1 Form A 5A slim power relay complies with IEC61010
 PA-N RELAYS reinforced insulation

FEATURES

1. High density mounting
$5 \mathrm{~mm}(\mathrm{~W}) \times 20 \mathrm{~mm}(\mathrm{~L}) \times 12.5 \mathrm{~mm}(\mathrm{H})$
.197 inch $(\mathrm{W}) \times .787$ inch $(\mathrm{L}) \times$
492inch(H)
2. Low operating power

Nominal operating power: 110 mW
3. Complies with IEC61010 reinforced insulation standards
4. Long Insulation distance

- Clearance: 5.29 mm .208 inch Creepage distance: 5.35 mm .211inch (Between contact and coil)
-3,000 V breakdown voltage and
$6,000 \mathrm{~V}$ surge breakdown voltage

5. Complies with Standard for Hazardous Location (ANSI/ISA 12.12.01)

TYPICAL APPLICATIONS

1. Output relays for programmable controllers and temperature controllers
2. Industrial equipment, office equipment
3. Measuring devices and test equipment

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Part No.
1 Form A	3 V DC	APAN3103
	4.5 V DC	APAN314H
	5 V DC	APAN3105
	6 V DC	APAN3106
	9 V DC	APAN3109
	12 V DC	APAN3112
	18 V DC	APAN3118
	24 V DC	APAN3124

[^0]
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	36.7 mA	82Ω	110 mW	$120 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			24.4 mA	184Ω		
5 V DC			22.0 mA	227Ω		
6 V DC			18.3 mA	327Ω		
9 V DC			12.2 mA	736Ω		
12 V DC			9.2 mA	1,309 Ω		
18 V DC			6.1 mA	2,945 Ω		
24 V DC			4.6 mA	5,236 Ω		

Note: *Pulse drive (JIS C 5442)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A (Bifurcated)
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type + Au
Rating	Nominal switching capacity (resistive load)		5 A 250 V AC, 5 A 30 V DC
	Max. switching power (resistive load)		1,250 VA, 150 W
	Max. switching voltage		250 V (AC), 110 V (DC) (0.4 A)
	Max. switching current		5 A (AC, DC)
	Nominal operating power		110 mW
	Min. switching capacity (Reference value)*		1 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10mA.)
	Surge breakdown voltage (Initial) (Between contacts and coil)*2		6,000 V
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 10 ms (excluding contact bounce time)
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 5 ms (excluding contact bounce time and without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $147 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3.5 mm
Expected life	Mechanical		Min. 2×10^{7} (at 180 times/min.)
	Electrical		Min. 10^{5} (3 A $250 \mathrm{~V} \mathrm{AC}, 30 \mathrm{~V} \mathrm{DC} ,\mathrm{resistive} \mathrm{load)}$ Min. 5×10^{4} (5 A $250 \mathrm{~V} \mathrm{AC}, 30 \mathrm{~V}$ DC, resistive load) (at 20 times $/ \mathrm{min}$.) ${ }^{* 4}$
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $194^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 times/min. (at nominal switching capacity)*4
	Unit weight		Approx. 3 g .15 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.
*4. Operating frequency of 5 A 250 V AC is 6 times $/ \mathrm{min}$. ($\mathrm{ON}: \mathrm{OFF}=1 \mathrm{~s}: 9 \mathrm{~s}$)

REFERENCE DATA

1. Max. switching capacity

2. Operate \& release time

Tested sample: APAN3124, 20 pcs.
Measured direction: Upright

5. Ambient temperature characteristics Tested sample: APAN3124, 6 pcs.

3. Coil temperature rise

Tested sample: APAN3124, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}, 90^{\circ} \mathrm{C} 194^{\circ} \mathrm{F}$ (No contact current)

6. Malfunctional shock

Tested sample: APAN3124, 6 pcs.

DIMENSIONS (mm inch)
The CAD data of the products with

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

SAFETY STANDARDS

UL/C-UL (Recognized)				TÜV (Certified)			
File No.	Contact ratings	Temp.	Cycles	File No.	Contact ratings	Temp.	Cycles
E43149	5 A 250 V AC Resistive 5 A 250 V AC Resistive 5 A 30 V DC General use 5 A 30V DC, 3 A 250 V AC General use 3 A 250 V AC Resistive 3 A 30 V DC General use B300, R300 Pilot duty	$40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ $90^{\circ} \mathrm{C} 194^{\circ} \mathrm{F}$ $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ $90^{\circ} \mathrm{C} 194^{\circ} \mathrm{F}$ $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$	5×10^{4} 10^{4} 5×10^{4} 10^{4} 10^{5} 10^{5} -	B16 0113461348	$\begin{aligned} & \text { 5 A } 250 \vee \mathrm{VC}(\cos \phi=1.0) \\ & 5 \mathrm{~A} 250 \mathrm{VAC}(\cos \phi=1.0) \\ & 5 \mathrm{~A} 30 \vee \mathrm{DC}(0 \mathrm{~ms}) \\ & 5 \mathrm{~A} 30 \vee \mathrm{DC}(0 \mathrm{~ms}) \\ & 3 \text { A } 250 \vee \mathrm{VC}(\cos \phi=1.0) \\ & 3 \text { A } 30 \vee \mathrm{DC}(0 \mathrm{~ms}) \end{aligned}$	$\begin{aligned} & 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \\ & 90^{\circ} \mathrm{C} 194^{\circ} \mathrm{F} \\ & 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \\ & 90^{\circ} \mathrm{C} 194^{\circ} \mathrm{F} \\ & 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \\ & 40^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 10^{4} \\ 5 \times 10^{4} \\ 10^{4} \\ 10^{5} \\ 10^{5} \end{gathered}$
E479891	Class I, Division 2, Groups A, B, C, D Hazardous Location (ANSI/ISA 12.12.01-2015, CAN/CSA C22.2 No.213-15)						

Insulation distance (between contact and coil)

- UL/C-UL: Clearance distance: 5.29 mm .208 inch, Creepage distance: 5.35 mm .211 inch
- TÜV: Clearance distance: 5.29 mm .208 inch, Creepage distance: 5.35 mm .211 inch

NOTES

1. For cautions for use, please read "GENERAL APPLICATION GUIDELINES".
2. If it includes ripple, the ripple factor should be less than 5%.
3. Specification values for pick-up and drop-out voltages are for the relay mounting with its terminals below.
Tested sample: APAN3124, 6 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ Measured direction: 6 direction

4. When mounting the relays within 1 mm .039 inch, please notice the condition below.
1) Mount the relays in the same direction.

2) Coil terminals (Terminal No. 1 \& 2) polarity should be arranged in the same direction.

[^0]: Standard packing: Tube: 25 pcs.; Case: 1,000 pcs.

 * Terminal sockets available.

