2. Specifications

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type		
Rating	Nominal switching capacity (resistive load)		8 A 250 V AC, 5 A 30 V DC	5 A 250 V AC, 5 A 30 V DC	
	Max. switching power (resistive load)		2,000 VA, 150 W	1,250 VA, 150 W	
	Max. switching voltage		250 V AC, 125 V DC (0.2 A)		
	Max. switching current		8 A AC, 5 A DC	5 A AC, DC	
	Nominal operating power		300 mW		
	Min. switching capacity (Reference value)*		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M (at 500V DC) Measurement at same location as "Breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10mA.)		
		Between contact sets	2,000 Vrms (1 Form A 1 Form B, 2 Form A) (Detection current: 10mA.)		
		Between contact and coil	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10mA.)		
	Surge breakdown voltage*2	between contacts and coil	5,000 V		
	Temperature rise (coil) (By resistive method)*4		Max. $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$ (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)	Max. $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ (at $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$)	Max. $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$ (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3.5 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 180 times/min.)		
	Electrical		Min. 10^{5} (resistive load)		
Conditions	Conditions for operation, transport and storage*3 (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$
	Max. operating speed		3 cps		
Unit weight			Approx. $4.5 \mathrm{~g} \mathrm{g}$.		

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.
*4. Single side stable type: at nominal voltage applied to the coil and max. switching current 2 coil latching type: at coil deenergized and max. switching current

REFERENCE DATA

3.-(1) Coil temperature rise (1 Form A) Tested sample: DSP1a-DC12V, 5 pcs.

2.-(1) Life curve (1 Form A 1 Form B)

3.-(2) Coil temperature rise (1 Form A 1 Form B)

2.-(2) Life curve (1 Form A 1 Form B)

3.-(3) Coil temperature rise (2 Form A) Tested sample: DSP2a-DC12V, 5 pcs.

4.-(1) Operate \& release time (without diode, 1 Form A) Tested sample: DSP1a-DC12V, 5 pcs.

4.-(4) Operate \& release time (with diode, 1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

5.-(1) Change of pick-up and drop-out voltage (1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

6.-(1) Influence of adjacent mounting (1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

4.-(2) Operate \& release time (without diode, 1 Form A 1 Form B) Tested sample: DSP1-DC12V, 5 pcs.

4.-(5) Operate \& release time (with diode, 1 Form A 1 Form B) Tested sample: DSP1-DC12V, 5 pcs.

5.-(2) Change of pick-up and drop-out voltage (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

6.-(2) Influence of adjacent mounting (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

4.-(3) Operate \& release time (without diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.)

4.-(6) Operate \& release time (with diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

5.-(3) Change of pick-up and drop-out voltage (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

6.-(3) Influence of adjacent mounting (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

