2) 2 coil latching

Type	Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$		Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil inductance		$\begin{aligned} & \text { Max. applied } \\ & \text { voltage } \\ & \text { (at } 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \text {) } \end{aligned}$
				Set coil	Reset coil							
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200mW	Approx. 10 mH	Approx. 10 mH	5.5V DC
	5V DC			38.5 mA	38.5 mA	130Ω	130Ω	192mW	192mW	Approx. 31 mH	Approx. 31 mH	9.0 V DC
	6V DC			33.7 mA	33.7 mA	180Ω	180Ω	200 mW	200mW	Approx. 40 mH	Approx. 40mH	11.0 V DC
	12V DC			16.7 mA	16.7 mA	720Ω	720Ω	200mW	200mW	Approx. 170 mH	Approx. 170 mH	22.0 V DC
	24V DC			8.4 mA	8.4 mA	2,850 ${ }^{\text {a }}$	2,850 Ω	202mW	202mW	Approx. 680 mH	Approx. 680 mH	44.0 V DC
	48V DC			7.4 mA	7.4mA	6,500 Ω	6,500 Ω	355 mW	355 mW	Approx. $1,250 \mathrm{mH}$	Approx. $1,250 \mathrm{mH}$	65.0 V DC

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Electrostatic capacitance (initial)		Approx. 3pF
	Contact material		Au clad Ag alloy (Cd free)
	Thermal electromotive force (at nominal coil voltage) (initial)		Approx. $3 \mu \mathrm{~V}$
Rating	Nominal switching capacity (resistive load)		4 A 250 V AC, 3 A 30 V DC
	Max. switching power (resistive load)		1,000 VA, 90 W
	Max. switching voltage		250 V AC, 48 V DC (30 to 48 V DC at less than 0.5 A)
	Max. switching current		4 A (AC), 3 A (DC)
	Minimum operating power		100 mW (Single side stable, 2 coil latching) (Except 48V DC type)
	Nominal operating power		200 mW (Single side stable, 2 coil latching) (Except 48V DC type)
	Min. switching capacity (Reference value)*1		$100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $10,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $35^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 4A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 4 mm
Expected life	Mechanical		Min. 10^{8} (at 50 cps)
	Electrical		Min. 10^{5} (4 A 250 V AC), Min. 2×10^{5} (3 A 30 V DC) (at 20 times/min.)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 times/min. for maximum load, 50 cps for low-level load (1 mA 1 V DC)
Unit weight			Approx. 8 g .28 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1. Maximum switching power

0.1

Contact current, A
4.-(2) Coil temperature rise Tested Sample: S4EB-24V, 4 Form A

2. Life curve

\longrightarrow Contact current, A
4.-(1) Coil temperature rise Tested Sample: S4EB-24V, 4 Form A

$$
\begin{gathered}
\rightarrow \| \\
\square(1) \square(2) \square \begin{array}{l}
\text { (1) \& (3) relays } \\
\text { are energized }
\end{array}
\end{gathered}
$$

Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10 mm .394 inch between relays in order to achieve the performance listed in the catalog.

\longrightarrow Inter-relay distance, mm

\longrightarrow Inter-relay distance, mm
3. Contact reliability

Condition: 1V DC, 1 mA
Detection level 10Ω
Tasted Sample: S4EB-24V, 10pcs

5. Operate and release time (Single side stable type)
Tested Sample: S4EB-24V, 10pcs

7. Thermal electromotive force

8. Effect from an external magnetic field

