MCR-f-UI-DC

Universal Frequency Transducer

INTERFACE

Data Sheet 100240_en_05

© PHOENIX CONTACT - 10/2008

1 Description

MCR-f-UI-DC, the programmable MCR frequency transducer, is a module for displaying and converting frequencies up to120 kHz. On the input side, all common frequency generator signals in 2, 3 and 4-wire technology, and signals from incremental encoders can be collected.

The input impulses are evaluated using period measurement and are then output by a processor as an analog voltage or current value to match the measuring range start and end value entered.

In order to achieve as short as possible reaction times, the inputs of the frequency transducer have purposely been designed without a frequency input filter. An automatic measurement range selection function (autorange) ensures that the measured value is always displayed with the optimum resolution. Frequency interferences can, however, lead to too large a division factor being selected for low input frequencies. This in turn can result in an erratic output signal (see "Operation with Disturbed Frequency Input Signals" on page 6).

In order to stabilize fluctuating input values, a filter function has been implemented for conversion into the analog output

value. The depth of this filter can be set from 1 to 15 using the membrane keyboard. The optimum filter depth depends on the application.

In addition to the analog output, there is also a PNP transistor switching output with a maximum carrying capacity of 100 mA, for monitoring functions, for example (not short-circuit proof).

Specially for rotational speed measurement, it is possible to both enter the measuring range start and end value in revolutions per minute (RPM), and to observe the revolutions in RPM on the LCD (4-pos. + RPM as unit) during operation.

2	Table of Contents	
1	Description	1
2	Table of Contents	2
3	Ordering Data	3
4	Technical Data 4.1 Dimensions	3 5
5	Features	5
6	Block Diagram	6
7	Operation with Disturbed Frequency Input Signals 7.1 Measures to Counter External Influences 7.2 If Signal Level > 20 V 7.3 If Signal Level > 10 V	6 6 6 6
8	Resetting to Delivery State	6
9	Connection Technology	7
10	Functions of the Membrane Keypad 10.1 Special Function of the Keys in Edit Mode	9 9
11	Display on LCD. 11.1 Display Within Setting Range 11.2 Displaying the Switching Output 11.3 Messages in Operating Mode 11.4 Menu Guidance	9 9 10 10 10
12	 Menu Flowcharts	11 11 12 13
13	Example: Configuration Based on a Frequency Input Signal 13.1 Continuation of the Configuration Example:	15 16
14	Configuration Software MCR/PI-CONF-WIN	17
15	Application Example: Speed Measurement of a Drive	17

3 Ordering Data

Products

Description	Туре	Order No.	Pcs./Pkt
Universal Frequency Transducer	MCR-f-UI-DC	2814605	1

4 Technical Data

General Data	
Supply voltage	2030 V DC
Current consumption (without load)	< 60 mA (without switching output)
Transmission error	< 0.15% of end value (typ. 0.1%)
Temperature coefficient	< 0.015%/K (typ. 0,01%/K)
Test voltage:	
Input/power supply	1.5 kV, 50 Hz, 1 min.
Input/output	1.5 kV, 50 Hz, 1 min.
Output/power supply	1.5 kV, 50 Hz, 1 min.
Protection circuit	Transient protection, polarity protection
Ambient temperature range	-20 °C65 °C
Operation indicator	LC display
Control panel	Membrane keypad with 3 keys and LCD
Type of connection	Pluggable screw connection
Installation position/assembly	Any, preferably horizontal
Dimensions (W / H / D)	45 mm x 75 mm x 110 mm
Conductor cross section	0.22.5 mm ²
Type of housing	ASA-PC (V0)
Measurement Input, Frequency Input	

Frequency range	0.1 Hz120 kHz
Input sources	 PNP transistor outputs NPN transistor outputs NAMUR initiators Potential-free relay contact (Dry Contact) Frequency generator
Sensor supply	ca. 15 V DC / < 25 mA
Input frequency / peak time / resolution	0.1 Hz120 kHz / \leq 32 ms / \geq 12 Bit
Signal level	2 Vpp (0.1 Hz120 kHz)
Pulse length	≥ 1µs
Current/Voltage Input	
Input signal	010 V / 020 mA
Cut-off frequency	10 Hz
Ascent time (1090%)	25 ms

Output	
Output signal	010 V / 100 V, 05 V / 50 V or 0(4)20 mA / 200(4) mA
Output signal	
Current/voltage	max. 25 mA / 12.5 V
Load	
Current/voltage	\leq 500 Ω / \geq 500 Ω
Alignment zero point / end value	± 25% / ± 25%
Switching output	 PNP transistor output, switches the supply voltage to terminal SW, can carry a load of 100 mA, not short-circuit proof
Approval	
	الله: PROCESS CONTROL EQUIPMENT FOR HAZARDOUS LOCATIONS 31ZN
	Class I Div 2 Groups A, B, C, D
	A) This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.
	 A) This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only. B) Warning - explosion hazard - substitution of components may impair suitability for Class 1, Division 2.

Conformance With EMC Guideline 89/336/EEC And Low Voltage Directive 73/23/EEC

Immunity to Interference According to EN 61000-6-2 ¹				
Discharge of static electricity (ESD)	EN 61000-4-2	Criterion B ²	8 kV discharge in air	
			6 kV contact discharge	
Electromagnetic HF fields	EN 61000-4-3	Criterion A ³	10 V/m	
Fast transients (burst)	EN 61000-4-4	Criterion B ²	Input/output/supply: 2 kV / 5 kHz	
Surge voltage capacities (Surge)	EN 61000-4-5	Criterion B ²	Input/output: 2 kV / 42 Ω Supply: 1 kV / 2 Ω	
Conducted interference	EN 61000-4-6	Criterion A ³	Input/output/supply: 10 V	
Noise Emission According to EN 61000-6-4				
Noise emission of housing	EN 55011 ⁴	Criterion A ⁵		

¹ EN 61000 corresponds to IEC 61000

² Criterion B: Temporary impairment to operational behavior that is corrected by the device itself.

³ Criterion A: Normal operating behavior within the defined limits.

⁴ EN 55011 corresponds to CISPR11

⁵ Criterion A: Area of application industry

4.1 Dimensions

Figure 1 Dimensions

5 Features

6 Block Diagram

Figure 3 Block diagram

7 Operation with Disturbed Frequency Input Signals

7.1 Measures to Counter External Influences

- Use shielded conductors.
- Lay cables in an appropriate manner (EMC-compliant).
- Connect terminal 4 (GND 1) along the most direct route to PE.

7.2 If Signal Level > 20 V

- Unplug the jumper located in the module after opening the side flap. The jumper can be parked temporarily on one of the three free pins.
- Now route the frequency input signal to the module via terminal 2. The signal is returned via terminal 4 (GND 1).
- No additional settings are necessary.

7.3 If Signal Level > 10 V

- Connect the bottom two pins of the pin strip with the jumper.
- Now route the frequency input signal to the module via terminal 2.
- No additional settings are necessary.

8 Resetting to Delivery State

- Connect the top two pins of the pin strip (nearest display) with the jumper.
- Terminal 2 is now ready again for the connection of NAMUR sensors.

9 Connection Technology

2-wire DC NAMUR sensor

Alternatively, terminal (1) is also possible instead of terminal (6).

3-wire DC with: PNP transistor output

PNP transistor with pull-down resistor

4-wire DC with: PNP transistor output

NPN transistor output

NPN transistor with pull-up resistor

NPN transistor output

10 Functions of the Membrane Keypad

11 Display on LCD

11.1 Display Within Setting Range

In Hz In RPM	Frequency input for NAMUR, 2, 3 and 4-wire sensors, incremental encoders with push-pull and HTL output signal and dry contact. Settings can be made in either Hz or RPM/kRPM [Display: kRM] / MRPM [Display: MRM].
In2 Hz In2 PPt1	Frequency input for NAMUR sensors with wire break and short-circuit recognition. Settings can be made in either Hz/kHz or RPM/kRPM [Display: kRM] / MRPM [Display: MRM].
[In mP]	Current input 020 mA
[{n ;']	Voltage input 010 V
derai l	ON delay of switching output. (setting range 030 sec., default value = 0.00 sec.)
derai J	OFF delay of switching output. (setting range 030 sec., default value = 0.00 sec.)
901944 <u>7</u> 18	Setting POWER ON delay (switching output) (setting range 030 sec., default value = 1.00 sec.) During this period, the switching output does not react to events. This function is only of effect directly after switching on the supply volt- age.
Lbrt i mE	Setting the wire-break detection time (setting range 0.210.1 sec., default value = 10.1 sec.) If no input signal is detected during this period, "No Input" appears on the display and the out- puts behave according to their settings
5PAN	Setting the end value (setting range 75125%, default value = 100%)
OFFSET	Setting the zero point in relation to the previ- ously set output signal: (setting range $-5+5 \text{ mA} / -2.5+2.5 \text{ V}$; default value = 0 mA / 0 V)
FRETOR	Setting the division factor from 0.1 to 9999 (de- fault value = 1.0). Slow positioning tasks require holed coupling halves with multiple divisions (factor > 1). Measuring the rotational speed of a motor at the gearbox requires a small division factor (factor < 1).

00£7 , t t	Setting the filter depth of the analog output when using frequencies as input value (setting range 115).
	This function can only be configured using the membrane keyboard.
Land Lin P	Setting the analog output value if the measuring range is fallen below (setting range 0.0024.00 mA, or 0.0012.00 V)
C); P	Setting the analog output value if the measuring range is exceeded (setting range 0.0024.00 mA, or 0.0012.00 V)
na inpu t	Setting the analog output value with wire break or an input signal that is not available (setting range 0.0024.00 mA, or 0.0012.00 V)
581° E	Saving. By pressing the \bigotimes key, the set parameters are saved.
EXIT	By pressing the register, the setting mode is in- terrupted without saving the parameters set.
defruitt	By pressing the 🛞 -key, the current settings are overwritten by the default values. The parame-
	ters of the frequency input and analog input are unaffected.
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis).
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis)
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis) If "High Setpoint" is fallen below, the transistor switches to "High".
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis) If "High Setpoint" is fallen below, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High".
	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis) If "High Setpoint" is fallen below, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". Transistor is permanently switched (N/C).
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis) If "High Setpoint" is fallen below, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". Transistor is permanently switched (N/C). Transistor is permanently switched off (N/O).
11.2 Dis	ters of the frequency input and analog input are unaffected. playing the Switching Output If "High Setpoint" is exceeded, the transistor switches to "High", If "Low Setpoint" is fallen below, it switches to "Low" (with hysteresis). If"High Setpoint" is exceeded, the transistor switches to "Low", If "Low Setpoint" is fallen below, it switches to "High" (with hysteresis) If "High Setpoint" is fallen below, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". If "High Setpoint" is exceeded, the transistor switches to "High". Transistor is permanently switched (N/C). Transistor is permanently switched off (N/O). Between "Low Setpoint" and "High Setpoint", the transistor switches to "High".

11.3 Messages in Operating Mode

Un P	Has fallen below the measuring range. This message and the current frequency flash alternately if the frequency falls below the bot- tom measuring range set.
[[]; b]	Measuring range exceeded. This message and the current frequency flash alternately if the frequency exceeds the top measuring range set.
na. InPu t	 No input signal. This message flashes for the following reasons: 1. No sensor connected! 2. For NAMUR: a) Short-circuit or b) Wirebreak! 3. Short-circuit frequency <-> GND! 4. No input signal found within the wirebreak detection time set (l.br.time).

11.4 Menu Guidance

In edit mode, the arrow points to the function to be set.

12 Menu Flowcharts

12.1 Configuration of the Frequency Input – Sequence of Menu

12.2 Configuration of the Analog Input – Sequence of Menu

Figure 6 Configuration of the analog input – sequence of menu

12.3 Configuration of the Extended Mode – Sequence of Menu

Figure 7 Configuration of the extended mode – Sequence of menu (1)

100240_en_05

Continuation of the Sequence of Menu:

Figure 8 Configuration of the extended mode – sequence of menu (2)

13 Example: Configuration Based on a Frequency Input Signal

The module MCR-f-UI-DC has the following functions:

Frequency range: Output signal:	5…45700 Hz, 3-wire NPN sensor 4…20 mA
Switching behavior:	bottom switching point ("High" to "Low") at 15 Hz top switching point ("Low" to "High") at 20 kHz
ON delay:	10 s
OFF delay:	5 s
Wire-break detection time:	1 s

14 Configuration Software MCR/ PI-CONF-WIN-...

The MCR configuration software is available for the configuration and visualization of all parameters for the MCR-f-UI-DC frequency transducer.

The MCR-Software runs under Windows 95° , Windows 98° , Windows NT° , Windows ME° , Windows 2000° and under Windows XP° .

The modules are configured via a serial interface. A label is also created by the software that can be placed on the module.

15 Application Example: Speed Measurement of a Drive

Figure 11 Application example: speed measurement of a drive

100240_en_05

PHOENIX CONTACT GmbH & Co. KG • 32823 Blomberg • Germany • Phone: +49-(0) 5235-3-00 PHOENIX CONTACT • P.O.Box 4100 • Harrisburg • PA 17111-0100 • USA • Phone: +717-944-1300 www.phoenixcontact.com