

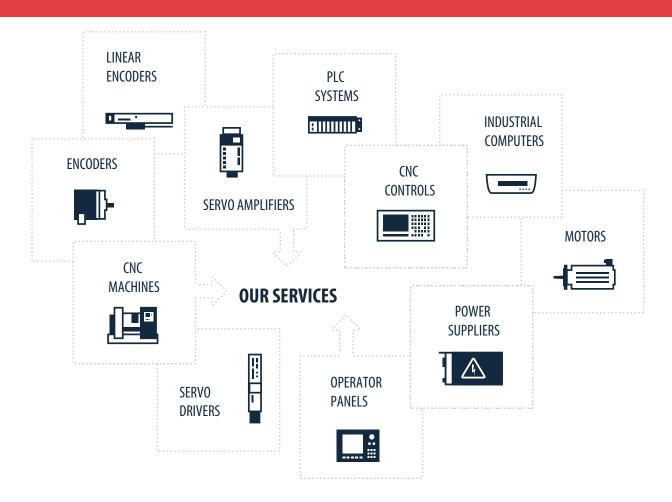
OTHER SYMBOLS:

RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA

Jana Dlugosza 2-6 Street 51-162 Wrocław Poland

■ biuro@rgbelektronika.pl

L +48 71 325 15 05



www.rgbautomatyka.pl

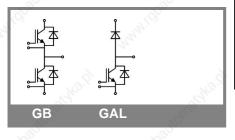
YOUR PARTNER IN MAINTENANCE

Repair this product with RGB ELEKTRONIKA

ORDER A DIAGNOSIS »

At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit. Our trained employees, equipped with a wide variety of tools and having several testing stands at their disposal, are a guarantee of the highest quality service.

Trench IGBT Modules


SKM 195GB126D SKM 195GAL126D

Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _{case}	= 25°C, unless otherwise	e specified
Symbol	Conditions	XOTO GOOD	Values	Units
IGBT	70° X		7000	7025
V _{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 150 ^{\circ}\text{C}$		1200	V
I _C	T _j = 150 °C	T _c = 25 °C	220	Α
ı		$T_c = 80 ^{\circ}C$	160	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}	73.5,	300	Α
V _{GES}	Majed.	Majes.	± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse l	Diode		M _M ,	VIA.
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	170	Α
		$T_c = 80 ^{\circ}C$	115	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}	15,	200	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	900	Α
Freewhe	eling Diode	710.	7/10.	770.
I _F	T _j = 150 °C	T _c = 25 °C	170	Α
" May !	My	$T_c = 80 ^{\circ}C$	115	A
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	900	Α
Module	7/10.	They,	-740.,	
$I_{t(RMS)}$	May,	Mar.	200	Α
T _{vj}		diffe	-40 +150	°C
T _{stg}	11/07		-40 +125	,c
V _{isol}	AC, 1 min.		4000	V

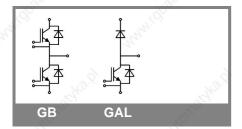
Characteristics		T _{case} = 25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	.0100	.050				76.
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C	410	0,1	0,3	mA
V _{CE0}	2/1/4	T _i = 25 °C	Ex.	1	1,2	V
		T _i = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 0 V	T _i = 25°C		4,7	6,3	mΩ
	"Afron	T _j = 125°C		7,3	9	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _i = 25°C _{chiplev.}	ć	1,7	2,15	V
		$T_j = 125^{\circ}C_{\text{chiplev}}$	walle.	2	2,45	V
C _{ies}	(0)	,	(4)	10,5		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz	Thu.	0,9		nF
C _{res}	1/2			0,8		nF
Q_G	V _{GE} = -8V+20V	6		1380		nC
R _{Gint}	T _j = °C	"Tho."		5		Ω
t _{d(on)}	3000	-40		280		ns
t,	$R_{Gon} = 2 \Omega$	V _{CC} = 600V	"TIC	50		ns
Ė _{on}	°	I _C = 150A	1900	16		mJ
t _{d(off)}	$R_{Goff} = 2 \Omega$	T _j = 125 °C	14/	560		ns
t _f N	TI,	V _{GE} = ± 15V	E2.	70		ns
E _{off}				24,5		mJ
R _{th(j-c)}	per IGBT	23		20	0,16	K/W

Trench IGBT Modules

SKM 195GB126D SKM 195GAL126D

Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C


Typical Applications*

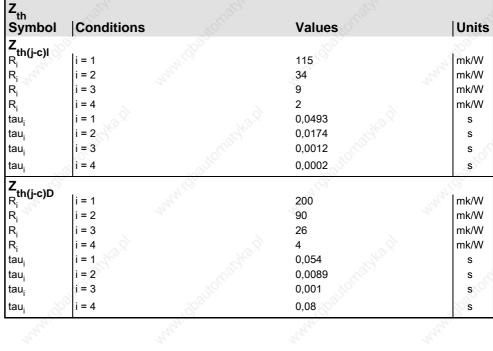
- AC inverter drives
- UPS
- Electronic welders

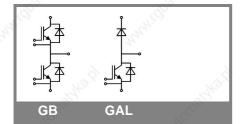
Characteristics		2/2/2		2/2/4		
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	iode		1000			3000
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}	"4'CO.	2	2,5	V
	772,	T _j = 125 °C _{chiplev} .	124	1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
	20	T _j = 125 °C				V
r _F	JE	T _j = 25 °C		9	13	mΩ
	office	T _j = 125 °C				mΩ
I _{RRM}	I _F = 150 A	T _j = 125 °C	- 195°	86		Α
Q _{rr}	di/dt = 2200 A/µs	•	(9)	17		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$		and,	5,8		mJ
R _{th(j-c)D}	per diode				0,32	K/W
	eling diode	9		9		•
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
	Alato .			1,8		V
V _{F0}	10.	$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$	- 350	1,1	1,2	V
. 30	300	T _j = 125 °C	1900			V
r _F M	774,	T _j = 25 °C	MAI.	9	13	V
	27,	T _j = 125 °C	3			V
I _{RRM}	I _F = 150 A	T _j = 125 °C		86		Α
Q_{rr}	di/dt = 2200 A/µs			17		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$	29/2		5,8		mJ
R _{th(j-c)FD}	per diode	10°C	- 85	200	0,32	K/W
Module	703	5	70%			7080
L _{CE}	14/10		141 C		30	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C	2	0,75	22	mΩ
		T _{case} = 125 °C		1		$m\Omega$
R _{th(c-s)}	per module	10.5		100	0,05	K/W
M _s	to heat sink M6	Carlot.	3	Carley.	5	Nm
M _t	to terminals M5	Jio.	2,5	2.	5	Nm
w 💍	190	7	1000		160	g

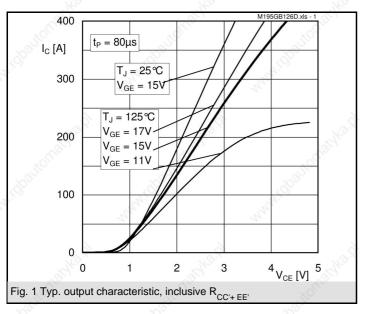
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

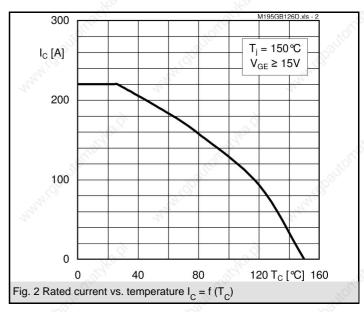
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

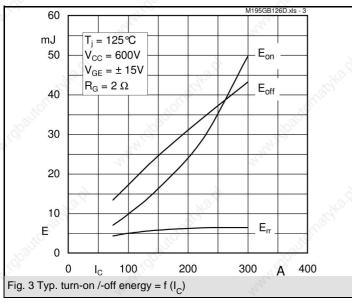
Trench IGBT Modules


SKM 195GB126D SKM 195GAL126D


Features	5
-----------------	---


- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C


Typical Applications*


- AC inverter drives
- UPS
- Electronic welders

