AUTOMOTIVE GRADE

RoHS

GREEN

Vishay Semiconductors

Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

DESCRIPTION

The TCUT1350X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package. TCUT1350X01 is especially designed to meet high operating temperature requirements and is released for operating temperature ranges from - 40 °C to + 125 °C.

FEATURES

· Package type: surface mount

· Detector type: phototransistor

• Dimensions (L x W x H in mm): 5.5 x 4 x 4

AEC-Q101 qualified

• Gap (in mm): 3

• Aperture (in mm): 0.3

• Channel distance (center to center): 0.8 mm

Typical output current under test: I_C = 1.6 mA

• Emitter wavelength: 950 nm

Released for high operating temperatures up to 125 °C

• Lead (Pb)-free soldering released

Moisture sensitivity level (MSL): 1

 Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- · Automotive optical sensors
- · Accurate position sensor for encoder
- Sensor for motion, speed and direction

PRODUCT SUMMARY							
PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST (1) (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED			
TCUT1350X01	3	0.3	1.6	No			

Note

· Conditions like in table basic characteristics/coupler

ORDERING INFORMATION						
ORDERING CODE	PACKAGING	PACKAGING VOLUME (1)				
TCUT1350X01	Tape and reel	MOQ: 2000 pcs, 2000 pcs/reel	Drypack, MSL 1			

Note

· MOQ: minimum order quantity

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
COUPLER							
Total power dissipation	T _{amb} ≤ 125 °C	P _{tot}	37.5	mW			
Junction temperature		Tj	140	°C			
Ambient temperature range		T _{amb}	- 40 to + 125	°C			
Storage temperature range		T _{stg}	- 40 to + 125	°C			
Soldering temperature	In accordance with fig. 16	T _{sd}	260	°C			
INPUT (EMITTER)							
Reverse voltage		V_{R}	5	V			
Forward current	T _{amb} ≤ 125 °C	I _F	25	mA			
Forward surge current	t _p ≤ 10 μs	I _{FSM}	200	mA			
Power dissipation	T _{amb} ≤ 125 °C	P_V	37.5	mW			
OUTPUT (DETECTOR)							
Collector emitter voltage		V_{CEO}	20	V			
Emitter collector voltage		V _{ECO}	7	V			
Collector current		I _C	20	mA			
Collector dark current	$T_{amb} = 85 ^{\circ}C, V_{CE} = 5 V$	I _{CEO}	3.3	μΑ			

ABSOLUTE MAXIMUM RATINGS

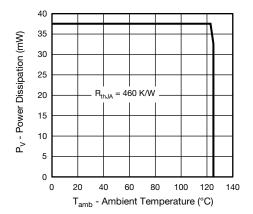


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

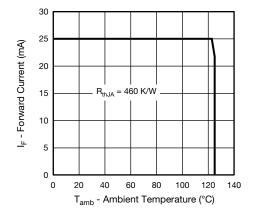


Fig. 2 - Forward Current Limit vs. Ambient Temperature