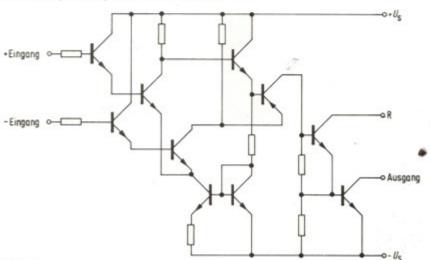


Operationsverstärker mit Darlington-Eingang TTL-kompatibel

TCA 311; A; G; GG; W

TCA 312


TCA 315; A; G; GG; W

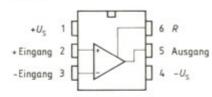
Ein wirtschaftlicher Operationsverstärker, der sich aufgrund seiner Eigenschaften als Schmitt-Trigger und Komparator für die Regeltechnik und Autoelektrik eignet. Der Ausgang ist so ausgelegt, daß TTL-Bausteine direkt angesteuert werden können. Neben hoher Verstärkung, kleiner Nullspannung, geringer Temperatur- und Versorgungs-Spannungs-abhängigkeit zeichnet sich der Verstärker besonders aus durch:

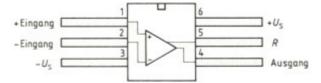
- · Sehr großen Eingangswiderstand
- Hohen Gleichtaktbereich
- Großen Versorgungsspannungsbereich
- Große Aussteuerbarkeit
- Großen Ausgangsstrom
- Geringe Ausgangssättigungsspannung
- Großen Temperaturbereich (TCA 312)

Тур	Bestellnummer	Gehäusebauform	Farbkennzeichnung			
TCA 311	Q67000-A1001	5 H 6 (ähnl. TO-78)				
TCA 311 A	Q67000-A1002	DIP6				
TCA 311 G	Q67000-A1003 G	Miniaturgeh. 6 Anschl.	rot/weiß			
*TCA 311 GG	Q67000-A1003 G1		rot/weiß			
TCA 311 W	Q67000-A1003	Miniaturgeh. 6 Anschl.	rot/weiß			
TCA 312	Q67000-A1004	5 H 6 (ähnl. TO-78)				
TCA 315	Q67000-A1011	5 H 6 (ähnl. TO-78)				
TCA 315 A	Q67000-A561	DIP6				
TCA 315 G	Q67000-A1005 G	Miniaturgeh, 6 Anschl.	rot/gelb			
TCA 315 GG	Q67000-A1005 G1	0	rot/gelb			
TCA 315 W	Q67000-A1005	Miniaturgeh, 6 Anschl.	rot/gelb			

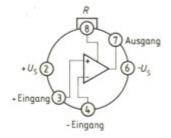
Schaltung der Operationsverstärker

^{*} Für Neuentwicklung bevorzugt verwenden


TCA 311; A; G; GG; W


TCA 312

TCA 315; A; G; GG; W


Anschlußanordnungen

TCA 311 A TCA 315 A TCA 311 W; G; GG TCA 315 W; G; GG



TCA 311 TCA 312 TCA 315

Anschlußschema

R_L = Lastwiderstand

TCA 311; A; G; GG; W TCA 312

TCA 315; A; G; GG; W

Grenzdaten

Speisespannung	Us	±15	lv
Ausgangsstrom	I_{Ω}	70	mA
Treiberstrom	I_{Tr}	10	mA
Differenzeingangsspannung U _s =13 bis 15 V	UID	±13	V
Differenzeingangsspannung U _s =2 bis 13 V	UID	±U _s	v
Sperrschichttemperatur	T	150	°C
Lagertemperatur	T_{i} T_{*}	-55 bis 125	°C
Wärmewiderstände	. 8	00 010 120	"
System-Gehäuse: TCA 311/312/315	RthsG	80	K/W
System-Umgebung: TCA 311/312/315	Rthsu	190	K/W
TCA 311 A/315 A	Rthsu	140	K/W
TCA 311 W; G; GG/315 W; G; GG	Rthsu	200	K/W
Funktionsbereich			
Speisespannung	Us	1 ± 2 bis ± 15	IV
Umgebungstemperatur im Betrieb:	- 3		100
TCA311; A; W; G; GG	T_{\cup}	0 bis 70	°C
TCA 315; A; W; G; GG	Tu	-25 bis 85	°C
TCA 312	Tu	-55 bis 125	°C

Kenndaten $U_S = \pm 15 \text{ V}; R = 6,8 \text{ k}\Omega$		TCA 311 TCA 315			TCA 312					
			T _U =25	°C		T _U =25	°C		55 bis 125 °C	
		min	typ	max	min	typ	max	min	max	
Leerlaufstrom-	,		4.5	2.5			2.5			١.
aufnahme (I über Anschluß 2, bzw. 1 oder 6) Eingangsnull-	$I_{\mathbb{S}}$		1,5	2,5		1,5	2,5			mA
spannung $(R_G = 50 \Omega)$	U_{10}	-15		15	-10		10	-15	15	mV
Eingangsnullstrom Eingangsstrom Eingangsstrom (U _{ID} =±13 V)	I_{10} I_{1} I_{1}	-25	±10 30	25 50 200	-15		15 30 200	-40	40 80	nA nA nA
Ausgangsspannung $(R_L=2 k\Omega)$	U_{Qss}	14,9		-14,8	14,9		-14,8	14,8	-14,6	v
$(R_L=620 \Omega)$ $(R_L=2 k\Omega)$	Uass	14,9		-14,0	14,9		-14,8	14,8	-13,5	٧
f=100 kHz)	U_{Qss}		±10			±10				V

TCA 311; A; G; GG; W TCA 312 TCA 315; A; G; GG; W

Kenndaten		TCA 311			TCA 312					
$U_{\rm S}$ =±15 V, R =6,8 k Ω		TCA 315 T _U =25 °C		7 _U =25 °C		T _U = −55 bis 125 °C				
		min	typ	max	min	typ	max	min	max	
Eingangsimpedanz (f=1 kHz) Leerlauf- Spannungsverstärkung (R _L =2kΩ,	Z,		3			3				МΩ
f=1 kHz) $(R_L=10 \text{ k}\Omega)$	A_{UO}	75	80		80	83		75		dB
f=1 kHz) $(R_L=2 \text{ k}\Omega,$	A_{UO}		85			88				dB
f=1 MHz) Eingangs-	A_{UO}		60			60				dB
Gleichtaktbereich (R _L =2 kΩ) Gleichtakt-	U _{IC}	13		-13	13		-13			V
unterdrückung $(R_L=2 k\Omega)$	k _{CMR}	60	74		65	77				dB
Speisespannungs- unterdrückung (A _U =100) TempKoeffizient	k _{svr}		25	200		25	200			μV/V
der U_{10} $(R_G=50 \Omega)$ TempKoeffizient	α_{U10}		12			12	50			μV/K
des I ₁₀ Anstiegs-	α_{110}		50			50				pA/k
geschwindigkeit von U_q im nicht- invertierten Betrieb (s. TAA 761	duq dtr		30			30				V/µs
Meßschaltung 1) Ausgangs- sättigungsspannung (I _O =10 mA)	U_{QQ}			200			200		400	mV
Ausgangssperrstrom	I_{QR}		1	10	1	1	10	L		μА
Kenndaten $U_s = \pm 5 \text{ V}; R = 6.8 \text{ k}\Omega$										
Eingangs-		1		۱	1	1	1	ľ	1	.,
nullspannung $(R_G = 50 \Omega)$	U_{10}	-15		15	-10		10			mV
Eingangsnullstrom Eingangsstrom	I_{10} I_{1}	-25	±10 30	25 50	-15		15 30			nA nA
Leerlauf- Spannungsverstärkung $(R_L=2 k\Omega, f=1 kHz)$	Auo	65			70			-		dB