Vrms for 1 min (Detection current: 10mA.)	
		Between contact sets	-	4,000 Vrms for 1min (Detection current: 10mA.)
		Between contact and coil	$5,000 \mathrm{Vrms}$ for 1min (Detection current: 10mA.)	
	Surge breakdown voltage*2 (between contact and coil)		Min. 10,000V (initial)	
	Temperature rise		DC: Max. $60^{\circ} \mathrm{C}$ (at $\left.55^{\circ} \mathrm{C}\right)$ (By resistive method), AC: Max. $65^{\circ} \mathrm{C}$ (at $55^{\circ} \mathrm{C}$) (By resistive method)	
	Operate time (at nominal voltage)		Max. 30ms (excluding contact bounce time)	
	Release time (at nominal voltage)		DC: Max. 10 ms (excluding contact bounce time, without diode), AC: Max. 30ms (excluding contact bounce time)	
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave p	ms.)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		DC: Min. 10^{7} (at 180 times/min.), AC: Min. 5×10^{6} (at 180 times/min.)	
	Electrical (resistive load) (at 20 times/min.)		Min. 10^{5} (30A 277V AC) Min. 2×10^{5} (30A 250 V AC)	Min. 10^{5} (25A 277V AC) Min. 2×10^{5} (20A 250 V AC)
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature), Air pressure: 86 to 106 kPa	
	Conditions for operation, transport and storage*3		20 times/min. (at max. rating)	
Unit weight			PC board type: approx. 80 Screw terminal type: approx	/TM type: approx. 90g 3.17oz,

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3 The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1 Form A Type

1. Maximum switching power

\longrightarrow Contact voltage, V
2. Life curve

3. Coil temperature rise (DC type)

Measured portion: Inside the coil
Contact current: 30 A

