Operating instructions Non-contact safety system CES-A-AEA-02B/CES-A-AEA-04B (Unicode)

Contents

Correct Use 3
Possible combinations for CES components 4
Exclusion of Liability and Warranty 4
General Safety Instructions 5
Function 6
Block diagram CES-A-AEA-02B 7
Block diagram CES-A-AEA-04B 8
Installation 9
Electrical Connection 11
Safety in case of faults 12
Fusing of the power supply and the safety contacts 12
Connection example CES-A-AEA-02B 13
Connection example CES-A-AEA-04B 14
Setup 15
LED indicators 15
Teach-in operation 15
Functional check 17
System Status Table 18
Technical Data 19
Evaluation unit CES-A-AEA-02B 19
Evaluation unit CES-A-AEA-04B 22
Read head CES-A-LNA... 25
Cube-shaped design $42 \times 25 \mathrm{~mm}$ 25
Read head CES-A-LNA-SC 27
Read head CES-A-LCA... 29
Read head CES-A-LQA-SC 31
Read head CES-A-LMN-SC 33
Actuator CES-A-BBA/CES-A-BCA 35
Actuator CES-A-BQA 36
Actuator CES-A-BDA 37
Actuator CES-A-BMB 38
Inspection and Service 39
Service 39
Declaration of Conformity 40

Correct Use

The Coded Electronic Safety switches series CES are safety devices for monitoring movable safety guards.
In combination with a separating safety guard and the machine control, this safety component prevents dangerous machine movements from occurring while the safety guard is open. A stop command is triggered if the safety guard is opened during the dangerous machine function.

Before safety switches are used, a risk assessment must be performed on the machine in accordance with:

- EN ISO 13489-1, Safety of machinery. Safety related parts of control systems. General principles for design
, EN ISO 14121-1, Safety of machinery. Risk assessment. Principles
- IEC 62061, Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems.

Correct use includes compliance with the relevant requirements for installation and operation, in particular

- EN ISO 13489-1, Safety of machinery. Safety related parts of control systems. General principles for design
, EN 1088, Safety of machinery. Interlocking devices associated with guards. Principles for design and selection
- EN 60204-1, Safety of machinery. Electrical equipment of machines. General requirements
- EN 60947-5-3 Specification for low-voltage switchgear and controlgear. Control circuit devices and switching elements. Requirements for proximity devices with defined behaviour under fault conditions (PDF)
The following components can be connected to the evaluation unit CES-A-AEA...:
- CES read heads
- CEM read heads
- CET read heads

For further information, refer to the operating instructions of the corresponding component and to the following table Possible combinations for CES components.

Important!

[^0]
Possible combinations for CES components

		Actuator									
Evaluation unit	Read head/safety switch										
CES-A-AEA-O2B CES-A-AEEA-O4B CES-A-AEA- 072000	CES-A-LNA... All items	\bullet	\bullet	\bullet							
	CES-A-LNA-SC 077715	\bullet	\bullet	\bullet							
	CES-A-LCA... All items	-	\bullet	\bullet							
	CES-A-LMN-SC 077790				\bullet						
	$\begin{aligned} & \text { CES-A-LOA-SC } \\ & 095550 \end{aligned}$	\bullet	\bullet			\bullet					
	$\begin{aligned} & \text { CoM-M-LEO5K-S2 } \\ & \text { C9480 } \\ & \text { CCM-L-LEOSRR-S2 } \\ & \text { O9592 } \end{aligned}$								0.0		
	CEM-A-LH1OK-S3 CEM-A-LH1OR-S3 095793									0.0	
	CET1-AX... All items										0
Key to symbols	\bullet	Combination possible									
	0.0	Combination possible, guard locking for process protection									
	- in	Combination possible, guard locking for personal protection									
		Combination not permissible									

Exclusion of Liability and Warranty

In case of failure to comply with the conditions for correct use stated above, or if the safety instructions are not followed, or if any servicing is not performed as required, liability will be excluded and the warranty void.

General Safety Instructions

Safety switches fulfill personal protection functions. Incorrect installation or tampering can lead to severe injuries to personnel.
The number of teach-in and switching operations is saved in the internal memory in the evaluation unit. If necessary, this memory can be read by the manufacturer.

Check the safe function of the safety guard particularly

- after any setup work
- after the replacement of a CES component
- after an extended period without use
- after every fault

Independent of these checks, the safe function of the safety guard should be checked at suitable intervals as part of the maintenance schedule.

Warning!

Danger of fatal injury in the event of incorrect connection or incorrect use.

- Safety switches must not be bypassed (bridging of contacts), turned away, removed or otherwise rendered ineffective.
On this topic pay attention in particular to the measures for reducing the possibility of bypassing from EN 1088:1995+A2:2008, section 5.7.

The device is only allowed to be installed and placed in operation by authorized personnel

- who are familiar with the correct handling of safety components
- who are familiar with the applicable EMC regulations
- who are familiar with the applicable regulations on health and safety
- who have read and understood the operating instructions.

Prior to use, read the operating instructions and keep these in a safe place. Ensure that the operating instructions are always available during mounting, setup and servicing work. EUCHNER cannot provide any warranty in relation to the readability of the CD for the storage period required. For this reason you should archive a printed copy of the operating instructions. You can download the operating instructions from www.EUCHNER.de.

Function

The safety system CES-A-AEA... complies with the following safety requirements:

- Category 4, PLe according to EN ISO 13849-1
, Proximity device with self-monitoring type PDF-M according to EN 60947-5-3.
- Redundant design of the circuit in the evaluation unit with self-monitoring. As a result, the safety system is still effective even if a component fails.
- When the safety guard is opened and closed, it is checked whether the safety system relays open and close correctly.
The CES non-contact safety system consists of three components:
- Coded actuator
- Read head
- Evaluation unit

1 to 2 read heads can be connected to the CES-A-AEA-O2B evaluation unit and 1 to 4 read heads can be connected to the CES-A-AEA-O4B evaluation unit.
It is also possible to connect a start button (monitoring of the falling edge) and a feedback loop for monitoring external relays and contactors.

The individual configuration is defined by a setup procedure.
Each delivered actuator possesses a unique electronic coding and so is a unique element in the system used. The code in an actuator cannot be reprogrammed.

The read heads are fastened to the fixed part of the safety guard and are each connected to the evaluation unit via a two-core screened cable.
The actuator fastened to the movable part of the safety guard is moved towards the read head by closing the door. When the switch-on distance is reached, power is supplied to the actuator by the read head by induction and data can be transferred.
The bit pattern read is compared with the code saved in the evaluation unit. If the data match, the door monitoring output $01 \ldots 02$ or $01 \ldots 04$ (semiconductor output) on the related read head is set HIGH. If all data for all read heads activated match, the safety outputs (relay outputs) are then enabled. The OUT LED illuminates.

Optionally, a feedback loop can be connected to the evaluation unit. The evaluation unit can then only be started with the feedback loop closed. A welded contactor contact in the release path will thus be detected the next time the machine is started.
Due to the combination of dynamic polling of the actuators and the redundant, diverse design of the safety electronics with two safety outputs, the evaluation unit will enter the safe state with every detectable fault.
When a safety guard is opened, the safety outputs switch off the safety circuit and the OUT LED goes out. The state of the safety outputs is monitored internally by positively driven NC contacts (relay output).
Independent of the switching state of the safety circuit, the position of all safety doors can be polled via the outputs $01 \ldots . .02$ or $01 \ldots 04$.
If an internal fault occurs in the evaluation unit, the safety circuit is switched off, the diagnostic output (DIA) is set HIGH and the DIA LED illuminates red.

Block diagram CES-A-AEA-02B

Block diagram CES-A-AEA-04B

Activation of the teach-in operation with jumper on J1, J2												
	OV ${ }^{\text {J1 }}$											
+UB, 0 V Power supply J1, J2 Short circuit bridge for teach-in operation H11/H12...H41/H42 Connection for read heads 1 ... 4 SH1 ...SH4 Shield TST Test input (see „Self-test with test input TST" page 17) O1 ... 04 Semiconductor monitoring outputs DIA Diagnostics output 13,14 Relay contact A connection, safety relay enable 23,24 Relay contact B connection, safety relay enable Y1, Y2 Feedback loop S Start button connection (monitoring of the falling edge)												

Installation

Caution!
Safety switches must not be bypassed (bridging of contacts), turned away, removed or otherwise rendered ineffective.

- On this topic pay attention in particular to the measures for reducing the possibility of bypassing according to EN 1088:1995.A2:2008, sec. 5.7.
- The evaluation unit must be mounted in a control cabinet with a minimum degree of protection of IP 54. A snap-in element on the rear of the device is used for fastening to standard rails.
If several evaluation units are mounted side by side in a control cabinet without air circulation (e.g. fan), a minimum distance of 10 mm must be maintained between the evaluation units.
The distance enables heat from the evaluation unit to dissipate.

Caution!

Risk of damage to equipment as a result of incorrect installation. Read heads or actuators must not be used as a mechanical end stop.

- Fit an additional end stop for the movable part of the safety guard.

Important!

- From the assured switch-off distance $S_{a r}$, the safety outputs are safely shut down.
When mounting several read heads, observe the stipulated minimum distance to avoid mutual interference.
- For CES-A-LNA/-LCA $\mathrm{S}_{\text {min }}=50 \mathrm{~mm}$
- For CES-A-LMN $\quad \mathrm{S}_{\text {min }}=20 \mathrm{~mm}$
- For CES-A-LQA $\quad \mathrm{S}_{\text {min }}=80 \mathrm{~mm}$

If the actuator is installed flush, the switching distance changes as a function of the installation depth and the safety guard material.

Note the following points:

- Actuator and read head must be easily accessible for inspection and replacement.
- The switching operation must only be triggered by the specific actuator designated for this purpose.
- Actuator and read head must be fitted so that
- the front faces are at the minimum switch-on distance $0.8 \times \mathrm{S}_{\mathrm{ao}}$ or closer (see section Operating distances). To avoid entering the area of possible side lobes, a minimum distance is to be maintained in case of a side approach direction. See section Typical operating distance for the related actuator.
- when the safety guard is open up to the distance S_{ar} (assured switch-off distance), a hazard is excluded.
- the actuator is positively mounted on the safety guard, e.g. by using the safety screws included.
- they cannot be removed or tampered with using simple means.
- Pay attention to the maximum tightening torque for the read head or safety switch and actuator mountings of 1 Nm . For read heads/actuators made of PE-HD, the maximum tightening torque is only 0.5 Nm .

Electrical Connection

Warning!

In case of an error, loss of the safety function through incorrect connection.

- To ensure safety, both safety outputs (13/14 and 23/24) must always be evaluated.
- The monitoring output OUT must not be used as a safety output.
- Lay the connection cables with protection to prevent the risk of short circuits.

Caution!

Risk of damage to equipment or malfunctions as a result of incorrect connection.
All the electrical connections must either be isolated from the mains supply by a safety transformer according IEC 61558-2-6 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
For use and operation as per the "(lus requirements, a power supply with the feature "for use in class 2 circuits" must be used. The same requirement applies to the safety outputs.
Alternative solutions must comply with the following requirements:
a) Electrically isolated power supply unit with a max. open-circuit voltage of 30 V/DC and a limited current of max. 8 A .
b) Electrically isolated power supply unit in combination with fuse as per UL248. This fuse should be designed for max. 3.3 A and should be integrated into the $30 \mathrm{~V} / \mathrm{DC}$ voltage section.
All electrical outputs must have an adequate protective circuit for inductive loads. The outputs must be protected with a free-wheeling diode for this purpose.
Use cable material made of copper with a temperature resistance of at least $75^{\circ} \mathrm{C}$.

- The tightening torque for the screws on the connection terminals must be $0.6 \ldots 0.8 \mathrm{Nm}$.
The connection cable for the read heads must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC. Intermediate terminals must not be used.
The screen on the connection cable for the read head must be connected to the appropriate terminal SH1 ... 4 on the evaluation unit. The portion of cable from which insulation is stripped should be kept as short as possible (max. 3 cm).

Safety in case of faults

- The operating voltage U_{B} is reverse polarity protected.
- The connections for the read heads are not short circuit-proof.
- A short circuit between 13/14 and 23/24 can be detected only by means of external pulsing.
- A short circuit in the cable can be excluded by laying the cable with protection.

Fusing of the power supply and the safety contacts

- Provide external contact fuses (6 AgG fuse or 6 A circuit breaker, characteristic B or C) for relay outputs.
- The power supply must be protected with a max. 8 A fuse before terminal U_{B}.

Connection example CES-A-AEA-02B

Important!
To achieve category 4 according to EN ISO 13849-1, it is necessary to monitor the downstream contactors (here contacts of K1 and K2 in the feedback loop). This example shows only an excerpt that is relevant for connection of the CES system. The example illustrated here does not show complete system planning. The user is responsible for safe integration in the overall system.

Connection example CES-A-AEA-04B

Important!
To achieve category 4 according to EN ISO 13849-1, it is necessary to monitor the downstream contactors (here contacts of K1 and K2 in the feedback loop). This example shows only an excerpt that is relevant for connection of the CES system. The example illustrated here does not show complete system planning. The user is responsible for safe integration in the overall system.

LED indicators

STATE	LED green	State display (multifunction display using flashing modes)
OUT	LED yellow	Safety circuit closed
DIA	LED red	- Operating error or
		- External fault (fault in the feedback loop) or
		- Teach-in process not valid or
		- Internal device fault or

Teach-in operation

Before the system forms a function unit, the parameters are set in the evaluation unit in a teach-in operation (number of connected read heads, assignment of the actuators to the read heads, with or without automatic start, with or without feedback loop). In this process, the read heads are activated and the actuator code is learned.
These configuration parameters are saved in the non-volatile memory in the evaluation unit.

The safety outputs are open during the teach-in operation. The system is in a safe state.

Important!

> During the teach-in operation the following conditions must be met:
> There must be no state change, e.g. opening a safety guard or closing a further safety guard or a change in the signal on the terminals for the start button and the feedback circuit.
> - The power supply must not be switched off.
> If these conditions are not met, the evaluation unit switches to the safe fault state (diagnostics LED illuminates) and signals this operating fault with the STATE LED by 3 short flashes that are repeated every second. The teach-in operation must be repeated.
> The number of teach-in operations is unlimited. The evaluation unit can be re-configured as often as required.
> Actuators cannot be interchanged without a renewed teach-in operation.
> An actuator that has not been subjected to teach-in will not be detected by the related read head.
> Even if only one new actuator needs to be taught, a complete new teach-in operation must be carried out as described in the section Setup.
> Do not change DIP switches during operation.

To trigger a teach-in operation, the user must perform the following actions in the stipulated order:

1. Prepare for teach-in operation

- Switch off power supply U_{B}
- Fit a jumper between terminals J1 and J2

2. Set required configuration on DIP switches

Switch designation	Switch position left (OFF)	Switch position right (ON)
1	No read head connected to terminals H11, H12, SH1 connected	Read head connected to terminals H11, H12, SH1 connected
2	No read head connected to terH21, H22, SH2 connected	Read head connected to terminals H21, H22, SH2 connected
3	No read head connected to terminals H31, H32, SH3 connected	Read head connected to terminals H31, H32, SH3 connected
4	No read head connected to terminals H41, H42, SH4 connected	Read head connected to terminals H41, H42, SH4 connected
5	Automatic start (No start button connected)	Manual start (Start button connected)
6	No feedback loop connected	Feedback loop connected

3. Set required configuration on machine

- Close all doors to be monitored (the actuators must be in the operating distance of the related read head)
- For Manual start operating mode: Keep start button closed
- For With feedback loop operating mode: keep feedback loop closed

4. Start teach-in operation

- Switch on operating voltage
- Wait for self-test (STATE LED flashes for approx. 10 seconds at 15 Hz)
- Teach-in operation starts (STATE LED flashes at approx. 1 Hz)
- Wait for acknowledgement of the teach-in operation (STATE LED goes out after approx. 10 seconds)

5. End teach-in operation

- Remove jumper between J1 and J2
- For Manual start operating mode: Start button must be connected
- For With feedback loop operating mode: Feedback loop must be connected
- Interrupt operating voltage for at least 10 seconds
- Wait for self-test (STATE LED flashes for approx. 10 seconds at 15 Hz)

6. Check all safety guards for effectiveness

Changing the configuration / learning new actuator

The evaluation unit can be re-configured as often as required. For this purpose you must proceed as per the first teach-in operation according to the Setup procedure section.

Faulty actuators can be replaced. Then a complete teach-in operation must be performed as per the section Setup. The number of teach-in operations is unlimited.

Functional check

After installation and any fault, the safety function must be fully checked. Proceed as follows:

Warning!

Danger of fatal injury as a result of faults in installation and functional check.
Before carrying out the functional check, make sure that there are no persons in the danger area.
Observe the valid accident prevention regulations.

1. Switch on operating voltage.

- The safety switch carries out a self-test.

The green STATE LED flashes for approx. 10 seconds at 15 Hz .
The STATE LED then lights up continuously.
The OUT and ERROR LEDs do not light up.
2. Close all safety guards.

- The machine must not start automatically.
- The green STATE LED and the yellow OUT LED light up continuously.

3. Enable operation in the control system.
4. Open the safety guard.

- The machine must switch off and it must not be possible to start it as long as the safety guard is open.
- The green STATE LED lights up continuously; the OUT and ERROR LEDs do not light up.
Repeat steps 2-4 for each safety guard.

Self-test with test input TST

On electromechanical safety switches or magnetic switches, the function test can be performed by cyclically opening the safety guard.
From Category 2 according to EN ISO 13849-1 and in accordance with EN 60204-1 : 1997 (sec. 9.4.2.4), a function test must be performed on the entire safety system on start-up or after defined intervals.
Testing of the internal function of the device is not necessary because the device monitors itself in real time. Welding of an output contact (relay output) is detected by the device at the latest the next time the safety guard is opened. A short circuit in the output cable is not detected by the device.
In addition, the entire safety circuit can be tested without opening the safety guard. For this purpose, opening of the safety guard can be simulated by applying 24 V DC to the test input TST.

The safety outputs are switched off, enabling testing of the complete safety circuit. The diagnostic output DIA of the evaluation unit is also set HIGH as a monitoring function.
When the test input TST is reset, the evaluation unit resets the diagnostic output DIA to LOW, the red LED switches off and normal operation is continued.

In Manual start operating mode, the start button must be pressed again to start the system.

Important:

System Status Table

Operating mode	LED			
		$\begin{aligned} & \overline{3} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{3}{3} \end{aligned}$		State
Setup	$\cdots 44 \mathrm{~Hz}$	0	\bigcirc	Initial setup after delivery without jumper connected to $\mathrm{J} 1, \mathrm{~J} 2$ ．
	$\because{ }^{\prime}$	0	\bigcirc	Teach－in operation
	\bigcirc	\bigcirc	\bigcirc	Acknowledgement of completion of teach－in operation．
Normal operation	$\because \quad \begin{array}{ll} 15 \mathrm{~Hz} \\ (10 \mathrm{~s}) \end{array}$	\bigcirc	\bigcirc	Self－test，duration approx． 10 seconds，is performed after the application of the operating voltage U_{B}
	$\frac{16}{11}$	\bigcirc	\bigcirc	Normal operation，not all monitored doors are closed．
	$\frac{1}{11}$	－シ	0	Normal operation，all monitored doors are closed（after pressing the start button，for Manual start operating mode）
Function test	$-\frac{1}{11}$	\bigcirc	－$=1$	Function test active（TST input $=24 \mathrm{~V}$ ）
Fault display	0	\bigcirc	$-\frac{1}{1}$	Internal component failure or actuator CES－A－BMB in the inadmissible range or excessively high external interference（EMC）
Operating fault	$3 x$	\bigcirc	\therefore	Configuration fault： Teach－in operation must be performed again Possible causes： －State change during the teach－in operation －The DIP switch setting and the configuration did not match during the teach－in operation －DIP switch setting has been changed without teach－in operation －The teach－in jumper（J1，J2）was fitted with power supply switched on －Closed feedback loop（ $\mathrm{Y} 1, \mathrm{Y} 2$ ）present，although a feedback loop was not present during teach－in -24 V signal present at the start button input（S）although teach－in was performed with＂Automatic start＂ operating mode．
	$4 x$	\bigcirc	-	Fault in feedback loop Possible causes： －Malfunction of the monitored contactor －Following removal from the operating distance，actuator is not outside the operating distance long enough． As a result the feedback loop cannot be closed in this short time．Note the release time for the monitored contactor． －Feedback loop was not closed when the evaluation unit was started．

Key to symbols	N	0 Volt or not connected
	1	24 Volt
	0	0 Volt
	\bigcirc	LED is not lit
	年	LED is lit
	迫－15 Hz（10 s）	LED flashes for 10 seconds with 15 Hz
	为 $3 x+$－	LED flashes three times and then lights up continuously
	为 $3 x$	LED flashes three times，and this is then repeated
	X	Any state

Important！

If you cannot find the displayed device status in the system status table，this indicates that there is an internal device fault．In this case，you should contact the manufacturer．

Technical Data

Note!
If a product data sheet is included with the product, the information on the data sheet applies in case of discrepancies with the operating instructions.

Evaluation unit CES-A-AEA-02B

Approvals

- Housing for DIN rail mounting, IP 20
- Relay output
- 2 read heads can be connected

Dimension drawing

Switching characteristics

- 2 safety outputs (relay outputs)
- 2 door monitoring outputs (semiconductor outputs, not safety outputs)

closed (all actuators detected)	Opety guard (e.g. actuator 1 not in the oper- ating distance)
Read head 1 Actuator 1	Read head 1
24	2

Operating Instructions Safety System CES-A-AEA-02B/CES-A-AEA-04B EUCHNER

Technical Data

1) Without taking into account the load currents on the monitoring outputs.
2) If a switching current > 300 mA in conjunction with a switching voltage $>15 \mathrm{~V}$ or an inductive or capacitive load is switched once using the relay outputs, it is no longer possible to reliably switch small currents $(<15 \mathrm{~mA})$ due to the contact erosion on the gold contacts.
3) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator. In case of EMC interference in excess of the requirements in accordance with EN 60947-5-3, the switch-off delay can increase to max. 430 ms . After a brief actuation < 0.4 s , the switch-on delay can increase to max. 3 s if this is followed immediately by further actuation.
4) After the operating voltage is switched on, the relay outputs are switched off and the monitoring outputs are set LOW during the ready delay. For the visual indication of the delay, the green STATE LED flashes at a frequency of approx. 15 Hz .
5) The dwell time is the time that the actuator must be inside or outside the operating distance.
6) In case of monitoring with feedback loop, the actuators must remain outside the operating distance, e.g. with a door open, until the feedback circuit is closed

Operating Instructions Safety System CES-A-AEA-02B/CES-A-AEA-04B EUCHNER

Ordering table

Series	Category according to EN ISO 13849-1	Number of read heads	Order no. / item
CES-A-AEA...	4	2	092560

Evaluation unit CES-A-AEA-04B

Approvals

- Housing for DIN rail mounting, IP 20
- Relay output
- 4 read heads can be connected

Dimension drawing

Switching characteristics

- 2 safety outputs (relay outputs)
- 4 door monitoring outputs (semiconductor outputs, not safety outputs)

closed	
(all actuators detected)	(e.g. actuator 1 not in the oper- ating distance)
Read head 1 Actuator 1	Read head 1

Operating Instructions Safety System CES-A-AEA-02B/CES-A-AEA-o4B EUCHNER

Technical Data

1) Without taking into account the load currents on the monitoring outputs.
2) If a switching current $>300 \mathrm{~mA}$ in conjunction with a switching voltage $>15 \mathrm{~V}$ or an inductive or capacitive load is switched once using the relay outputs, it is no longer possible to reliably switch small currents ($<15 \mathrm{~mA}$) due to the contact erosion on the gold contacts.
3) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator. In case of EMC interference in excess of the requirements in accordance with EN 60947-5-3, the switch-off delay can increase to max. 750 ms . After a brief actuation < 0.8 s , the switch-on delay can increase to max. 3 s if this is followed immediately by further actuation.
4) After the operating voltage is switched on, the relay outputs are switched off and the monitoring outputs are set LOW during the ready delay. For the visual indication of the delay, the green STATE LED flashes at a frequency of approx. 15 Hz .
5) The dwell time is the time that the actuator must be inside or outside the operating distance.
6) In case of monitoring with feedback loop, the actuators must remain outside the operating distance, e.g. with a door open, until the feedback circuit is closed.

Operating Instructions Safety System CES-A-AEA-02B/CES-A-AEA-04B EUCHNER

Ordering table

Series	Category according to EN ISO 13849-1	Number of read heads	Order no. / item
CES-A-AEA...	4	4	072000 CES-A-AEA-O4B

Approvals
(1)" LISTED

Read head CES-A-LNA...

Cube-shaped design $42 \times 25 \mathrm{~mm}$

- Hard-wired cable

Dimension drawing

Typical operating distance

With evaluation unit CES-A-AEA... and actuator CES-A-BBA

Note
For a side approach direction for the actuator and read head, a minimum distance of $s=3 \mathrm{~mm}$ must be maintained so that the operating distance of the side lobes is not entered.

Pin assignment
Read head with connection cable

Operating Instructions Safety System CES-A-AEA-02B/CES-A-AEA-04B EUCHNER

Technical Data

Ordering table

Series	Cable/connection type	Cable length " 1 " [m]	Order no. / item
CES-A-LNA...		5	$\begin{gathered} 071845 \\ \text { CES-A-LNA-05V } \end{gathered}$
	V	10	$\begin{gathered} 071846 \\ \text { CES-A-LNA-10V } \end{gathered}$
	Cable PVC	15	$\begin{gathered} 071847 \\ \text { CES-A-LNA-15V } \\ \hline \end{gathered}$
		25	$\begin{gathered} 071975 \\ \text { CES-A-LNA-25V } \end{gathered}$
	$\stackrel{\mathbf{P}}{\text { Cable PUR }}$	5	077806 CES-A-LNA-05P
		10	$\begin{gathered} 077807 \\ \text { CES-A-LNA-1OP } \end{gathered}$
		15	$\begin{aligned} & 084682 \\ & \text { CES-A-LNA-15P } \end{aligned}$

Read head CES-A-LNA-SC

- Cube-shaped design $42 \times 25 \mathrm{~mm}$
- M8 plug connector (snap-action and screw terminals)

Dimension drawing

2 safety screws M4 x 14
are supplied

Cable outlet with angled connector

Typical operating distance

With evaluation unit CES-A-AEA... and actuator CES-A-BBA

Note
For a side approach direction for the actuator and read head, a minimum distance of $s=3 \mathrm{~mm}$ must be maintained so that the operating distance of the side lobes is not entered.

Pin assignment

Read head with plug connector

Technical Data

1) These values apply to non-flush installation of the read head and actuator.
2) These values apply to metal-free surrounding material. Other materials on request.

Ordering table

Series	Order no. / item
CES-A-LNA-SC	077715

Read head CES-A-LCA...

- Cube-shaped design $42 \times 25 \mathrm{~mm}$
- Plastic PE-HD housing material, suitable for use in aggressive media (e.g. acids, alkalis)

Dimension drawing

Note

The flat seal provided must be used during assembly.

Typical operating distance

With evaluation unit CES-A-AEA-01 and actuator CES-A-BCA

Note

For a side approach direction for the actuator and read head, a minimum distance of $\mathrm{s}=3 \mathrm{~mm}$ must be maintained so that the operating distance of the side lobes is not entered.

Pin assignment

Read head with connection cable

Technical Data

	min.	typ.	max.		
Housing material	Plastic PE-HD without reinforcement, fully encapsulated				
Flat seal material	Fluororubber 75 FPM 4100				
Dimensions	$42 \times 25 \times 12$			mm	
Weight (incl. 10 m cable)	0.3			kg	
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$	
Degree of protection	IP67/P69K				
Installation position	Any				
Method of operation	Inductive				
Power supply	Via evaluation unit				
In combination with actuator CES-A-BBA on evaluation unit CES-A-AEA...					
Assured switch-off distance $\mathrm{S}_{\text {ar }}$	-	-	32	mm	
Operating distance for center offset $\mathrm{m}=0{ }^{1)}$					
- Switch-on distance		15	-		
- Assured switch-on distance $S_{\text {ao }}$	10	-	-		
- Switching hysteresis		2	-		
Minimum distance s with lateral approach direction	-	3	-		
In combination with actuator CES-A-BDA on evaluation unit CES-A-AEA...					
Assured switch-off distance S_{ar}	-	-	33	mm	
Operating distance for center offset $\mathrm{m}=0^{21}$					
- Switch-on distance	-	16	-		
- Assured switch-on distance S_{a}	11	-	-		
- Switching hysteresis	0.5	2	-		
Minimum distance s with lateral approach direction	-	4	-		
Connection cable	Hard-wired encapsulated connection cable, with crimped ferrules PVC, $\varnothing 4.6$ mm				
Cable length	-	-	25	m	
1) These values apply to non-flush installation of the read head and actuator. 2) These values apply to metal-free surrounding material. Other materials on request.					

Ordering table

Series	Cable/connection type	Cable length " 1 " $[\mathrm{m}]$	Order no. / item
CES-A-LCA...	\mathbf{V}	10	088785

Read head CES-A-LQA-SC

Approvals

- Cube-shaped design $50 \times 50 \mathrm{~mm}$
- M8 plug connector (snap-action and screw terminals)

Dimension drawing

Typical operating distance

With actuator CES-A-BBA or CES-A-BCA

with actuator CES-A-BQA on evaluation unit CES-A-AEA

Pin assignment

Read head with connection cable

Technical Data

1) These values apply for surface installation of the read head and the actuator.

Ordering table

Series	Cable/connection type	Comment	
CES-A-LQA-SC	SC	2 safety screws M4 $\times 14$ are supplied	no. / item

Read head CES-A-LMN-SC

Approvals

- Cylindrical design M12
- M8 plug connector (snap-action and screw terminals)

Dimension drawing

1) Clear zone (area of the active face without metal housing)

Note

The read head is allowed to be installed as a maximum up to the clear zone (area of the active face without metal housing).

Typical operating distance

With evaluation unit CES-A-AEA... and actuator CES-A-BMB

Note

A minimum distance of $\mathrm{s}=1.2 \mathrm{~mm}$ must be maintained.

Pin assignment

Read head with plug connector

Technical Data

Ordering table

Series	Order no. / item
CES-A-LMN-SC	077790
CES-A-LMN-SC	

Actuator CES-A-BBA/CES-A-BCA

- Cube-shaped design $42 \times 25 \mathrm{~mm}$
- CES-A-BCA suitable for use in aggressive media (e.g. acids, alkalis) - In combination with read head CES-A-LNA.../CES-A-LCA...

Dimension drawing CES-A-BBA

Dimension drawing CES-A-BCA

Note

CES-A-BCA: The flat seal provided must be used during assembly.

Technical Data

Parameter	min.	Value typ.	max.	Unit
Housing material - CES-A-BBA	Fortron, reinforced thermoplastic, fully encapsulated			
- CES-A-BCA	Plastic PE-HD without reinforcement, fully encapsulated			
Flat seal material (CES-A-BCA only)	Fluororubber 75 FPM 4100			
Dimensions	$42 \times 25 \times 12$			mm
Weight	0.02			kg
Ambient temperature				${ }^{\circ} \mathrm{C}$
- CES-A-BBA	-25	-	+70	
- CES-A-BCA	-25	-	+50	
Degree of protection	IP67/P69K			
Installation position	Active face opposite read head			
Power supply	Inductive via read head			

Ordering table

Series	Comment	Version	Order no. / item
CES-A-BBA	2 safety screws M4 $\times 14$ are supplied	-	071840
CES-A-BCA	2 safety screws M4 $\times 14$ are supplied	Housing material PE-HD	CES-A-BBA
	Flat seal included	088786	

Actuator CES-A-BQA

- Cube-shaped design $50 \times 50 \mathrm{~mm}$

Dimension drawing CES-A-BQA

Technical Data

Parameter	min.	Value typ.	max.	Unit
Housing material	Fortron, reinforced thermoplastic, fully encapsulated			
Dimensions	$50 \times 50 \times 20.2$			mm
Weight	0.07			kg
Ambient temperature	-25		+70	${ }^{\circ} \mathrm{C}$
Degree of protection	IP67			
Installation position	Active face opposite read head			
Power supply	Inductive via read head			

Ordering table

Series	Comment	Version	Order no./item
CES-A-BQA	2 safety screws M4 $\times 14$ are supplied	-	098108
CES-A-BQA			

Actuator CES-A-BDA

- Round design $\varnothing 20$ mm
- In combination with read head CES-A-LNA.../CES-A-LCA...

Dimension drawing

Technical data

Parameter	Value typ.		max.

Ordering table

Series	Version/Comment	Order no./item
CES-A-BDA	-	084720
CES-A-BDA-20		

Actuator CES-A-BMB

- Cylindrical design M12 x 75
- In combination with evaluation units CES-A-A..., read head CES-A-LMN-SC (operating distance on request for read head CES-A-LNA.../LCA...)

Dimension drawing

Notes

- The actuator can be screwed into the M12 $\times 0.75$ thread provided with the aid of an insertion tool (Order No. 037 662).
- Flush installation of the actuator in steel is allowed.

Technical Data

Ordering table

Series	Version/Comment	Order no. / item
CES-A-BMB	-	077791
Insertion tool	For actuator CES-A-BMB	CES-ABMB

Inspection and Service

Warning!

Loss of the safety function because of damage to the device. In case of damage, the related safety component must be replaced. The replacement of individual parts in a safety component is not permitted.

Regular inspection of the following is necessary to ensure trouble-free long-term operation:

- Check the switching function (see section Functional check)
- Check the secure fastening of the devices and the connections
- Check for soiling
- Check for tightness of the plug connector on the read head
- Check for loose cable connections on the plug connector
- Check of the switch-off distance

No servicing is required. Repairs to the device are only allowed to be made by the manufacturer.

Note!

The year of manufacture can be seen on the rating plate in the lower right corner.

Service

$$
\begin{aligned}
& \text { If service support is required, please contact: } \\
& \text { EUCHNER GmbH + Co. KG } \\
& \text { Kohlhammerstraße } 16 \\
& \text { D-70771 Leinfelden-Echterdingen } \\
& \text { Service telephone: } \\
& \text { +49 } 7117597-500 \\
& \text { E-mail: } \\
& \text { info@euchner.de } \\
& \text { Internet: } \\
& \text { www.euchner.de }
\end{aligned}
$$

Declaration of Conformity

More than safety

C

EUCHNER

EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen Germany

EG-Konformitätserklärung EC-Declaration of Conformity CE-Déclaration de Conformité CE-Dichiarazione di conformità CE-Declaración de Conformidad

Original DE Translation EN Translation EN Traduction FR Traduzione IT Traducción ES

Die nachfolgend aufgeführten Produkte sind konform mit den Anforderungen der folgenden Richtlinien (falls zutreffend): The beneath listed products are in conformity with the requirements of the following directives (if applicable):
Les produits mentionnés ci-dessous sont conformes aux exigences imposées par les directives suivantes (si valable)
I prodotti sotto elencati sono conformi alle direttive sotto riportate (dove applicabili):
Los productos listados a continuación son conforme a los requisitos de las siguientes directivas (si fueran aplicables):

I:	2006/42/EG	Maschinenrichtlinie
	2006/42/EC	Machinery directive
	2006/42/CE	Directive Machines
	2006/4/CE	Direttiva Macchine
2006/42/CE	Directiva de máquinas	
II:	2004/108/EG	EMV Richtlinie
	2004/108/EC	EMC Directive
	2004/108/CE	Directive de Compatibilité électromagnétique
	2004/108/CE	Direttiva EMV
	2004/108/CE	Directiva CEM

Die Schutzziele der Niederspannungsrichtlinie wurden gemäß Anhang I, Nr. 1.5.1 der Maschinenrichtlinie eingehalten.
The safety objetives of the Low-Voltage Directive comply with Annex I, No. 1.5.1 of the Machinery Directive.
Les objectifs de sécurité de la Directive Basse Tension sont conformes à l'annexe I, No. 1.5.1 de la Directive Machines Gli obiettivi di sicurezza della Direttiva Bassa Tensione sono conformi a quanto riportato all'allegato I, No. 1.5.1 della Direttiva Macchine. Los objetivos de seguridad de la Directiva de Bajo Voltaje cumplen con el Anexo I, No. 1.5 .1 de la Directiva de Máquinas

Folgende Normen sind angewandt:
Following standards are used:
Les normes suivantes sont appliquées:
Vengono applicate le seguenti norme:
Se utilizan los siguientes estándares:

EN 60947-5-3:1999 + A1:2005
EN 1088: 1995+A2:2008
EN 50295:1999 (AS-i)
EN ISO 13849-1:2008
EN ISO 13849-2:2012
EN 60947-5-2:2007

Bezeichnung der Sicherheitsbauteile	Type	Richtlinie	Normen	Zertifikats-Nr.
Description of safety components	Type	Directives	Standards	No. of certificate
Description des composants sécurité	Type	Directive	Normes	Numéro du certificat
Descrizione dei componenti di sicurezza	Tipo	Direttiva	Normea	Numero del certificato
Descripción de componentes de	Typo	Directivas	Estándares	Número del certificado
seguridad				
Auswertegerät Safety Unit Analyseur Centralina Unidad de evaluación	CES-A-ABA-01	I, II	a, b, d, e	ET 10126
	CES-A-UBA-01			
	CES-A-ABA-01B			
	CES-A-UBA-01B			
	CES-A-AEA-02B	I, II	a, b, d, e	ET 10124
	CES-A-AEA-04B			
	CES-A-UEA-02B			
	CES-A-UEA-04B			
	CES-AZ-ABS-01B	I, II	a, b, d, e	ET 10126
	CES-AZ-UBS-01B			
	CES-AZ-AES-01B	I, II	a, b, d, e	ET 10147
	CES-AZ-AES-02B			
	CES-AZ-AES-04B			
	CES-AZ-UES-01B			
	CES-AZ-UES-02B			
	CES-AZ-UES-04B			
Lesekopf Read head Tête de lecture Testina di lettura Cabeza lectora	CES-A-LMN-SC	I, II	a, b, d, e	$\begin{aligned} & \text { ET } 10126 \\ & \text { ET } 10124 \\ & \text { ET } 10147 \end{aligned}$
	CES-A-LNA-SC			
	CES-A-LNA-xxx			
	CES-A-LCA-xxx			
	CES-A-LQA-SC			
	CES-A-LNN-SC			
	CES-A-LNN-..V-...			
	CES-A-LSP-SB	I, II	a, b, d, e	ET 10147
	CES-A-LSP-..V-...			
	CEM-A-LE05K-S2	I, II	a, b, d, e	$\begin{aligned} & \text { ET } 10126 \\ & \text { ET } 10124 \\ & \text { ET } 10147 \end{aligned}$
	CEM-A-LE05R-S2			
	CEM-A-LH10K-S3			
	CEM-A-LH10R-S3			
	CEM-A-LE05K-S1-10V			
	CEM-A-LH10K-S2-10V			
	CET1-AX-LRA-00-50X-SA	I, II	a, b, d, e	$\begin{aligned} & \text { ET } 08072 \\ & \text { ET } 10147 \end{aligned}$
	CET1-AX-LDA-00-50X-SE			
Betätiger Actuator Actionneur Azionatore Actuador	CES-A-BBA	I, II	a, b, d, e	ET 10126ET 10124ET 10147
	CES-A-BCA			
	CES-A-BDA			
	CES-A-BMB			
	CES-A-BQA			
	CES-A-BSP	I, I	a, b, d, e	ET 10147
	CES-A-BBN			
	$\begin{aligned} & \text { CEM-A-BE05 } \\ & \text { CEM-A-BH10 } \end{aligned}$	I, II	a, b, d, e	$\begin{aligned} & \text { ET } 10126 \\ & \text { ET } 10124 \\ & \text { ET } 10147 \\ & \hline \end{aligned}$
	CET-A-BWK-50X	I, II	a, b, d, e	ET 08072
				ET 1014

Benannte Stelle
Notified Body
Organisme notifié
Sede indicata
Entidad citada

NB 0340
DGUV Test Prüf- und Zertifizierungsstelle Fachausschuss Elektrotechnik
Gustav-Heinemann-Ufer 130
50968 Köln
Germany

Euchner GmbH + Co. KG
Kohlhammerstraße 16
D-70771 Leinfelden-Echterdingen
info@euchner.de
www.euchner.de

Issue:
84606-17-10/13
Title:
Operating Instructions Safety System
CES-A-AEA-02B/CES-A-AEA-04B
(translation of the original operating instructions)
Copyright:
© EUCHNER GmbH + Co. KG, 10/2013
Subject to technical modifications,
all data supplied without liability.

[^0]: The devices permit a safety-related stop function, initiated by a safety guard according to Table 8 - DIN EN ISO 13849-1: 2008-12.
 The safety-related function of the PDF is the opening of at least one of the output contacts $(13 / 14,23 / 24)$ when the actuator is absent.
 The user is responsible for safe integration of the device in a safe overall system. For this purpose the overall system must be validated, e.g. in accordance with EN ISO 13849-2.
 The permissible operating parameters must be observed for correct use (see Technical data).
 If a product data sheet is included with the product, the information on the data sheet applies in case of discrepancies with the operating instructions. Only components may be used that are permissible in accordance with the table below.

