Linear Motion and Assembly Technologies

Pneumatics Service

Rexroth IndraDyn S MSK Synchronous Motors

R911296289 Edition 05

Project Planning Manual

Bosch Rexroth AG | Electric Drives and Controls

Title

MSK Synchronous Motors
Type of Documentation Project Planning Manual
Document Typecode DOK-MOTOR*-MSK******-PR05-EN-P
Internal File Reference RS-e376b79b0a6846ac00f6d325fdbe2ed7-1-en-US-6

Purpose of Documentation

This documentation...

Rexroth IndraDyn S

- explains the features of the product, operating conditions, conditions for use and operating limits for MSK motors.
- contains technical data regarding available MSK motors.
- provides information regarding product selection, handling and operation

Record of Revision

Edition	Release Date	Notes
DOK-MOTOR*-MSK******-PR01-EN-P	06/2004	First edition
DOK-MOTOR*-MSK******-PR02-EN-P	10/2004	Revision, amendment
DOK-MOTOR*-MSK******-PR03-EN-P	02/2005	Revision, amendment, not printed
DOK-MOTOR*-MSK******-PR04-EN-P	06/2005	Revision, amendment
DOK-MOTOR*-MSK******-PR05-EN-P	03/2006	Revision, amendment

Copyright

© 2006 Bosch Rexroth AG

Copying this document, giving it to others and the use or communication of the contents therof without express authourity, are forbidden. Offenders are liable for the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design (DIN 34-1).

Validity

The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product.

Published by E

Bosch Rexroth AG

Bgm.-Dr.-Nebel-Str. 2 ■ 97816 Lohr a. Main, Germany

Tel. +49 (0)93 52 / 40-0 Fax +49 (0)93 52 / 40-48 85

http://www.boschrexroth.com/

Dept. BRC/EDM2 (JW)

Note

te This document has been printed on chlorine-free bleached paper.

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG and Controls

I/V

Table of contents

1.1	Introduction to the Product IndraDyn S	
1.2	About this Documentation	
1.2	About this Documentation	
2	Important Directions for Use	Son -
Z 2.1		
2.1	Appropriate Use Introduction	
2.1.1		
2.1.2	Areas of Use and Application	
2.2		
•		~~ ⁵⁵⁰
3	Safety Instructions for Electric Drives and Controls	
3.1	Introduction	
3.2	Explanation	
3.3	General	
3.4	Protection Against Contact with Electric Parts	
3.5	Protection Against Electric Shock by Protective Extra-Low Voltage	
3.6	Protection Against Dangerous Movements	
3.7	Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting	
3.8	Protection Against Contact with Hot Parts	
3.9	Protection During Handling and Mounting	
3.10	Battery Safety	
3.11	Protection Against Pressurized Systems	13
4	Technical Data	1
4 4.1	Technical Data	
4.1	Definition of Parameters	
4.1 4.1.1	Definition of Parameters	
4.1 4.1.1 4.1.2	Definition of Parameters 60K and 100K Parameters Operating Mode	
4.1 4.1.1 4.1.2 4.1.3	Definition of Parameters 60K and 100K Parameters Operating Mode Operating Time	1 1 1 1 1
4.1 4.1.1 4.1.2 4.1.3 4.1.4	Definition of Parameters 60K and 100K Parameters Operating Mode Operating Time Dimension Sheet Specifications	
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Definition of Parameters 60K and 100K Parameters Operating Mode Operating Time Dimension Sheet Specifications Example of a Characteristic Curve	1 1 1 1 1 1 1
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2	Definition of Parameters 60K and 100K Parameters Operating Mode Operating Time Dimension Sheet Specifications Example of a Characteristic Curve MSK030B Technical Data	1 1 1 1 1 1 1
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3	Definition of Parameters	1 1 1 1 1 1 1 1 2 2
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4	Definition of Parameters	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5	Definition of Parameters	1:
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6	Definition of Parameters	1: 1: 1: 1: 1: 1: 1: 1: 1: 1:
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6 4.7	Definition of Parameters	1
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Definition of Parameters 60K and 100K Parameters. Operating Mode Operating Time Dimension Sheet Specifications. Example of a Characteristic Curve. MSK030B Technical Data MSK030C Technical Data MSK040B Technical Data MSK040B Technical Data MSK050B Technical Data MSK050B Technical Data MSK050B Technical Data MSK050C Technical Data	1
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Definition of Parameters	1: 1: 1: 1: 1: 1: 1: 1: 1: 1:
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Definition of Parameters	19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Definition of Parameters	11 12 14 14 16 16 16 16 16 16 16 16 16 16

Page

Bosch Rexroth AG | Electric Drives and Controls

			Page
4.15	MSK071E Technical Data	 	 58
4.16	MSK076C Technical Data	 	 63
4.17	MSK100B Technical Data	 	
4.18	MSK100C Technical Data	 <u> </u>	
4.19	MSK100D Technical Data	 	 74
4.20	MSK101D Technical Data	 	 77
4.21	MSK101E Technical Data	 	 82

5	Specifications				87
5.1	Basic Data – Technical Design				87
5.2	Size MSK030				88
5.3 🔬	Size MSK040				89
5.4	Size MSK050				
5.5	Size MSK060				91
5.6	Size MSK061		£	<u></u>	92
5.7	Size MSK070				
5.8	Size MSK071				94
5.9	Size MSK071 with Liquid Coolant				95
5.10	Size MSK076				
5.11	Size MSK100				97
5.12	Size MSK101	<u></u>			98
5.13	Size MSK101 with Liquid Cooling		£°	- 4°	99

6	Type Codes	12.8	NO.S			. 101
6.1						
6.2	· · · · · · · · · · · · · · · · · · ·				<u>\$</u> \$	
6.3	Size MSK040.		<u>8</u>	<u>&</u> ``	<u>S``</u>	107
6.4	Size MSK050					109
6.5	Size MSK060					111
6.6						
6.7	Size MSK070					115
6.8	Size MSK071	<u></u>				117
6.9	Size MSK076					119
6.10	Size MSK100		<u>്</u>		<u>_</u>	121
6.11	Size MSK101					123

7	Accessories and Options	<u>_</u>		125
7.1	Motor Encoder			
7.1.1	General			125
7.1.2	Motor Encoder Technical Data			125
7.2	Holding Brakes			126
7.3	Fan Units for MSK Motors			126
7.3.1	Technical Data			126
7.3.2	Assignment	<u></u>		126
7.3.3	Electrical Connection, Adjust Motor Protectio	n	<u>8.</u> 19.	127

Project Planning Manual | Rexroth IndraDyn S

III/V

					Page
7.3.4	Ordering			and the second s	
7.3.5					
	•	unit axial			
	MSK070 fan	unit axial			
	MSK071 fan	unit axial			
	MSK100 fan	unit axial			
	MSK101 fan	unit axial.	<u>&`</u>	<u>_</u>	
7.3.6	Assembly				
		И-АВ-116N			
	Fan unit LEN	A-AB-140N	ò.		
	Fan unit LEN	/I-AB-192N			
7.4					
7.5	Sealing Air Con	nection			
	N.G.				
8	Connection To	chniques			1/1
8.1					
o. 1 8.2		or Size 1			
o.∠ 8.2.1					
8.2.1		ge Socket			
0.2.2 8.3		er Connector or Size 1.5			
o.s 8.3.1					
6.3.1 8.3.2		ge Socket er Connector			
0.3.2 8.4		or Size 2			
8.4.1		ge Socket			
8.4.2		ver Connector			
8.5		tor			
8.5.1		nge Socket, RGS1003 Flang			
8.5.2		ver Connector			
8.6		le			
8.6.1		of Power Cables			
862	•	Connection Cables			
8.6.3	- 10				
8.6.4	· · · · · · · · · · · · · · · · · · ·	<u></u>			
8.7		ystem			
8.7.1		echniques Fan Units			
8.7.2		echnique Liquid Cooling			
0.7.2	Connection re				
2.8			2.62		AF7
9		ditions and Application N			
9.1		ons			
9.1.1	~~·	n and ambient temperature .			
9.1.2	- C-1	nperature			
9.1.3					
9.1.4					
9.2					
9.3	Compatibility wit	h Foreign Materials			160

					Page
9.4	Design and Installation Positions		and the loss	and the second se	160
9.5	Housing Varnish				
9.6	Output Shaft				
9.6.1	Smooth Shaft				
9.6.2	Output Shaft with Key				
9.6.3	Output Shaft with Shaft Sealing Rin				
9.7	Bearing and Shaft Load	201			
9.7.1	General				
9.7.2	Radial Load, Axial Load				
9.7.3	Bearing Lifetime				
9.8	Attachment of Drive Elements				
9.9	Holding Brakes				
9.9.1	General				
9.9.2	Dimension of Holding Brakes				
14 	General				
	Safety Notes Holding Brakes				
9.9.3	Drive of Holding Brakes				
9.10	Acceptances and Authorizations				
9.10.1	CE-Sign				
9.10.2	UR, cUR Listing				
9.10.3	CCC (China Compulsory Certificati				
9.11	Motor Cooling System				
9.11.1	Natural Convection				
9.11.2	Fan Units				
9.11.3	Liquid cooling				
	General				
	Operating pressure				
	Coolant				
	Used Materials				
	Coolant inlet temperature				
9.12	Motor Temperature Overview	<u></u>	<u></u> §	<u>}</u>	
9.12.1	General			<u></u>	174
9.12.2	Temperature sensor				
9.12.3	Temperature Model				
	and the second second				
10	Handling, Transport and Storage				175
10.1	Supplied Condition				
10.1.1	General				
10.1.1	Inspection at the Factory				
10.1.2	Test on the Customer Side				
10.1.5	Identification and Checking of the Su				
10.2	Shipping documents and delivery n				
10.2.1	Name plate				
10.2.2	Handling of the Equipment				
10.3	Transport of the Equipment				
10.4	Storage of the Equipment				
10.0					170

						Page
11	Installation					179
11.1	Safety					
11.2	Skilled Personnel					
11.3	Mechanical Mounting					
11.3.1		ə				
11.3.2						
11.3.3		<u>s</u>				
11.4	Electrical Connection					
11.4.1						
11.4.2		gò				
11.4.3		, t Direction				
12	Commissioning, Op	oration and Main	lananaa			192
12.1	Commissioning, Op					
12.1	Operation					
12.2	Deactivation					
12.3	Maintenance					
12.4						
12.4.1		<u></u>				
12.4.2	087 2					
12.4.4						
12.4.4		\$ ⁴				
12.4.5	Troubleshooting					
12.6	Dismantling					
12.0	Waste Disposal					
12.1		J.				
40	A	S ⁶⁷				A 00
13	·					
13.1	List of Standards	<u></u>				189
14	Service & Support	<u>Å</u>		<u>, </u>	<u></u>	191
14.1	Helpdesk			8		191
14.2	Service Hotline					
14.3	Internet				8 ²	191
14.4	Helpful Information					
	A.					
	Index					

Electric Drives | Bosch Rexroth AG 1/194 and Controls

Introduction

Introduction

1.1

1

Introduction to the Product IndraDyn S

IndraDyn S servomotors set new standards. Many innovations in synchronous servomotors combine past experiences and the most up-to-date motor technology to create a new standard.

IndraDyn S servomotors are characterized by

- dynamics
- a compact construction
- a high torque density
- an extremely high degree of precision due to new optical encoder systems IndraDyn S motors are available in the following power spectrum:

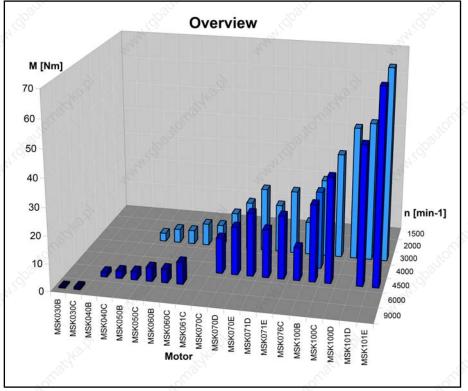


Fig.1-1: MSK power graduation

Aranal 15

Introduction

1.2 About this Documentation

Document Structure

This documentation contains safety regulations, technical data and operating instructions for IndraDyn S motors. The individual chapters can be subdivided into the following focal points:

Section / Title	Contents
chapter 1 "Introduction" on page 1	General Information
chapter 2 "Important Directions for Use " on page 5	
chapter 3 "Safety Instructions for Electric Drives and Controls ' on page 7	Safety
chapter 4 "Technical Data" on page 15	Product description
chapter 5 "Specifications" on page 87	(for planners and
chapter 6 "Type Codes" on page 101	designers)
chapter 7 "Accessories and Options" on page 125	
chapter 8 "Connection Techniques" on page 141	
chapter 9 "Operating Conditions and Application Notes" on page 157	A.
chapter 10 "Handling, Transport and Storage" on page 175	all and
chapter 11 "Installation" on page 179	In Practice (for op- erating and mainte-
chapter 12 "Commissioning, Operation and Maintenance " on page 183	nance personnel)
chapter 13 "Appendix" on page 189	~
chapter 14 "Service & Support" on page 191	General Information
Index	- Strack

Fig.1-2: Document Structure

Additional documentation If I

If required, you need additional documentation referring the used devices, to project the drive-systems of the MSK motor unit. Rexroth provides all product documentation on DVD in a PDF-format. You will not need all the documentation included on the DVD to project a system.

RP	All documentation on the DVD are also available in a printed ver-
RP	sion. You can order the required product documentation via your
	Rexroth sales office.

MNR	Title / Designation
B011206521	-Product documentation Electric Drives and Controls Version xx ¹⁾
R911306531	DOK-GENERL-DRIVE*CONTR-GNxx-D0-V04G7
1)	1) The index (16, for example) identifies the version of the DVD.
Fia 1-3	Additional documentation on DVD

Standards

This documentation refers to German, European and international technical standards. Documents and sheets on standards are subject to copyright protection and may not be passed on to third parties by Rexroth. If necessary, please address the authorized sales outlets or, in Germany, directly to:

BEUTH Verlag GmbH

Electric Drives | Bosch Rexroth AG 3/194 and Controls

Introduction

Burggrafenstrasse 6

10787 Berlin, Germany

Phone +49-(0)30-26 01-22 60, Fax +49-(0)30-26 01-12 60

Internet: http://www.din.de/beuth

Email: postmaster@beuth.de

Documentation for external systems which are connected to Rexroth components are not included in the scope of delivery and must be ordered directly from the particular manufacturers.

Feedback

Foreign systems

Your experiences are an essential part of the process of improving both the product and the documentation.

Please do not hesitate to inform us of any mistakes you detect in this documentation or of any modifications you might desire. We would appreciate your feedback.

Please send your remarks to:

Bosch Rexroth AG

Dep. BRC/EDM2

Buergermeister-Dr.-Nebel-Strasse 2

97816 Lohr, Germany

Fax +49 (0) 93 52 / 40-43 80

Electric Drives | **Bosch Rexroth AG** 5/194 and Controls

Important Directions for Use

2 Important Directions for Use

2.1 Appropriate Use

2.1.1 Introduction

Rexroth products represent state-of-the-art developments and manufacturing. They are tested prior to delivery to ensure operating safety and reliability.

Personal injury and property damage caused by inappropriate use of the products!

The products may only be used in the manner that is defined as appropriate. If they are used in an inappropriate manner, then situations can develop that may lead to property damage or injury to personnel.

Rexroth, as manufacturer, is not liable for any damages resulting from inappropriate use. In such cases, the guarantee and the right to payment of damages resulting from inappropriate use are forfeited. The user alone carries all responsibility of the risks.

Before using Rexroth products, make sure that all the pre-requisites for appropriate use of the products are satisfied:

- Personnel that in any way, shape or form uses our products must first read and understand the relevant safety instructions and be familiar with appropriate use.
- If the product takes the form of hardware, then they must remain in their original state, in other words, no structural changes are permitted. It is not permitted to decompile software products or alter source codes.
- Do not mount damaged or faulty products or use them in operation.
- Make sure that the products have been installed in the manner described in the relevant documentation.

2.1.2 Areas of Use and Application

Motors of the MSK line made by Rexroth are designed to be used as rotary main and servo drives, as linear drives, or as kit motors. Typical applications are:

- Machine tools
- Printing and paper processing machines
- Packaging and foodstuff machines
- Metal-forming machine tools

To ensure an application-specific use, the motors are available with differing drive power and different interfaces.

Control and monitoring of motors may require additional sensors and actors.

MSK may only be used with the accessories and parts specified in this document. If a component has not been specifically named, then it may not be either mounted or connected. The same applies to cables and lines.

> Operation is only permitted in the specified configurations and combinations of components using the software and firmware as specified in the relevant function descriptions.

Important Directions for Use

Every connected drive controller has to be programmed before starting it up, making it possible for the motor to execute the specific functions of an application.

MSK may only be operated under the assembly, installation and ambient conditions as described here (temperature, system of protection, humidity, EMC requirements, etc.) and in the position specified.

2.2 Inappropriate Use

Using MSK outside of the above-referenced areas of application or under operating conditions other than described in the document and the technical data specified is defined as "inappropriate use".

MSK may not be used if

- they are subject to operating conditions that do not meet the above specified ambient conditions. This includes, for example, operation under water, in the case of extreme temperature fluctuations or extremely high maximum temperatures or if
- Rexroth has not specifically released them for that intended purpose.
 Please note the specifications outlined in the general safety instructions!

3 Safety Instructions for Electric Drives and Controls

3.1 Introduction

Read at first the following notes before startup procedure to avoid personal injury and/or material damages! This safety notes are always to be observed.

Do not try to install this machine or take into commission before you haven't read all delivered documentations exactly. This safety instructions and all other user notes must always been read before working with this machine. Should you have no user notes for this machine, please contact your responsible sales representative at Rexroth Indramat. Ask for prompt sending of this documentations to the responsible person to use this machine safely.

You have to pass this safety notes when you sell, lend out or otherwise pass this machine.

Improper use of this equipment, failure to follow the attached safety instructions, or tampering with the product, including disabling or disconnection the safety device, may result in injury, severe electrical shock or death and material damage!

Observe the following instructions.

3.2 Explanation

The safety instructions describe the following degrees of hazard seriousness. The degree of hazard seriousness informs about the consequences resulting from non-compliance with the safety instructions:

Warning symbols with signal word	Hazard classification (according to ANSI Z 535)
DANGER	Death or severe bodily injury will occur.
WARNING	Death or severe bodily injury may occur.
CAUTION	Bodily injury or damage may occur.

Fig.3-1: Danger classes (according to ANSI Z 535)

- Bosch Rexroth AG is not liable for a
 - Bosch Rexroth AG is not liable for damages resulting from failure to observe the warnings provided in this documentation.
 - Read the operating, maintenance and safety instructions in your language before commissioning the machine. If you find that you cannot completely understand the documentation for your product, please ask your supplier to clarify.

3.3

- Proper and correct transport, storage, assembly and installation, as well as care in operation and maintenance, are prerequisites for optimal and safe operation of this device.
- Only assign trained and qualified persons to work with electrical installations:
- Only persons who are trained and qualified for the use and operation of the device may work on this device or within its proximity. The persons are qualified if they have sufficient knowledge of the assembly, installation and operation of the product, as well as an understanding of all warnings and precautionary measures noted in these instructions.
- Furthermore, they must be trained, instructed and qualified to switch electrical circuits and devices on and off in accordance with technical safety regulations, to ground them and to mark them according to the requirements of safe work practices. They must have adequate safety equipment and be trained in first aid.
- Only use spare parts and accessories approved by the manufacturer.
- Follow all safety regulations and requirements for the specific application as practiced in the country of use.
- The devices have been designed for installation in industrial machinery.
- The ambient conditions given in the product documentation must be observed.
- Only use safety-relevant applications that are clearly and explicitly approved in the Project Planning Manual. For example, the following operating conditions and fields of application are excluded: cranes, passenger and freight elevators, equipments and vehicles for passenger transportation, medical applications, refinery, transport of dangerous goods, nuclear applications, use in high-frequency sensitive areas, mining, food processing, control of protective decives (even in machines).
 - The information given in the documentation of the product with regard to the use of the delivered components contains only examples of applications and suggestions.

The machine and installation manufacturer must

- make sure that the delivered components are suited for his individual application and check the information given in this documentation with regard to the use of the components,
- make sure that his application complies with the applicable safety regulations and standards and carry out the required measures, modifications and complements.
- Commissioning of the delivered components is only permitted once it is sure that the machine or installation in which they are installed complies with the national regulations, safety specifications and standards of the application.
- Operation is only permitted if the national EMC regulations for the application are met.

For notes regarding an EMC-compatible installation, refer to the documentation "EMC at AC Drives and Controls".

The machine or installation manufacturer is responsible for compliance with the limiting values as prescribed in the national regulations.

Technical data, connection and installation conditions are specified in the product documentation and must be followed at all times.

Electric Drives | Bosch Rexroth AG 9/194 and Controls

Safety Instructions for Electric Drives and Controls

Protection Against Contact with Electric Parts

R

This section only concerns devices and drive components with voltages of more than 50 Volt.

Contact with parts conducting voltages above 50 volts can cause personal danger and electric shock. When operating electrical equipment, it is unavoidable that some parts of the units conduct dangerous voltage.

High electrical voltage! Danger to life, electric shock and severe bodily injury!

 \Rightarrow Only those trained and qualified to work with or on electrical equipment are permitted to operate, maintain and repair this equipment.

 \Rightarrow Follow general construction and safety regulations when working on electrical power installations.

 \Rightarrow Before switching on the device, the equipment grounding conductor must have been permanently connected to all electrical equipment in accordance with the connection diagram.

 \Rightarrow Do not operate electrical equipment at any time, even for brief measurements or tests, if the equipment grounding conductor is not permanently connected to the mounting points of the components provided for this purpose.

 \Rightarrow Before working with electrical parts with voltage potentials higher than 50 V, the device must be disconnected from the mains voltage or power supply unit. Provide a safeguard to prevent reconnection.

For electrical drive and filter components, observe the following:

Wait 30 minutes after switching off power to allow capacitors to discharge before beginning to work. Measure the voltage on the capacitors before beginning to work to make sure that the equipment is safe to touch.

 \Rightarrow Never touch the electrical connection points of a component while power is turned on.

 \Rightarrow Install the covers and guards provided with the equipment properly before switching the device on. Before switching the equipment on, cover and safeguard live parts safely to prevent contact with those parts.

 \Rightarrow A residual-current-operated circuit-breaker or r.c.d. cannot be used for electric drives! Indirect contact must be prevented by other means, for example, by an overcurrent protective device according to the relevant standards.

 \Rightarrow Secure built-in devices from direct touching of electrical parts by providing an external housing, for example a control cabinet.

European countries: according to EN 50178/1998, section 5.3.2.3.

USA: See National Electric Code (NEC), National Electrical Manufacturers Association (NEMA) as well as local building regulations. The user must always keep all named articles.

For electrical drive and filter components, observe the following:

3.4

High housing voltage and high leakage current! Risk of death or bodily injury by electric shock!

 \Rightarrow Before switching on, the housings of all electrical equipment and motors must be connected or grounded with the equipment grounding conductor to the grounding points. This is also applicable before short tests.

 \Rightarrow The equipment grounding conductor of the electrical equipment and the devices must be non-detachably and permanently connected to the power supply unit at all times. The leakage current is greater than 3.5 mA.

 \Rightarrow Over the total length, use copper wire of a cross section of a minimum of 10 mm² for this equipment grounding connection!

 \Rightarrow Before commissioning, also in trial runs, always attach the equipment grounding conductor or connect to the ground wire. Otherwise, high voltages may occur at the housing causing electric shock.

3.5

Protection Against Electric Shock by Protective Extra-Low Voltage

All connections and terminal connectors with a voltage of 5 to 50 Volt on Rexroth Indramat products are protective extra-low voltages, which are performed safe from touch according to the product standards

High electric voltage by incorrect connection! Risk of death or bodily injury by electric shock!

 \Rightarrow Connect only devices with connectors and terminal connectors with a voltage of 0 to 50 volt, which have a protective extra-low voltage (PELV).

 \Rightarrow Connect only voltages and circuits, which have a safe disconnection to dangerous voltages. A safe disconnection can be done, for example, by isolating transformers, safe optocouplers or operation from battery.

3.6 Protection Against Dangerous Movements

Dangerous movements can be caused by faulty control of connected motors. Some common examples are:

- improper or wrong wiring of cable connections
- incorrect operation of the equipment components
- wrong input of parameters before operation
- malfunction of sensors, encoders and monitoring devices
- defective components
- software or firmware errors

These errors can occur immediately after equipment is switched on or even after an unspecified time of trouble-free operation.

The monitoring in the drive components will normally be sufficient to avoid faulty operation in the connected drives. Regarding personal safety, especially the danger of bodily harm and/or material damage, this alone cannot be relied upon to ensure complete safety. Until the integrated monitoring functions become effective, it must be assumed in any case that faulty drive movements will occur. The extent of faulty drive movements depends upon the type of control and the state of operation.

Dangerous movements! Danger to life, risk of injury, severe bodily harm or material damage!

 \Rightarrow For the above reasons, ensure personal safety by means of qualified and tested higher-level monitoring devices or measures integrated in the installation.

They have to be provided for by the user according to the specific conditions within the installation and a hazard and fault analysis. The safety regulations applicable for the installation have to be taken into consideration. Unintended machine motion or other malfunction is possible if safety devices are disabled, bypassed or not activated.

To avoid accidents, bodily harm and/or material damage:

 \Rightarrow Keep free and clear of the machine's range of motion and moving parts. Possible measures to prevent people from accidentally entering the machine's range of motion:

- Juse safety fences
- use safety guards
- use protective coverings
- install light curtains or light barriers

 \Rightarrow Fences and coverings must be strong enough to resist maximum possible momentum.

 \Rightarrow Mount the emergency stop switch in the immediate reach of the operator. Verify that the emergency stop works before commissioning. Do not operate the device if the emergency stop switch is not working.

 \Rightarrow Isolate the drive power connection by means of an emergency stop circuit or use a safety related starting lockout to prevent unintentional start.

 \Rightarrow Make sure that the drives are brought to a safe standstill before accessing or entering the danger zone.

 \Rightarrow Additionally secure vertical axes against falling or dropping after switching off the motor power by, for example:

- mechanically securing the vertical axes,
- adding an external braking/arrester/clamping mechanism or
- ensuring sufficient equilibration of the vertical axes.

The standard equipment motor brake or an external brake controlled by the drive controller are not sufficient to guarantee personal safety!

 \Rightarrow Disconnect electrical power to the equipment using a master switch and secure the switch against reconnection for:

- maintenance and repair work
- cleaning of equipment
- long periods of discontinued equipment use

 \Rightarrow Prevent the operation of high-frequency, remote control and radio equipment near electronics circuits and supply leads. If the use of such devices cannot be avoided, verify the system and the installation for possible malfunctions in all possible positions of normal use before initial commissioning. If necessary, perform a special electromagnetic compatibility (EMC) test on the installation.

3.7 Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting

Magnetic and electromagnetic fields generated by current-carrying conductors and permanent magnets in motors represent a serious personal danger to those with heart pacemakers, metal implants and hearing aids.

Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electrical equipment!

 \Rightarrow Persons with heart pacemakers and metal implants are not permitted to enter following areas:

- Areas in which electrical equipment and parts are mounted, being operated or commissioned.
- Areas in which parts of motors with permanent magnets are being stored, repaired or mounted.

 \Rightarrow If it is necessary for somebody with a pacemaker to enter such an area, a doctor must be consulted prior to doing so. The noise immunity of present or future implanted heart pacemakers differs greatly so that no general rules can be given.

 \Rightarrow Those with metal implants or metal pieces, as well as with hearing aids, must consult a doctor before they enter the areas described above. Otherwise health hazards may occur.

3.8 Protection Against Contact with Hot Parts

Danger of burning via hot surfaces with temperatures over 100°C!

 \Rightarrow Touch the motor only after cooling! A cooling time up to 140 minutes can be necessary! The stated thermical time constant in the technical data is a measure for the necessary cooling

- \Rightarrow Do not work on hot surfaces.
- ⇒ Use safety gloves.

Hot surfaces on device housing! Danger of injury! Danger of burns!

 \Rightarrow Do not touch the housing surface near a hot heat source! Danger of burns!

 \Rightarrow After switching devices off, wait 10 minutes to allow them to cool down before touching them.

 \Rightarrow Touching hot parts of the machine, like the housing which contains the heat sink and resistances, could lead to combustions!

3.9 Protection During Handling and Mounting

In unfavorable conditions, handling and mounting certain parts and components in an improper way can cause injuries. Project Planning Manual | Rexroth IndraDyn S

Safety Instructions for Electric Drives and Controls

CAUTION

Risk of injury by improper handling! Bodily injury by bruising, shearing, cutting, hitting!

 \Rightarrow Observe the general construction and safety regulations on handling and mounting.

- Use suitable devices for mounting and transport.
- ⇒ Avoid jamming and bruising by appropriate measures
- \Rightarrow Always use suitable tools. Use special tools if specified.
- \Rightarrow Use lifting equipment and tools in the correct manner.
- \Rightarrow If necessary, use suitable protective equipment (for example safety goggles, safety shoes, safety gloves).
- \Rightarrow Do not stand under hanging loads.
- \Rightarrow Immediately clean up any spilled liquids because of the danger of skidding.

3.10 Battery Safety

Batteries consist of active chemicals enclosed in a solid housing. Therefore, improper handling can cause injury or material damage.

Risk of injury by improper handling!

- \Rightarrow Do not attempt to reactivate low batteries by heating or other methods (risk of explosion and cauterization).
- \Rightarrow Do not recharge the batteries as this may cause leakage or explosion.
- ⇒ Do not throw batteries into open flames.
- ⇒ Do not dismantle batteries.
- \Rightarrow Do not damage electrical parts which are mounted into the devices.

ß

Environmental protection and disposal! The batteries contained in the product are considered dangerous goods during land, air, and sea transport (risk of explosion) in the sense of the legal regulations. Dispose of used batteries separate from other waste. Observe the local regulations in the country of assembly.

3.11 Protection Against Pressurized Systems

According to the information given in the Project Planning Manuals, some IndraDyn motors, as well as drive controllers, can be partially supplied with externally fed, pressurized media, such as compressed air, hydraulics oil, cooling liquids and cooling lubricating agents. Improper handling of the external supply systems, supply lines or connections can cause injuries or material damage.

Risk of injury	⁵ by imprope	r handling of	pressurized	lines
----------------	-------------------------	---------------	-------------	-------

- \Rightarrow Do not attempt to disconnect, open or cut pressurized lines (risk of explosion).
- \Rightarrow Observe the respective manufacturer's operating instructions.
- \Rightarrow Before dismounting lines, relieve pressure and empty medium.
- \Rightarrow Use suitable protective equipment (for example safety goggles, safety shoes, safety gloves).
- \Rightarrow Immediately clean up any spilled liquids from the floor.

R

Environmental protection and disposal! The agents used to operate the product might not be economically friendly. Dispose of ecologically harmful agents separately from other waste. Observe the local regulations in the country of assembly.

Electric Drives | Bosch Rexroth AG 15/194 and Controls

Technical Data

4 Technical Data

4.1 Definition of Parameters

4.1.1 60K and 100K Parameters

The speed-torque curves and the technical data are specified for two different temperature models.

- 60K temperature stroke on the housing and
- 100K temperature stroke on the winding

When selecting the technical data, observe the temperatures specified! The appropriate parameters are identified by **100K** or **60K**.

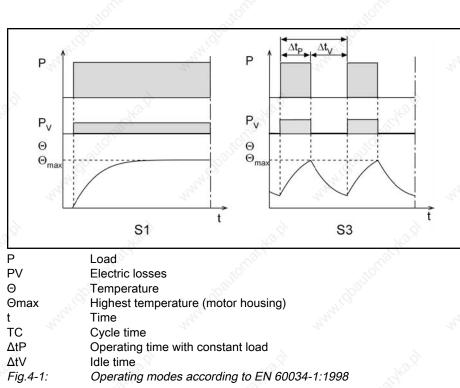
Setup and measurement of the 60K characteristic curve

Setup and measurement of the

100K characteristic curve

The motor data and characteristic curves for IndraDyn S motors are determined under the following conditions:

- Environmental temperature approx. 40°C
- Insulated structure (aluminum flange)
- Permissible temperature increase on the housing ΔT = 60K
- In the case of motors with the optional holding brake, the data are always specified for motors with a holding brake.
- Motors with radial shaft sealing ring


The motor data and characteristic curves for IndraDyn S motors are determined under the following conditions:

- Environmental temperature approx. 40°C
- Structure not insulated (attachment to steel flange, LxWxH = 450x30x350 or 120x40x100)
- Permissible temperature increase on the winding ΔT = 100K
- In the case of motors with the optional holding brake, the data are always specified for motors **with** a holding brake.
- Motors with radial shaft sealing ring

The machine accuracy can be negatively affected by an increased linear expansion during 100K operation. We recommend using 60K data when projecting systems.

4.1.2 Operating Mode

IndraDyn S motors are documented according to the inspection criteria and measurement procedures of EN 60034-1. The specified characteristic curves correspond to operating modes S1 or S3.

Operating Time 4.1.3

Operating mode S3 is supplemented by specification of the ON time (ED) in %. The operating time is calculated as follows:

$$ED = \frac{\Delta t_{P}}{T_{C}} \cdot 100\%$$

ED Cyclic duration factor in % ΔtP

Operating time with constant load

Cyclic duration factor Fig.4-2:

The values specified in the documentation have been determined on the basis of the following parameters:

Cycle duration: 10 min

Cyclic duration factor (ED): 25%

4.1.4 **Dimension Sheet Specifications**

Standstill continuous torque

The permanent shaft load on the motor output shaft at speed n≈0. The different operating modes are indicated by the following indices:

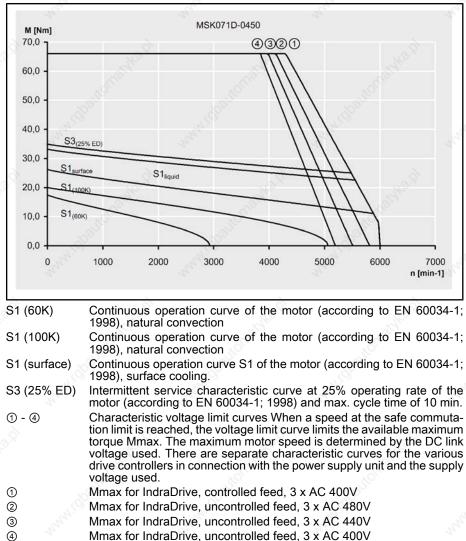
- Continuous torque at standstill, 60K M_{0 60}
- Continuous torque at standstill, 100K M_{0_100}
- Standstill continuous torque surface M_{0_S}

Continuous torque at standstill, liquid

Continuous stand-still current

M_{0 L} For the continuous torque at standstill M₀ necessary phase current (effective value) of the motor at a speed of n≈0. The various operating modes are indicated by the following indices.

l _{0 60(eff)}	Continuous	current at	standstill,	60K
0_60(eff)	Continuous	current at	standstill,	601


Continuous current at standstill, 100K l0_100(eff)

Electric Drives | Bosch Rexroth AG 17/194 and Controls

Technical Data

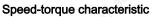
	I _{0_S(eff)}	Standstill continuous torque	surface	
	I _{0_L(eff)}	Continuous current at stands	still, liquid	
Maximum torque	M _{max}	The maximum torque that ca a maximum current of I _{max} (g	an be output for appr guaranteed value wh	nich, owing to
		production tolerances, may be able maximum torque depered only the specified maximum binding.	nds on the drive co	ntroller used.
Peak current	I _{max(eff)}	Maximum short-term branch of the motor permitted witho netic circuit of the motor.		
Torque constant at 20° C	K _{M_N}	Ratio of the torque to the is square value) at a motor tem up to approx. $i = 2x I_0 _{60(eff)}$.	•	•
Constant voltage at 20°C	К _{ЕМК_1000}	Root-mean-square value of motor temperature of 20°C Unit: V/1000min ⁻¹ .		
Winding resistance at 20°C	R ₁₂	Resistance measured betwe	en two winding ends	s in ohms (Ω).
Winding inductivity	L ₁₂	Inductivity measured betwee	en two winding ends	in mH.
Discharge capacity	C _{ab}	Capacity of short-circuited per the motor housing.	ower connections U,	V, W against
Number of pole pairs	p No.	Number of pole pairs of the	motor.	
Moment of inerta of rotor	J _{rot}	Moment of inertia of the robrake.	otor without the opt	ional holding
Maximum torque	n _{max}	Maximum permissible speec have mechanical (centrifuga cal (DC link voltage) causes	I forces, bearing stre	
Mass	m	Motor mass without the hold		ven in ka.
Sound pressure level	Lp	Airborne noise emitted, in d		,

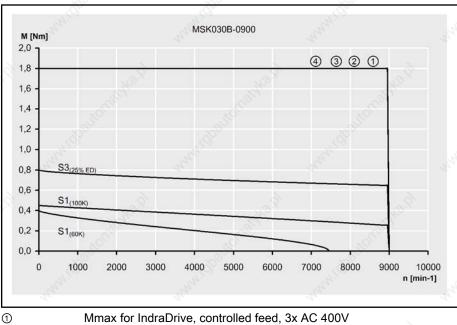
4.1.5 Example of a Characteristic Curve

Example of a motor characteristic curve

Fig.4-3:

4.2 MSK030B Technical Data


Description	Symbol	Unit	М	SK030B-0900-N	N
Continuous torque at standstill, 60K	M _{0_60}	Nm	13.0	0,4	13.9
Continuous current at standstill, 60K	I _{0_60(eff)}	A	Clark.	1,5	ST. A
Continuous torque at standstill, 100K	M _{0_100}	Nm	, (d)auto	0,4	, dbailto.
Continuous current at standstill, 100K	I _{0_100(eff)}	А	A. Martin	1,7	A. Maria
Maximum torque	M _{max}	Nm	29.9	1,8	39.9
Maximum current	I _{max(eff)}	A	Capp.	6,8	Sel. Contraction of the second
Torque constant at 20°C	K _{M_N}	Nm/A	~alto	0,29	~3 ⁵⁶
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min⁻¹	MARIE	17,9	ANNOV C
Winding resistance at 20°C	R ₁₂	Ohm	2	7,20	2
Winding inductivity	L ₁₂	mH	ANO.P	8,100	No.2
Leakage capacitance of the compo- nent	C _{ab}	nF	waltona	0,7	autor
Number of pole pairs	р	-	1.44. ⁰	3	3.44 ^{1,0}
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	4 ²	0,00001	7 2011
Thermal time constant	T _{th}	min		19,0	
Maximum speed	n _{max}	min ⁻¹	×0 ¹⁷⁰	9000	*0 ⁶
Sound pressure level	L _P	dB[A]	, Konse	<75	.8000
Ambient temperature during opera- tion	T _{um}	°C	And Marine	0 40	ALAN AND
Degree of protection		6	6	IP65	<u>.</u> 8
Insulation class EN 60034-1		Nº 1	N°	F	Stories and the second s


1) Fig.4-4: Specified without brake. If necessary, add the moment of inertia brake. *Technical data*

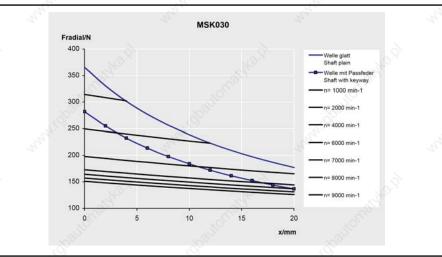
Description	Symbol	Unit	B	REMSE-231389	And a second
holding torque	M ₄	Nm		1,0	
rated voltage ±10%	U _N	V	And S	24	Ke.S.
rated currend	I _{N so}	A	NOLLON .	0,40	70,
connection time	t	ms	. ADau	3	. Span
disconnection time	t ₂	ms	and the second s	4	. Starter i
moment of inertia brake	J _{rot}	kg*m2		0,000007	
mass brake	M _{Br}	kg	S.	0,2	S.

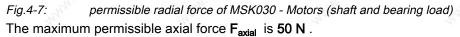
Fig.4-5: MSK030: Holding brake - Technical data (optional)

,S.

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK030B-0900

Diagram for determining the maximum permissible radial force $\mathbf{F}_{\text{radial}}$.


Shaft load

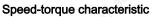

2

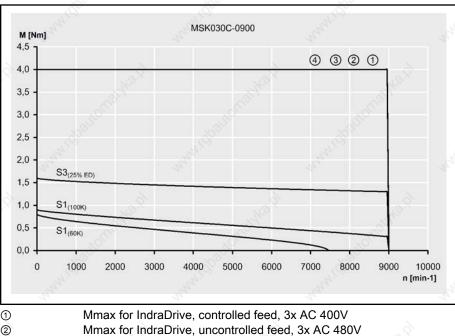
3

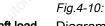
4

Fig.4-6:

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

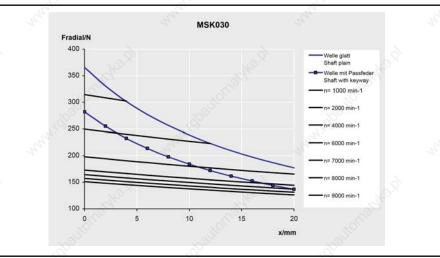

4.3 MSK030C Technical Data

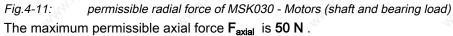

Description	Symbol	Unit	M	SK030C-0900-NN	2.
Continuous torque at standstill, 60K	M _{0_60}	Nm	and the second s	0,8	
Continuous current at standstill, 60K	I _{0_60(eff)}	A	- Calif	1,5	2.
Continuous torque at standstill, 100K	M _{0_100}	Nm	1 CORDE	0,9	1600110
Continuous current at standstill, 100K	I _{0_100(eff)}	А	N. M.	1,7	A.M.
Maximum torque	M _{max}	Nm		4,0	<u>}</u>
Maximum current	I _{max(eff)}	A	Claroff.	6,8	Ś
Torque constant at 20°C	K _{M_N}	Nm/A	wayee.	0,58	~0 ³⁶
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min⁻¹	Martin C	35,6	ANNA!!!
Winding resistance at 20°C	R ₁₂	Ohm	2	9,80	
Winding inductivity	L ₁₂	mH	Nº.X	14,100	
Leakage capacitance of the component	C _{ab}	nF	Baltono	1,3	waiter
Number of pole pairs	р	-		3	1. AND CONTRACT OF CONTRACT.
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	4 ¹ ,	0,00003	24
Thermal time constant	T _{th}	min	. W. ?.	15,0	
Maximum speed	n _{max}	min ⁻¹	×0 ⁶⁷⁰⁻¹	9000	76.
Sound pressure level	L _P	dB[A]	Ser.	<75	. Spart
Ambient temperature during opera- tion	T _{um}	°C	AND	0 40	Mar
Degree of protection		6	6	IP65	N
Insulation class EN 60034-1		Nº 1	No.	F	


1) *Fig.4-8:* Specified without brake. If necessary, add the moment of inertia brake. *Technical data*

Description	Symbol	Unit	BREMSE-231	389
Holding torque	M4	Nm	1,0	
Rated voltage ±10%	U _N	V	24	ALP.S
Rated currend	I _{N so}	A	0,40	70x 100
Connection time	t ₁	ms	3	. 8 ⁰³⁰
Disconnection time	t ₂	ms	4	and the second
Moment of inertia brake	J _{rot}	kg*m2	0,00007	
Mass brake	M _{Br}	kg	0,2	S.

Fig.4-9: MSK030: Holding brake - Technical data (optional)




3

4

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK030C-0900 Diagram for determining the maximum permissible radial force $\mathbf{F}_{\text{radial}}$.

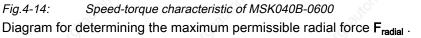
Shaft load

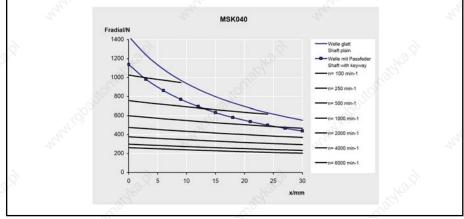
For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

4.4 MSK040B Technical Data

Description	Symbol	Unit	М	SK040B-0600-NN	-2°.
Continuous torque at standstill, 60K	M _{0_60}	Nm	12.01	1,7	2
Continuous current at standstill, 60K	I _{0_60(eff)}	A	Clark.	2,0	2
Continuous torque at standstill, 100K	M _{0_100}	Nm	, dbauto	100auc	. Goate
Continuous current at standstill, 100K	I _{0_100(eff)}	А	A. A	Anna	N. N. N. N.
Maximum torque	M _{max}	Nm	, ad	5,1	2
Maximum current	I _{max(eff)}	A	Capp.	8,0	2
Torque constant at 20°C	K _{M_N}	Nm/A	~allo	0,95	~3 ¹¹⁰ .
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	MANNA C	58,5	ANNO STAND
Winding resistance at 20°C	R ₁₂	Ohm	2	7,90	
Winding inductivity	L ₁₂	mH	AKO.P	36,000	5.
Leakage capacitance of the compo- nent	C _{ab}	nF	waltona	1,5	ration
Number of pole pairs	р	-	1.44. ¹ .01	4	1.41 OT
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	2 ¹	0,00010	4 ²
Thermal time constant	T _{th}	min	.Nº?	13,0	5.
Maximum speed	n _{max}	min ⁻¹	· 6/10.	7500	3.
Sound pressure level	L _P	dB[A]	, Span	<75	Ser.
Ambient temperature during opera- tion	T _{um}	°C	ANN MART	0 40	and all in
Degree of protection		6	6	IP65	>
Insulation class EN 60034-1		2 Carl	N.	F N	-

1) Fig.4-12: Specified without brake. If necessary, add the moment of inertia brake. *Technical Data*


Description	Symbol	Unit	BREMSE-305590	
Holding torque	M ₄	Nm	4,0	
Rated voltage ±10%	U _N	V	24	
Rated currend	I _{N số}	A	0,50	B
Connection time	t ₁	ms	35	. 20 ⁰ 0
Disconnection time	t ₂	ms	25	and the second sec
Moment of inertia brake	J _{rot}	kg*m2	0,000023	
Mass brake	M _{Br}	kg	0,3	


Fig.4-13: MSK040: Holding brake - Technical data (optional)

Speed-torque characteristics

Shaft load

 $\label{eq:Fig.4-15:} \textit{permissible radial force of MSK040 - Motors (shaft and bearing load)} \\ \text{The maximum permissible axial force F_{axial} is $200 N} .$

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

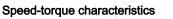
autor

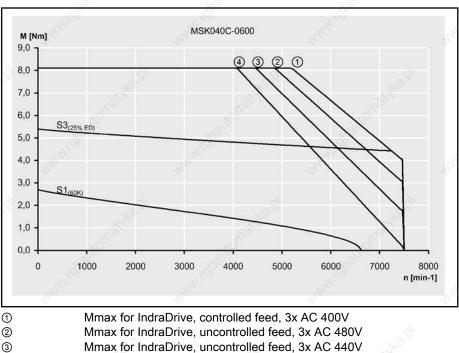
Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 25/194 and Controls

Technical Data

4.5 MSK040C Technical Data

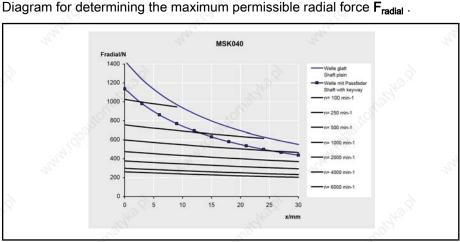

Description	Symbol	Unit	M	SK040C-0600-	NN	4.
continuous torque at standstill, 60K	M _{0_60}	Nm	, and	2,7	13.9	
continuous current at standstill, 60K	I _{0_60(eff)}	A	Mornath	3,1	Caroline Caroline	HOF
continuous torque at standstill, 100K	M _{0_100}	Nm	and the Contract of Contract o	3,1		MANI SO
continuous current at standstill, 100K	I _{0_100(eff)}	А	<i>x</i>		8	2
maximum torque	M _{max}	Nm	ad the n	8,1	Nº.	
maximum current	I _{max(eff)}	Α	torne	12,4	C°	105
torque constant at 20°C	K _{M_N}	Nm/A	Sec. 1	0,95		. S ^{or}
constant voltage at 20°C	K _{EMK_1000}	V/min ⁻¹	And Contraction of the Contracti	58,2		A. A.
winding resistance at 20°C	R ₁₂	Ohm		3,90		
winding inductivity	L ₁₂	mH	NO.S	21,300	N28	
leakage capacitance of the compo- nent	C _{ab}	nF	- automan	2,0	S. C.	autori
number of pole pairs	р	-	ALCO TO	4		
moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	4 ¹	0,00014		14
thermal time constant	T _{th}	min	16. S.	16,0	×2.8	
maximum speed	n _{max}	min ⁻¹	Charles	7500	S. C.	S.
sound pressure level	L _P	dB[A]	20035	<75		10800
ambient temperature during opera- tion	T _{um}	°C	Martin	0 40		Andra I.
degree of protection		- 6	6	IP65	6	
insulation class EN 60034-1		Nº.	×.	F	No."	


1) Fig.4-16:

specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural cooling)

Description	Symbol	Unit	BF	REMSE-305590	and the second s
holding torque	M ₄	Nm		4,0	
rated voltage ±10%	U _N	V	×2.	24	28.S.
rated currend	I _N	A	onation	0,50	S
connection time	t ₁	ms	dogue.	35	. 19 ³⁰
disconnection time	t ₂	ms	and the second s	25	and the second
moment of inertia brake	J _{rot}	kg*m2	-2°	0,000023	
mass brake	M _{Br}	kg	12.Q	0,3	2.0

Fig.4-17: MSK040: Holding brake - Technical data (optional)



Shaft load

4

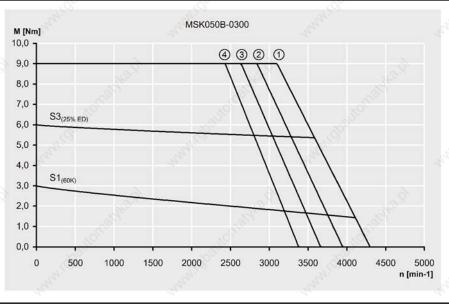
Fig.4-18:

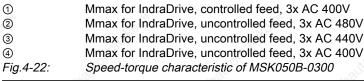
Mmax for IndraDrive, uncontrolled feed, 3x AC 400V

Speed-torque characteristic of MSK040C-0600

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

4.6 MSK050B Technical Data


Description	Symbol	Unit	MSK050B-0300-NN	MSK05	0B-0600-NN	
continuous torque at standstill, 60K	M _{0 60}	Nm	3,0			
continuous current at standstill, 60K	I _{0_60(eff)}	A	1,8	. Kornabila	3,7	
continuous torque at standstill, 100K	M _{0_100}	Nm	ANN. Contraction of the second second	3,4	3,4	
continuous current at standstill, 100K	I _{0_100(eff)}	A		č.	4,2	
maximum torque	M _{max}	Nm	9,0			
maximum current	I _{max(eff)}	Α	7,2	KOLLO	14,8	
torque constant at 20°C	K _{M_N}	Nm/A	1,80	. Com	0,90	
constant voltage at 20°C	K _{EMK_1000}	V/min ⁻¹	111,0	en e	55,0	
winding resistance at 20°C	R ₁₂	Ohm	13,10		3,30	
winding inductivity	L ₁₂	mH	76,400	19,900		
leakage capacitance of the compo- nent	C _{ab}	nF	2,1		and the second	
number of pole pairs	р	-	A.C.	4	and State	
moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,00028			
thermal time constant	T _{th}	min	.×2.9	8,0		
maximum speed	n _{max}	min ⁻¹	4300	- Star	6000	
sound pressure level	L _P	dB[A]	abaut.	<75	North Contraction	
ambient temperature during opera- tion	T _{um}	°C	AND AND A	0 40	ANNA! S	
degree of protection		- 6	6	IP65		
insulation class EN 60034-1		Nº.	N.	F N		


1) *Fig.4-20:* specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural cooling)*

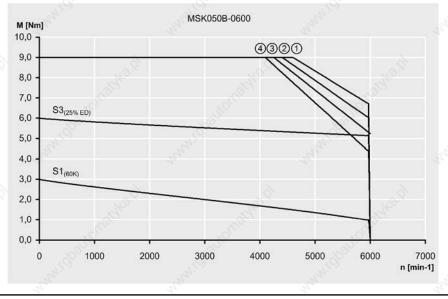

Description	Symbol	Unit	BREMSE-298905		Sec. Carlos
holding torque	M ₄	Nm	5,0		
rated voltage ±10%	U _N	V	24		
rated currend	I _N	A	0,65		
connection time	t	ms	AD ²¹¹⁰⁰	13	10 ⁰⁰⁰⁰
disconnection time	t ₂	ms	. and .	43	. ANN. S
moment of inertia brake	J _{rot}	kg*m2	0,000107		
mass brake	M _{Br}	kg		0,7	2.Q

Fig.4-21: MSK050: Holding brake - Technical data (optional)

Speed-torque characteristic

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK050B-0600

1 2 3 4

Fig.4-23:

1 2

3

4

Electric Drives | Bosch Rexroth AG 29/194 and Controls

Technical Data

Shaft load Diagram for determining the maximum permissible radial force F_{radial}

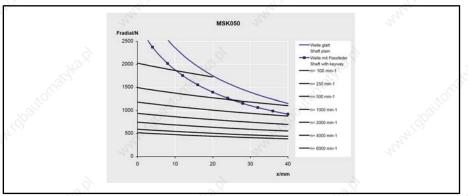


Fig.4-24:permissible radial force of MSK050 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 300 N.

4.7 MSK050C Technical Data

Description	Symbol	Unit	MSK050C-0300-NN	MSK050C-0600-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	5,	0
Continuous current at standstill, 60K	I _{0_60(eff)}	А	3,1	6,2
Continuous torque at standstill, 100K	M _{0_100}	Nm	5,	5
Continuous current at standstill, 100K	I _{0_100(eff)}	А	19 ¹⁰	6,8
Maximum torque	M _{max}	Nm	15	,0
Maximum current	I _{max(eff)}	А	12,4	24,8
Torque constant at 20°C	K _{M_N}	Nm/A	1,77	0,89
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	109,0	55,0
Winding resistance at 20°C	R ₁₂	Ohm	6,60	1,70
Winding inductivity	L ₁₂	mH	46,100	11,000
Leakage capacitance of the component	C _{ab}	nF	2,	6
Number of pole pairs	р	10. 14	10 L	1 ₁₁ 10
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m ²	0,00	033
Thermal time constant	ि T _{th}	min	14	,0
Maximum speed	n _{max}	min ⁻¹	4700	6000
Sound pressure level	L _P	dB[A]	<7	75
Ambient temperature during opera- tion	T _{um}	°C	0	. 40
Degree of protection	0	-	IP	65
Insulation class EN 60034-1	0	-	A F	-

1) *Fig.4-25:* Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural cooling)

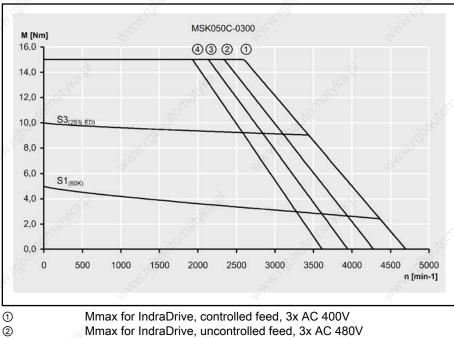
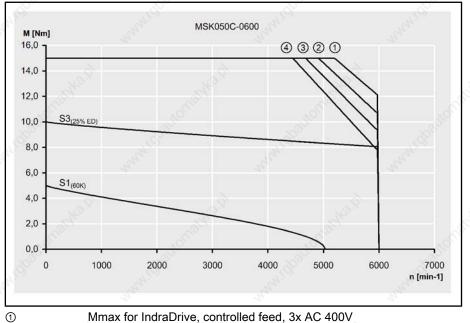

Description	Symbol	Unit		BRE	MSE-298	905	
Holding torque	M ₄	Nm			5,0		
Rated voltage ±10%	U _N	V	_H2.8		24		
Rated currend	I _N	A	C.C.	⁶ 70,	0,65		5500
Connection time	t ₁	ms		. 80°00	13	. S ²⁵⁵	
Disconnection time	t ₂	ms		and and it	43	and and a	
Moment of inertia brake	J _{rot}	kg*m2		-7.	0,000107	24	
Mass brake	M _{Br}	kg	10 ⁹		0,7		10 ²

Fig.4-26: MSK050: Holding brake - Technical data (optional)

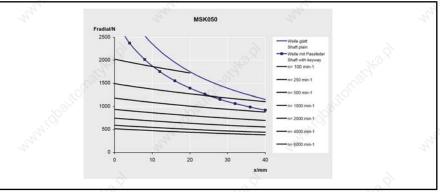

Electric Drives | Bosch Rexroth AG 31/194 and Controls

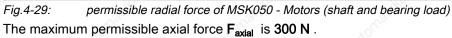
Technical Data

Speed-torque characteristic

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK050C-0300

3


4

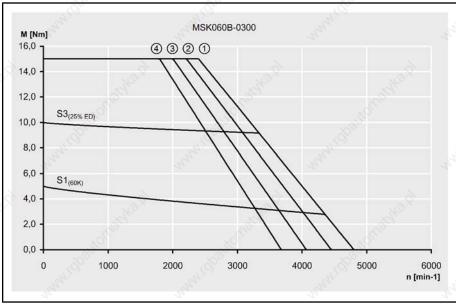

Fig.4-27:

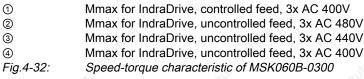
Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK050C-0600

Shaft load

ad Diagram for determining the maximum permissible radial force F_{radial}.

4.8 MSK060B Technical Data


Description	Symbol	Unit	MSK060B-0300-NN	MSK060B-0600-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	5,0	
Continuous current at standstill, 60K	I _{0_60(eff)}	A	3,0	6,1
Continuous torque at standstill, 100K	M _{0_100}	Nm	, charles	- Claute Charte
Continuous current at standstill, 100K	I _{0_100(eff)}	А	A. A	an <u>na</u> anna
Maximum torque	M _{max}	Nm	39	15,0
Maximum current	I _{max(eff)}	A	12,0	24,4
Torque constant at 20°C	K _{M_N}	Nm/A	1,85	0,90
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	113,5	55,2
Winding resistance at 20°C	R ₁₂	Ohm	7,30	1,85
Winding inductivity	L ₁₂	mH	73,000	18,000
Leakage capacitance of the compo- nent	C _{ab}	nF	walton to	2,1
Number of pole pairs	р	-	1.44 (S)	4
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	3°	0,00048
Thermal time constant	T _{th}	min	No.3	16,0
Maximum speed	n _{max}	min⁻¹	4800	6000
Sound pressure level	Lp	dB[A]	Bass	<75
Ambient temperature during opera- tion	T _{um}	°C	AMARINE .	0 40
Degree of protection		- 2	d'	IP65
Insulation class EN 60034-1		Nº 1	Stor.	F


1) Fig.4-30: Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural cooling)

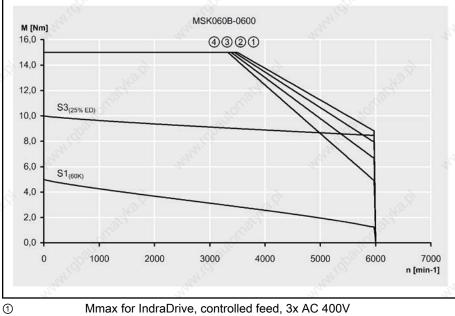
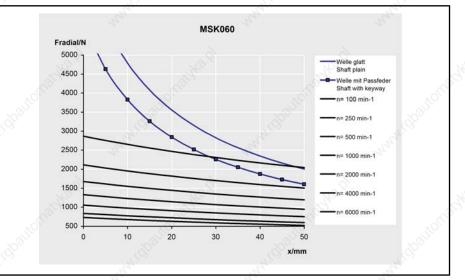

Description	Symbol	Unit	BREMSE	-299026	344
Holding torque	M4	Nm	10	,0	
Rated voltage ±10%	U _N	V	24	4	
Rated currend	I _{N so}	A	0,7	75	S
Connection time	t ₁	ms	2	5000	. Ross
Disconnection time	t ₂	ms	4	0	and a state
Moment of inertia brake	J _{rot}	kg*m2	0,000	059	-1.
Mass brake	M _{Br}	kg	0,	4 🔊	

Fig.4-31: MSK060: Holding brake - Technical data (optional)

Speed-torque characteristics

1 2

3


4

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK060B-0600

Electric Drives | **Bosch Rexroth AG** 35/194 and Controls

Technical Data

Shaft load Diagram for determining the maximum permissible radial force F_{radial}

 $\label{eq:Fig.4-34:} \textit{permissible radial force of MSK060 - Motors (shaft and bearing load)} \\ \text{The maximum permissible axial force F_{axial} is $350 N$.}$

4.9 MSK060C Technical Data

Description	Symbol	Unit	MSK060C-0300-NN	MSK060C-0600-NN	1
Continuous torque at standstill, 60K	M _{0_60}	Nm	8,	0	
Continuous current at standstill, 60K	I _{0_60(eff)}	А	4,8	9,5	
Continuous torque at standstill, 100K	M _{0_100}	Nm	8,	8	
Continuous current at standstill, 100K	I _{0_100(eff)}	A	5,5	10,5	4
Continuous torque at standstill, sur- face	M _{0_S}	Nm	10	,4 ₃₀ 12.0	
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	6,2	108 ¹¹ 0 ^{ff}	
Maximum torque	M _{max}	Nm	24	,0	
Maximum current	I _{max(eff)}	А	19,2	38,0	24
Torque constant at 20°C	K _{M_N}	Nm/A	1,85	0,93	
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	114,0	57,0	
Winding resistance at 20°C	R ₁₂	Ohm	3,10	0,80	
Winding inductivity	L ₁₂	mH	35,900	8,600	S.
Leakage capacitance of the compo- nent	C _{ab}	nF	2,1	2,2	
Number of pole pairs	р	-	4	1	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,00	080	
Thermal time constant	T _{th}	min	14	.,0	34
Maximum speed	n _{max}	min⁻¹	4900	6000	
Sound pressure level	[™] L _P	dB[A]		75	
Ambient temperature during opera- tion	T _{um}	°C	0	40	
Degree of protection		an ich	IP	65	
Insulation class EN 60034-1	2		A ^{rr} F	- 4 ²	2

1) S *Fig.4-35:* M

Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural and surface cooling)

Description	Symbol	Unit 🔬	BREMSE-299026	
Holding torque	M ₄ Nm		10,0	
Rated voltage ±10%	U _N	V	24	3
Rated currend	I _N	Α	0,75	
Connection time		ms	25	

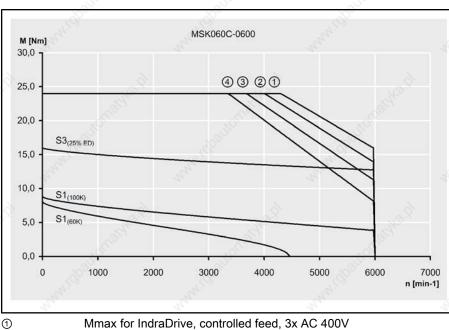
Electric Drives | Bosch Rexroth AG 37/194 and Controls

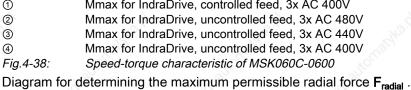
Technical Data

Description	Symbol	Unit		BREMSE-299026	
Disconnection time	t ₂	ms	34 ⁴⁶	40	All a
Moment of inertia brake	J _{rot}	kg*m2		0,000059	~
Mass brake	M _{Br}	kg	2	0,4	3

Speed-torque characteristic

MSK060C-0300 M [Nm] 30,0 . 4321 25,0 20,0 S3(25% ED) 15,0 S1_{surfac} 10,0 S1(100K) S1(60K) 5,0 0,0 . 0 1000 2000 3000 5000 6000 4000 n [min-1]

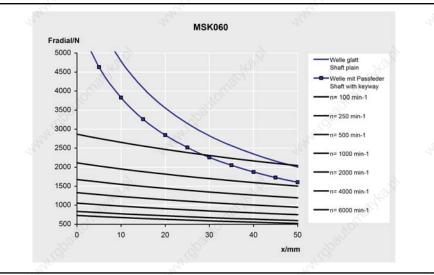

MSK060: Holding brake - Technical data (optional)

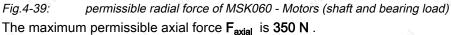

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK060C-0300

④ Fig.4-37:

1 2 3

Fig.4-36:


Shaft load

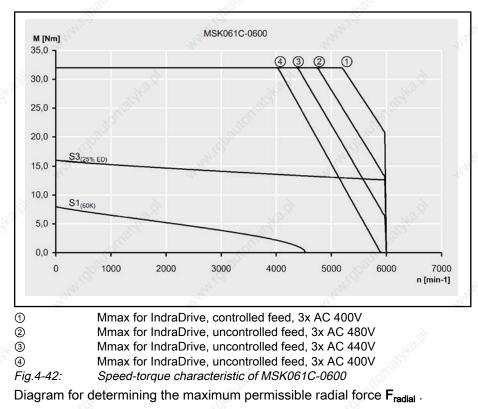

2

3

4

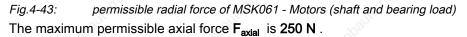
Fig.4-38:

4.10 MSK061C Technical Data


Description	Symbol	Unit	м	SK061C-0600-I	NN	4.
Continuous torque at standstill, 60K	M _{0_60}	Nm	12.0	8,0	32	
Continuous current at standstill, 60K	I _{0_60(eff)}	A	C.S.S.	7,7	E.	2
Continuous torque at standstill, 100K	M _{0_100}		100auc	, toponto		Chanto.
Continuous current at standstill, 100K	I _{0_100(eff)}		A. A	4. ⁴⁴		1. Carlos and a second se
Maximum torque	M _{max}	Nm	13.9	32,0	33.2	
Maximum current	I _{max(eff)}	A	Clarge Contraction	34,7	Sel.	Ś
Torque constant at 20°C	K _{M_N}	Nm/A	~allo	1,14		~3 ⁵⁰
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	MARCH C	70,5		Aland, O
Winding resistance at 20°C	R ₁₂	Ohm	2	1,55	~	
Winding inductivity	L ₁₂	mH	Mr. X	6,700	Nº.º	
Leakage capacitance of the compo- nent	C _{ab}	nF	waltona.	2,1	(C ⁻¹	walton
Number of pole pairs	р	-	1.14 ¹ .01	4		19 ¹
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	22	0,00075		24
Thermal time constant	T _{th}	min		15,0	. Nº ?	
Maximum speed	n _{max}	min ⁻¹	· 37.	6000	Ì,	
Sound pressure level	L _P	dB[A]	. Spart	<75		Ser.
Ambient temperature during opera- tion	T _{um}	°C	ANN AND	0 40		All and a second
Degree of protection		6	6	IP 65	6	
Insulation class EN 60034-1		2 Carl	S.	F	No.	

1) Fig.4-40: Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural cooling)

Description	Symbol	Unit	And E	BREMSE-299026		444
holding torque	M4	Nm		10,0		
rated voltage ±10%	U _N	V		24	NO.S	
rated currend	I _{N sõ}	Α	. office .	0,75		°o,
connection time	t ₁	ms	, dian	25		.800
disconnection time	t ₂	ms	and in	40		and the second s
moment of inertia brake	J _{rot}	kg*m2		0,000059		
mass brake	M _{Br}	kg	202	0,4	20.9	


Fig.4-41: MSK061: Holding brake - Technical data (optional)

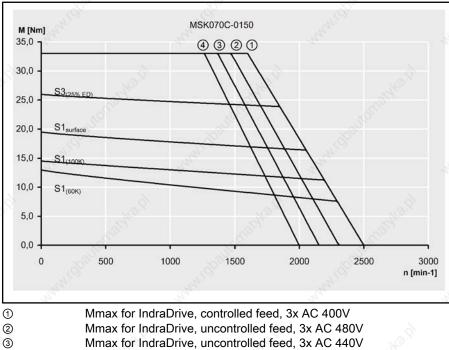
Speed-torque characteristics

Shaft load

4.11 MSK070C Technical Data

Description	Symbol	Unit	MSK070C-0150-NN	MSK070C-0300-NN	MSK070C-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm		13,0	, Ì
Continuous current at standstill, 60K	I _{0_60(eff)}	A	4,1	8,2	12,3
Continuous torque at standstill, 100K	M _{0_100}	Nm	, GDRUED	14,5	1 Charles
Continuous current at standstill, 100K	I _{0_100(eff)}	A	4,6	9,2	13,7
Continuous torque at standstill, sur- face	M _{0_S}	Nm	ad the s	19,5	3 ^Q
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	6,2	12,3	18,5
Maximum torque	M _{max}	Nm		33,0	and Contraction
Maximum current	I _{max(eff)}	А	16,4	32,8	36,9
Torque constant at 20°C	K _{M_N}	Nm/A	3,47	1,74	1,16
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	213,2	107,0	71,3
Winding resistance at 20°C	R ₁₂	Ohm	4,70	1,13	0,55
Winding inductivity	L ₁₂	mH	34,900	8,300	4,000
Leakage capacitance of the compo- nent	C _{ab}	nF	3,8	4,0	3,1
Number of pole pairs	р	310) -	13 ¹³ 1	6	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	. Chaite	0,00291	. Costo
Thermal time constant	T _{th}	min	22	2,0	31,0
Maximum speed	n _{max}	min ⁻¹	2500	5500	6000
Sound pressure level	L _P	dB[A]	<75	< 75	<75
Ambient temperature during opera- tion	T _{um}	°C	autorian	0 40	-alto
Degree of protection	an ion	-	and I O	IP65	ALIGN
Insulation class EN 60034-1	10	-	1920	Jan F	La.

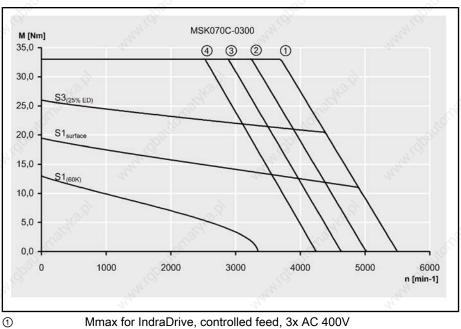
1) *Fig.4-44:* Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*

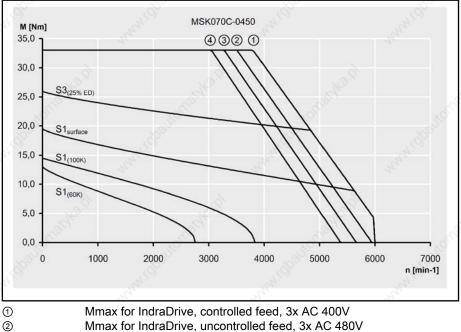

Description	Symbol	Unit		BREMSE-2983	97
Holding torque	M ₄	Nm	Spart of the second sec	23,0	See.
Rated voltage ±10%	U _N	V	A. A	24	S. S
Rated currend	I _N	Α		0,79	
Connection time	t ₁	ms		م 130	No.S.

42/194 Bosch Rexroth AG | Electric Drives and Controls

Technical Data

Description	Symbol	Unit		BREMSE-298397		
Disconnection time	t ₂	ms	All A	180	3	
Moment of inertia brake	J _{rot}	kg*m2	~	0,000300	~	
Mass brake	M _{Br}	kg	No.1	1,6	No.	


Speed-torque characteristics


4 Fig.4-46: Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070C-0150

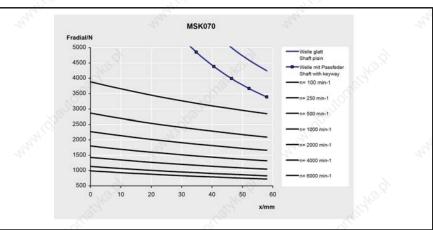
Electric Drives | Bosch Rexroth AG 43/194 and Controls

Technical Data

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Fig.4-47: Speed-torque characteristic of MSK070C-0300

3 4 Fig.4-48:

2


3

4

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070C-0450

Shaft load

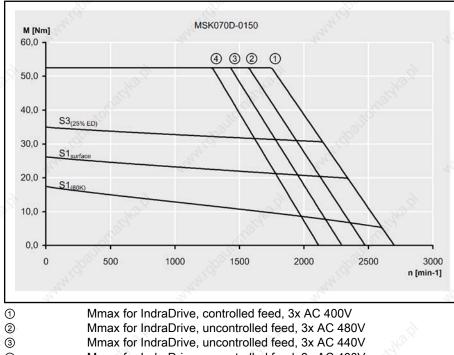
load Diagram for determining the maximum permissible radial force F_{radial}.

 $\label{eq:Fig.4-49:} \textit{permissible radial force of MSK070 - Motors (shaft and bearing load)} \\ \text{The maximum permissible axial force F_{axial} is $500 N} \, .$

4.12 MSK070D Technical Data

Description	Symbol	Unit	MSK070D-0150-NN	MSK070D-0300-NN	MSK070D-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm		17,5	8.Q1
Continuous current at standstill, 60K	I _{0_60(eff)}	A	6,2	11,0	16,6
Continuous torque at standstill, 100K	M _{0_100}	Nm	1 Gbauto	20,0	1600110
Continuous current at standstill, 100K	I _{0_100(eff)}	A	7,1	12,6	22,0
Continuous torque at standstill, sur- face	M _{0_S}	Nm	the startes is	26,3	3 ^{,2}
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	9,3	16,5	24,9
Maximum torque	M _{max}	Nm	and the second s	52,5	ANI OF
Maximum current	I _{max(eff)}	Α	24,8	33,0	49,8
Torque constant at 20°C	K _{M_N}	Nm/A	3,10	1,75	1,16
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	210,0	107,3	71,1
Winding resistance at 20°C	R ₁₂	Ohm	3,20	0,75	0,37
Winding inductivity	L ₁₂	mH	25,900	6,000	3,000
Leakage capacitance of the compo- nent	C _{ab}	nF	5,0	4,5	
Number of pole pairs	р	39 <u>-</u>	1313Y	6	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	. Chaite	0,00375	. Bonto
Thermal time constant	T _{th}	min	Achille .	23,0	And and
Maximum speed	n _{max}	min ⁻¹	2700	4900	6000
Sound pressure level	L _P	dB[A]	< 75	<	75
Ambient temperature during opera- tion	T _{um}	°C	- altorian	0 40	- alto
Degree of protection	an ION	-	and Contraction	IP65	ALICO
Insulation class EN 60034-1	2	-	Ra	Jan F	Ray

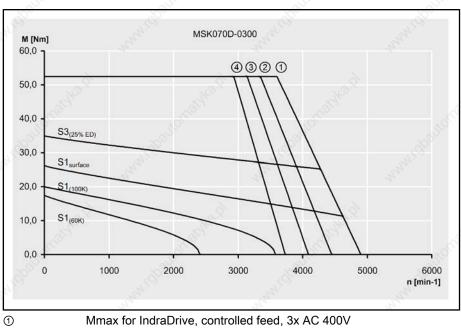
1) *Fig.4-50:* Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*

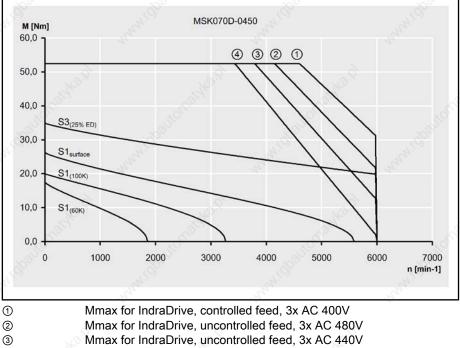

Description	Symbol	Unit	NOLLE .	BREMSE-298	397
Holding torque	M ₄	Nm	Sec.	23,0	S.
Rated voltage ±10%	U _N	V	and the second se	24	5.00
Rated currend	I _N	Α	· · · · · · · · · · · · · · · · · · ·	0,79	
Connection time	t ₁	ms	22	130	16 ^{.2}

46/194 Bosch Rexroth AG | Electric Drives and Controls

Technical Data

Description	Symbol	Unit	BF	REMSE-298397	
Disconnection time	t ₂	ms	And I	180	J.
Moment of inertia brake	J _{rot}	kg*m2	~	0,000300	~
Mass brake	M _{Br}	kg	NO.	1,6	. No.


Speed-torque characteristics


4) Fig.4-52: Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070D-0150

Electric Drives | Bosch Rexroth AG 47/194 and Controls

Technical Data

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Fig.4-53: Speed-torque characteristic of MSK070D-0300

4 Fig.4-54:

2

3

4

Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070D-0450

Shaft load

load Diagram for determining the maximum permissible radial force F_{radial}.

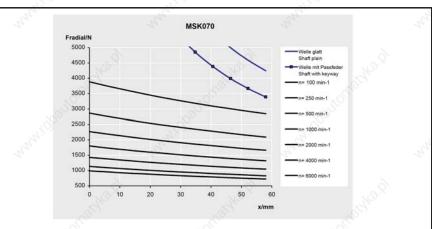
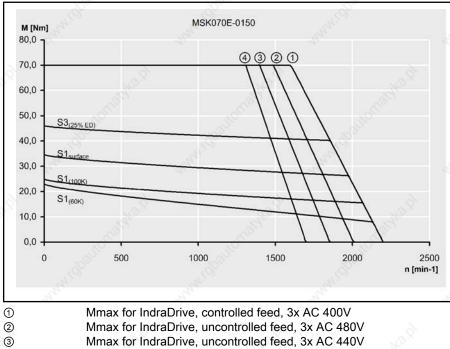


Fig.4-55:permissible radial force of MSK070 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 500 N.

4.13 MSK070E Technical Data

Description	Symbol	Unit	MSK070E-0150-NN	MSK070E-0300-NN	MSK070E-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	1.5	23,0	2 ^{.2}
Continuous current at standstill, 60K	I _{0_60(eff)}	A	6,4	15,4	19,3
Continuous torque at standstill, 100K	M _{0_100}	Nm	, labauto	25,0	1 doalto.
Continuous current at standstill, 100K	I _{0_100(eff)}	A	7,0	16,7	<u>Ref</u>
Continuous torque at standstill, sur- face	M _{0_S}	Nm	- tyles	34,5	3 ² 2
Continuous current at standstill, sur- face	I _{0_S(eff)}	Α	9,6	23,1	29,0
Maximum torque	M _{max}	Nm	70,0	65,0	60,0
Maximum current	I _{max(eff)}	Α	25,6	49,3	57,9
Torque constant at 20°C	K _{M_N}	Nm/A	3,94	1,64	1,31
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	242,4	101,0	80,6
Winding resistance at 20°C	R ₁₂	Ohm	3,10	0,55	0,36
Winding inductivity	L ₁₂	mH	24,500	3,900	2,700
Leakage capacitance of the component	C _{ab}	nF	6,3	3,5	6,7
Number of pole pairs	р	199 <u>-</u>	C.S.C.	6	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	. Obalico	0,00458	. Balto
Thermal time constant	T _{th}	min	75,0	32	2,0
Maximum speed	n _{max}	min ⁻¹	2200	5300	6000
Sound pressure level	L _P	dB[A]	Ma.	<75	2.S.
Ambient temperature during opera- tion	T _{um}	°C	- attor as	0 40	- Sutor
Degree of protection	N. Or	-	and Co	IP65	and Contraction
Insulation class EN 60034-1		-	Nº2	J ^{AA} F	292

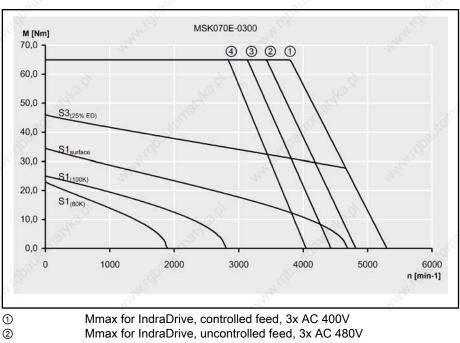
1) *Fig.4-56:* Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*


Description	Symbol	Unit	NOLLE .	BREMSE-298	397
Holding torque	M ₄	Nm	Sec.	23,0	S.
Rated voltage ±10%	U _N	V	and the second se	24	S. S. S.
Rated currend	I _N	Α	· · · · · · · · · · · · · · · · · · ·	0,79	
Connection time	t ₁	ms	22	130	16 ^{.2}

50/194 Bosch Rexroth AG | Electric Drives and Controls

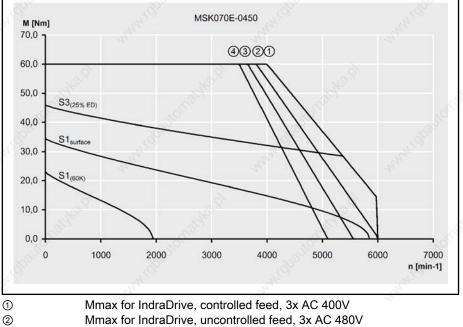
Technical Data

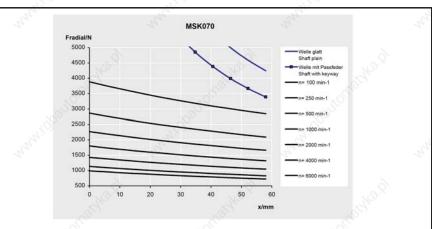
Description	Symbol	Unit		BREMSE-298397	
Disconnection time	t ₂	ms	4	180	4
Moment of inertia brake	J _{rot}	kg*m2	~	0,000300	~
Mass brake	M _{Br}	kg	Nº.	1,6	A.

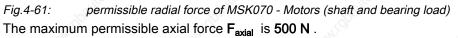

Speed-torque characteristics

4) Fig.4-58: Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070E-0150

Electric Drives | Bosch Rexroth AG 51/194 and Controls


Technical Data





3 4 Fig.4-60: Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK070E-0450

Shaft load

load Diagram for determining the maximum permissible radial force F_{radial}.

4.14 MSK071D Technical Data

Description	Symbol	Unit	MSK071D-0200-NN	MSK071D-0300-NN	MSK071D-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	. A.	17,5	2.9
Continuous current at standstill, 60K	I _{0_60(eff)}	A	7,3	9,0	15,4
Continuous torque at standstill, 100K	M _{0_100}	Nm	1 (d)auto	20,0	, topouro
Continuous current at standstill, 100K	I _{0_100(eff)}	A	8,6	10,7	17,6
Continuous torque at standstill, sur- face	M _{0_S}	Nm	the states	26,3	3 ² 2
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	11,0	13,5	23,1
Maximum torque	M _{max}	Nm	JAN I.C.	66,0	- Station
Maximum current	I _{max(eff)}	А	32,8	40,5	69,3
Torque constant at 20°C	K _{M_N}	Nm/A	2,63	2,12	1,25
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	162,0	134,0	77,1
Winding resistance at 20°C	R ₁₂	Ohm	1,90	1,26	0,45
Winding inductivity	L ₁₂	mH	14,200	10,700	3,200
Leakage capacitance of the compo- nent	C _{ab}	nF	6,9	7,2	7,8
Number of pole pairs	р	and -	Cale II	4 605	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	Chauto	0,00255	. Chauto
Thermal time constant	T _{th}	min	and the second s	54,0	A. A. A.
Maximum speed	n _{max}	min ⁻¹	3200	3800	6000
Sound pressure level	L _P	dB[A]	Ma.	<75	3.S.
Ambient temperature during opera- tion	T _{um}	°C	autorian	0 40	- autor
Degree of protection	N.O.	-	and Contraction	IP65	ALCON
Insulation class EN 60034-1	C	-	Ra	A ^{RT} F	And Carl

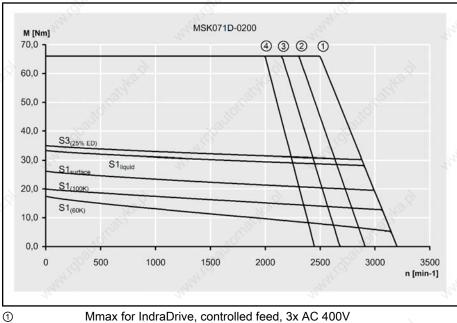
1) *Fig.4-62:* Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural and surface cooling)

Description	Symbol	Unit	MSK071D-0450-FN
Continuous torque at standstill, 60K	M _{0_60}	Nm	17,5
Continuous current at standstill, 60K	I _{0_60(eff)}	А	15,4
Continuous torque at standstill, 100K	M _{0_100}	Nm	20,0
Continuous current at standstill, 100K	I _{0_100(eff)}	Α	17,6
Continuous torque at standstill, liq- uid	M _{0_L}	Nm	33,3
Continuous current at standstill, liq- uid	I _{0_L(eff)}	А	30,3
Maximum torque	M _{max}	Nm	66,0
Maximum current	I _{max(eff)}	А	69,3
Torque constant at 20°C	К _{М_N} 🗟	Nm/A	1,25
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	77,1
Winding resistance at 20°C	R ₁₂	Ohm	0,45
Winding inductivity	L ₁₂	mH	3,200
Leakage capacitance of the component	C _{ab}	nF	7,8
Number of pole pairs	⊘ p	-	4
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,00255
Thermal time constant	T _{th}	min	54,0
Maximum speed	n _{max}	min⁻¹	6000
Sound pressure level	L _P	dB[A]	<75
Ambient temperature during opera- tion	T _{um}	°C	0 40
Degree of protection		- 39	IP65
Insulation class EN 60034-1		S.	S ^o F

1) *Fig.4-63:* Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and liquid cooling)*

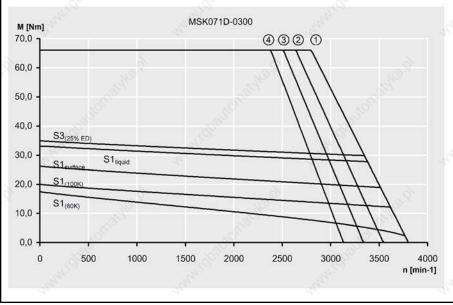
Description	Symbol	Unit	BREMSE-298397	BREMSE-308413
Holding torque	M ₄	Nm	23,0	30,0
Rated voltage ±10%	U _N	V	24	
Rated currend	I _N	Α	0,79	0,94
Connection time	t ₁	ms	130	35
Disconnection time	t ₂	ms	180	125

Description	Symbol	Unit	BREMSE-298397	300	BREMSE-308413
Moment of inertia brake	J _{rot}	kg*m2	And Contraction of the Contracti	0,000300	Sec.
Mass brake	M _{Br}	kg	2	1,6	~
Are in the internet of the int	Fig.4-64:	MS	K071: Holding brake - Teo	chnical data (o	otional)
Description	Symbol	Unit	HOLIN .	MSK071D	10. 10.
Nominal power loss	P _{vN}	W	. S ^{of}	900	. 500
Coolant inlet temperature 1)	ϑ _{ein}	°C	A CARACTER STORE	10 40	and the second se
Coolant temperature raise with P_{vN}	Δϑ _N	°C		10	
Minimum necessary required coolant flow for $\Delta \vartheta_N^{-2)}$	Q _N	l/min	nasha.e	1,3	adver .
Pressure decrease at Q _N ²⁾³⁾	Δp _N	bar	~allo	0,6	~~ ³¹⁰
Maximum system pressure	P _{max}	bar	AND CONTRACTOR	3,0	States and States
Volume liquid cooling duct	V	I	4 ¹⁶	0,05	S.C.
pH-Value coolant		à	Ś	6 8	d'
Materials with coolant contact		- 3 Dree	"She		and the second sec
Flange, end shield	.30		_31 ⁰ 0	AI Mg 5 F32	10 ¹⁰
Motor housing	S			Al Mg Si 0,5 F2	2
O-ring	den .		NNN NNN	Viton	and the second se

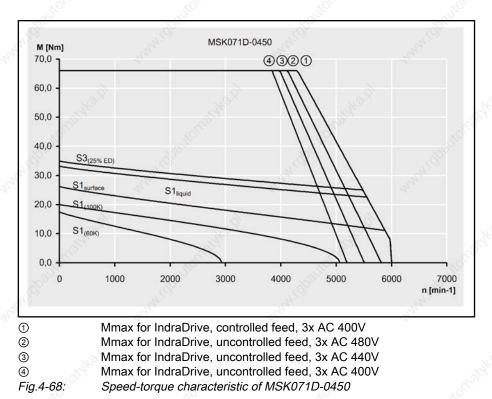

Danger of condensation! The coolant inlet temperature should be max. 5° C under the real environmental temperature. At coolant water.

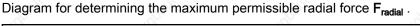
2) 3) Fig.4-65:

1)


For devating discharge values notice the discharge diagram. *Technical data liquid coolant for MSK071D*

Speed-torque characteristics


Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V *Speed-torque characteristic of MSK071D-0200*


Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK071D-0300

Electric Drives | Bosch Rexroth AG 57/194 and Controls

Technical Data

Shaft load

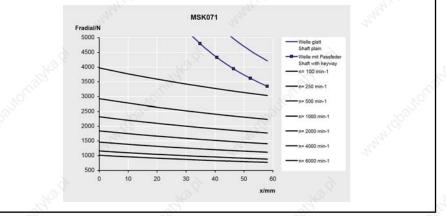


Fig.4-69:permissible radial force of MSK071 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 500 N.

4.15 MSK071E Technical Data

Description	Symbol	Unit	MSK071E-0200-NN	MSK071E-0300-NN	MSK071E-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	13.9	23,0	
Continuous current at standstill, 60K	I _{0_60(eff)}	А	10,1	12,5	20,0
Continuous torque at standstill, 100K	M _{0_100}	Nm	B	28,0	apanto.
Continuous current at standstill, 100K	I _{0_100(eff)}	A	12,6	15,2	24,4
Continuous torque at standstill, sur- face	M _{0_S}	Nm	adka.P	34,5	all we de
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	15,2	18,8	30,0
Maximum torque	M _{max}	Nm		84,0	
Maximum current	I _{max(eff)}	А	45,5	56,3	90,1
Torque constant at 20°C	K _{M_N}	Nm/A	2,51	2,05	1,29
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	154,6	126,4	82,7
Winding resistance at 20°C	R ₁₂	Ohm	1,16	0,79	0,32
Winding inductivity	L ₁₂	mH	9,150	6,200	2,600
Leakage capacitance of the component	C _{ab}	nF	8,9	9,3	9,5
Number of pole pairs	р	-	AND CONTRACTOR OF CONTRACTOR O	4	Call N
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	e S	0,00290	200 HOC
Thermal time constant	T _{th}	min	75,0	19	9,8
Maximum speed	n _{max}	min ⁻¹	3400	4200	6000
Sound pressure level	S L _P	dB[A]	. No.9	<75	.Ho.S
Ambient temperature during opera- tion	T _{um}	°C		0 40	allomac
Degree of protection		N.I.C.		IP65	Se.
Insulation class EN 60034-1	1	29	12.44	F	4

1) *Fig.4-70:* Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*

Project Planning Manual | Rexroth IndraDyn S

Technical Data

100	100				100
Description	Symbol	Unit	M	SK071E-0450-FN	10°
Continuous torque at standstill, 60K	M _{0_60}	Nm	24	23,0	2
Continuous current at standstill, 60K	I _{0_60(eff)}	A	Ś	20,0	à.
Continuous torque at standstill, 100K	M _{0_100}	Nm	KOR ANKO	28,0	
Continuous current at standstill, 100K	I _{0_100(eff)}	А	WH. GDab	24,4	NAL GOOD
Continuous torque at standstill, liq- uid	M _{0_L}	Nm	2 ² .	43,7	4 ²³
Continuous current at standstill, liq- uid	I _{0_L(eff)}	A	03540.5	38,0	2°.
Maximum torque	M _{max}	Nm	and the second	84,0	alton
Maximum current	I _{max(eff)}	А	an Co	90,1	24 ¹ 0
Torque constant at 20°C	K _{M_N}	Nm/A	4	1,29	42
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹		82,7	ġ.
Winding resistance at 20°C	R ₁₂	Ohm	.01787	0,32	S
Winding inductivity	L ₁₂	mH	. KDRD	2,600	and a second
Leakage capacitance of the compo- nent	C _{ab}	nF	ANN AN	9,5	ANN COL
Number of pole pairs	р	- 6	6	4	8
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	onable	0,00290	.8
Thermal time constant	T _{th}	min	NORTH AND	19,8	
Maximum speed	n _{max}	min ⁻¹	March 15	6000	And Ale
Sound pressure level	L _P	dB[A]	2	<75	20
Ambient temperature during opera- tion	T _{um}	°C	, she ?	0 40	<u>,</u> 2
Degree of protection	310	- 1		IP65	
Insulation class EN 60034-1	300	-	S.	ES ⁶⁰	S

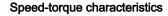
1) Fig.4-71: Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and liquid cooling)*

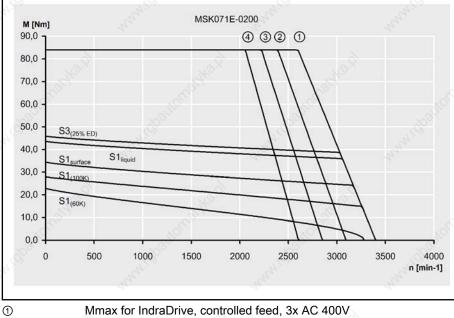
Description	Symbol	Unit	BREMSE-298397	BREMSE-308413
Holding torque	M ₄	Nm	23,0	30,0
Rated voltage ±10%	U _N	V	AD ²⁰¹⁰	24
Rated currend	I _N	А	0,79	0,94
Connection time	t ₁	ms	130	35
Disconnection time	t ₂	ms	180	125

60/194 Bosch Rexroth AG | Electric Drives and Controls

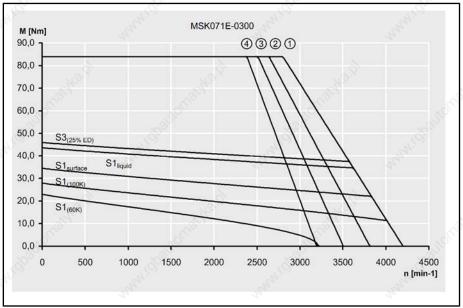
Technical Data

Description	Symbol	Unit	BREMSE-298397	BREMSE-308413	
Moment of inertia brake	J _{rot}	kg*m2	0,000	0300	
Mass brake	M _{Br}	kg	1,6		
al and a second	Fig.4-72:	MS	K071: Holding brake - Technical d	lata (optional)	
Description	Symbol	Unit	MSK071E		
Nominal power loss	P _{vN}	W	1000		
Coolant inlet temperature 1)	ϑ _{ein}	°C	10 40		
Coolant temperature raise with P_{vN}	∆ϑ _N	°C	10		
Minimum necessary required coolant flow for $\Delta \vartheta_N^{-2)}$	Q _N	l/min	ranker .	4	
Pressure decrease at Q _N ^{2) 3)}	Δp _N	bar	0,	7 _{Sallo}	
Maximum system pressure	P _{max}	bar	3,	0	
Volume liquid cooling duct	V	I	0,0)6	
pH-Value coolant	à		6	. 8	
Materials with coolant contact		22/40	and the second s		
Flange, end shield		35	AI Mg 5 F32		
Motor housing		100	Al Mg Si 0,5 F22		
O-ring	E.	250	Vito	on	


Danger of condensation! The coolant inlet temperature should be max. 5° C under the real environmental temperature. At coolant water.


2) 3) Fig.4-73:

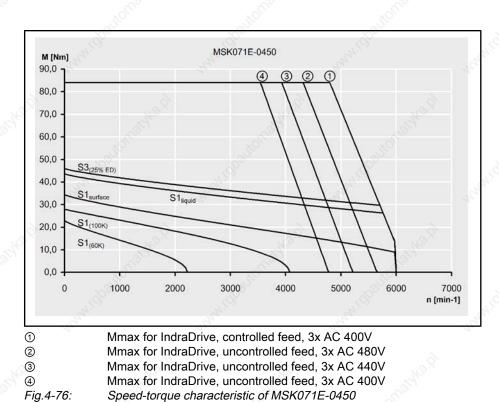
For devating discharge values notice the discharge diagram. Technical data liquid coolant for MSK071E


Electric Drives | Bosch Rexroth AG 61/194 and Controls

Technical Data

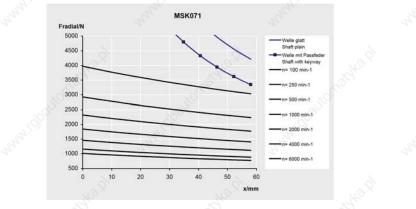
Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V *Speed-torque characteristic of MSK071E-0200*

1


2

3

4


Fig.4-74:

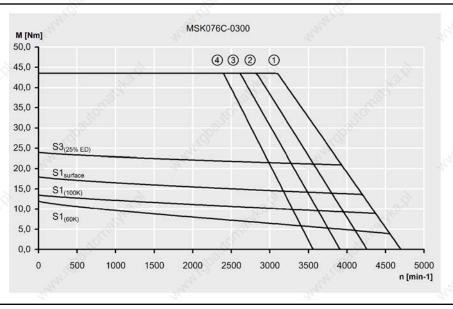
Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK071E-0300

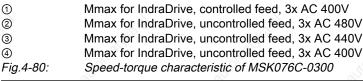
Shaft load

Diagram for determining the maximum permissible radial force $\mathbf{F}_{\text{radial}}$.

 $\label{eq:Fig.4-77:} \textit{permissible radial force of MSK071 - Motors (shaft and bearing load)} \\ \text{The maximum permissible axial force F_{axial} is $500 N} \, .$

4.16 MSK076C Technical Data


Description	Symbol	Unit	MSK076C-0300-NN	MSK076C-0450-NN	
Continuous torque at standstill, 60K	M _{0_60}	Nm	12,0		
Continuous current at standstill, 60K	I _{0_60(eff)}	A	7,2 12,2		
Continuous torque at standstill, 100K	M _{0_100}	Nm	, Goardo.	13,5	
Continuous current at standstill, 100K	I _{0_100(eff)}	А	8,1	13,7	
Maximum torque	M _{max}	Nm	43,5		
Maximum current	I _{max(eff)}	A	32,4	54,9	
Torque constant at 20°C	K _{M_N}	Nm/A	1,84	1,14	
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min⁻¹	113,0	70,5	
Winding resistance at 20°C	R ₁₂	Ohm	1,85	0,71	
Winding inductivity	L ₁₂	mH	12,600	4,700	
Leakage capacitance of the component	C _{ab}	nF	6,5	6,0	
Number of pole pairs	р	-	and O	4	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,00430		
Thermal time constant	T _{th}	min	ANO.S	60,0	
Maximum speed	n _{max}	min⁻¹	4700	5000	
Sound pressure level	Lp	dB[A]	Space .	< 75	
Ambient temperature during opera- tion	T _{um}	°C	And and a	0 40	
Degree of protection		- 2	Ś	IP65	
Insulation class EN 60034-1		Nº.	S.	F	


1) Fig.4-78: Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural cooling)

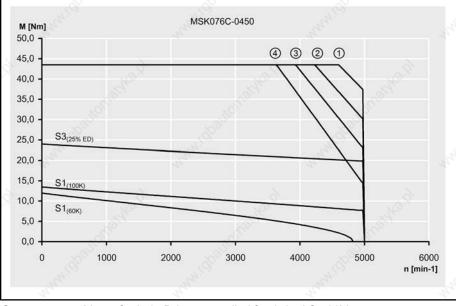
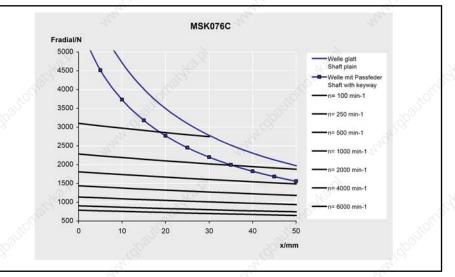

Description	Symbol	Unit	BREMSE-277525 11,0	
Holding torque	M ₄	Nm		
Rated voltage ±10%	U _N	V	24	
Rated currend	I _{N so}	A	0,71	
Connection time	t ₁	ms	13	. Barr
Disconnection time	t ₂	ms	30	and a li
Moment of inertia brake	J _{rot}	kg*m2	0,000360	
Mass brake	M _{Br}	kg	رم ^ر 1,1 م	

Fig.4-79: MSK076: Holding brake - Technical data (optional)

Speed-torque characteristics

1 2

3


4

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK076C-0450

Electric Drives | **Bosch Rexroth AG** 65/194 and Controls

Technical Data

Shaft load Diagram for determining the maximum permissible radial force F_{radial}

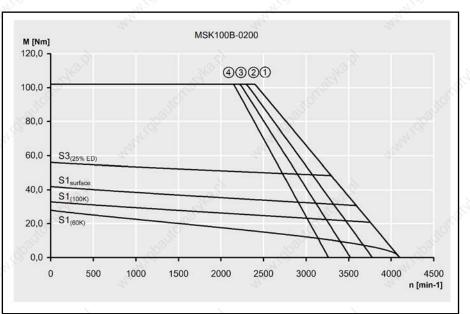
 $\label{eq:Fig.4-82:} \textit{permissible radial force of MSK076 - Motors (shaft and bearing load)} \\ \text{The maximum permissible axial force F_{axial} is $200 N} .$

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

MSK100B Technical Data 4.17

Description	Symbol	Unit	MSK100B- 0200-NN	MSK100B- 0300-NN	MSK100B- 0400-NN	MSK100B 0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	Nº S	28	3,0	and the second
Continuous current at standstill, 60K	I _{0_60(eff)}	A	14,7	17,4	23,7	24,6
Continuous torque at standstill, 100K	M _{0_100}	Nm	2	33	3,0	
Continuous current at standstill, 100K	I _{0_100(eff)}	A	17,3	20,5	30,8	32,0
Continuous torque at standstill, sur- face	M _{0_S}	Nm	Card Card Card Card Card Card Card Card	42	2,0	Cold No.
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	22,1	26,1	37,8	36,9
Maximum torque	M _{max} 🔬	Nm	102,0			
Maximum current	I _{max(eff)}	А	66,2	78,3	106,7	110,7
Torque constant at 20°C	K _{M_N}	Nm/A	2,10	1,77	1,30	1,14
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	129,5	108,5	80,0	70,0
Winding resistance at 20°C	R ₁₂	Ohm	0,58	0,43	0,23	0,17
Winding inductivity	L ₁₂	mH	7,600	5,500	3,100	2,200
Leakage capacitance of the compo- nent	C _{ab}	nF	10,3	9,3	10),3
Number of pole pairs	р	- 2		. 10 ⁰⁰⁰	1 🔬	<u> </u>
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,01920			
Thermal time constant	T _{th}	min	3	40),0	
Maximum speed	n _{max}	min⁻¹	4100	4750	45	00
Sound pressure level	L _P	dB[A]	Card Land	, ¹ 66	75	Carl Carl
Ambient temperature during opera- tion	T _{um}	°C	0 40			<u>b.</u>
Degree of protection	3	4 ⁴⁴ -	14 M	IP	65	
Insulation class EN 60034-1		-		I	=	

Description	Symbol	Unit	BREMSE-276088		BREMSE-296482
Holding torque	M ₄	Nm	70,0		32,0
Rated voltage ±10%	U _N	V	19	24	29 · · · ·
Rated currend	_ ⊘ I _N	А	1,29	2	0,93

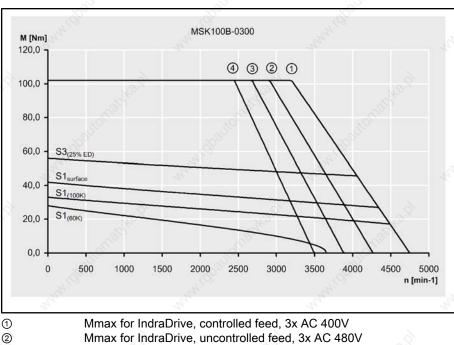

Electric Drives | **Bosch Rexroth AG** 67/194 and Controls

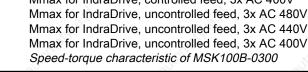
Technical Data

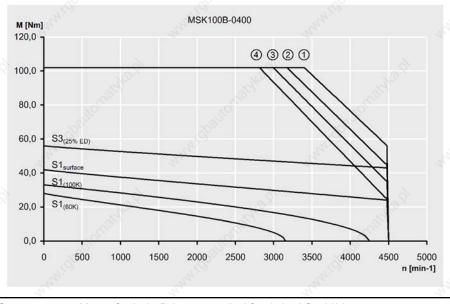
Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Connection time	2 t ₁	ms	53	15
Disconnection time	t ₂	ms	97	115
Moment of inertia brake	J _{rot}	kg*m2	0,003000	0,001242
Mass brake	M _{Br}	kg	3,8	2,4

Speed-torque characteristics

Fig.4-84: MSK100: Holding brake - Technical data (optional)

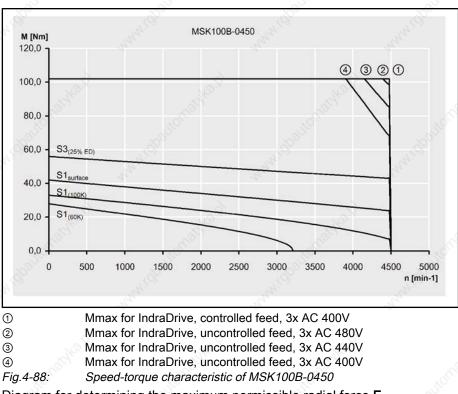



Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK100B-0200


④ Fig.4-85:

1 2

3


(1)
 (2)
 (3)
 (4)
 Fig.4-87:

3

4

Fig.4-86:

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V *Speed-torque characteristic of MSK100B-0400*

Shaft load

Diagram for determining the maximum permissible radial force $\mathsf{F}_{\mathsf{radial}}$.

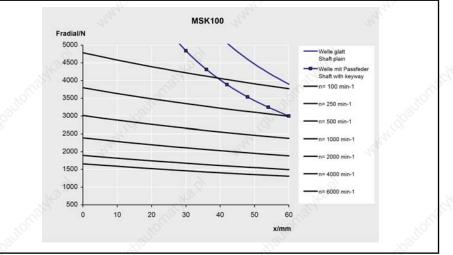


Fig.4-89:permissible radial force of MSK100 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 500 N.

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

4.18 MSK100C Technical Data

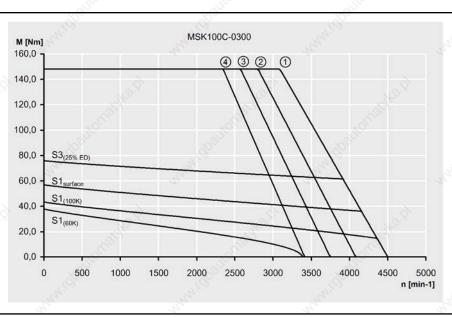
Description	Symbol	Unit	MSK100C-0200-NN	MSK100C-0300-NN	MSK100C-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	10.0	38,0	13 ⁹ .
Continuous current at standstill, 60K	I _{0_60(eff)}	А	17,7	21,6	35,4
Continuous torque at standstill, 100K	M _{0_100}	Nm	, B	43,5	aponto.
Continuous current at standstill, 100K	I _{0_100(eff)}	A	20,3	27,0	43,5
Continuous torque at standstill, sur- face	M _{0_S}	Nm	athe P	56,8	all and a second
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	28,2	32,4	52,9
Maximum torque	M _{max}	Nm	C. A. C.	148,0	9
Maximum current	I _{max(eff)}	А	79,7	97,2	159,3
Torque constant at 20°C	K _{M_N}	Nm/A	2,37	1,94	1,18
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	145,5	119,1	72,7
Winding resistance at 20°C	R ₁₂	Ohm	0,46	0,30	0,12
Winding inductivity	L ₁₂	mH	6,700	4,200	1,600
Leakage capacitance of the compo- nent	C _{ab}	nF	12,8	14,3	13,2
Number of pole pairs	р	-	C. A.	4	Carl Carl
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	Ś	0,02730	Sponto.
Thermal time constant	T _{th}	min	444	90,0	2 ¹
Maximum speed	n _{max}	min ⁻¹	3500	4500	4000
Sound pressure level	L _P	dB[A]	-Ma.P	<75	No.S.
Ambient temperature during opera- tion	T _{um}	°C	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0 40	automan
Degree of protection		an in	, N. C	IP65	S-
Insulation class EN 60034-1	14	2	19.00	F 3	24

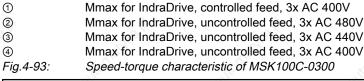
1) *Fig.4-90:*

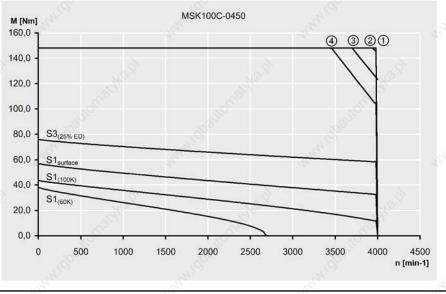
Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*


Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Holding torque	M ₄	Nm	70,0	32,0
Rated voltage ±10%	U _N	V	and the second se	24
Rated currend	I _N	А	1,29	0,93
Connection time	0 t1	ms	53	15

Electric Drives | Bosch Rexroth AG 71/194 and Controls


Technical Data


Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Disconnection time	t ₂	ms	97	115
Moment of inertia brake	J _{rot}	kg*m2	0,003000	0,001242
Mass brake	M _{Br}	kg	3,8	2,4


Speed-torque characteristics

1) 2) 3) 4) Fig.4-92: Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK100C-0200

1 4 Fig.4-94:

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK100C-0450

2 3

1 2

3

4

Electric Drives | Bosch Rexroth AG 73/194 and Controls

Technical Data

Shaft load Diagram for determining the maximum permissible radial force F_{radial}

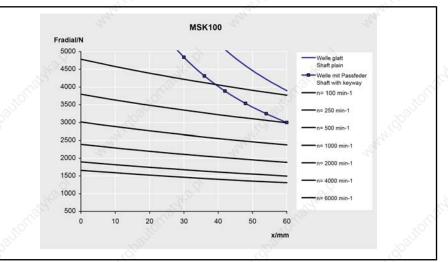


Fig.4-95:permissible radial force of MSK100 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 500 N.

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

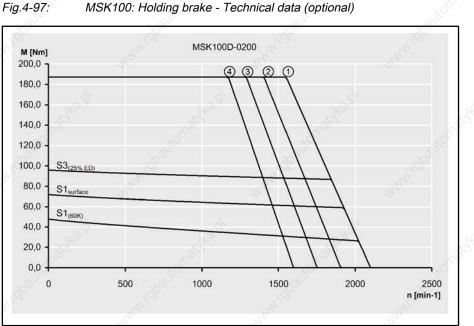
4.19 MSK100D Technical Data

Description	Symbol	Unit	MSK101D-0200-NN	MSK101D-0300-NN	
Continuous torque at standstill, 60K	M _{0_60}	Nm	5	0,0	
Continuous current at standstill, 60K	I _{0_60(eff)}	Α	22,2	30,6	
Continuous torque at standstill, 100K	M _{0_100}	Nm	5	7,0	
Continuous current at standstill, 100K	I _{0_100(eff)}	A	25,3	34,9	4
Continuous torque at standstill, sur- face	M _{0_S}	Nm	7	5,0	
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	33,3	45,9	
Maximum torque	M _{max}	Nm	16	60,0	
Maximum current	I _{max(eff)}	А	99,9	137,7	20
Torque constant at 20°C	K _{M_N}	Nm/A	2,48	1,80	-
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	152,0	113,0	
Winding resistance at 20°C	R ₁₂	Ohm	0,35	0,19	
Winding inductivity	L ₁₂	mH	6,000	3,200	45
Leakage capacitance of the compo- nent	C _{ab}	nF	13,2	9,1	
Number of pole pairs	р	-	Card Card	4	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	0,0	0932	
Thermal time constant	T _{th}	min	10	00,0	3
Maximum speed	n _{max}	min ⁻¹	3400	4600	
Sound pressure level	L _P	dB[A]		75	
Ambient temperature during opera- tion	T _{um}	°C	0.	40	
Degree of protection		an in	IF	P65	
Insulation class EN 60034-1	14	2, -	44	F	2

1) *Fig.4-96:*

Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural and surface cooling)

Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Holding torque	M ₄	Nm	70,0	32,0
Rated voltage ±10%	U _N	V		24
Rated currend	I _N	А	1,29	0,93
Connection time	o ^S t₁	ms	53	15


Electric Drives | Bosch Rexroth AG 75/194 and Controls

Technical Data

Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Disconnection time	t ₂	ms	97	115
Moment of inertia brake	J _{rot}	kg*m2	0,003000	0,001242
Mass brake	M _{Br}	kg	3,8	2,4

MSK100: Holding brake - Technical data (optional)

Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK100D-0200

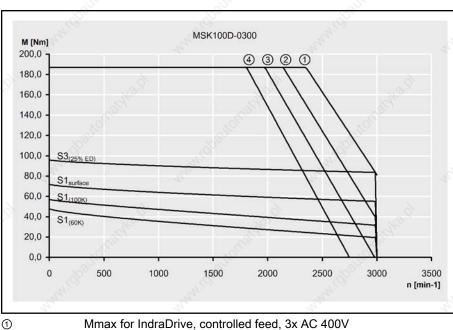
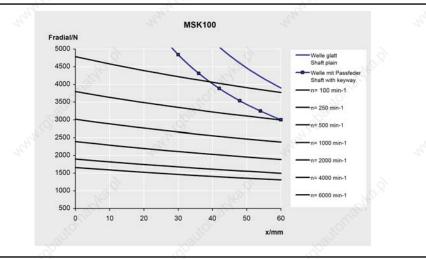
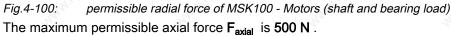


Fig.4-99:

2


3


4

Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK100D-0300

Diagram for determining the maximum permissible radial force \mathbf{F}_{radial} .

Shaft load

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

4.20 MSK101D Technical Data

2 22	20		554	55	22
Description	Symbol	Unit	MSK101D-0200-NN	MSK101D-0300-NN	MSK101D-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm		50,0	2.9
Continuous current at standstill, 60K	I _{0_60(eff)}	A	22,2	30,6	41,7
Continuous torque at standstill, 100K	M _{0_100}	Nm	10 ⁰⁸¹¹⁰	57,0	1 1000 MC
Continuous current at standstill, 100K	I _{0_100(eff)}	A	25,3	34,9	50,6
Continuous torque at standstill, sur- face	M _{0_S}	Nm	ad hair	75,0	3 ^{,2}
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	33,3	45,9	66,0
Maximum torque	M _{max}	Nm	and the second	160,0	. And I D
Maximum current	I _{max(eff)}	А	99,9	137,7	187,7
Torque constant at 20°C	K _{M_N}	Nm/A	2,48	1,80	1,32
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	152,0	113,0	81,0
Winding resistance at 20°C	R ₁₂	Ohm	0,35	0,19	0,10
Winding inductivity	L ₁₂	mH	6,000	3,200	1,700
Leakage capacitance of the compo- nent	C _{ab}	nF	13,2	9,1	13,2
Number of pole pairs	р	3-13-	1.2 CM	4	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	. chaite	0,00932	, doorto
Thermal time constant	T _{th}	min	and the second s	100,0	44
Maximum speed	n _{max}	min ⁻¹	3400	4600	6000
Sound pressure level	L _P	dB[A]	MO.	<75	\$.S.
Ambient temperature during opera- tion	T _{um}	°C	-autorian	0 40	- autor
Degree of protection	an IO	-	and Contraction	IP65	
Insulation class EN 60034-1	6	-	Nr.	A ^R F	44

1) Fig.4-101: Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural and surface cooling)

Description	Symbol	Unit	MSK101D-0200-FN	MSK101D-0300-FN	MSK101D-0450-FN
		20-	WSKT0TD-0200-FIN	12 m	WSK101D-0430-FN
Continuous torque at standstill, 60K		Nm		50,0	
Continuous current at standstill, 60K	0_60(eff)	A	22,2	30,6	41,7
Continuous torque at standstill, 100K	M _{0_100}	Nm	Call.	57,0	tomatyt
Continuous current at standstill, 100K	I _{0_100(eff)}	A	26,8	34,9	50,6
Continuous torque at standstill, liq- uid	M _{0_L}	Nm	44	95,0	4
Continuous current at standstill, liq- uid	I _{0_L(eff)}	A	43,3	58,1	83,6
Maximum torque	M _{max}	Nm	160,0		
Maximum current	I _{max(eff)}	А	99,9	137,7	187,7
Torque constant at 20°C	К _{м_N}	Nm/A	2,48	1,80	1,32 🗳
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	152,0	113,0	81,0
Winding resistance at 20°C	R ₁₂	Ohm	0,35	0,19	0,10
Winding inductivity	L ₁₂	mH	6,000	3,200	1,700
Leakage capacitance of the component	C _{ab}	nF	13,2	9,1	13,2
Number of pole pairs	⊳ p	-	6	<u></u> 4	6
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	Call Kon	0,00932	and the second
Thermal time constant	T _{th}	1000	25	10	0,0
Maximum speed	n _{max}	min ⁻¹	3400	4600	6000
Sound pressure level	L _P	dB[A]		<75	1
Ambient temperature during opera- tion	T _{um}	°C	aller ?	0 40	all
Degree of protection		8	55	IP65	10 CC
Insulation class EN 60034-1			Ś.	F	20°

1) Fig.4-102: Specified without brake. If necessary, add the moment of inertia brake. MSK - Technical Data (natural and liquid cooling)

Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Holding torque	M ₄	Nm	70,0	32,0
Rated voltage ±10%	U _N	V	24	abaulo .
Rated currend	I _N	Α	1,29	0,93
Connection time	t ₁	ms	53	15
Disconnection time	t ₂	ms	97	115

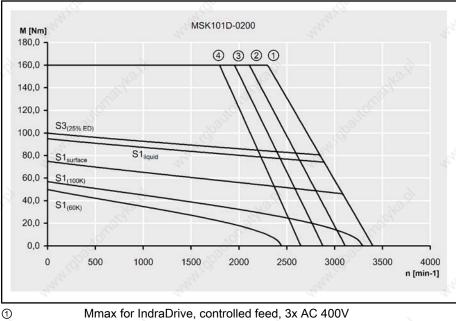
Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Moment of inertia brake	J _{rot}	kg*m2	0,003000	0,001242
Mass brake	M _{Br}	kg	3,8	2,4
No. Store	Fig.4-103	3: MS	K101: Holding brake - Technica	l data (optional)
Description	Symbol	Unit	MS	K101D
Nominal power loss	P _{vN}	W	S	1200
Coolant inlet temperature 1)	ϑ _{ein}	°C	.10) 40
Coolant temperature raise with P_{vN}	Δϑ _N	°C	\ \	10
Minimum necessary required coolant flow for $\Delta \vartheta_{N}^{-2)}$	Q _N	l/min	13 ³ 1 ^{60,9}	1,7
Pressure decrease at Q _N ^{2) 3)}	Δp _N	bar	~autor	0,9
Maximum system pressure	P _{max}	bar	. 19 ¹⁰	3,0
Volume liquid cooling duct	V	I	4 4	0,11
pH-Value coolant		à	6	S 8
Materials with coolant contact		and the	and the second s	
Flange, end shield	30		AIM	1g 5 F32
Motor housing	J. Solo		Al Mg	Si 0,5 F22
O-ring	and and a second se		and and	Viton

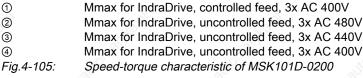
Danger of condensation! The coolant inlet temperature should be max. 5° C under the real environmental temperature. At coolant water.

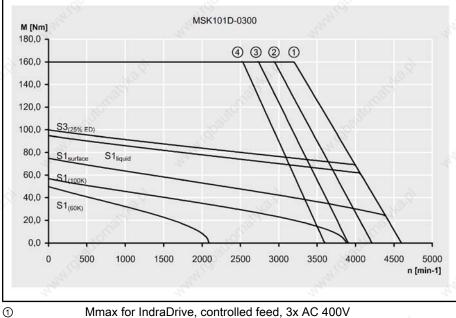
2) 3) Fig.4-104:

1)

For devating discharge values notice the discharge diagram. *Technical data liquid coolant for MSK101D*

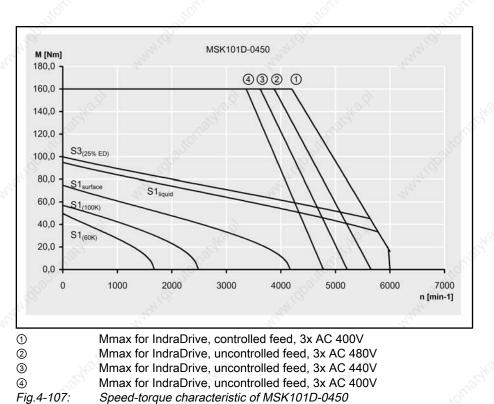

2


3


4

Technical Data

Speed-torque characteristics



Mmax for IndraDrive, controlled feed, 3x AC 400V Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V Speed-torque characteristic of MSK101D-0300

3 4 Fig.4-106:

2

Shaft load

ft load Diagram for determining the maximum permissible radial force F_{radial}.

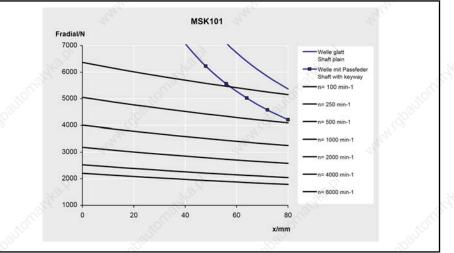


Fig.4-108:permissible radial force of MSK101 - Motors (shaft and bearing load)The maximum permissible axial force F_{axial} is 500 N.

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

4.21 MSK101E Technical Data

		<u></u>			
Description	Symbol	Unit	MSK101E-0200-NN	MSK101E-0300-NN	MSK101E-0450-NN
Continuous torque at standstill, 60K	M _{0_60}	Nm	NO.	70,0	NB.P
Continuous current at standstill, 60K	I _{0_60(eff)}	А	32,1	41,6	58,3
Continuous torque at standstill, 100K	M _{0_100}	Nm	100	80,5	Spource
Continuous current at standstill, 100K	I _{0_100(eff)}	A	39,0	47,8	67,6
Continuous torque at standstill, sur- face	M _{0_S}	Nm	adka.p	105,0	ad Mail
Continuous current at standstill, sur- face	I _{0_S(eff)}	A	48,2	62,4	87,5
Maximum torque	M _{max}	Nm		231,0	9 9
Maximum current	I _{max(eff)}	Α	144,5	187,4	262,4
Torque constant at 20°C	K _{M_N}	Nm/A	2,40	1,85	1,32
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹	148,0	113,8	81,2
Winding resistance at 20°C	R ₁₂	Ohm	0,18	0,11	0,06
Winding inductivity	L ₁₂	mH	3,300	1,960	1,080
Leakage capacitance of the component	C _{ab}	nF	15,2	16	5,7
Number of pole pairs	р	-	AN AN	4	A.S.
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	Ś	0,01380	Posto.
Thermal time constant	T _{th}	min		100,0	L
Maximum speed	n _{max}	min ⁻¹	3500	4600	6000
Sound pressure level	^{SS} L _P	dB[A]		<75	
Ambient temperature during opera- tion	T _{um}	°C		0 40	automate
Degree of protection		N.C.	, NGC	IP65	Š.
Insulation class EN 60034-1	3	- ¹	422	F	4

1) Fig.4-109: Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and surface cooling)*

Technical Data

Description	Symbol	Unit	M	SK101E-0200-FN	. A ² 10
Continuous torque at standstill, 60K	M _{0_60}	Nm	N.	70,0	324
Continuous current at standstill, 60K	I _{0_60(eff)}	A	Ś	32,1	
Continuous torque at standstill, 100K	M _{0_100}	Nm	xomat/ke	80,5	
Continuous current at standstill, 100K	I _{0_100(eff)}	А	S.W. BORD	39,0	
Continuous torque at standstill, liq- uid	M _{0_L}	Nm	2 ¹ 21	133,0	N.
Continuous current at standstill, liq- uid	I _{0_L(eff)}	A	Capter?	63,8	بر
Maximum torque	M _{max}	Nm	-alton	231,0	-allo
Maximum current	I _{max(eff)}	А	ANI-CO-	144,5	and State
Torque constant at 20°C	K _{M_N}	Nm/A	4	2,40	Alex.
Constant voltage at 20°C	К _{ЕМК_100} 0	V/min ⁻¹		148,0	
Winding resistance at 20°C	R ₁₂	Ohm	. official	0,18	.s
Winding inductivity	L ₁₂	mH	No.	3,300	A Base
Leakage capacitance of the compo- nent	C _{ab}	nF	al and the second s	15,2	A. M. M.
Number of pole pairs	р	- 6	6	4	
Moment of inertia of rotor without brake ¹⁾	J _{rot}	kg*m²	onable	0,01380	.8
Thermal time constant	T _{th}	min	. And Star	100,0	A Bassin
Maximum speed	n _{max}	min ⁻¹	Mar Contraction	3500	ANN'S
Sound pressure level	L _P	dB[A]	2	<75	24
Ambient temperature during opera- tion	T _{um}	°C		0 40	
Degree of protection	30	-	110 M	IP65	
Insulation class EN 60034-1	. 200	-		FS	.80

1) Fig.4-110:

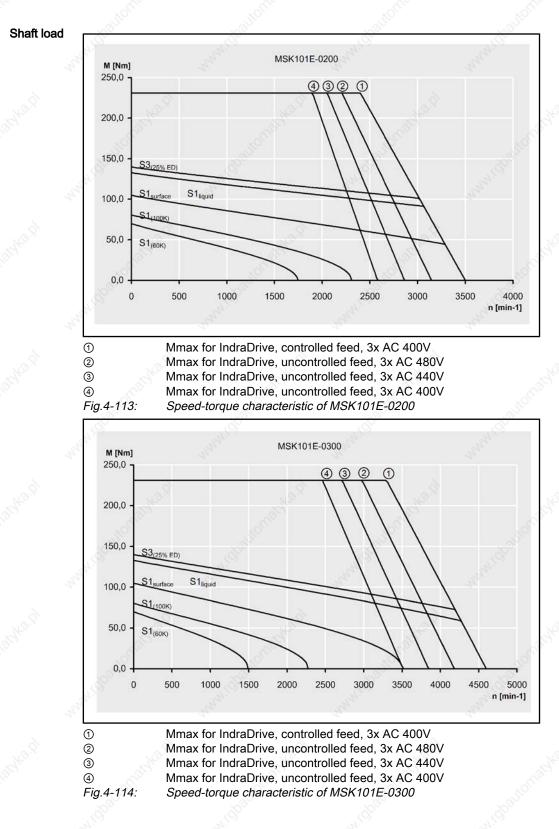
Specified without brake. If necessary, add the moment of inertia brake. *MSK - Technical Data (natural and liquid cooling)*

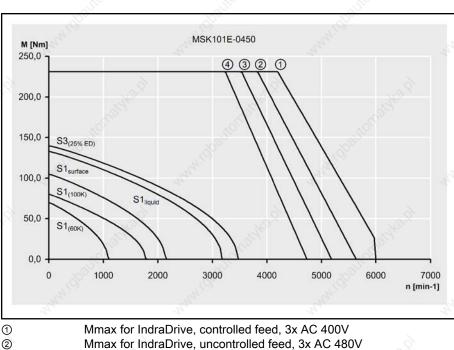
Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Holding torque	M ₄	Nm	70,0	32,0
Rated voltage ±10%	U _N	V	AD ^{RUNC}	24
Rated currend	I _N	А	1,29	0,93
Connection time	t ₁	ms	53	15
Disconnection time	t ₂	ms	97	115

84/194 Bosch Rexroth AG | Electric Drives and Controls

Technical Data

Description	Symbol	Unit	BREMSE-276088	BREMSE-296482
Moment of inertia brake	J _{rot}	kg*m2	0,003000	0,001242
Mass brake	M _{Br}	kg	3,8	2,4
al and a second	Fig.4-11	1: MS	K101: Holding brake - Technica	l data (optional)
Description	Symbol	Unit	MSK101E	
Nominal power loss	P_{vN}	W	1 روچې کې	300
Coolant inlet temperature 1)	ϑ _{ein}	°C	10	40
Coolant temperature raise with P_{vN}	∆ϑ _N	°C	10	
Minimum necessary required coolant flow for $\Delta \vartheta_N^{(2)}$	Q _N	l/min	1,8	
Pressure decrease at Q _N ²⁾³⁾	Δp _N	bar	. Alle	1,0
Maximum system pressure	P _{max}	bar	3,0	
Volume liquid cooling duct	V	I	0,14	
pH-Value coolant	2		6 8	
Materials with coolant contact	6		and and	Store Star
Flange, end shield		39	Al Mg 5 F32	
Motor housing		100	Al Mg Si 0,5 F22	
O-ring	4	200	star V	/iton

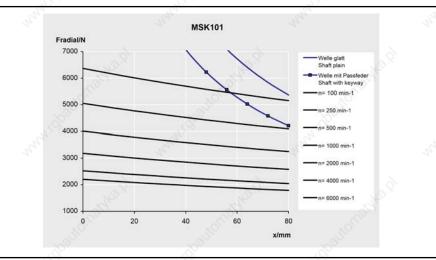

Danger of condensation! The coolant inlet temperature should be max. 5° C under the real environmental temperature. At coolant water.

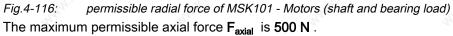

2) 3) Fig.4-112:

For devating discharge values notice the discharge diagram. *Technical data liquid coolant for MSK101E*

Electric Drives | Bosch Rexroth AG 85/194 and Controls

Technical Data





Mmax for IndraDrive, uncontrolled feed, 3x AC 480V Mmax for IndraDrive, uncontrolled feed, 3x AC 440V Mmax for IndraDrive, uncontrolled feed, 3x AC 400V *Speed-torque characteristic of MSK101E-0450*

Diagram for determining the maximum permissible radial force $\mathbf{F}_{\text{radial}}$.

Shaft load

For additional information about permissible radial and axial forces, see chapter 9.7 "Bearing and Shaft Load " on page 164.

Electric Drives | Bosch Rexroth AG 87/194 and Controls

Specifications

5 Specifications

5.1

Basic Data – Technical Design

Motor design

Housing varnish Vibration characteristics Balance characteristics Concentricity, run-out and alignment Motor design B5 according to EN60034-7 (for additional information see chapter 9.4 "Design and Installation Positions" on page 160)

Black (RAL 9005)

N (normal), according to EN 60034-14

G 2.5 acc. to DIN ISO 1940-1

According to DIN 42955, edition 12.81 (IEC 60072-1)

Encoder	Concentricity tolerance		Run-out and alignment tolerance		
S1, M1	N	- <u></u>	N	&	
S2, M2		R		R	

Fig.5-1: Tolerance for concentricity, run-out and alignment, depending on the encoder option

Flange

Drive shaft, shaft end and centering hole

Flange according to DIN 42948, ed. 11.65.

Motors with keyway are balanced with **complete** key. The machine element to be driven must be balanced without a key.

Cylindrical shaft end according to DIN 748, Part 3, ed. 07.75 IEC 60072 (-1). Centering hole, according to DIN 332 Part 2, Edition 05.83

Motor	Corresponding keyway according to DIN 6885-A (does not belong to scope of delivery of the motors)	Centering hole according to DIN 332 Part 2, Edition 05.83
MSK030	3 x 3 x 16	DS M3
MSK040	5 x 5 x 20	DS M5
MSK050	6 x 6 x 32	DS M6
MSK060	8 x 7 x 40	DS M8
MSK061	6 x 6 x 32	DS M6
MSK070	10 x 8 x 45	DS M10
MSK071	10 x 8 x 45	DS M10
MSK076	8 x 7 x 40	DS M8
MSK100	10 x 8 x 45	DS M10
MSK101	10 x 8 x 70	DS M12

Fig.5-2:

Key and centering hole

Specifications

5.2 Size MSK030

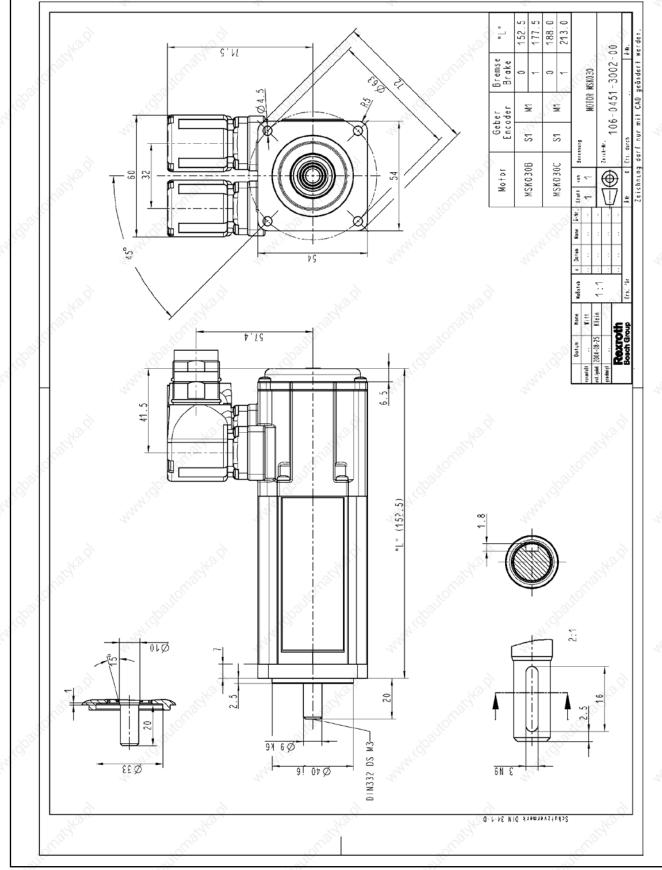


Fig.5-3: MSK030 specification

Specifications

5.3 Size MSK040

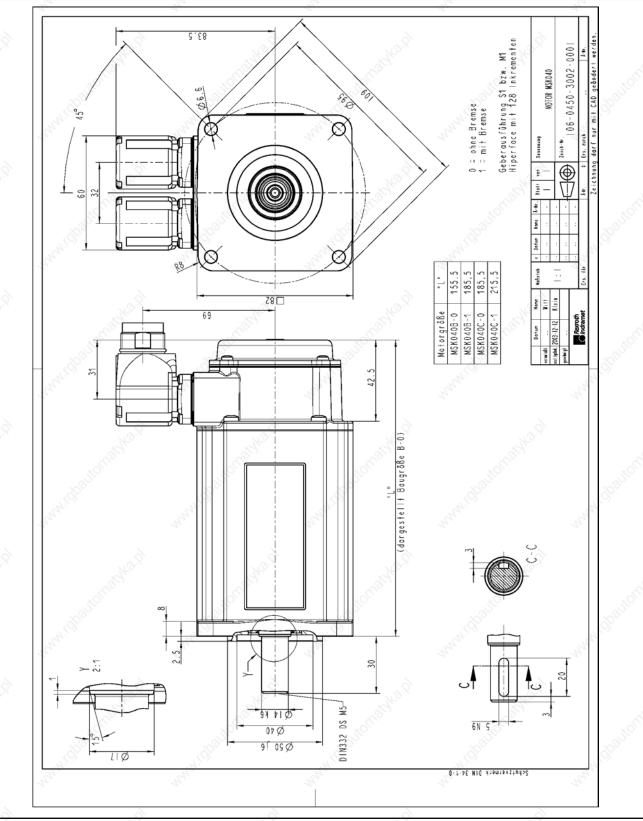


Fig.5-4: MSK040 specification

Specifications

5.4 Size MSK050

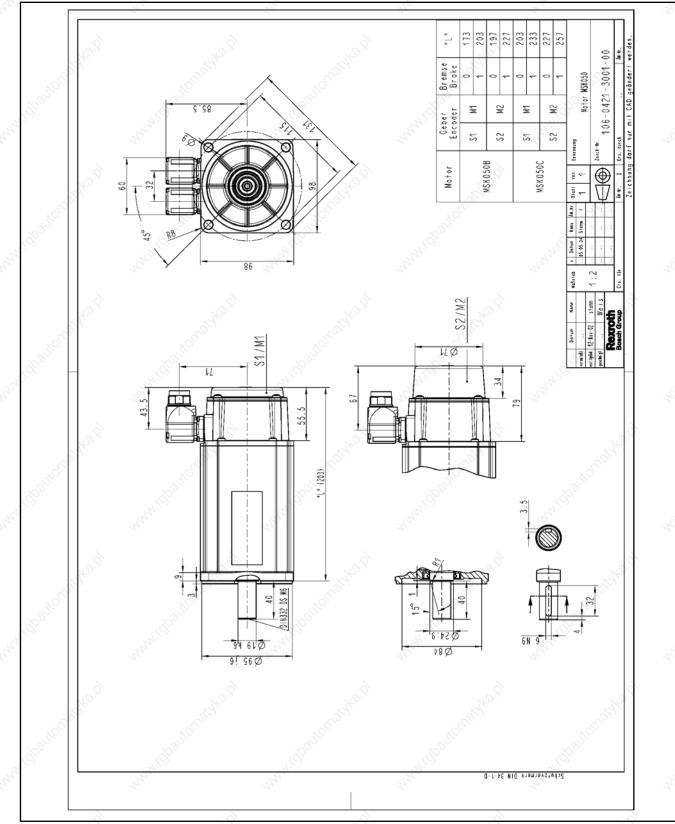


Fig.5-5: MSK050 specification

Electric Drives | Bosch Rexroth AG 91/194 and Controls

Specifications

5.5 Size MSK060

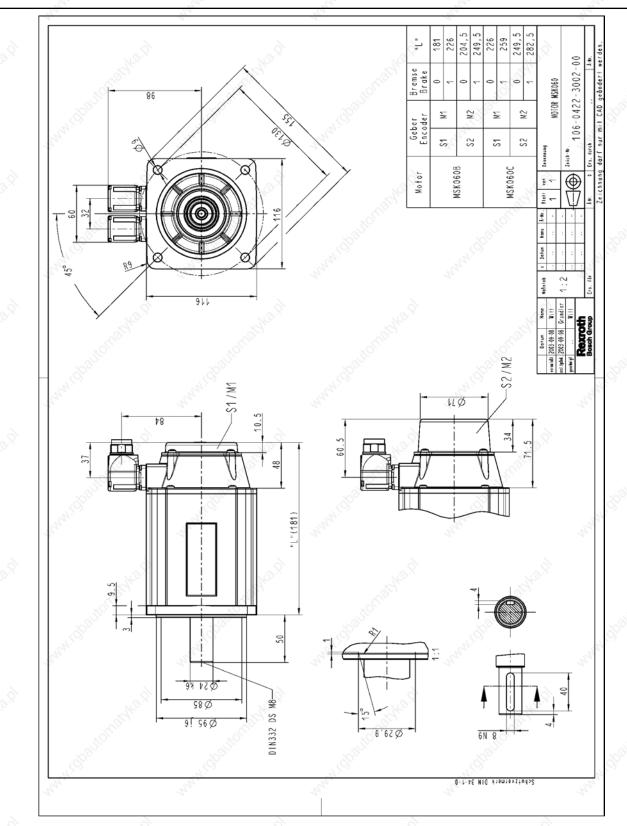


Fig.5-6: MSK060 specification

Specifications

5.6 Size MSK061

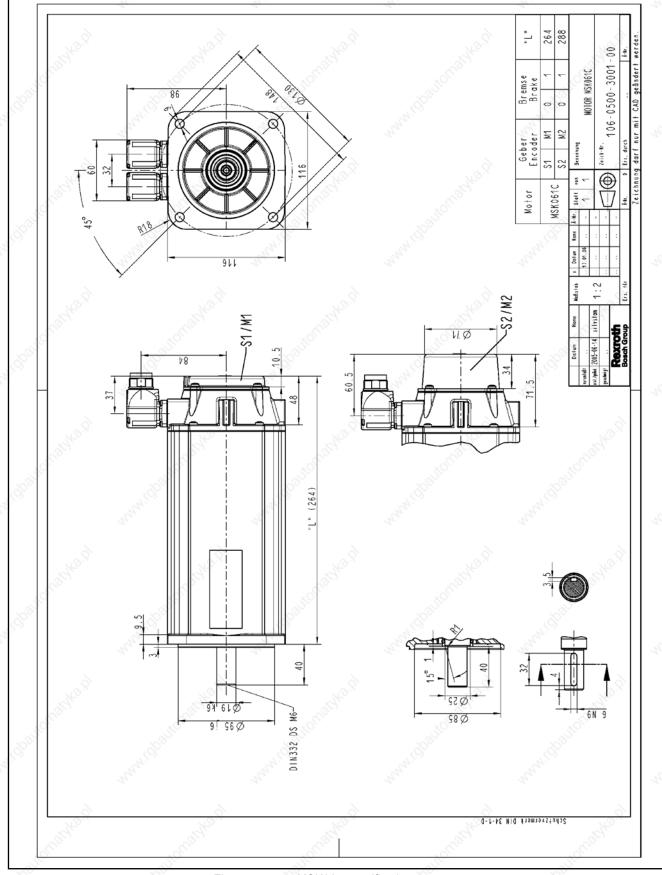


Fig.5-7: MSK061 specification

Electric Drives | Bosch Rexroth AG 93/194 and Controls

Specifications

5.7 Size MSK070

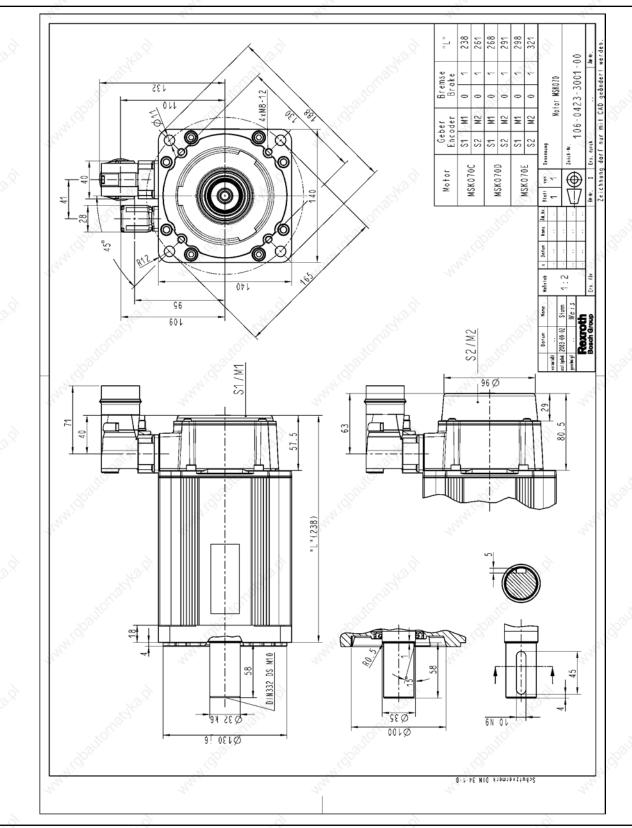
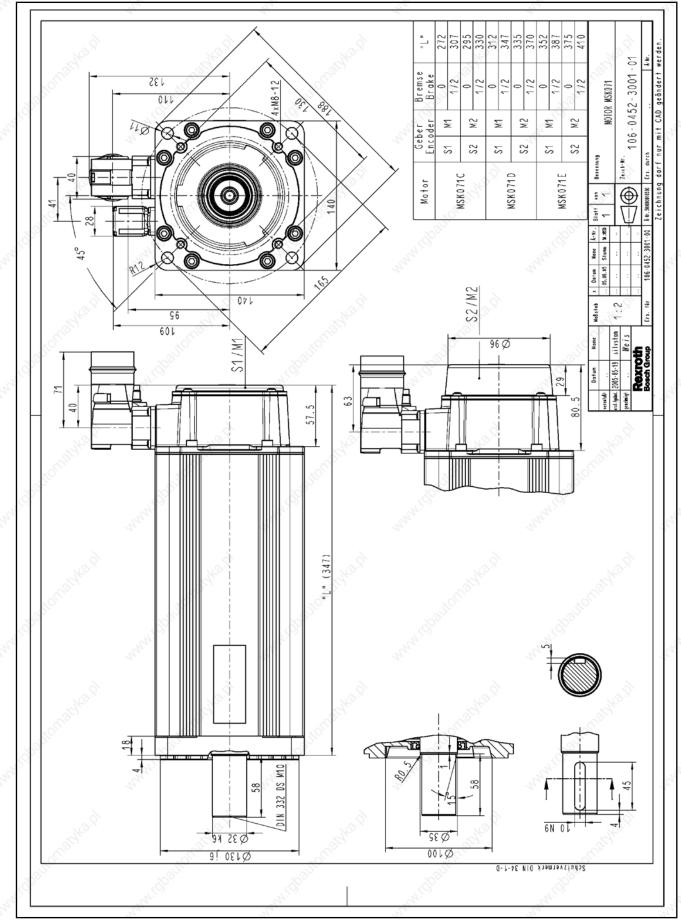
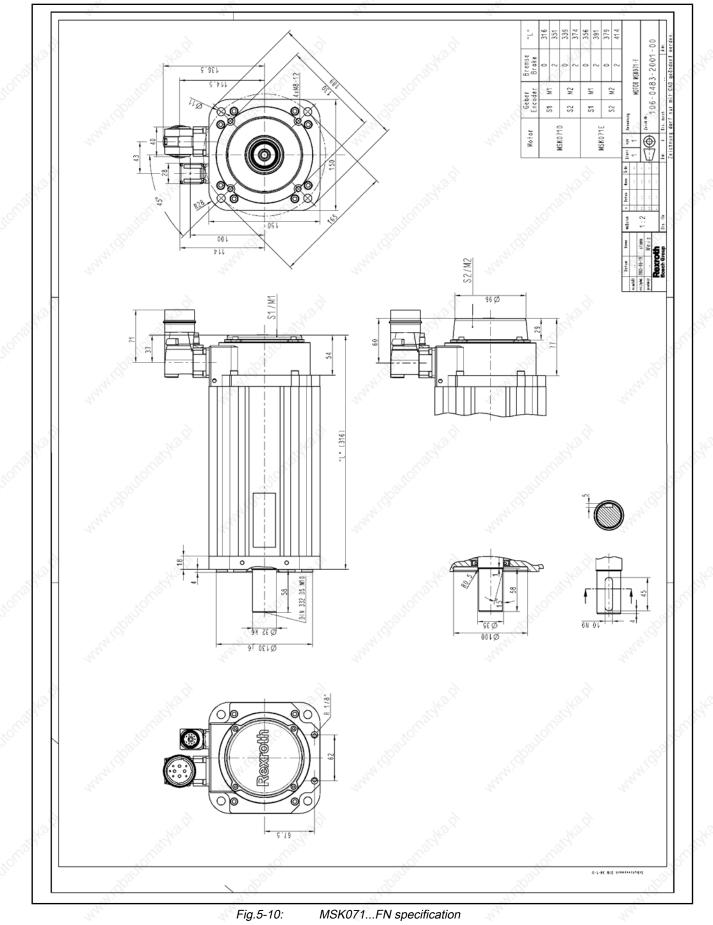


Fig.5-8: MSK070 specification

Specifications

5.8 Size MSK071




Fig.5-9: MSK071...NN specification

Electric Drives | Bosch Rexroth AG 95/194 and Controls

Specifications

Size MSK071 with Liquid Coolant

Specifications

5.10 Size MSK076

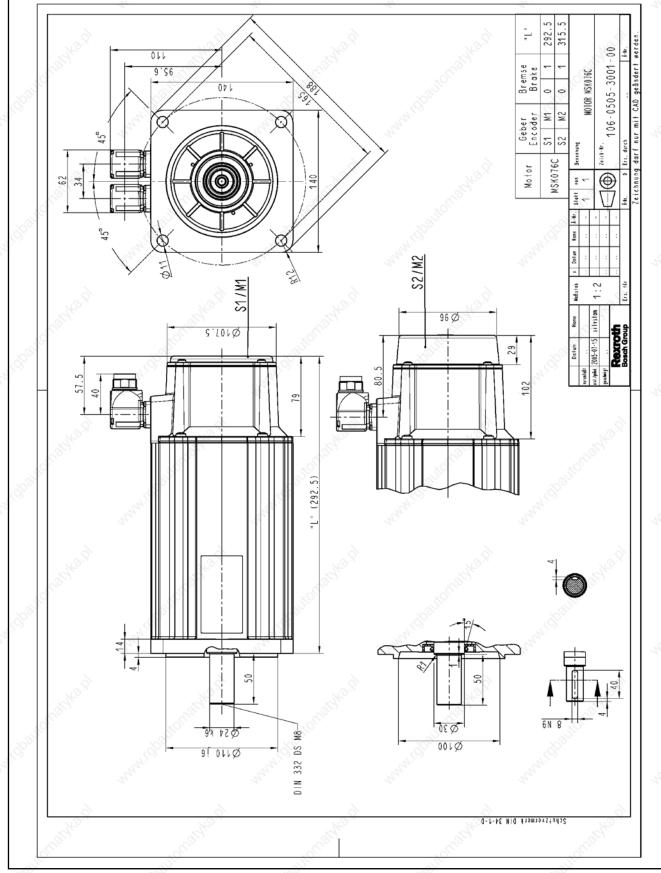


Fig.5-11: MSK076 specification

Electric Drives | Bosch Rexroth AG and Controls 97/194

Specifications

5.11 Size MSK100

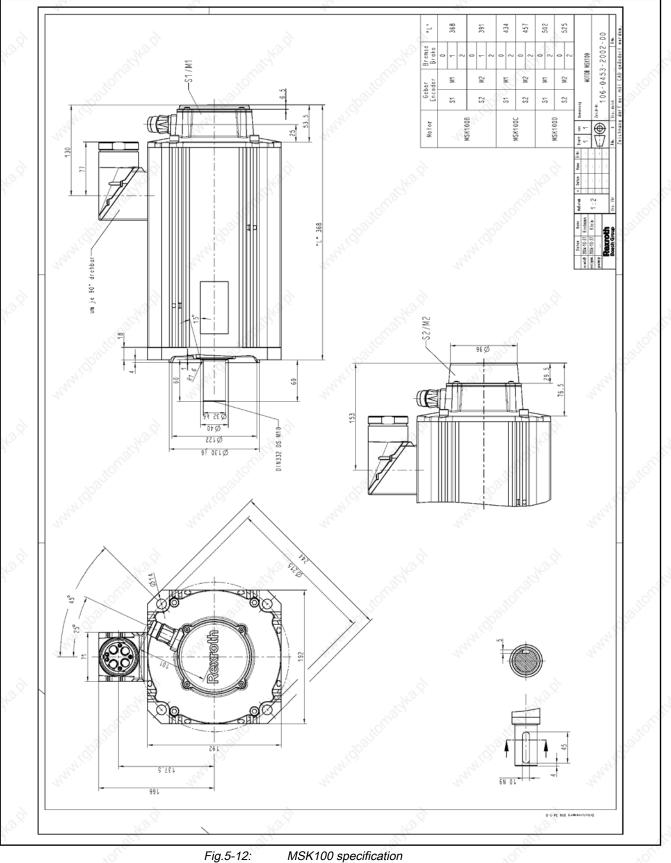
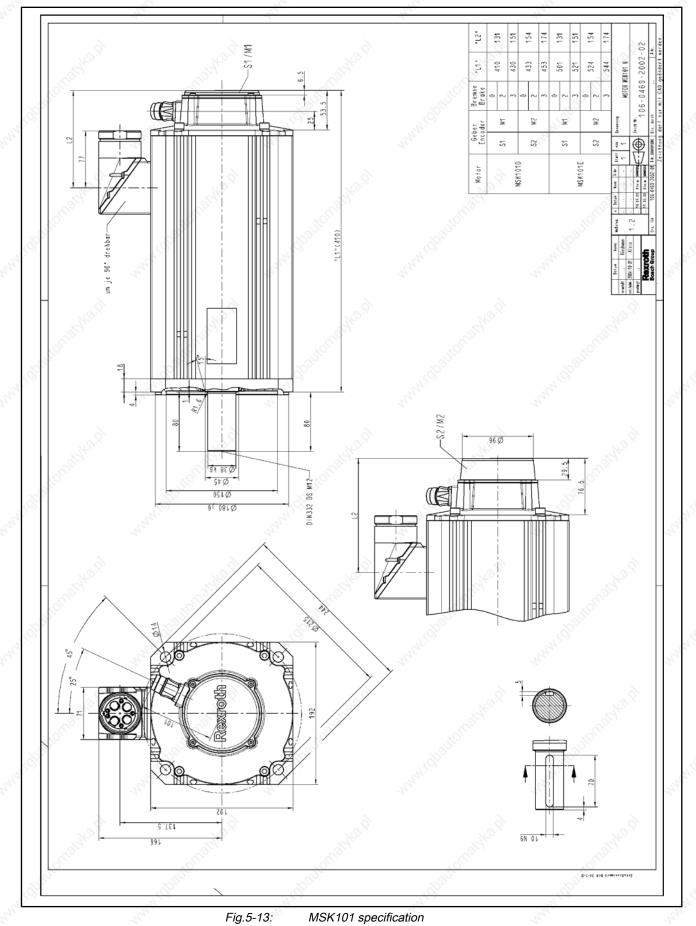
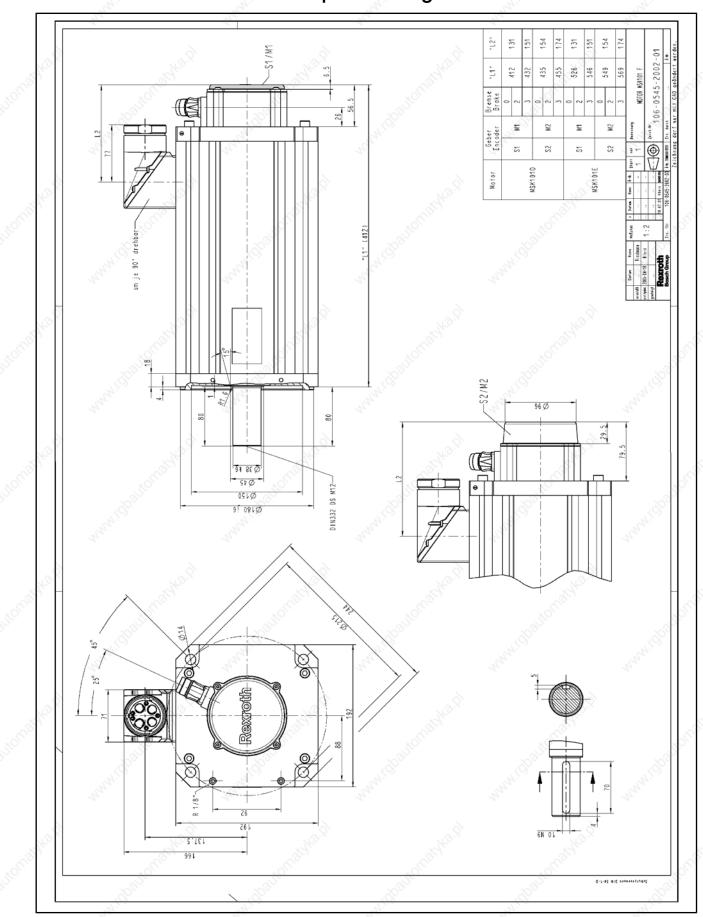



Fig.5-12:


Specifications

5.12 Size MSK101

Electric Drives | Bosch Rexroth AG 99/194 and Controls

Specifications

5.13 Size MSK101 with Liquid Cooling

Fig.5-14: MSK101...FN specification

Electric Drives | Bosch Rexroth AG 101/194 and Controls

Type Codes

6 Type Codes

6.1 Description

Each order of a Rexroth product must be based on the type code. All available motor variants are uniquely described by their type code. The individual characters of the type code (abbrev. column) and their meaning are described below.

B

- The sections below are numbered according to the numbering of the individual type codes.
 - Before ordering, please check the availability of the separate options with your Bosch Rexroth sales partner.

Product

General

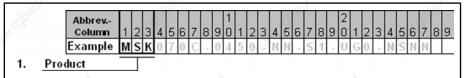


Fig.6-1: Type code column

MSK three-digit Rexroth-specific designation of a servomotor series.

Frame size

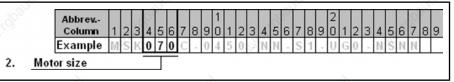


Fig.6-2: Type code column

The motor frame size determines important mechanical motor specifications and is proportional to the performance variables. In addition, column 6 indicates a difference in the rotor moments of inertia.

0 Normal rotor moment of inertia

1 Normal rotor moment of inertia

Type code column

Frame length

Winding

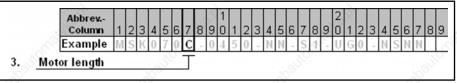


Fig.6-3:

Within a series, the graduation of increasing motor frame length is indicated by ID letters in alphabetic order. Frame lengths are, for example, B, C, D and E.

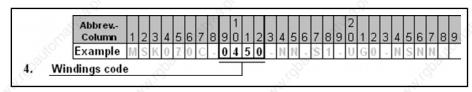


Fig.6-4: Type code column

The four-digit sequence of figures identifies the rated speed applicable for the respective type of winding.

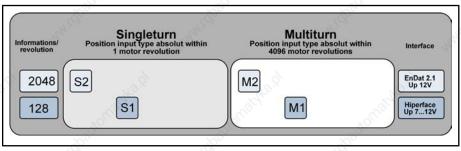
Type of Cooling

umn	1	2	3	4	5	6	7	8	9	Ö.	1	2	3	4	5	6	7	8	9	Ô	1	2	3	4	5	6	7	8	9
nple	M	S	K	0	7	0	С	-	0	4	5	0	-	Ν	Ν	-	S	1	-	U	G	0	-	Ν	S	Ν	Ν		
	nple		nple ∭ S	nple ∭SK	nple MSK0	nple MSK07	nple MSK070	nple MSK070C	nple MSK070C -	nple M S K 0 7 0 C - 0	nple M S K 0 7 0 C - 0 4	nple M S K 0 7 0 C - 0 4 5	nple M S K 0 7 0 C - 0 4 5 0	nple M S K 0 7 0 C - 0 4 5 0 -	nple M S K 0 7 0 C - 0 4 5 0 - N	nple M S K 0 7 0 C - 0 4 5 0 - N N	nple M S K 0 7 0 C - 0 4 5 0 - N N -	nple M S K 0 7 0 C - 0 4 5 0 - N N - S	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 -	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0	nple M S K 0 7 0 C - 0 4 5 0 - <u>N N</u> - S 1 - U G 0 -	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0 - N	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0 - N S	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0 - N S N	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0 - N S N N	nple M S K 0 7 0 C - 0 4 5 0 - N N - S 1 - U G 0 - N S N N

Fig.6-5: Type code column

Option	Design	Detail
NN	Natural Convection	Fan mounting possible
FN	Liquid cooling	Standard connection for coolant ducts 1/8 , fan mounting not possible

Encoder


Fig.6-6:

Cooling modes for IndraDyn S motors

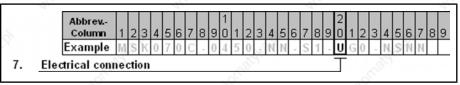
Abbrev Column	1	2	3	4	5	6	7	8	9	1	1	2	3	4	5	6	7	8	9	2	1	2	3	4	5	6	7	8
Example	М	S	К	0	7	0	G	Ś	0	4	5	0	-	Ν	Ν	-	s	1	1	U	G	0	-	Ν	S	Ν	Ν	

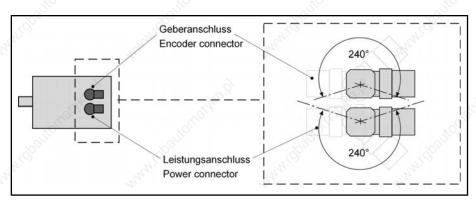
Fig.6-7: Type code column

IndraDyn S motors are equipped with an integrated encoder system. To control the motor speed and/or to position the motor, the drive controller requires information on the current motor position.

Electrical Connection

Fig.6-8: IndraDyn S motor encoders




Fig.6-9: Type code column

Option U

MSK030, -040, -050, -060, -070 and -071 motors are equipped with rotatable plugs to connect encoders and the power supply.

Electric Drives | Bosch Rexroth AG 103/194 and Controls

Type Codes

Options A, B, L or R

Motors with frame size MSK100 are available with determined output directions only.

Option	Description	ALC'
A	Output connector in direction of side A	41
В	Output connector in direction of side B	8
7	Power connector to the left	No. of the second secon
R	Power connector to the right	25

Drive shaft

 Abbrev.-Column
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5

IndraDyn S connectors with fixed output direction

Fig.6-12: Type code column

In order to connect the machine elements to be driven to the motor drive shafts, the following options are available for all IndraDyn S motors:

hole with "DS" thread
Part 2, Edition 05.83
, ii

sion sheets

Fig.6-13: IndraDyn S drive shafts

R

Fig.6-11:

8.

Shaft

IndraDyn S motors are balanced with a key. The pertinent key is

not included in the scope of delivery.

Holding brake

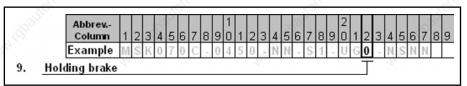


Fig.6-14:

Type code column

As an option, IndraDyn S motors are available with electrically-released holding brakes with various holding torques.

Option	~	Holding Brakes
0	Without holding brake	100 Day
1, 2, 3	With holding brake	Please refer to the motor type codes for the holding torques.

Fig.6-15: IndraDyn S holding brakes

The holding brake is not suitable for the protection of personnel or as a service brake! Please also observe the installation and safety instructions on the motor holding brakes in the chapter entitled "Application Instructions".

Design

R

R

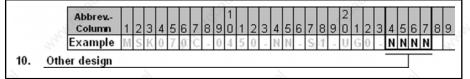


Fig.6-16: Type code column

NNNN = default model

NSNN = Standard and ATEX design according to Group II, Categories 3G and 3D according to DIN EN 60079 ff.

RNNN = design with increased concentricity

RSNN = Design with increased concentricity and ATEX design according to Group II, Categories 3G and 3D according to DIN EN 60079 ff.

You can find precise descriptions of motors in ATEX design in the documentation DOK-MOTOR*-MSK*EXGIIK3-PRxx-EN-P. If required, order this documentation at your responsible Rexroth sales office.

Reference to Standards

The item "Reference to standards" indicates standards referred to in the type code (e.g. DIN, EN, ISO, etc.) or factory standards (RNC ...) that are also applicable. The version listed is always that valid at the time the type code is issued.

Comment

Please refer to this item for additionally required information concerning the handling of the type code. This includes, for example, descriptions on footnotes or notes on availability.

Electric Drives | Bosch Rexroth AG 105/194 and Controls

Type Codes

6.2 Size MSK030

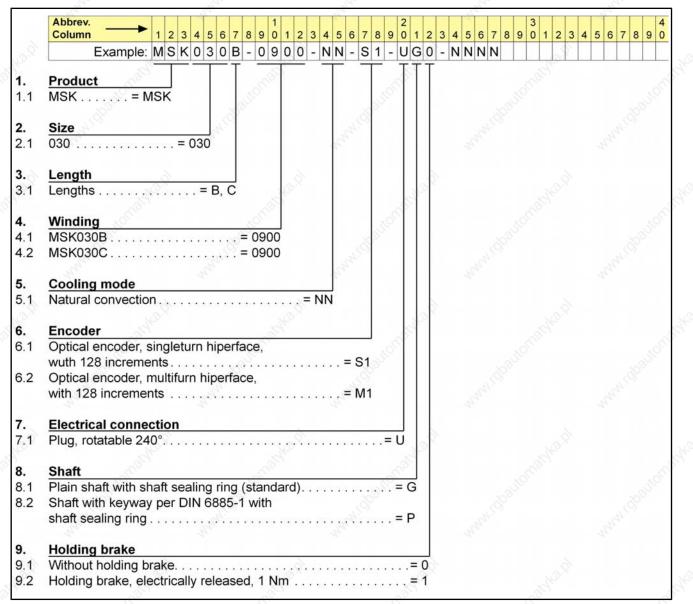


Fig.6-17: Ty

Type Codes MSK030 (page 1)

K ^{ON}	J.C.		31	all Col	ALCON .	
Abbrev. Column Exa	1 2 3 4 5 mple: M S K 0 3				9 0 1 2 3 4 5 6 7	7 8 9
			3G and 3D	= NN	NN	
Standard re Standard DIN 6885-1	<u>Title</u> Drive Type Keyways, I	Fastenings witho Deep Pattern	6	6	<u>Edition</u> 1968-08	
DIN EN 600	79 ff Electrical a	pparatus ior expi	osive gas atmos	pheres (ATEA)	- adde	
<u>x0</u> `'	~~ ⁵⁰	Fig.6-18: Ty	pe Codes MSK030	0 (page 2)	~8 ³	
		S. C. MICO II				

Electric Drives | Bosch Rexroth AG 107/194 and Controls

Type Codes

6.3 Size MSK040

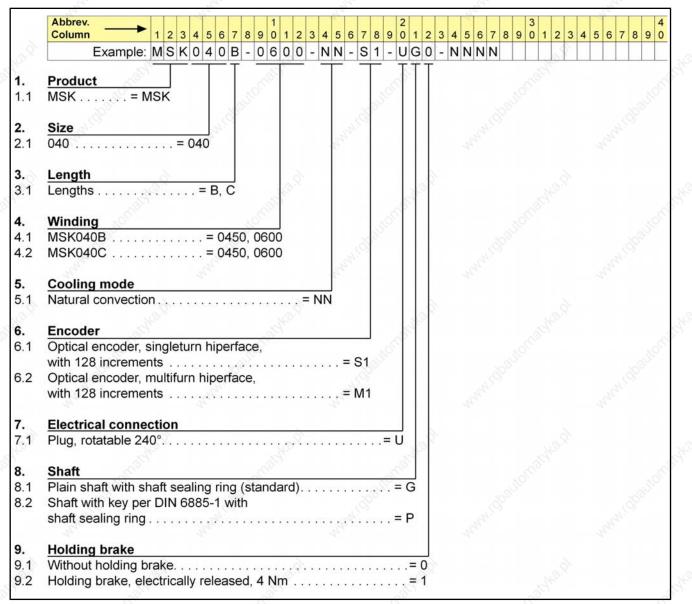


Fig.6-19:

Type Codes MSK040 (page 1)

Abbrev. Column	→ 1 2	3 4 5 6 7 8 9 0	1 2 3 4 5 6 7	8 9 0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5 6 7	8 9
			6 0 0 - N N - S			
Other d Standar Standar on DIN	d d and Ex type f	and the second se	gories 3G and 3I	= NNNN D = NSNN		
<u>Standa</u> DIN 688	35-1 Drive Keyv	Type Fastening vays, Deep Patte	ern 👌	ction; Parallel Keys,	<u>Edition</u> 1968-08	
DIN EN	60079 ff Elect	rical apparatus f	or explosive gas a	atmospheres (ATEX)	- made	
27	. Car	Fig.6-20:	Type Codes M	1SK040 (page 2)	. Chaine	
		1 ig.0 20.	Type obdes w	iono+o (page 2)		

6.4 Size MSK050

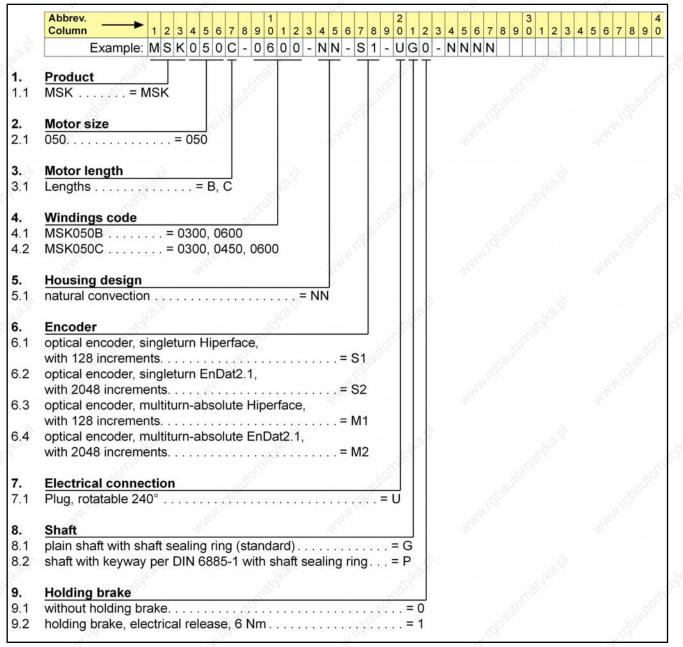


Fig.6-21: Type Cod

Type Codes MSK050 (page 1)

	Abbrev.	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2	3 4 5 6 7 8 9 0
	Example:	MSK050C-0600-NN-S1-UG0-NNNN	
0.	Other design 1	2	
0.1	standard	= NNNN	
0.2	standard and Ex t	ype for cluster II, categories 3G and 3D	
		ff	
0.3	reduced shaft run	-out, axial run-out according to DIN 42955 = RNNN	
		-out, axial run-out according to DIN 42955 and	
		r II, categories 3G and 3D on DIN EN 60079 ff = RSNN	
1.	Standard referer		
1.	Standard	Title	Edition
	DIN 6885-1	Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter	1968-08
	DIN 42955	Tolerances of shaft extension run-out of mounting flanges	1981-12
	DIN 42955		1901-12
	DIN EN 60070 #	for rotating electrical machinery, test	
	DIN EN 60079 ff	Electrical apparatus for explosive gas atmospheres (ATEX)	-
	Note:		
	NOLE.		
	Other design "	NNNNI and "NSNNI" are only available with anodor "S1" or "M1"	
		NNNN" and "NSNN" are only available with encoder "S1" or "M1" RNNN" and "RSNN" are only available with encoder "S2" or "M2"	

Fig.6-22: Type Codes MSK050 (page 2)

Electric Drives | Bosch Rexroth AG 111/194 and Controls

Type Codes

6.5 Size MSK060

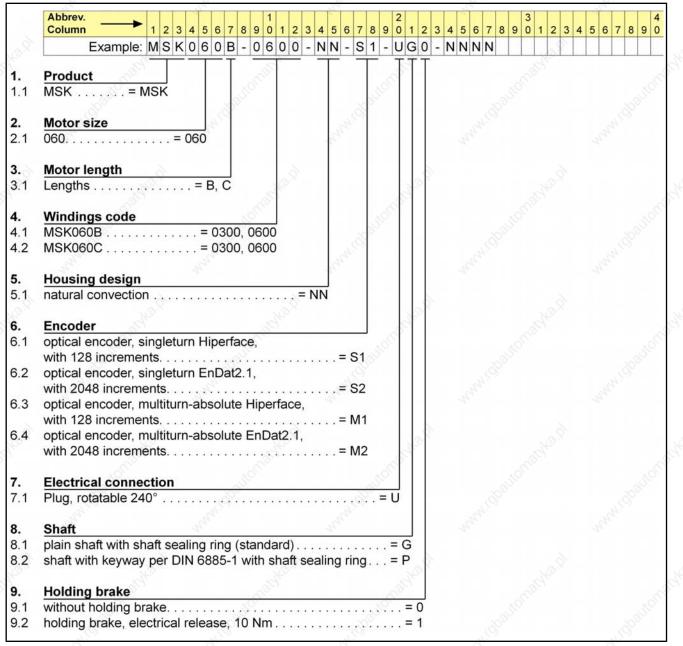
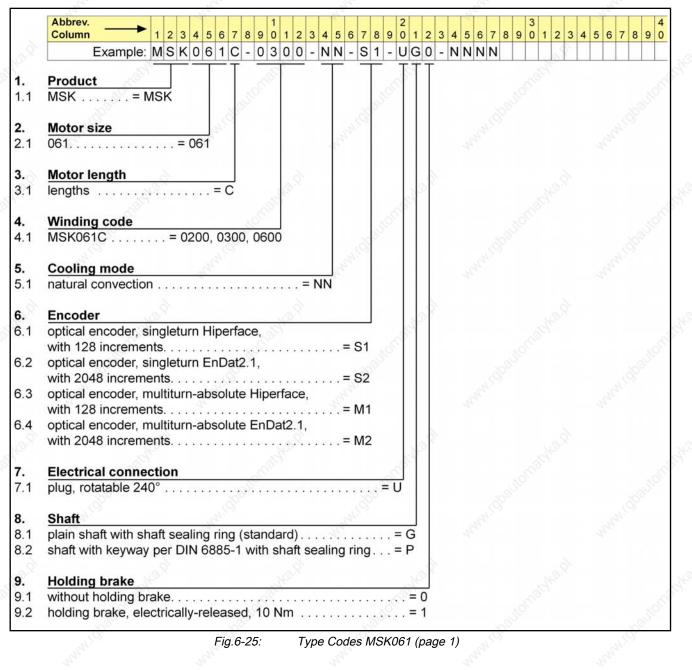


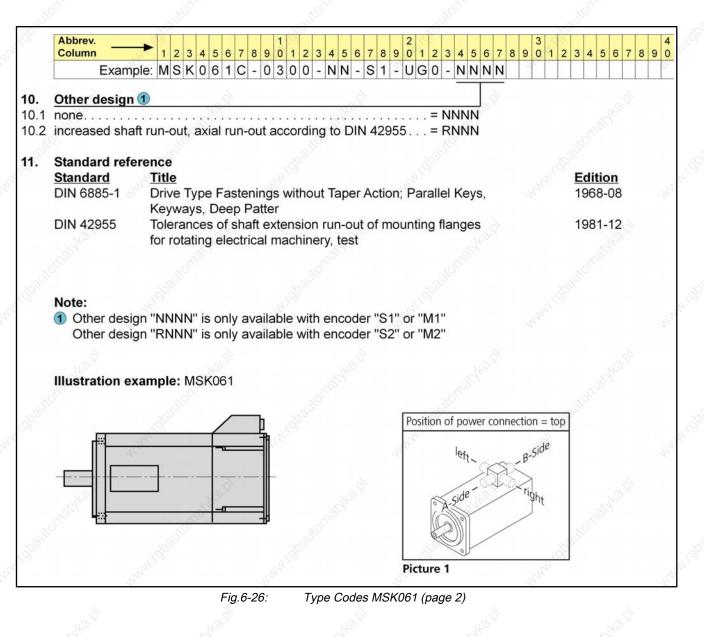
Fig.6-23:

Type Codes MSK060 (page 1)

112/194 Bosch Rexroth AG | Electric Drives and Controls

Type Codes


	Abbrev. Column	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2	3 4 5 6 7 8 9
	Example:	M S K 0 6 0 B - 0 6 0 0 - N N - S 1 - U G 0 - N N N -	
0.	Other design 1	\$ \$	
D.1	standard	= NNNN	
).2	standard and Ex t	type for cluster II, categories 3G and 3D	
	on DIN EN 60079) ff	
.3	reduced shaft run	-out, axial run-out according to DIN 42955 = RNNN	
		-out, axial run-out according to DIN 42955 and	
		r II, categories 3G and 3D on DIN EN 60079 ff = RSNN	
	Standard referen	ice ob ob	
	Standard	Title	Edition
	DIN 6885-1	Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter	1968-08
	DIN 42955	Tolerances of shaft extension run-out of mounting flanges	1981-12
		그 것에 잘 같아요. 것 것 같아? 요. 좀 것 같아? 것 같아? 것 같아? 것 것 같아? 것 같아요. 것 같아요. 것 같아요. 요. 그 그 가 오 말 가 가 가 가 것 못 하는 것 같아요	
		Nor rotating electrical machinery, test	
	DIN EN 60079 ff	for rotating electrical machinery, test Electrical apparatus for explosive gas atmospheres (ATEX)	-
	DIN EN 60079 ff	[1] 사람 같은 것 같은	-
			-
	Note:	Electrical apparatus for explosive gas atmospheres (ATEX)	-
	Note: ① Other design "		-


Fig.6-24: Type Codes MSK060 (page 2)

Electric Drives | Bosch Rexroth AG 113/194 and Controls

Type Codes

6.6 Size MSK061

Electric Drives | Bosch Rexroth AG 115/194 and Controls

Type Codes

6.7 Size MSK070

Abbrev. Column 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Example: MSK070C-0450-NN-S1-UG0-NNNN
Product
MSK = MSK
Motor size 070= 070
070= 070
Motor length Lengths = C, D, E
Lengths = C, D, E
Windings code
MSK070D = 0150, 0300, 0450
MSK070E = 0150, 0300, 0450
Cooling mode
natural convection = NN
Encoder
optical encoder, singleturn Hiperface,
with 128 increments
optical encoder, singleturn EnDat2.1,
with 2048 increments
with 128 increments=M1
optical encoder, multiturn-absolute EnDat2.1,
with 2048 increments.
Electrical connection
Plug, rotatable 240°
A. A. A.
Shaft
plain shaft with shaft sealing ring (standard)=G
shaft with keyway per DIN 6885-1 with shaft sealing ring= P
Holding brake
without holding brake
holding brake, electrical release, 23 Nm

Fig.6-27: Type Codes MSK070 (page 1)

116/194 Bosch Rexroth AG | Electric Drives and Controls

Type Codes

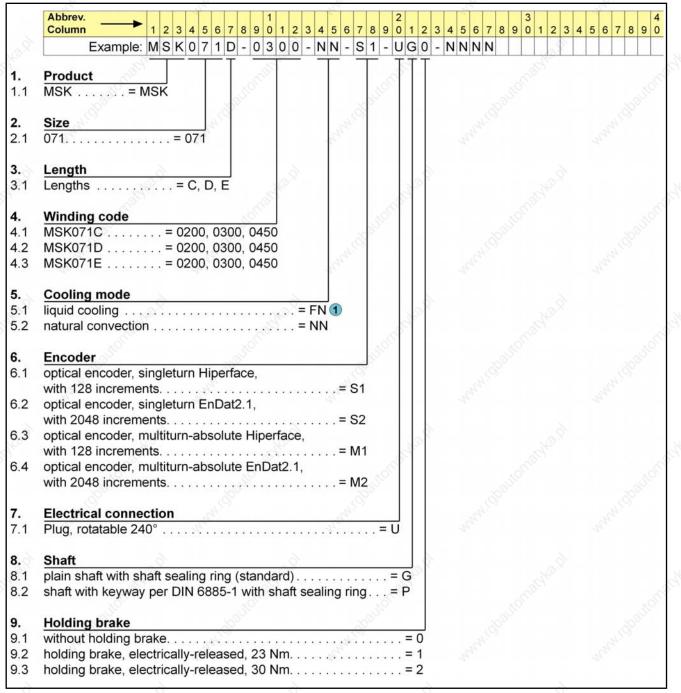
	Abbrev. Column	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2	3 4 5 6 7 8 9 0
	Example:	MSK070C-0450-NN-S1-UG0-NNN	
10.	Other design 1	à à à à à à à à à à à à à à à à à à à	
10.1	standard	= NNNN	
10.2	standard and Ex t	type for cluster II, categories 3G and 3D	
	on DIN EN 60079) ff	
10.3	reduced shaft run	-out, axial run-out according to DIN 42955 = RNNN	
		-out, axial run-out according to DIN 42955 and	
		r II, categories 3G and 3D on DIN EN 60079 ff = RSNN	
	O4+		
11.	Standard referer		2
11.	Standard	<u>Title</u>	Edition
11.	Standard DIN 6885-1	Title Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter	1968-08
11.	Standard	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges	
11.	<u>Standard</u> DIN 6885-1 DIN 42955	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test	1968-08
11.	Standard DIN 6885-1	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test	1968-08
11. S ^{DQUII}	<u>Standard</u> DIN 6885-1 DIN 42955	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test	1968-08
11.	Standard DIN 6885-1 DIN 42955 DIN EN 60079 ff Note:	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test Electrical apparatus for explosive gas atmospheres (ATEX)	1968-08
11.	Standard DIN 6885-1 DIN 42955 DIN EN 60079 ff Note:	<u>Title</u> Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test	1968-08

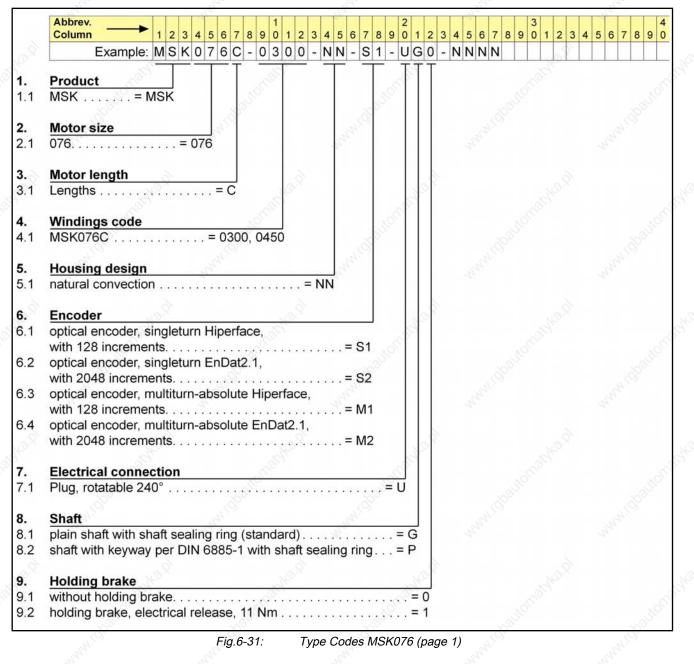
Fig.6-28: Type Codes MSK070 (page 2)

Electric Drives | Bosch Rexroth AG 117/194 and Controls

Type Codes

6.8 Size MSK071




Fig.6-29: Type Codes MSK071 (page 1)

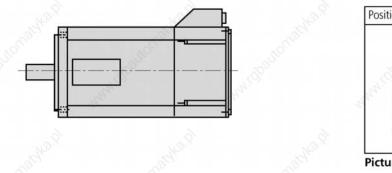
autorne		autome	allome	allone	autorna	
Abbr	mn 🗾			6 7 8 9 0 1 2 3 4 5 6 7 - S 1 - U G 0 - N N N		4 3 9 0
0.1 none	r design 🤇	2 2			- Stol	
	ced shaft ru dard refer		-out according to DII	N 42955 = RNNN		
<u>Stan</u> DIN 6	<u>dard</u> 5885-1	<u>Title</u> Drive Type Fas Keyways, Dee		er Action; Parallel Keys,	<u>Edition</u> 1968-08	11
DIN	42955	Tolerances of s		out of mounting flanges st	1981-12	
	ooling mod			brake "0" and "2" and len	gth "D" and "E"	
			y available with enco y available with enco			h la
J.	⁹ 9,	Fig	g.6-30: Type Co	des MSK071 (page 2)	alla R	

Electric Drives | Bosch Rexroth AG 119/194 and Controls

Type Codes

6.9 Size MSK076

Abbrev.	1234567890	1 2 3 4 5 6 7 8 9	2 0 1 2 3 4 5 6 7 8 9	3 0 1 2 3 4 5 6 7 8 9 0
	ole: MSK076C-03		UG0-NNNN	
Other design11standard2reduced shaft	1 run-out, axial run-out acc		= NNNN = RNNN	
Standard refe <u>Standard</u> DIN 6885-1 DIN 42955	<u>Title</u> Drive Type Fastenings w	xtension run-out of me	lel Keys, Keyways, Deep F ounting flanges	Edition Patter 1968-08 1981-12
Note:				
	gn "NNNN" and "NSNN" a gn "RNNN" and "RSNN" a			
1	Fig.6-32:	Type Codes MSK0		1
	mattent	mashand	a constract a pl	


6.10 Size MSK100

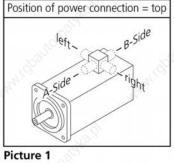

Abbrev 1 2 3
Column 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
Example: MSK100B-0200-NN-S1-AG0-NNNN
Product
MSK = MSK
Motor size
100= 100
Motor length
Lengths = B, C, D
Winding code
MSK100B = 0200, 0300, 0400, 0450
MSK100B = 0200, 0300, 0400, 0450
MSK100C = 0200, 0300, 0450 MSK100D = 0200, 0300
MSK100D 0200, 0300
Cooling mode
natural convection = NN
Encoder
optical encoder, singleturn Hiperface,
with 128 increments.
optical encoder, singleturn EnDat2.1,
with 2048 increments= S2
optical encoder, multiturn-absolute Hiperface,
with 128 increments
optical encoder, multiturn-absolute EnDat2.1, with 2048 increments
Electrical connection 1
Connector, A-Side = A
Connector, B-Side = B
Connector, left
Connector, right
No. No. No.
Shaft
plain shaft with shaft sealing ring (standard) = G
shaft with keyway per DIN 6885-1 with shaft sealing ring = P
Holding brake 2
without holding brake
Without holding blake
holding brake, electrically-released, 32 Nm

Fig.6-33: 7

Type Codes MSK100 (page 1)

				5		
Abbrev.	+ 1 2 2 4 5	678001224	5 6 7 8 9 0 1 2	3 4 5 6 7 8 9 0	1 2 3 4 5 6 7 8	0 4
Column		6 7 8 9 0 1 2 3 4 0 B - 0 2 0 0 - N	50709012		1 2 3 4 5 6 7 8	9 (
Exa	nple: MSK10	0 B - 0 2 0 0 - N	N - S 1 - A G 0	- N N N N		
	3			~		
0. Other desig		8.	10 ²			
				NNNN		
		ce, axial run-out acc				
to DIN 4295	5		=	RNNN		
)* 	S.					
 Standard re 						
Standard	Title				Edition	
DIN 6885-1	Drive Type F Keyways, De	astenings without Taep Patter	aper Action; Parall	el Keys,	1968-08	
DIN 42955		of shaft extension run lectrical machinery,	이렇는 것이 많은 것은 것이 많은 것이 같은 것이 많이 많이 많다.	flanges	1981-12	
	×0	0,				
Note:						
	rom front onto dri	iven shaft (see pictu	re 1)			
		vailable with motor				
		nly available with er		11"		
		nly available with er				
Section de		ing available that of		- Cho		
Illustration	example: MSK10	0				
musuation	example. MORT					

Type Codes MSK100 (page 2)

Electric Drives | Bosch Rexroth AG 123/194 and Controls

Type Codes

6.11 Size MSK101

	Abbrev. Column 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
	Example: M S K 1 0 1 D - 0 2 0 0 - N N - S 1 - A G 0 - N N N N
1	MSK = MSK
	No No No No
	Motor size
1	101= 101
	Motor length
1	Lengths = D, E
	Winding code
1	MSK101D = 0200, 0300, 0450
2	MSK101E = 0200, 0300, 0450
	Cooling mode
1	Natural convection = NN
2	Liquid cooling = FN
	Encoder
1	Optical encoder, singleturn Hiperface,
~	with 128 increments
2	Optical encoder, singleturn EnDat2.1,
2	with 2048 increments = S2
3	Optical encoder, multiturn-absolute Hiperface, with 128 increments
4	Optical encoder, multiturn-absolute EnDat2.1,
-	with 2048 increments.
	Electrical connection 1
1	Connector, A-Side = A
2	Connector, B-Side
3	Connector, left
4	Connector, right= R
	Shaft
1	Plain shaft with shaft sealing ring (standard) = G
2	Shaft with keyway per DIN 6885-1 with shaft sealing ring = P
	Holding brake
1	Without holding brake=0
2	Holding brake, electrically-released, 70 Nm = 2
	Holding brake, electrically-released, 120 Nm = 3

Fig.6-35: Type (

Type Codes MSK101 (page 1)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 ⁰¹	and the second s	and the second	ALC.	and the second s
Other design ? 1 None		▶ 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5 6 7 8 9	3 3 4 5 6 7 8 9
1 None	Examp	le: MSK101D	- 0 2 0 0 - N N - S	1 - AG0 - NNNN	
2 Increased shaft run-out, axial run-out according to DIN 42955 = RNNN Standard reference Standard Title Edition DIN 6885-1 Drive Type Fastenings without Taper Action; Parallel Keys, 1968-08 Keyways, Deep Patter DIN 42955 Tolerances of shaft extension run-out of mounting flanges DIN 42955 Tolerances of shaft extension run-out of mounting flanges DIN 42955 Tolerances of shaft (see picture 1) ① Looking from front onto driven shaft (see picture 1) ① Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 Position of power connection = top Image design the standard model of the standard model of the standard model of the standard model of the standard of the standard model of the standard of the standard model of the standar			Ś.	Q^Q	
Standard Title Edition DIN 6885-1 Drive Type Fastenings without Taper Action; Parallel Keys, 1968-08 Keyways, Deep Patter 1968-08 Keyways, Deep Patter DIN 42955 Tolerances of shaft extension run-out of mounting flanges to rotating electrical machinery, test 1981-12 Note: Down front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 Position of power connection = top Importance of power connection = top Importance of power connection = top<!--</td--><td></td><td></td><td></td><td></td><td></td>					
DIN 6885-1 Drive Type Fastenings without Taper Action; Parallel Keys, 1968-08 Keyways, Deep Patter DIN 42955 Tolerances of shaft extension run-out of mounting flanges 1981-12 for rotating electrical machinery, test 1981-12 Note: Looking from front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 Position of power connection = top Iso design by the state of the stat	Standard refer	rence			
DIN 42955 Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test 1981-12 Note: Looking from front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101		Drive Type Faste		ction; Parallel Keys,	
<text><text><text><text><text></text></text></text></text></text>	DIN 42955	Tolerances of sha	aft extension run-out o	f mounting flanges	1981-12
 Looking from front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 		- Car	-Caro		
 Looking from front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 					
 Looking from front onto driven shaft (see picture 1) Other design "NNNN" is only available with encoder "S1" and "M1" Other design "RNNN" is only available with encoder "S2" and "M2" Illustration example: MSK101 	Note:				
Position of power connection = top Image: state of the st	Other desig			Sz anu wz	
Image: state of the state o	Illustration exa	ample: MSK101			
Fight Fight Picture 1	Mag)			Position of power connect	ion = top
₩ Picture 1			- allomats	left-	B-Side
₩		<u></u>		side - STO	right
	L.,				N.
Fig.6-36: Type Codes MSK101 (page 2)				Picture 1	Cather P
	20	Fig.6	-36: Type Codes	MSK101 (page 2)	-allol.
		M.Ch.	ALCON	MICO.	

Electric Drives | Bosch Rexroth AG 125/194 and Controls

Accessories and Options

Accessories and Options 7

7.1 **Motor Encoder**

7.1.1 General

To control the motor speed and/or to position the motor, the drive controller requires information on the current rotor position.

To achieve this, the integrated encoder unit makes the appropriate signals available to the drive controller. The drive control devices can transfer the position value determined in this manner to a superordinate controller.

The encoder electronics are equipped with a data memory where the motor type name, the control loop parameters and the motor parameters are filed. Rexroth drive control devices read out these data. This ensures

- quick and easy startup,
- adaptation between the motor and the drive controller without the risk of damage to the motor.

7.1.2 Motor Encoder Technical Data

Option	Encoder type	Measuring method	System accuracy	Position recording type	Position resolution on the motor
S1	Singleturn Hiper- face optical en- coder	Optically	± 80 angular seconds	Absolute (more than 1 mo- tor revolutions)	128 x 2 ¹³ = 1,048,576 bits of information / rev-
M1	Multiturn absolute optical encoder	4	A.	Absolute (more than 4096 motor revolutions)	olution
S2	Optical encoder singleturn EnDat 2.1	- Optically	± 20 angular seconds	Absolute (more than 1 mo- tor revolutions)	2048 x 2 ¹³ = 16,777,216 bits of information / rev-
M2	Optical encoder multiturn absolute EnDat 2.1		1 20 angular seconds	Absolute (more than 4096 motor revolutions)	olution

Fig.7-1: Motor Encoder Technical Data

Singleturn optical encoder Option S1, S2

These encoders permit absolute, indirect position recording within one mechanical rotation. The encoders replace a separate incremental encoder on the motor.

R

After a power failure or after the first POWER ON, the axis must first always be moved to its home position.

Exception: Applications in which the maximum working path is within one mechanical rotation of the motor.

Multiturn absolute optical encoder Option M1, M2 These encoders permit absolute, indirect position recording within 4096 mechanical rotations. The encoders replace a separate absolute value encoder on the motor. With this encoder version, the absolute position of the axis is preserved even after voltage switch-off.

Holding Brakes 7.2

In normal operation, use the brake only when at a standstill and when performing the drive-internal brake check. The holding brake is required for holding the axle when the machine is in a de-energized state.

When using holding brakes, observe the additional information in chapter 9.9 "Holding Brakes " on page 167 and chapter 12.4.5 "Holding Brakes " on page 185.

For technical data and availability of holding brakes see chapters R "Technical data" and "Type codes".

7.3 Fan Units for MSK Motors

7.3.1 **Technical Data**

Туре	Protection class	U _N [V]	f _N [Hz]	I _N [A]	m _L [kg]	L _P [dB(A)]
LEM-AB-116N-11-NNNN	IP 65	115 ±10%	60	0,48	2,3	<75
LEM-AB-116N-21-NNNN	IP 65	230 ±15%	50	0,19	2,3	<75
LEM-AB-140N-11-NNNN	IP 65	115 ±10%	60	0,48	3,7	<75
LEM-AB-140N-21-NNNN	IP 65	230 ±15%	50	0,19	3,7	<75
LEM-AB-192N-11-NNNN	IP 65	115 ±10%	60	0,45	4,25	<75
LEM-AB-192N-21-NNNN	IP 65	230 ±15%	50	0,2	4,25	<75

7.3.2 Assignment

Select the required fan unit for the motor type from the following table.

The complete type code is not necessary to select a motor. The fan R unit is identically within a motor frame size.

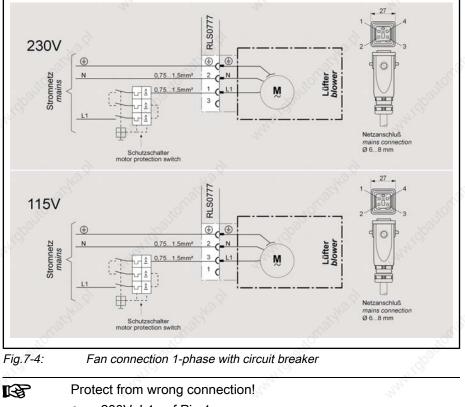

1340.C	LEM-AB-116N- 11-NNNN	LEM-AB-116N- 21-NNNN	LEM-AB-140N- 11-NNNN	LEM-AB-140N- 21-NNNN	LEM-AB-192N- 11-NNNN	LEM-AB-192N- 21-NNNN
MSK060B, -C	 10		405	10		50
MSK070C, -D	. 500	8	-	- 3 ⁰⁰	. 600	
MSK071D, -E	S.S.S.	al a faith of the second s	•	1 ²⁴ -	AN AN	
MSK100B, -C, -D					•	
MSK101D, -E		2.Q	12. ⁹	N.O.	§. •	- AN

Fig.7-3: Matrix to select the motor - fan unit

Electric Drives | Bosch Rexroth AG 127/194 and Controls

Accessories and Options

7.3.3 Electrical Connection, Adjust Motor Protection

- 230V: L1 auf Pin 1
- 115V: L1 auf Pin 3

Fire danger! Improper temperature-rise of the motor cable due to motor current.

 \Rightarrow dimension the power cable correctly, select the cross-section according to the motor current

Fusing due to the motor circuit breaker The connection of the fan units is to be done by adjustable motor protective equipment.

The active principle of the motor circuit breaker is based on the motor currentcarrying bimetall-actuator, which heats-up faster than the motor winding and disconnects it from the supply system before critical temperature values can be reached.

The motor circuit breakers are adjusted with reference to the rated current of the fan unit. Observe, when selecting the motor circuit breaker that the adjustment range corresponds with the rated current of the fan unit.

7.3.4 Ordering

Motor with attached fan unit

In order to procure a motor with attached surface-cooling, the type name of the fan unit must be specified as an ordering subitem of the motor with the fan arrangement desired.

Ordering item	Ordering name
1 3	Synchronous motor MSK100B-0300-NN-S1-BG1-NNNN
1.1	Fan unit LEM-AB-192N-11-NNNN, mounted on Pos. 1 fan arranged on the left side

Fig.7-5: Ordering data for a motor with attached fan unit

Motor with separate fan unit

If it is specified as an independent ordering item, the fan unit is supplied sep-
arately from the motor (i.e. not attached to the latter).

Ordering item	Ordering name
1	Synchronous motor MSK100B-0300-NN-S1-BG1-NNNN
2	Fan unit LEM-AB-192N-11-NNNN

Fig.7-6: Ordering data for a motor with separate fan unit

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 129/194 and Controls

Accessories and Options

7.3.5 Specifications

MSK060 fan unit axial

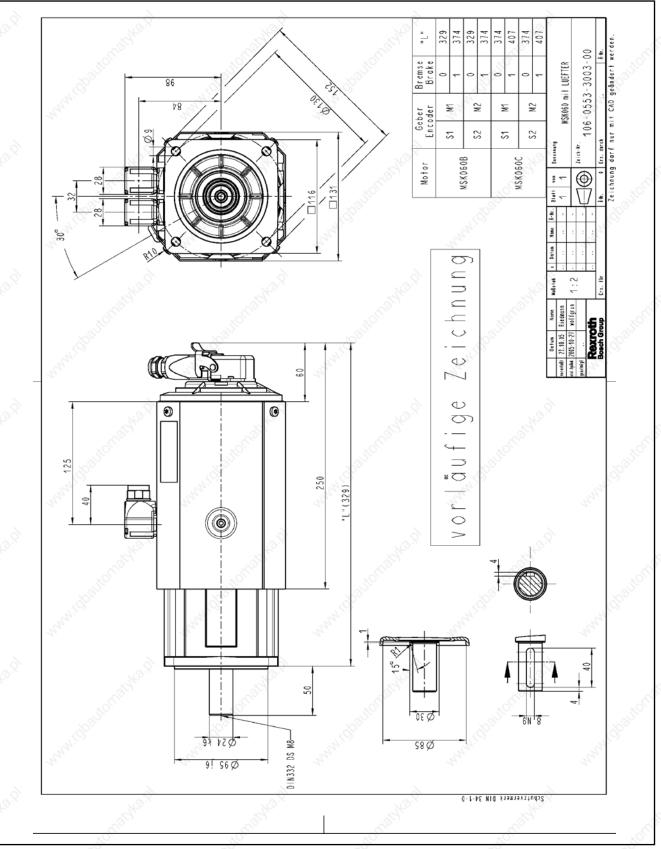


Fig.7-7: Dimension sheet MSK060 with axial fan unit

MSK070 fan unit axial

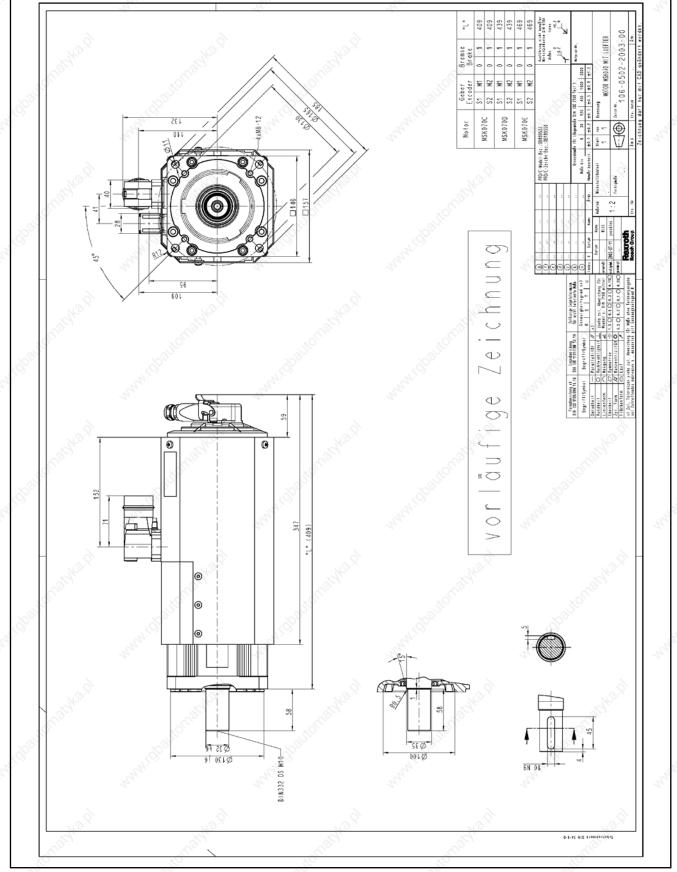
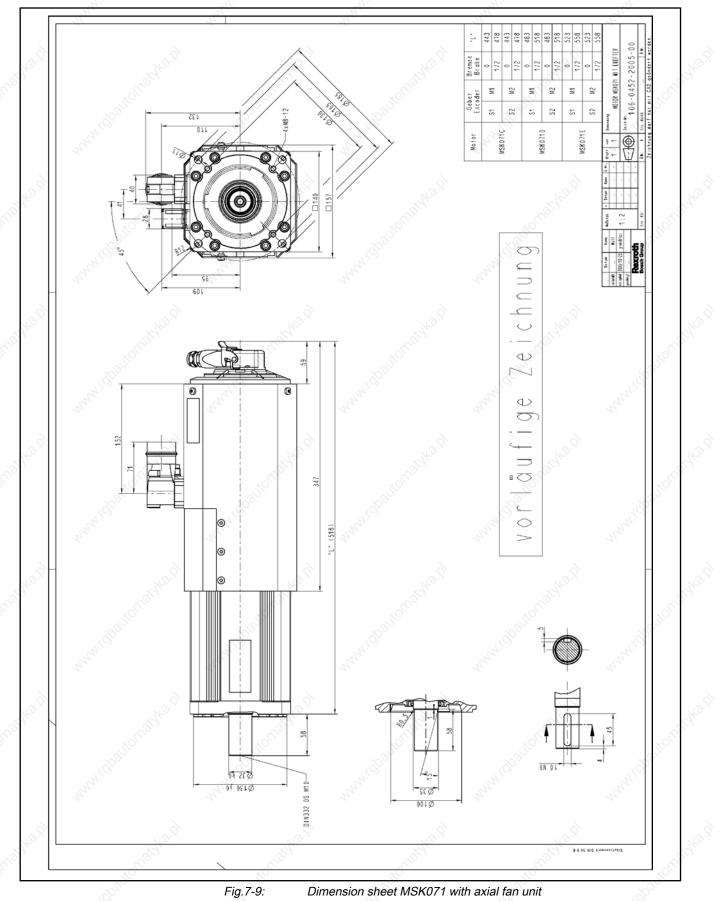



Fig.7-8: Dimension sheet MSK070 with axial fan unit

MSK071 fan unit axial

MSK100 fan unit axial

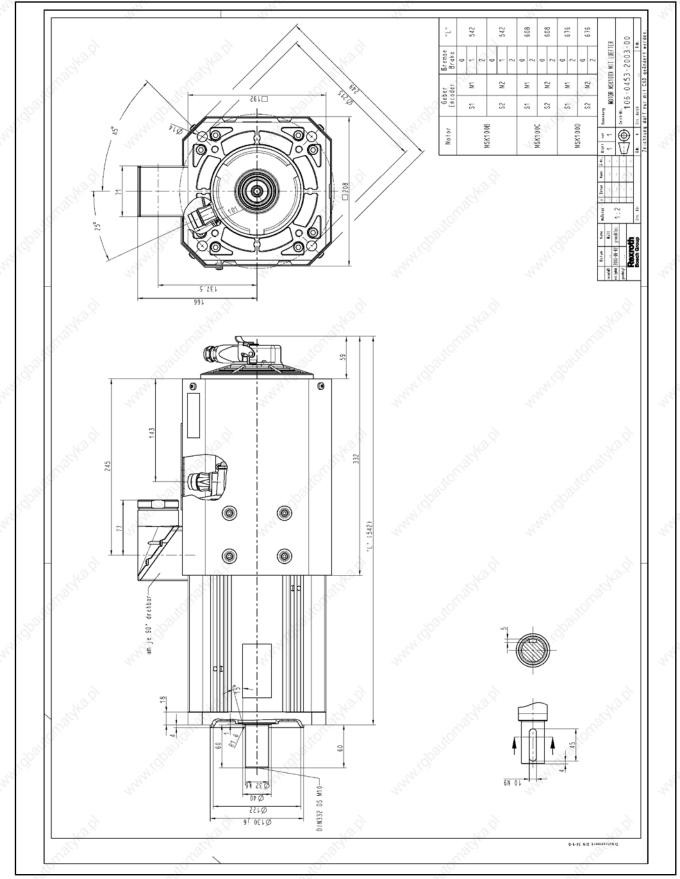


Fig.7-10: Dimension sheet MSK100 with axial fan unit

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 133/194 and Controls

Accessories and Options

MSK101 fan unit axial

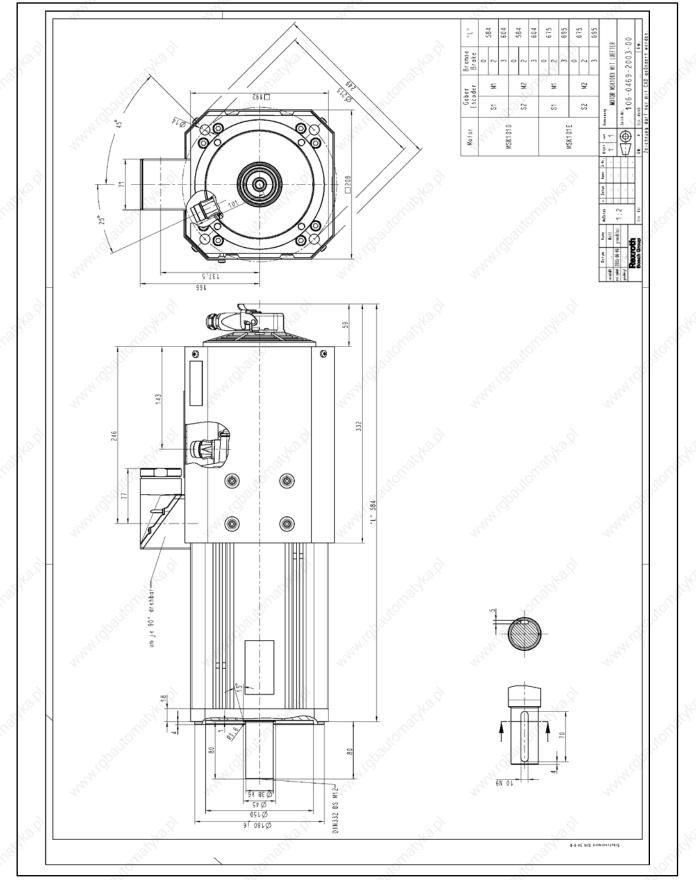
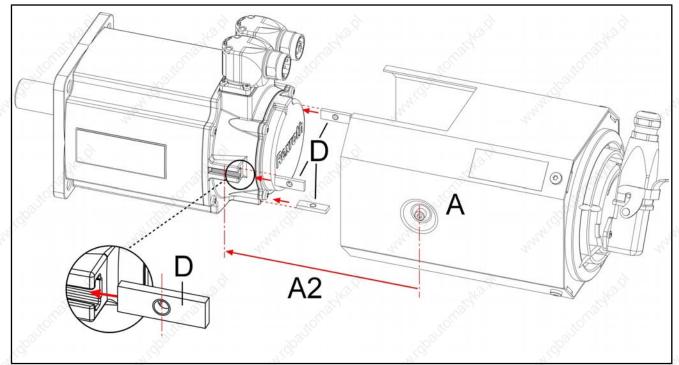
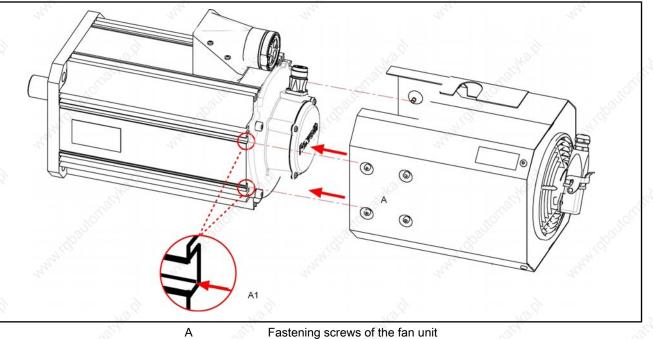



Fig.7-11: Dimension sheet MSK101 with axial fan unit

7.3.6 Assembly

Fig.7-12: Assembly of fan unit LEM-AB-116N-xx-NNNN Mounting procedure

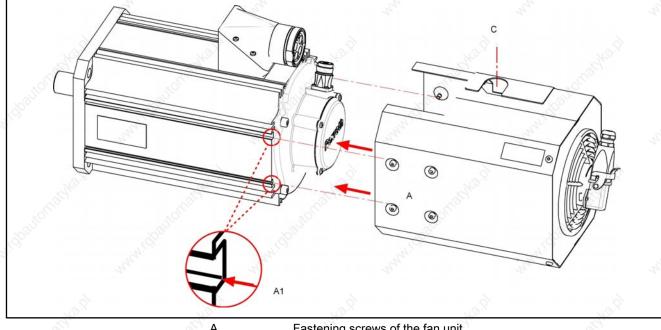

- 1. Insert the terminal block D into the groove of the end shield.
- 2. Insert the fan unit as far as (A2) it will go onto the end shield.
- 3. Tighten the fastening screws A. Tightening torque 4 Nm.
- 4. Electrical connection according to the connection diagram.

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 135/194 and Controls

Accessories and Options

Fan unit LEM-AB-140N


A A1 *Fig.7-13:* Insert the fastening rail into the motor

Assembly of fan unit LEM-AB-140N-xx-NNNN

Mounting procedure

- 1. Loosen the fastening screws A on both sides and insert the fan unit onto the motor housing.
- 2. Tighten the fastening screws A. Tightening torque 4 Nm.
- 3. Electrical connection according to the connection diagram.

Fan unit LEM-AB-192N

A	Fastening screws of the fan unit
A1	Insert the fastening rail into the mot

- Insert the fastening rail into the motor
- Cover sheet for encoder connector

Fig.7-14: Assembly of fan unit LEM-AB-192N-xx-NNNN

Mounting procedure

С

- 1. Loosen the fastening screws A on both sides and insert the fan unit onto the motor housing.
- Tighten the fastening screws A. Tightening torque 4 Nm.
- Electrical connection according to the connection diagram.
- 4. Open the cover C, pass the encoder cable through and connect the encoder connector.

7.4 Gearbox

Gearboxes of the series

- GTM
- GTE

are optimally tuned to the motor series of IndraDyn S. The technical data, as well as the various transformation ratios, are described in detailed documentation.

You can order product documentation about gearboxes with the following ordering designation at your responsible sales office.

DOK-GEAR**-GTE*****-PRxx-EN-P DOK-GEAR**-GTM*****-PRxx-EN-P

7.5 **Sealing Air Connection**

Function, description

The accessory set SUP-M01-MSK allows a defined excess pressure to be introduced into the interior of the motor. This procedure reliably prevents damaging fluids from penetrating through sealing points that are at risk. The areas

Electric Drives | Bosch Rexroth AG 137/194 and Controls

Accessories and Options

Conditions, requirements

of application for sealing air are all installation locations in which humid air or coolant can come into direct contact with the motors, especially in wet rooms.

In order to use sealing air in IndraDyn S motors, the system must have a compressed air connection. The required compressed air preparation system and the hoses for the compressed air must be provided by the customer.

Observe the stated operating pressure for motors!

Technical Data

R

Description	Symbol	Unit	MSK030 MSK040 MSK061 MSK071 MSK076 MSK100 MSK101
Working pressure	p	bar	0,1 0,2
Max. relative air humidity	φ	%	20 30
Air		-25	dustfree
Air	3	ġŚ.	oil-free

Ordering designations and assignment

Fig.7-15: Technical data for IndraDyn S sealing air connection

Select the required sealing air accessory for the motor type from the following table.

*ornabka.P	SUP-M01-MSK Sealing ai connection R911306562	r SUP-M02-MSK Sealing air connection R911315974
MSK030	- 3	S ⁶
MSK040	1	and a second
MSK061		
MSK071	a de la companya de l	1. 1. N.
MSK076	1.2 ¹⁰¹	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
MSK100	and the second sec	110 ⁻ - 0110 ⁻
MSK101	19 ¹	5 • 16

Fig.7-16:

Matrix to select the sealing air accessory

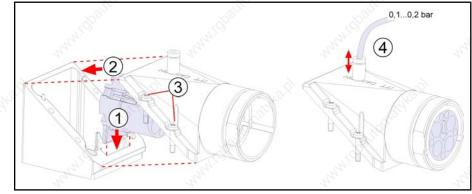
Accessories and Options

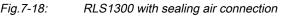
Mounting instructions Retrofitting of IndraDyn S - SUP-M01-MSK

 Fig.7-17:
 RLS1000 with sealing air connection

Death by electrocution possible due to live parts with more than 50V! ⇒ Open the machine sockets of the motor only when the system has been deenergized!

- 1. Open the main switch
- 2. Ensure that the main switch cannot be accidentally switched on again
- 3. Loosen the screws of the encoder plug cover and remove the cover.
- 4. Assemble the sealing air connection.
 - When positioning the cover, ensure that the cable wires and seals are not damaged.


Screw the encoder plug cover with the sealing air connection onto the motor. Torque of the screws = 1.3 Nm.


5. Connect the quick-acting pneumatic coupling of the accessory set to the regulated compressed air source.

The sealing air unit is now ready for operation.

Mounting instructions

Retrofitting of IndraDyn S - SUP-M02-MSK

Project Planning Manual | Rexroth IndraDyn S

Accessories and Options

Death by electrocution possible due to live parts with more than 50V!

 \Rightarrow Open the machine sockets of the motor only when the system has been deenergized!

- 1. Open the main switch
- 2. Ensure that the main switch cannot be accidentally switched on again
- 3. Loosen the screws of the power plug cover and remove the cover.
- 4. Assemble the sealing air connection.

When positioning the cover, ensure that the cable wires and seals are not damaged.

Screw the power plug cover with the sealing air connection onto the motor. Torque of the screws = 1.3 Nm.

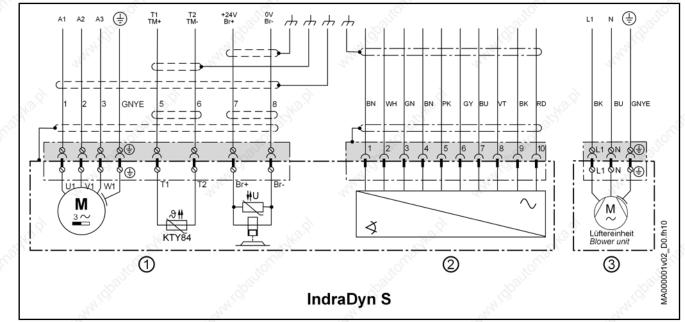
5. Connect the quick-acting pneumatic coupling of the accessory set to the regulated compressed air source.

The sealing air unit is now ready for operation.

Electric Drives | Bosch Rexroth AG 141/194 and Controls

Connection Techniques

8 Connection Techniques


8.1 General

The electrical connections of IndraDyn S motors are standardized over all frame sizes. IndraDyn S motors are provided with

- a power connector, incl. connection for temperature sensor and holding brake,
- an encoder connection.

Both connectors are designed as plug connections. When ready-made Rexroth connection cables are used, this ensures simple, fast and error-free assembly and commissioning.

The connection diagram applies to all IndraDyn S motors.

Power connection with temperature sensor and holding brake Encoder Connection Fan connection(optional) *Overview of IndraDyn S connections*

8.2 Power Connector Size 18.2.1 RLS1100 Flange Socket

In motors of frame size **MSK030**, **MSK040**, **MSK050**, **MSK060**, the power is supplied using a flange socket RLS1100.

Graphical representation

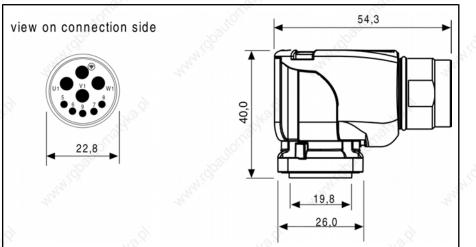


Fig.8-2: RLS1100 Flange Socket

Mechanical data

Electrical data

Mechanical data

Protection class	Number of pins	Temperature range	Contact type
IP66 / IP67 plug- ged	3 + PE + 5	-40 °C to +125 °C	Pin

Electrical data

Fig.8-3:

Fig.8-4:

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
630 V / 125 V	16 A	3	III (according to DIN VDE 0110)

Contact assignment

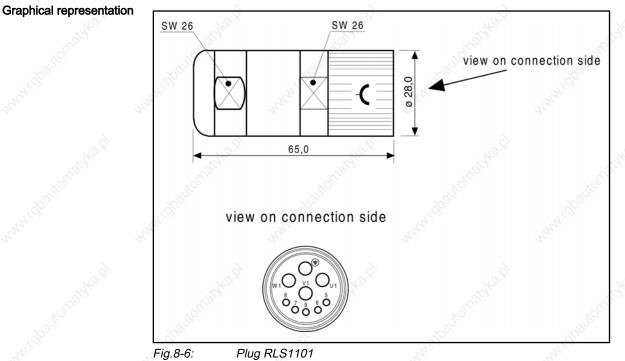

Ù1	Power	.NºX
V1	Power	
W1	Power	10 ²⁰
PE	Grounding	and the second s
5	Temperature sensor KTY84 (T1 TM+)	2
6	Temperature sensor KTY84 (T2 TM-)	2.
7	Holding brake (Br+ / +24V)	Onting
8	Holding brake (Br- / 0V)	Option
9	n.c.	

Fig.8-5:

RLS1100 – contact assignment for MSK motors

RLS1101 Power Connector 8.2.2

The power plug RLS1101 is used as a motor connection plug for motors MSK030, MSK040, MSK050, MSK060, and as a power coupling.

Mechanical data

Fig.8-6:

Fig.8-7:

Protection class Number of pins Temperature range Contact type IP66 / IP67 plug-3 + PE + 5 -40 °C to +125 °C Socket ged

Electrical data

1 Pro	Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
	630 V / 125 V	16 A	3	III (according to DIN VDE 0110)

Contact assignment

Fig.8-8: Electrical data

Mechanical data

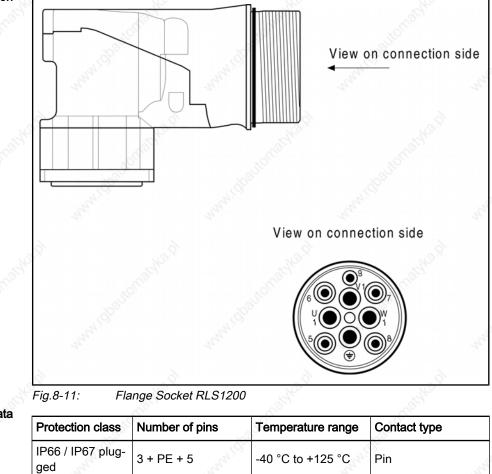
U1	Power	. 800
V1	Power	
W1	Power	
PE	Grounding	12 ²
5	Temperature sensor KTY84 (T1 TM+)	5
6	Temperature sensor KTY84 (T2 TM-)	- Allo
7	Holding brake (Br+ / +24V)	Ontion
8	Holding brake (Br- / 0V)	Option
9	Brake / temp. shield	~

Fig.8-9:

RLS1101 – contact assignment for MSK motors

Order designation for plugs

Ordering type	Power wire cross- section	Terminal area, outer cable diameter [mm]
RLS1101/C02	1,0 / 1,5	11,0 – 14,0


Fig.8-10: Order designation for RLS1101 plug

8.3 Power Connector Size 1.5

8.3.1 RLS1200 Flange Socket

In motors of frame size **MSK070**, **MSK071**, the power is supplied by using a flange socket RLS1200.

Graphical representation

Mechanical data

Fig.8-12: Mechanical data

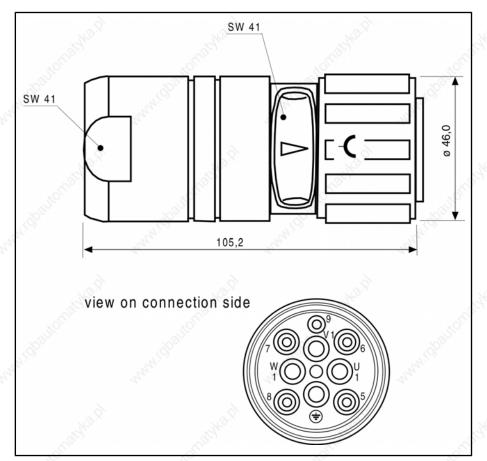
Electrical data

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
630 V / 125 V	max. 57.0 A depend- ing from the wire cross-section	3	III (according to DIN VDE 0110)

Fig.8-13: Electrical data

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 145/194 and Controls


Connection Techniques

Contact assignment

U1	Power	.0
V1	Power	Na
W1	Power	6
PE	Grounding	2
5	Temperature sensor KTY84 (T1 TM+)	. HOL
6	Temperature sensor KTY84 (T2 TM-)	S° S°
7	Holding brake (Br+ / +24V)	Option
8	Holding brake (Br- / 0V)	Option
9	n.c.	ND.S.
	N N	S

Fig.8-14: RLS1200 – contact assignment for MSK motors RLS1201 Power Connector

The flange socket RLS1201 is used as a connection for **MSK070**, **MSK071** motors and as a power coupling.

Mechanical data

Fig.8-15: Plug RLS1201

Protection class	Number of pins	Temperature range	Contact type
IP66 / IP67 plug- ged	3 + PE + 5	-40 °C to +125 °C	Socket

Fig.8-16: Mechanical data

Graphical representation

8.3.2

Electrical data

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
630 V / 125 V	max. 57.0 A depend- ing from the wire cross-section	3	III (according to DIN VDE 0110)

Fig.8-17: Electrical data

Contact assignment

	2 ¹	10 ⁰
U1	Power	\$°
V1	Power	4
W1	Power	6
PE	Grounding	all a star
5	Temperature sensor KTY84 (T1 TM+)	30600
6	Temperature sensor KTY84 (T2 TM-)	S
7	Holding brake (Br+ / +24V)	Ontion
8	Holding brake (Br- / 0V)	- Option
9	Brake / temp. shield	10.9
		2

Fig.8-18: RLS1201 – contact assignment for MSK motors

Order designation for plugs

Ordering type	Power wire cross-section	Terminal area, outer cable di- ameter [mm]
RLS1201/C02	1,5	9,0 – 12,7
RLS1201/C04	2,5 / 4,0	13,0 – 17,3
RLS1201/C06	6,0	17,5 – 21,5
RLS1201/C10	10,0	21,5 – 26,0

Order designation for RLS1201 plug Fig.8-19:

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 147/194 and Controls

Connection Techniques

8.4 **Power Connector Size 2** 8.4.1 **RLS1300 Flange Socket**

In motors of frame size MSK100, MSK101 the power is supplied using flange socket RLS1300.

Graphical representation

Mechanical data

RLS1300 Flange Socket Fig.8-20:

Protection class	Number of pins	Temperature range	Contact type
IP66 / IP67 plug- ged	3 + PE + 5	-40 °C to +125 °C	Pin
Fig.8-21: Mee	chanical data	auton	altor

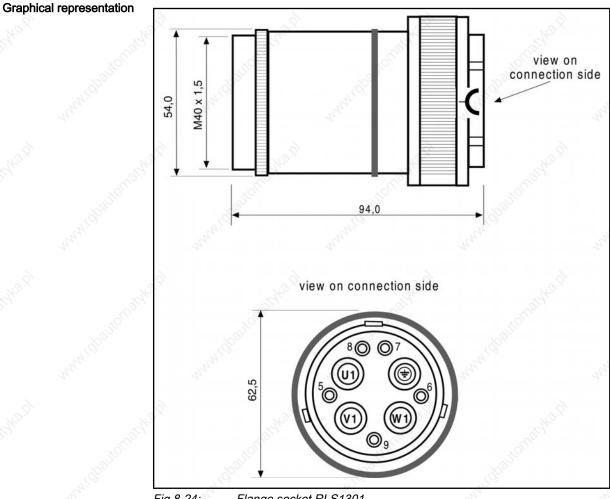
Electrical data

g.8-21:	Mechanical data	

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
700V	100A	3	III (according to DIN VDE 0110)

Fig.8-22:

Electrical data


Contact	assignment
Contact	assignment

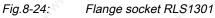

U1	Power		
V1	Power	14	
W1	Power	6	
PE	Grounding	all and a second s	
5	Temperature sensor KTY84 (T1 TM+)	. HOL	
6	Temperature sensor KTY84 (T2 TM-)	So	
7	Holding brake (Br+ / +24V)	Ontion	
8	Holding brake (Br- / 0V)		
9	n.c.	10 ⁹	

Fig.8-23: RLS1300 – contact assignment for MSK motors

8.4.2 **RLS1301** Power Connector

The connector RLS1301 is used as a connection for MSK100, MSK101 motors and as a power coupling.

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 149/194 and Controls

Connection Techniques

Mechanical data	M	ech	anic	al d	ata
-----------------	---	-----	------	------	-----

Protection class	Number of pins	Temperature range	Contact type
IP66 / IP67 plug- ged	3 + PE + 5	-40 °C to +125 °C	Socket

Mechanical data Fig.8-25:

Electrical data

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage catego- ry
700V	100A	3	III (according to DIN VDE 0110)

Contact assignment

Fig.8-26: Electrical data

U1	Power U1	100
V1	Power V1	all ^o
W1	Power W1	No. And
PE	Grounding	24
5	Temperature sensor KTY84 (T1 TM+)	8
6	Temperature sensor KTY84 (T2 TM-)	
7	Holding brake (Br+ / +24V)	Ontion
8	Holding brake (Br- / 0V)	Option
9	Brake / temp. shield	e dati

Order designation for plugs

Ordering type	Power wire cross-section	Clamping area of the cable outer diameter
RLS1301/C03	1,5 / 2,5	_ The cable gland is not in the scope of delivery
RLS1301/C06	4,0 / 6,0	and must agree to the outer diameter of the
RLS1301/C10	10,0	cable. Thread on the plug-in connector M4 1.5. You can find further information within the o
RLS1301/C16	16,0	
RLS1301/C25	25,0	umentation "Rexroth Connection Cable, DOK-
RLS1301/C35	35,0	CONNEC-CABLE*STAND-AU -EN-P"

Fig.8-28:

Order designation for RLS1301 plug-in connectors

8.5 Encoder connector

8.5.1 RGS1000 Flange Socket, RGS1003 Flange Socket

The encoder is connected to IndraDyn S motors using a 10-pin flange socket.

Graphical display RGS1000

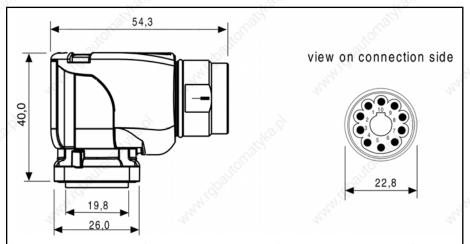


Fig.8-29: RLS1100 Flange Socket

Mechanical data

Protection class	Number of pins	Temperature range	Contact type	
IP66 / IP67 plug- ged	10	-40 °C to +125 °C	Pins	

Electrical data

Fig.8-30: Mechanical data

ectrical	data	
		- 1 C

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage cate- gory
125 V	șe. S	3	III (according to DIN VDE 0110)
Fig.8-31: Ele	ectrical data	,	9.

Contact assignment

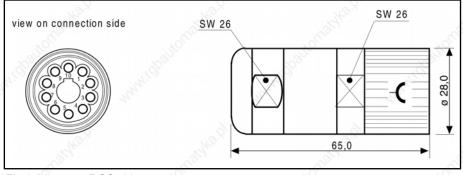

Pin	Encoders S1, M1 (Hyperface)	Encoders S2, M2 (EnDat 2.1)
1	VCC_Encoder	VCC_Encoder
2	GND_Encoder	GND_Encoder
3	A+	A+
4	A -	A -
5	B +	B +
6	В-	В-
7	EncData +	EncData +
8	EncData -	EncData -
9	n.c.	EncCLK +
10	n.c.	EncCLK -

Fig.8-32: Contact assignment RGS1000, RGS1003

8.5.2 RGS1001 Power Connector

The flange socket RGS1001 is used as a connection for IndraDyn S motors and as a coupling.

Graphical representation

Mechanical data

Fig.8-33: RGS1001 power connector

Protection class	Number of pins	Temperature range	Contact type
IP66 / IP67 plug- ged	10	-40 °C to +125 °C	Socket

Electrical data

Rated voltage	Continuous rated current	Degree of pollution	Overvoltage cate- gory
125 V	A. C.	3	III (according to DIN VDE 0110)

Contact assignment

Pin	Rexroth INK0448 wire colors	S.C.O.) S
1 0	BN 0.5mm ²	10 ALE	Baller
2	WH 0.5mm ²	and C	and the second sec
3	GN 0.25mm ²	12	12
4	BN 0.25mm ²	d'	à
5	PK 0.25mm ²		No.
6	GY 0.25mm ²	Horn	
7	BU 0.25mm ²	B	JS T
8	VT 0.25mm ²	4 ^{ch}	44
9	BK 0.25mm ²	<u></u>	
10	RD 0.25mm ²	8	40.S
Total	shielding over housing	S.C.	

Fig.8-36: Contact assignment

Order designation for plugs

Ordering type	Contact diameter	Terminal area, outer cable diameter [mm]
RGS1001/C02	1,0	7,5 – 9,0

Fig.8-37: Order designation for RGS1001 plug

8.6 Connection Cable

8.6.1 Dimensioning of Power Cables

Heed the current information on the motor type label and observe the installation and ambient conditions in your type of application.

The machine/system manufacturer is responsible for selecting the cable cross-sections.

Observe the regulations of the country where the motors are to be used. USA: see National Electric Code (NEC), National Electrical Manufacturers Association (NEMA), Underwriters Laboratories (UL) regulations as well as local building regulations.

The following table shows the current rating of Bosch Rexroth and PVC cables depending on the method of installation at an ambient temperature of +40°C.

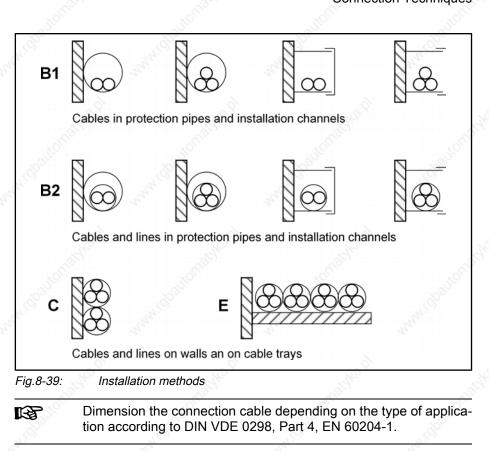

Cross- sec- tion	Current rating ac- cording to VDE 0298 Part 4, Rexroth ca- ble in A _{eff}	Current rating according to EN 60204 PVC cable in			C cable in A _{eff}
in mm²	Installation mode B2	Installation type B1	Installation type B2	Installation type C	Installation type E
1,0	13,0	10,4	9,6	11,7	11,5
1,5	15,7	13,5	12,2	15,2	16,1
2,5	22,6	18,3	16,5	21	22
ò 4	29,6	25	23	28	30
6	38,3	32	29	36	37
10	53,0	44	40	50	52
16	71,3	60	53	66	70
25	93,9	77	67	84	88
35	117,4	97	83	104	114
50	146,1		No.2	123	123

Fig.8-38: Current rating

The current rating is dependent on the way that the cables are installed. The following figure shows the methods of installation according to EN 60204-1 (1993) and VDE 0298, Part 4.

Electric Drives | Bosch Rexroth AG 153/194 and Controls

Connection Techniques

8.6.2 Ready-Made Connection Cables

Connection Cable

Rexroth provides ready-made power and encoder cables. The following documentation is available to help select cables.

You can find additional information ...

- in the documentation "Selection Data Connection Cables"; DOK-CON-NEC-CABLE*STAND-AUxx-EN-P. All available power and encoder cables, as well as the combinations for IndraDyn S motors, are described here.
- R

Note: If installation modes that are not covered in classification "B2" according to EN 60204-1 (1993) are required, larger cable cross-sections may need to be used!

8.6.3 🚿 Cable Layout

A distance of at least 100 mm must be maintained between the power and the encoder cables; otherwise, a metallic cable duct with separating bars must be used.

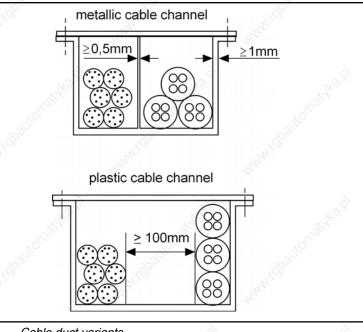


Fig.8-40: Cable duct variants

Do not position encoder/signal cables near radio frequency devices, magnetic fields (transformers, throttles, etc.) or power lines.

8.6.4 Line Lengths

The maximum available line length for power and encoder cables is limited to 75 m.

Note that the line length can be limited by:

- connectors (number > 2)
- the switching frequency of the drive controllers (e.g. 4kHz, 8kHz)
- the EMC behavior

Observe the notes for the IndraDrive drive controllers and the EMC layout in the Project Planning manual.

8.7 Motor Cooling System

8.7.1 Connection Techniques Fan Units

Fan units are designed with connectors in protection class IP 65. Additionally, connectors are delivered with the fan unit, which have to be connected lineside. Please, observe the notes in chapter 7.3 "Fan Units for MSK Motors" on page 126.

8.7.2 Connection Technique Liquid Cooling

The following motors offer the possibility to liquid-cooling.

Motor	Connection	
MSK071	G1/8"	44
MSK101	G1/6	

Fig.8-41: MSK overview cooling connections

Installation materials, like tubes and fixing clamps, do not belong to the scope of delivery. Choose a supply-tube with correct internal diameter d_i . The following figure shows possible connection variants.

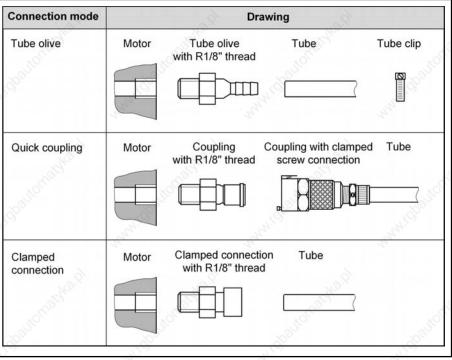


Fig.8-42: Connection variants liquid cooling

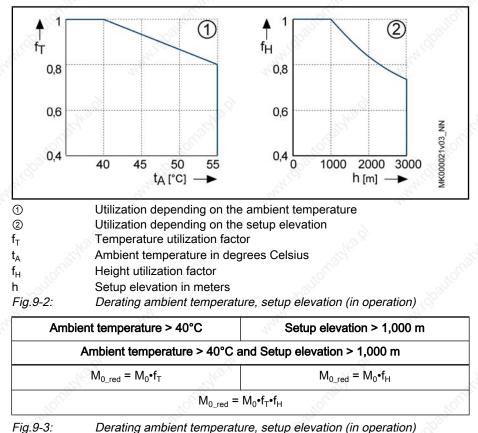
Additional information about motor operation with liquid cooling chapter 9.11.3 "Liquid cooling" on page 170.

Electric Drives | Bosch Rexroth AG 157/194 and Controls

Operating Conditions and Application Notes

9 Operating Conditions and Application Notes

9.1 Ambient Conditions


9.1.1 Setup elevation and ambient temperature

The stated motor performance data, according to EN 60034-1 are valid for:

Ambient temperature	0°C to 40°C	
Set-up elevation	0 to 1000 m above sea level	

Fig.9-1: Ambient temperature, setup elevation (in operation)

When exceeding the given limits, the performance data of the motors must be reduced.

9.1.2 Humidity / Temperature

Ambient climatic conditions are defined into different classes according to DIN EN 60721-3-3, Table 1. They are based on observations made over long periods of time throughout the world and take into account all influencing quantities that could have an effect, such as the air temperature and humidity.

Based on this table, Rexroth recommends class 3K4 for continuous use of the motors.

This class is excerpted in the following table.

Unit	Class 3K4
°C	+5 ¹)
°C	+40
%	10 ¹ 5 10 ¹
% _6	95
g/m³	1
g/m³	29
°C/min	0,5
	°C °C % g/m ³ g/m ³

Fig.9-4:

1)

Rexroth permits 0°C as the lowest air temperature. Classification of climatic environmental conditions according to DIN EN

60721-3-3, Table 1

9.1.3

Vibration

Sinusoidal Vibrations

Sine-shaped vibrations occur in stationary use; depending on their intensity, they have different effects on the robustness of the motors.

The robustness of the overall system is determined by the weakest component. Based on DIN EN 60721-3-3 and DIN EN 60068-2-6, the following values result for Rexroth motors:

Dina ati a m	Maximum permissible vibration load (10-2,000 Hz)			
Direction	Encoder S1, M1	Encoder S2, M2		
axial	10 m/s²	10 m/s²		
radial	30 m/s²	10 m/s ²		

Shock 9.1.4

Fig.9-5: Permissible vibration load for MSK motors

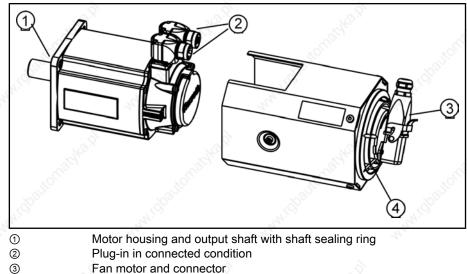
The shock load of the motors is indicated by providing the maximum permitted acceleration in non-stationary use, such as during transport.

Damage to functions is prevented by maintaining the limit values specified.

Based on DIN EN 60721-3-3 and DIN EN 60068-2-6, the following values result for Rexroth motors:

Frame size	Maximum permitted shock load (6ms)				
	axial	radial			
MSK030		8°°			
MSK040	10 m/s²	1,000 m/s²			
MSK050	1				
MSK060	10 m/s ²	500 m/s²			
MSK061	TO TH/S	500 11/5			
MSK070	10 Store	-Clark			
MSK071	10 m/s²	300 m/s²			
MSK076	S. S. S.				
MSK100	10	200/2			
MSK101	10 m/s²	200 m/s²			

Fig.9-6:


Permitted shock load for MSK motors

9.2 **Protection Class**

The motors are divided into corresponding protection classes (IP) regarding their applicability for different ambient conditions. These protection classes (IP) are described in DIN EN 60529. The protection of the device is signed with a double-digit number. The first characteristic numeral defines the degree of protection against contact and penetration of foreign particles. The second code numeral defines the degree of protection against water.

1st code num- ber	Degree of protection		
6	Protection against penetration of dust (dust-proof); complete contac protection		
4	Protection against penetration of solid foreign bodies, more than 1 mm in diameter		
2	Protection against penetration of solid foreign bodies, more than 12.5 mm in diameter		
2nd code num- ber	Degree of protection		
7 🔊	Protection against harmful effects if temporarily immersed in water		
5	Protection against a water jet from a nozzle directed against the housing from all directions (jet water)		
4	Protection against water splashing against the housing from all di- rections (splashwater)		

Fig.9-7: IP protection classes

- Fan screen

4

Fig.9-8: IP protection class range for MSK motors

The IndraDyn S motor construction corresponds with the following protection class according to DIN VDE 0470, Part 1, ed. 11/1992 (EN 60 529):

Motor area	Protection class	Comment	
① motor housing, output shaft	IP 65	Standard design	
② connected motor connector at correct assembly	IP 65	Standard design	
② connected motor connector at correct assembly and use of sealing air	IP 67	only with the accessory sealing air!	
③ connected fan motor and connector	IP 65	Accessory fan unit	
④ fan screen	IP 24		

Fig.9-9: IP protection class for the motors

The inspections for the second ID number are executed with fresh water. If cleaning is effected using high pressure and/or solvents, coolants, or penetrating oils, it might be necessary to select a higher degree of protection.

9.3 Compatibility with Foreign Materials

All Rexroth controls and drives are developed and tested according to the state of the art.

However, since it is impossible to follow the continuing further development of every material with which our controls and drives could come into contact (e.g. lubricants on tool machines), reactions with the materials that we use cannot be ruled out in every case.

For this reason, you must execute a compatibility test between new lubricants, cleansers, etc. and our housings and device materials before using these products.

9.4 Design and Installation Positions

IndraDyn S motors are available in design B05. Please refer to the table below for the conditions of installation permissible according to EN 60034-7:1993.

Motor de-	Permissible conditions of installation				
sign	Description	Sketch	Setup		
B05	IM B5		Flange mounting on the drive end of the flange		
	IM V1		Flange attached on the drive side of the flange; drive side pointing down		
	IM V3		Flange attached on the drive side of the flange; drive side pointing dowr		

Penetration of fluids! If motors are attached according to IM V3, fluid present at the output shaft over a prolonged time may penetrate and cause damage to the motors.

 \Rightarrow For that reason, ensure that fluid cannot be present at the output shaft.

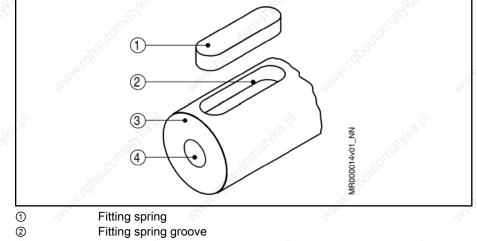
9.5 Housing Varnish

The housing painting of the motors consists of a black (RAL9005) 2K-Epoxyd-harz coating based on Epoxyd-Polyamid-Resin in water.

Chemically resistant against	Limited resistant against	No resistance against
diluted acids and alkaline solutions	organic solvents	concentrated acids/brines
water, sea-water, sewage	hydraulic oil	10, 010
current mineral oil	19 ²⁰	

Fig.9-11: Painting resistance

It is permitted to provide the housing with additional varnish (coat thickness no more than 40 μm). Check the adhesion and resistance of the new paint coat before applying it.


9.6 Output Shaft

9.6.1 Smooth Shaft

The recommended standard model for IndraDyn S motors provides a forceactuated, zero-backlash shaft-hub connection with a high degree of quiet running. Use clamping sets, clamping sleeves or clamping elements to couple the machine elements to be driven.

Output Shaft with Key 9.6.2

The optional fitting spring according to DIN 6885, Sheet 1, version 08-1968, permits keyed transmission of torques with constant direction, with low requirements for the shaft-hub connection.

- 3 Motor shaft
 - Centering hole
- (4) Fig.9-12: IndraDyn S drive shaft with fitting spring

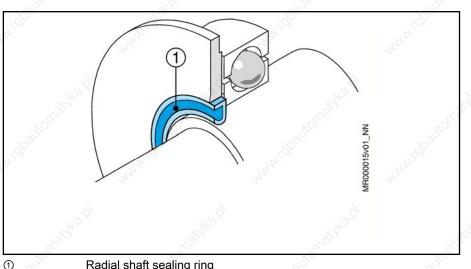
The machine elements to be driven must additionally be secured in the axial direction via the centering hole on the end face.

Shaft damage! In case of intense reversing operation, the seat of the fitting spring may deflect. Increasing deformations in this area can then lead to breakage of the shaft!

 \Rightarrow Preferably, drive output shafts should be used.

Balancing with a complete fitting spring IndraDyn S motors are balanced with the complete key. Hence, the machine element to be driven must be balanced without a fitting spring.

Modifications to the keys may be made only by the user himself and on his own responsibility. Bosch Rexroth does not provide any warranty for modified fitting springs or motor shafts.


Output Shaft with Shaft Sealing Ring

IndraDyn S motors are designed with radial shaft sealing rings according to DIN 3760 – design A.

9.6.3

Electric Drives | Bosch Rexroth AG 163/194 and Controls

Operating Conditions and Application Notes

Radial shaft sealing ring

Fig.9-13: IndraDyn S radial shaft sealing ring

Radial shaft sealing rings are rubbing seals. Hence, they are subject to wear and generate frictional heat.

Wear of the rubbing seal can be reduced only if lubrication is adequate and the sealing point is clean. Here, the lubricant also acts as a coolant, supporting the discharge of frictional heat from the sealing point.

- Prevent the sealing point from becoming dry and dirty. Always ensure adequate cleanliness.
- R Under normal environmental conditions, the shaft seal is greased for its lifetime. Under unfavorable environmental conditions (e.g. grinding dust, metal shavings), maintenance could be necessary.

Resistance

The materials used for the radial shaft sealing rings are highly resistant to oils and chemicals. The performance test for the particular operating conditions lies, however, within the machine manufacturer's responsibility.

As of the publication date of this document, the following material assignment is applicable:

Motor	Sealing material	Abbreviation
IndraDyn S	Therban	HNBR

Fig.9-14: IndraDyn S shaft sealing ring

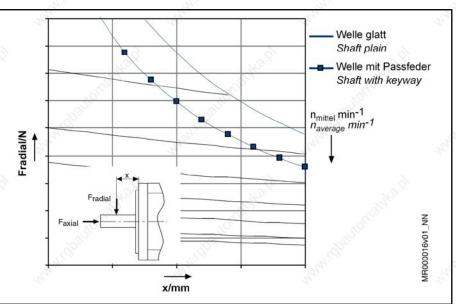
The complex interactions between the sealing ring, the shaft and the fluid to be sealed, as well as the particular operating conditions (frictional heat, soiling, etc.), do not allow calculation of the lifetime of the shaft sealing ring.

The degree of protection on the flange side of motors with a shaft sealing ring is IP 65. Hence, tightness is ensured only in case of splashing fluids. Fluid levels present on side A require a higher degree of protection. For vertical installation position (shaft at the top) of the motor, please observe the additional notes in chapter 9.4 "Design and Installation Positions" on page 160.

Rexroth recommends that any direct contact of the drive shaft and the radial shaft sealing ring with the processing medium (coolant, material corrosion) caused by the machine or system construction should be avoided.

Vertical installation positions IM V3

Note on construction


Wear

9.7 Bearing and Shaft Load

9.7.1 General

During operation, both radial and axial forces act upon the motor shaft and the motor bearings. The construction of the machine, the selected motor type and the attachment of driving elements on the shaft side must be adapted to one another to ensure that the load limits specified are not exceeded.

9.7.2 Radial Load, Axial Load

Maximum permitted radial force

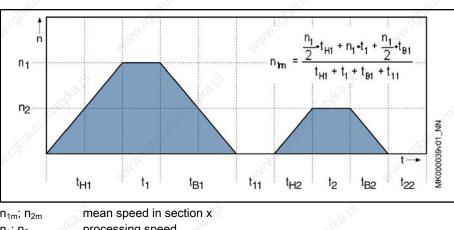
Fig.9-15: Example of a shaft load diagram

The maximum permissible radial force F_{radial_max} depends on the following factors:

- Shaft break load
- Point of application of force x (see chapter "Technical Data")
- Shaft design (plain; with keyway)

The permitted radial force F_{radial} depends on the following factors:

- Arithmetic mean speed (n_{mittel})
- Point of application of force x (see chapter "Technical Data")
- Bearing Lifetime


Permittable axial force

Permittable radial force

The maximum permitted axial force F_{axial} is proportional to the radial force. The maximum permitted axial force F_{axial} is specified in the Technical Data, in the "Shaft load" section.

Mean speed

The initialization and deceleration times can be ignored in the calculation if the time in which the drive is operated at a constant speed is significantly greater than the acceleration and deceleration time. In the exact calculation of the mean speed according to the following example, the run-up and braking times are taken into account.

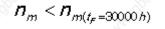
n _{1m} ; n _{2m}	mean speed in section x
n ₁ ; n ₂	processing speed
t _{H1} ; t _{H1}	run-up time
t ₁ ; t ₂	processing time
t _{B1} ; t _{B2}	braking time
$t_{11}; t_{22}$	standstill time
Fia.9-16:	Mean speed

A complete processing cycle can consist of several sections with different speeds. In this case, the average is to be generated from all the sections.

9.7.3 **Bearing Lifetime**

The bearing lifetime is an important criterion for the availability of IndraDyn motors.

If IndraDyn S-motors are operated within the limits specified for radial and axial loads, the bearing lifetime is as follows:


Bearing Lifetime

L_{10h} = 30 000 operating hours

(calculated according to ISO 281, ed. 12/1990)

This applies to all IndraDyn motors based on the following:

- The permitted loads from the corresponding chapter "Technical Data" are never exceeded.
- The motor is operated under the permitted conditions for use and in the permitted ambient temperature range of 0° to +40° C.
- The "mean speed" driven over the entire operating cycle conforms with the characteristic curves for the grease lifetime from the corresponding section "Technical Data", whereby:

Mean speed

n_m

 $n_{m(tf)}$ mean speed for which a grease lifetime of 30,000 h can be expected. Fig.9-17: Mean speed

Differing loads can have the following effects:

- Premature failure of the bearing due to increased wear or mechanical damage.
- Reduction of the grease lifetime leads to premature failure of the bearing.
- Avoid exceeding the load limits.

Mechanical bearing lifetime with increased radial force

In other cases, the bearing lifetime is reduced as follows:

$$L_{10,h} = \left(\frac{F_{ndial}}{F_{ndial} - \frac{1}{5}t}\right)^3 \cdot 30000$$

L _{10h}	(Bearing lifetime according to ISO 281, ed. 12/1990)
F _{radial}	Determined permissible radial force in N (Newtons)
F _{radial_ist}	Actually acting radial force in N (Newtons)
Fig.9-18:	Calculation of the bearing service life L10h if the permissible radial force Fradial is exceeded

Under no circumstances may the actually acting radial force F_{radial_ist} be higher than the maximum permissible radial force F_{radial_max}.

9.8

Attachment of Drive Elements

For all attachments of drive elements to the drive shaft, such as

- Gearboxes
- Couplings
- Gear pinion
- it is imperative that the following notes are observed.

Gearbox mounting on motors

Are gearboxes mounted on motors, the thermal coupling of the motors on machines or constructions changes.

Depending on the gearbox type, the heat development on the gearbox is different. The heat dissipation of the motor via the flange is reduced in every case when a gearbox is mounted. This must be heeded at project planning.

A reduction of the given performance data is necessary, to do not overload motors when using gearboxes.

Fig.9-19: S1 characteristic curve of gearboxes

The indicated torques in the characteristic curves of the motor have to be reduced by **10-20%** when mounting gearboxes.

Please, heed all further notes and specifications within this documentation for the used gearboxes.

Overtermined Bearing

R

Generally, redundant bearings are to be avoided by all means when connecting drive elements. The tolerances inevitably present in such cases will lead to

Couplings

Operating Conditions and Application Notes

additional forces acting on the bearing of the motor shaft and, should the occasion arise, to a distinctly reduced service life of the bearing.

If redundant attachment cannot be avoided, it is absolutely necessary to consult with Bosch Rexroth.

The machine construction and the drive elements used must be carefully adapted to the motor type so that the loading limits of the shaft and the bearing are not exceeded.

When connecting extremely stiff couplings, the radial force which constantly changes the angular position may cause an impermissibly high load on the shaft and bearing.

Ball bearing pinion or helical teeth drive pinion

Owing to thermal effects, the flange-sided end of the output shaft may shift by 0.6 mm in relation to the motor housing. If skew bevel driving pinions or bevel gear pinions directly attached to the output shaft are used, this change in position will lead to

- a shift in the position of the axis if the driving pinions are not defined axially on the machine side,
- a thermally dependent component of the axial force if the driving pinions are defined axially on the machine side. This causes the risk of exceeding the maximum permissible axial force or of the play within the gears increasing to an impermissible degree.
- In such cases, drive elements should be preferably used with their own bearings which are connected to the motor drive shaft via axially compensating couplings.

9.9 Holding Brakes

9.9.1

General

The holding brakes of the IndraDyn S motors works according to the principle "electrically-released". Non-operative closed holding brakes open when applying the operating voltage.

The electrically-released holding brake is used to hold the axes at a standstill and when the "controller enable" signal is off. When the power supply voltage loss and the controller is enabled, the electrically-released brake will automatically shutdown.

Do not use the holding brake as an operational brake for moving axles.

If the holding brake is engaged repeatedly on a drive in motion or the rated brake torque is exceeded, premature brake wear can occur.

Observe the safety requirements during the system design.

	N.I.GOOT	Bodily	harm by hazardo	ous movements due to	falling or sinking axes!
		Secure	vertical axes agair	nst falling or sinking after	disconnection:
_ • `		• loc	ck the vertical axes	mechanically,	
DANGER		• pro	ovide an external b	oraking / collecting / clam	ping device, or
		• en	suring sufficient ec	quilibration of the vertical	axes.
			serially delivered, f re not suited for pe		riven holding brakes them
		Ensure	protection of perso	ons by superordinate fail-	safe measures.
	4	Cord	on off the hazardou	is area by means of a safe	ety fence or a safety screer
		RF RF	Observe suppl	ementary DIN and recon	nmendations.
			For European	countries:	
			 DIN EN 9 	954 / 03.97 on security-re	lated parts of controllers.
				artiaal avoo (Editor: Qüda	loutocho Motell - Demufere

 Leaflet Vertical axes (Editor: Süddeutsche Metall - Berufsgenossenschaft Fachausschuss Eisen und Metall II, Wilhelm– Theodor–Römheld-Str.15, 55130 Mainz, Germany)

For US:

See National Electric Code (NEC), National Electrical Manufacturers Association (NEMA) as well as local building regulations.

The following is generally valid: the national terms must be observed!

9.9.2 Dimension of Holding Brakes

General

Holding brakes on motors of Rexroth are basically not designed for service braking. The effective braking torques are physically conditionally different in static and dynamic operation.

Normal Operation	Fault Condition (EMERGENCY STOP)
brake's static torque (M4) rating in the da-	In fault conditions (i.e., EMERGENCY STOP), where the holding brake is used to stop a moving axis, the "dynamic braking torque", or sliding friction (friction factor μ_{G}) applies.

 $M4 > M_{dyn}$ Therefore, note the following description of dynamic dimensioning.

Dynamic sizing

Fig.9-20: Dynamic sizing

The load torque must be smaller than the minimum dynamic torque M_{dyn} which the holding brake can provide. Otherwise the dynamic holding brake torque is not sufficient to stop the axes.

If a mass is to be decelerated in a defined time or in a defined route, the additional mass moment of inertia of the whole system must be taken into account.

To ensure construction safety, reduce the required holding torque to 60% of the static holding torque (M4) of the holding brake.

Safety Notes Holding Brakes

The permanent magnetic brake is no safety brake. This means, a torque reduction by non-influenceable disturbance factors can occur (see DIN EN 954/ 03.97 or the leaflet about vertical axes SMBG).

Particularly heed:

- Corrosion on friction surfaces, as well as dust, perspiration and sediments reduce the braking effect.
- Grease may not hit the friction surface.
- Over voltage and too high temperatures can weaken the permanent magnets and therewith the brake.

Engaging of the brake is no longer ensured, if the air gap among armature and pole is improper heightened by deterioration. In this case, no braking occurs.

9.9.3 Drive of Holding Brakes

The holding brakes are driven over the function drive enable (AF) by the IndraDrive control devices. Details about overview and control possibilities are described within the function description of IndraDrive control devices.

The following conditions have to be ensured during operation to make a safe function of the holding brake sure.

Under worst installation conditions of the connection cables and in worst load condition of the supply, a voltage with a tolerance of 24V +/-10% must be pro-

Power supply voltage

Monitoring of undervoltage

Functional test

vided on the motor . If a voltage divergence occurs due to a failure during operation, this failure must be identified and corrected immediately. For failure detection, we recommend a monitoring device of the undervoltage.

Before start-up and in operation, the function of the holding brake must be tested in periodic intervals of, e.g., 8 hours. A defined torque is generated by the motor, which actuates the motor insignificantly. It is tested, if the holding brake released completely. For further information, please see firmware-function description of IndraDrive drive devices.

9.10 Acceptances and Authorizations

9.10.1 CE-Sign

Declaration of conformity

Certificate of conformity certifying the structure of and compliance with the valid EN standards and EC guidelines are available for all IndraDyn S motors. If necessary, these certificates of conformity can be requested from the responsible sales office.

The CE symbol is applied to the motor type label of IndraDyn S motors.

9.10.2 UR, cUR Listing

The MSK motors listed below have been presented to the UL authorities "Underwriters Laboratories Inc.®"- authorities "Underwriters Laboratories Inc.®"

E239913 MSK040B, -C; MSK050B, -C; MSK060B, -C; MSK070C, -D; MSK071D, -E

E163211 MSK030B, -C ; MSK061C; MSK076C

The motors have been approved with a file number by the UL authorities and have been marked on their motor type label with the following sign:

Fig.9-22: CUR mark

9.10.3 CCC (China Compulsory Certification)

The test symbol CCC is a compulsory marking for safety and quality of products distributed in China.

IndraDyn S motors are not liable to certification regarding CCC in China (status when printing this documentation).

(CCC = China Compulsory Certification)

9.11 Motor Cooling System

9.11.1 Natural Convection

Rexroth motors in standard design are self-cooling motors. The heat dissipation occurs over the natural convection to the ambient air and by heat conduction onto the machine construction.

RF S	Pollution of the motors reduces the heat dissipation. Attend to tid
	ness!

9.11.2 Fan Units

Fan units are available for certain motor types. The stated power data within the section Technical Data are designated with the index "S" for surface. You will find explanations for Technical Data of the available fan units in chapter 7.3 "Fan Units for MSK Motors" on page 126.

9.11.3 Liquid cooling

General

Rexroth motors in liquid-cooled design are suited for extreme loads, e.g. duration, start, stop-operation with high repetition rates. MSK motors with liquid cooling are signed in the type code with "**FN**" under point 5 "**Cooling mode**".

Mar Marine	Abbrev. Column Example	1 M	2 3 S K	4 ×	5 x	6 X	7 X	8 9	9 (x 1	1 5 1 x >	2	3	4 F	5 N	6	7 8 x x	9	2 0 x	1 x	2 x	3	4 N	58	6 7 N 1	1 8	9	200
5. Cooling mode 5. 1 Liquid cooling 5. 2 Natural convection		= FN = NN		1990		2	t.	2	1					Γ						2	4	S					

Fig.9-23: MSK motors with liquid cooling (type code designation)

The heat dissipation occurs over the used coolant, released via a downstream heat exchanger to the ambient air.

Core duct (

- Coolant lines can be designed either as
 - pipeline or as
 - tubing system.

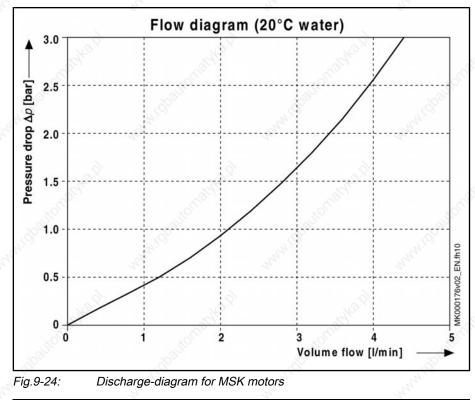
R

R

Owing to the turning points inevitably present in pipeline systems (e.g. 90-degree elbows), high pressure losses develop in the cooling lines. For that reason, we recommend that tubing systems be used.

When selecting the coolant lines, please be absolutely sure to take the pressure drop within the system into consideration. If greater lengths are used, the inside diameter of the lines should, therefore, at least be 9 mm and be reduced only shortly before being connected to the motor.

Coolant The data specified in the documentation relate to water as coolant.


Operating pressure

A maximum coolant supply pressure of **3 bar** applies to all MSK motors, regarding the pressure effectively existing directly at the coolant connection of the motor.

Please note that additional screwed or branch connections in the cooling circuit can reduce the flow and supply pressure of the coolant.

The flow in the coolant in the drive components is subject to changes in crosssection and direction. For that reason, there are friction and turning losses. These losses show as the pressure drop Δp .

The pressure drop Δp_n of the liquid-cooled motors is specified in the technical data. It relates to the specified flow volume of water as coolant. If the flow volume is converted to a different temperature increase, the pressure drop must be taken from the characteristic curve below.

If a different coolant is used, a different coolant-specific flow diagram is applicable.

Pressure drop

Coolant

Only MSK motors with the option "FN" are allowed to be operated via an external connected cooling system.

The heat of the transformed motor power loss P_V is dissipated using the cooling system. MSK motors may only be operated if the coolant supply is ensured. The cooling system must be rated by the machine manufacturer in such a way that all requirements regarding flow, pressure, purity, temperature gradient etc. are maintained in every operating state.

Impairment or loss of motor, machine or cooling system!

 \Rightarrow Heed the manufacturer's instructions when constructing and operating cooling systems.

Do not use any lubricants or cutting materials from operating processes.

All information and technical data are based on water as the coolant. If other coolants are used, these data no longer apply and must be recalculated.

A cooling with floating water from the supply network is not recommended. Calcareous water can cause deposits or corrosion and damage the motor and the cooling system.

For corrosion protection and for chemical stabilization, the cooling water must have an additional additive which is suitable for mixed-installations with the materials acc. to chapter " Coolant " on page 172).

The utilization of aggressive coolants, additives, or cooling lubricants can cause irreparable motor damages.

- Use systems with a closed circulation and a fine filter ≤ 100 µm.
- Heed the environmental protection and waste disposal instructions at the place of installation when selecting the coolant.

Aqueous solution

Emulsion with Corrosion Protection

Aqueous solutions ensure reliable corrosion protection without significant changes of the physical property of the water. The recommended additives contain no materials harmful to water.

Corrosion protection oils for coolant systems contain emulsifiers which ensure a fine distribution of the oil in the water. The oily components of the emulsion protect the metal surfaces of the coolant duct against corrosion and cavitation. Herewith, an oil content of 0.5 - 2 volume percent has proved itself.

Does the corrosion protection oil compared with the corrosion protection has also the coolant pumping lubricant, then the oil content of 5 volume percent is necessary.

Heed the instructions of the pumping manufacturer!

Example for coolant additives:

Coolant additive

Description	Manufacturer								
1%3%-Solutions	2								
Aquaplus 22	Petrofer, Hildesheim								
Varidos 1+1	Schilling Chemie, Freiburg								
33%-Solutions	1. China and a state of the sta								
Glycoshell	Deutsche Shell Chemie GmbH, Eschborn								
Tyfocor L	Tyforop Chemie GmbH, Hamburg								
OZO antifreeze	Deutsche Total GmbH, Düsseldorf								

Electric Drives | Bosch Rexroth AG 173/194 and Controls

Operating Conditions and Application Notes

Description	Manufacturer	
Aral cooler antifreeze A	ARAL AG, Bochum	A. C.
BP antifrost X 2270 A	Deutsche BP AG, Hamburg	
mineral grease concentrate em	Ilsive	
Shell Donax CC (WGK: 3)	Shell, Hamburg	
Fig.9-25: Coolant additives	s "ba ^{llo}	100000

R.

Bosch Rexroth can give no general statements or investigations regarding applicability of process-related coolants, additives, or operating conditions.

The performance test for the used coolants and the design of the liquid coolant system are generally the responsibility of the machine manufacturer.

Used Materials

The coolant used with MSK motors comes into contact with the materials named in chapter "Technical Data – Liquid Cooling".

In dimensioning and operating the cooling system, the machine manufacturer has to exclude all chemical or electro-chemical interactions with ensuing corrosion or decomposition of motor parts.

Coolant inlet temperature

IndraDyn S motors (option "FN") are designed according to DIN EN 60034-1 for operating with +10...+40°C coolant inlet temperature. This temperature range must be strictly observed. At higher coolant temperatures, the reduction of the available torque is increased. Because of high coolant temperature gradients, lower temperatures can lead to destruction of the motor.

R

Install systems in the cooling circuit for monitoring flow, pressure and temperature.

Setting of the inlet temperature

Observe the temperature range permitted and consider the existing ambient temperature when setting the coolant inlet temperature.

The lower limit of the recommended coolant inlet temperature can be limited compared to the existing ambient temperature. To avoid condensation, a value of max. 5°C below the existing ambient temperature is permitted as the lowest temperature to be set.

Example 1:

Permittable coolant inlet temperature range +10... +10... +40°C

Ambient temperature: +20°C

Set coolant inlet temperature: +15... +40°C

Example 2:

Permittable coolant inlet temperature range +10... +10... +40°C

Ambient temperature: +30°C

Set coolant inlet temperature: +25... +40°C

Operating Conditions and Application Notes

R

The coolant inlet temperature must be set in a temperature range of +10°C - +40°C and may be only max. 5°C under the existing ambient temperature to avoid condensation.

9.12 Motor Temperature Overview

9.12.1 General

The motor temperature overview occurs via two – independent of each other working systems.

- Temperature sensor
- Temperature Model

and ensures, therewith, the highest protection of the motors against irreversible damage by thermal overload.

9.12.2 Temperature sensor

The motor temperature overview is ensured via the temperature sensor of type KTY84, which is built into the stator. The measured motor temperature is controlled via the following marginal values:

- Motor-warning temperature (140°C)
- Motor-disconnection temperature (150°C)

The marginal values are filed within the encoder memory of the MSK motors.

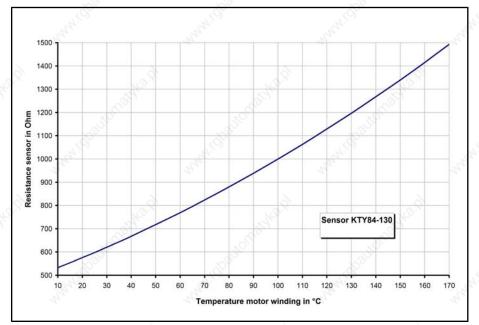


Fig.9-26: Characteristic curves KTY84-130

The IndraDrive drive devices overview the functionality of the temperature sensors.

For further information, please refer to the function description for IndraDrive drive devices.

9.12.3 Temperature Model

Description in preparation!

Electric Drives | **Bosch Rexroth AG** 175/194 and Controls

Handling, Transport and Storage

10 Handling, Transport and Storage

10.1 Supplied Condition

10.1.1 General

On delivery, the IndraDyn S motors are packed in cardboard boxes or crates. Packing units on pallets are secured by retaining straps.

WARNING

Injuries due to uncontrolled movement of the retaining straps when cutting!

 \Rightarrow Maintain a sufficient distance and carefully cut the retaining straps.

On delivery from the factory, the motor drive shaft and the connectors have protective sleeves. Remove the protective sleeves just before assembly.

10.1.2 Inspection at the Factory

Electrical test

Mechanical test

All IndraDyn S motors undergo the following inspections:

- High-voltage test according to DIN EN 60034-1/02/99
- Insulation resistance according to EN 60204-1/1.92, Section 20.3.
- Ground conductor connection according to EN 60204-1/1.92, Section 20.3.
- Test of winding resistance
- Concentricity and position tolerances of shaft end and fastening flange according to DIN 42955/12.81
- Axial eccentricity of the flange face to the shaft according to DIN 42955/ 12.81.
- Axial eccentricity of the centering shoulder to the shaft according to DIN 42955/12.81.
- Test brake holding torque (option)

10.1.3 Test on the Customer Side

Since all IndraDyn S motors undergo a standardized inspection procedure, high-voltage tests on the customer side are not required. Motors and components could be damaged if they undergo several high-voltage inspections.

Destruction of motor components by improperly executed high-voltage inspection! Invalidation of warranty!

- \Rightarrow Avoid repeated inspections.
- \Rightarrow Observe the regulations of EN 60034-1 (= VDE 0530-1).

10.2 Identification and Checking of the Supplied Goods

10.2.1 Shipping documents and delivery note

The total scope of a delivery can be seen in the delivery note or waybill. However, the contents of a delivery can be distributed over several packages. Each individual package can be identified using the shipment label attached to the outside. Handling, Transport and Storage

10.2.2 Name plate

Each device has an individual type label containing the device designation and technical information.

• After receiving the goods, compare the ordered and the supplied type. Submit claims concerning deviations immediately.

Motor

The motor is delivered with its own separate name plate. This is attached to the motor housing. In addition, a second name plate is attached using two-side tape onto the original motor name plate. The second can be put where visible on the machine, if the original name plate on the motor be concealed by parts of the machine.

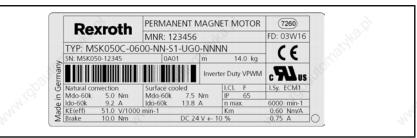


Fig.10-1: Type label (example: IndraDyn S)

The name plate is provided for

- Identification of the motor
- Procurement of spare parts in case of a failure,
- Service information.

The type designation of the motor is also filed in the encoder data memory.

10.3 Handling of the Equipment

Damages or injuries and invalidation of the warranty due to improper handling!

- \Rightarrow Avoid mechanical stressing, throwing, tipping or dropping of the products.
- ⇒ Use only suitable lifting equipment.
- \Rightarrow Never lift up the motor on the optional fan housing.
- \Rightarrow Use suitable protective equipment and protective clothing during transport.
- \Rightarrow Protect the products from dampness and corrosion.

On delivery, IndraDyn S motors have protective sleeves and covers on the drive shaft and the flange sockets. During transport and storage, the protective sleeves must remain on the motor.

- Remove the protective sleeves just before assembly.
- Also use the protective sleeves if you return the goods.

Handling, Transport and Storage

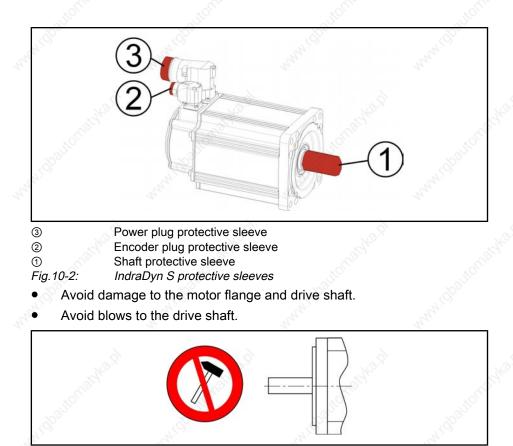


Fig. 10-3: Care of the shaft end

Blows to the shaft end damage the encoder and the ball bearings! Drive elements such as pulleys, clutch discs, gears, etc. may be attached or removed only by uniformly heating the drive elements or using suitable mounting or dismantling equipment.

Use cranes with lifting sling belts to lift the motors.

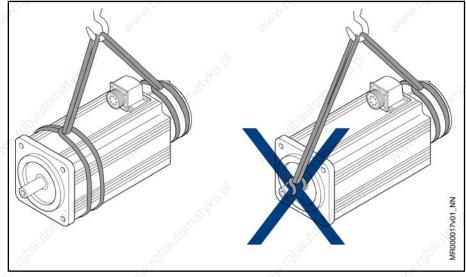


Fig.10-4: Lifting and transporting motors by means of lifting sling belts

10.4 Transport of the Equipment

Requirements for transport according to DIN EN 60271-3-2.

Handling, Transport and Storage

Environmental factor	Unit	Class 2K3		
Low air temperature	°C	- 25		
High air temperature	°C	+ 70		
Max. rel. air humidity	%	95		
Max. absolute air humidity	g/m³	60		
Shock stress	see fig. 9-6 "Permitted shock load for MSK mo page 158			

Fig.10-5: Conditions for transport

The following conditions must be maintained during transport:

- Use suitable means for transport and heed the weight of the components. You can find indications of weight on the data sheets or on the type plate of the motor.
- Provide shock absorbability if strong vibrations may occur during transport.
- Transport the motors only in the horizontal position.

Storage of the Equipment 10.5

Requirements for storage according to DIN EN 60271-3-1.

Environmental factor	Unit	Class 1K3	
Low air temperature	°C	- 5	
High air temperature	°C	+ 45	
Low rel. air humidity	%	5	
High rel. air humidity	%	95	
Low absolute air humidity	g/m³	<u></u> 1	
High absolute air humidity	g/m³	29	
Shock stress		ock load for MSK motors" on je 158	

Fig.10-6: Conditions for storage

Damage and invalidation of the warranty due to incorrect storage!

⇒ Store the motors horizontally in a dry, vibration-free, dust-free and corrosionprotected location.

Electric Drives | Bosch Rexroth AG 179/194 and Controls

Installation

11 Installation

11.1 Safety

- Injuries due to live parts! Lifting of heavy loads!
- Install the motors only when they are de-energized and not connected electrically.
- Use suitable tackles, protective equipment and protective clothing during transport.

Observe the notes regarding safety found in previous chapters.

Carry out all working steps especially carefully. In this way, you minimize the risk of accidents and damage.

11.2 Skilled Personnel

Any work on the system and on the drives or in their vicinity may be carried out only by appropriately trained technical personnel.

Please make sure that all persons carrying out

- Installation work
- Maintenance, or
- Operational activities

on the system are adequately familiar with the contents of this documentation as well as with all warnings and precautionary measures contained therein.

Qualified skilled personnel are defined as those who have been trained, instructed or are authorized to activate and deactivate, ground and mark electric circuits and equipment according to the technical safety regulations. Qualified technical personnel must possess appropriate safety equipment and have been trained in first aid.

11.3 Mechanical Mounting – Motor Assembly

11.3.1 Mounting the Flange

IndraDyn S motors are designed for flange assembly (frame shape B05). Details for the fastening holes can be found in the corresponding dimension sheet chapter 5 "Specifications" on page 87.

To fix the flange, we recommend using the screws and tightening torques listed in the table below.

Motor Frame Size	Recommended screw size	Tightening torque [Nm]	Minimum strength		
MSK030	MSK030 M4 x 20		8.8		
MSK040	MSK040 M6 x 20		8.8		
MSK050	MSK050 M8 x 20		8.8		
MSK060	MSK060 M8 x 20		8.8		
MSK061 M8 x 20		25	8.8		
MSK070 M10 x 30		51	8.8		
		() () () () () () () () () () () () () (

Installation

Motor Frame Size	Recommended screw size	Tightening torque [Nm]	Minimum strength
MSK071	M10 x 30	51	8.8
MSK076	M10 x 30	51	8.8
MSK100	M12 x 40	87	8.8
MSK101	M12 x 40	87	8.8

Fig.11-1: Fastening screws

11.3.2 Preparation

Prepare the motor assembly as follows:

- 1. Procure tools, supplies, measuring and test equipment.
- 2. Check all components for visible damaged. Defective components may not be mounted.
- 3. Ensure that dimensions and tolerances on the system side are suitable for motor attachment (for details, see the dimension sheet).
- 4. Check whether all components, assembly surfaces and threads are clean.
- 5. Ensure that mounting can be done in a dry and clean environment.
- 6. Ensure that the holder for the motor flange is without burrs.
- 7. Remove the protective sleeve of the motor drive shaft and keep it for further use.
- 1. Check whether the motor holding brake reaches the holding torque specified in the data sheet. If the brake fails to reach the torque specified, first proceed as described under section 12.4, "Holding Brake Maintenance".

11.3.3 Assembly

If the optional holding brake is used

Mount the motor.

Note:

- 1. Avoid pinching or jamming the centering bundle on the motor side.
- 2. Avoid damage to the insertion fitting on the system side.
- 3. Check the fit and precision of the connection before you proceed.

After having mounted the motor mechanically as prescribed, establish the electrical connections.

11.4 Electrical Connection – Motor Connection

11.4.1 General

It is recommended that you use ready-made Rexroth connection cables. These cables provide a number of advantages, such as UL/CSA authorization, extreme load capability and resistance as well as a design suitable for EMC.

The screwed connections must be able to take up both the force due to the weight of the motor and the forces acting during operation.

Electric Drives | Bosch Rexroth AG 181/194 and Controls

Installation

A sale		fe and limb due to electrication is extremely dangerous.	al power! Handling with	hin the range
		rk required on the electric sy ans. It is absolutely necess		only by skille
		starting work, the system r be secured against unintent		
weeker Charles	or to chec	starting work, the appropriat k whether parts of the syste used by capacitors, etc.). I d.	em are still applied to re	sidual voltage
		ersons or property possil ause unpredictable dange		
WARNING	Connec energiz	t and disconnect plug connect plug connect	ectors only when they a	re dry and de
	During tightene	operation of the system, a ed.	Il plug connectors mus	t be securel
		rt-circuit caused by liquid may cause unpredictable mage.		
WARNING		open sides of the power o g or replacing drive compor		ve caps whe
11.4.2 Connectin	g the Plug	14	4	21
Power/encoder pl	ugs When fitting	the connector with a thread	ed connection, proceed	as follows:
		ne power connector in the c tion housing.	correct position onto the	thread of th
		the union nut of the power on the power connector can be		
	3. Comple	tely tighten the union nut.		
	R.		ed union nuts guarantee water and activate the v	
11.4.3 Adjusting	the Output Di	rection	drain C	South Contraction
and the second sec	31.	ockets can be turned throug	ıh 240°.	
	The motor fl nected. Owir	ange socket can be turned ng to the leverage of the cor ally to the desired position.	if an appropriate plug h	
		t the motor power cable to t	he flange socket.	
	2.	Do not use any tools (e	.g. pliers or screwdrivers echanical damage to the	

Move the flange socket to the desired output direction by turning the connected plug.

when using tools cannot be excluded.

R

Installation

The desired output direction is set.

Whenever the flange socket is turned, the holding torque in the set position is reduced. To ensure the required holding torque of the flange socket, the output direction should be changed no more than 5 times!

Electric Drives | Bosch Rexroth AG 183/194 and Controls

Commissioning, Operation and Maintenance

12 Commissioning, Operation and Maintenance

12.1 Commissioning

Material damage due to errors in the controls of motors and moving elements! Unclear operating states and product data!

- Do not carry out commissioning if connections, operating states or product data are unclear or faulty!
- Do not carry out commissioning if the safety and monitoring equipment of the system is damaged or not in operation.
- Damaged products may not be operated!
- Contact Rexroth for missing information or support during commissioning!

The following notes on commissioning refer to IndraDyn S motors as part of a drive system with drive and control devices.

Preparation

- 1. Keep the documentation of all applied products ready.
- 2. Check the products for damage.
- 3. Check all mechanical and electrical connections.
- 4. Activate the safety and monitoring equipment of the system.
- Make sure that the optional holding brake is ready for operation. chapter 12.4.5 "Holding Brakes" on page 185

Execution

When all prerequisites have been fulfilled, proceed as follows:

- 1. Activate the optional motor cooling fan unit or liquid cooling.
- 2. Carry out the commission of the drive-system according to the instructions of the respective documentation. You can find the respective information in the functional description of the drive-devices.

Commissioning of drive controllers and the control unit may require additional steps. The inspection of the functioning and performance of the systems is not part of the commissioning of the motor; instead, it is carried out within the framework of the commissioning of the machine as a whole. Observe the information and regulations of the machine manufacturer.

12.2 Operation

Keep the described ambient conditions during operation.

12.3 Deactivation

In the case of malfunctions or maintenance, or to deactivate the motors, proceed as follows:

- 1. Observe the instructions of the machine documentation.
- 2. Use the machine-side control commands to bring the drive to a controlled standstill.
- 3. Switch off the power and control voltage of the drive controller.
- 4. **Only at motors with blowers:** Switch off the motor protection switch for the motor blower.

- 5. Switch off the main switch of the machine.
- 6. Secure the machine against accidental movements and against unauthorized operation.
- 7. Wait for the discharge time of the electrical systems to expire and then disconnect all electrical connections.
- 8. Before dismantling, secure the motor and fan unit against falling or movement before disconnecting the mechanical connections.

12.4 Maintenance

12.4.1 General

Synchronous motors of the IndraDyn S series operate mainenance-free within the given operating conditions. However, operation under unfavorable conditions can lead to limitations in availability.

 Increase availability with regular preventive maintenance measures. Heed the information in the maintenance schedule of the machine manufacturer and the service measures described below.

WARNING

Danger of burning via hot surfaces with temperatures over 100°C!

⇒ Touch the motor only after cooling! A cooling time up to 140 minutes can be necessary! The stated thermical time constant in the technical data is a measure for the necessary cooling
Do not work both outforces

- \Rightarrow Do not work on hot surfaces.
- \Rightarrow Use safety gloves.

Danger of injury due to moving elements!

- Do not carry out any maintenance measures when the machine is running.
- During maintenance work, secure the system against restarting and unauthorized use.

12.4.2 Cleaning

Excessive dirt, dust or shavings may affect the function of the motors adversely, may in extreme cases even cause a failure of the motors. Clean the cooling fins of the motors in regularly intervals (after one year at the latest) to reach a sufficiently high heat emission surface. If the cooling ribs are dirty in part, sufficient heat dissipation via the environmental air is not possible any longer.

An insufficient heat radiation may have undesired consequences. The bearing lifetime is reduced by operation at impermissibly high temperatures (the bearing grease is decomposing). Switchoff caused by overtemperature despite operation on the basis of selected data, because the appropriate cooling is missing.

12.4.3 Bearing

The nominal lifetime of the bearings is L10h = 30,000 h according to DIN ISO 281, ed. 1990, if the permissible radial and axial forces are not exceeded. Even if the bearings are loaded with higher forces to a minor degree only, their service life is affected negatively.

The motor bearings should be replaced if

- the nominal bearing service life has been reached,
- running noise comes up

		R P	We recommend th Service.	at bearings are r	eplaced by the B	osch Rexroth
.4.4	Connection C	able				
		Check co necessar	onnection cables for c	lamage at regula	ar intervals and re	eplace them, i
		Check ar fects.	ny optionally present e	energy managem	ent chains (drag	chains) for de
	1. L	Death b	y electrocution pos	sible due to live	parts with more	e than 50V!
	R manhad	are	o not repair any conn detected in the cable nediately. Then the ca	sheath, the syste	em must be put o	
	AL BOUL		ne protective conduct ntervals and replace it		r proper state an	d tight seat a
2.4.5	Holding Brake	es				
			to ensure proper func le motors are installed		lding brake, it mu	ist be checked
	Before initial startup	Measure ing brake	the holding torque of e.	the holding brake	e.lf necessary, gri	ind in the hold
		Measure	e the holding torque	of the holding	brake	
		1. De-	energize the motor a	nd secure it again	nst re-energizatic	on.
			asure the transferable nch. The holding torq			
		bral she	he holding torque spe ke is ready for opera ets is not reached ,, th age 185	tion. If the holdin	ng torque specifi	ed in the dat
		Arah !!	g in the Holding Bra	ke		
		five	h the holding brake cl revolutions and meas ng a torque spanner.			
		2. Mea	asure the holding torq	ue page 185		
		If th	asure the holding torq le specified holding to cess, the holding brak	orque is not attair		
	During operation	If th proo	e specified holding to	orque is not attair ke is not operable I only sporadical	e. Notify Rexroth ly (braking cycle	Service.
	During operation	If th proo If holding operatior To preve	e specified holding to cess, the holding brak g brakes are required	orque is not attair ke is not operable I only sporadical op on the brake f from dropping bel	e. Notify Rexroth ly (braking cycle friction surface. low the specified l	Service. >48 h) during
	During operation	If th proc If holding operation To preve we recon	e specified holding to cess, the holding brak g brakes are required n, film rust may develo nt the holding torque f	orque is not attair ke is not operable I only sporadical op on the brake f from dropping bel	e. Notify Rexroth ly (braking cycle friction surface. low the specified l	Service. >48 h) during
	During operation	If th proc If holding operation To preve we recon	e specified holding to cess, the holding brak g brakes are required n, film rust may develo nt the holding torque f nmend the grinding p	orque is not attair ke is not operable I only sporadical op on the brake f from dropping bel	e. Notify Rexroth ly (braking cycle friction surface. low the specified h bed below:	Service. >48 h) during

Grind in the	holding brake		
Number of grinding-in revolutions		1 34	23
Ambient temperature		-20°C to +50°C	2
Fig.12-1:	Grinding the holding br	ake (rule)	240 R

The option of automatically implementing the grinding-in routine in the program run is described in the documentation of the particular drive controllers.

During normal operation, it is not necessary to grind in the brake. It is sufficient if the brake is activated twice a day by removing the controller enable signal.

12.5 Troubleshooting

In preparation

R

12.6 Dismantling

	Fatal injury due to errors in activating motors and working on moving elements!				
	 Do not work on unsecured and operating machines. 				
DANGER	 Secure the machine against accidental movements and against unauthorized operation. Before dismantling, secure the motor and power supply against falling or movements before disconnecting the mechanical connections. 				
attend a					
	Burning via hot surface with temperatures over 100 °C				
	Do not work on hot surfaces.				
	Use safety gloves.				
WARNING	⇒ Let the motor cool down, before maintenance. The stated thermical time constant in the technical data is a measure for the cooling A cooling time up to 140 minutes can be necessary!				
	Observe the instructions of the machine documentation.				
	Please observe the safety notes.				
	• Dismantle the motor from the machine. Store the motor properly!				
2.7 Waste Disp	osal				
Manufacturing process	The manufacturing process of the products is executed in such a manner that energy and raw materials are optimized; in addition the process permits recy cling and the utilization of incidental waste.				
	Bosch Rexroth regularly tries to replace polluted raw materials and supplies b environmentally friendly alternatives.				
Application	Bosch Rexroth products do not contain any kind of dangerous substances which could be released with proper use. Normally, no negative influences for				

the environment can be assumed .

Forbidden substances

Material composition

Basically, our motors contain

PCBs and chlorinated hydrocarbons.

- steel
- aluminum
- copper
- brass
- magnetic materials
- electronic components and modules

Recycling

Most of the products can be recycled due to the high metal proportion. To reach optimum metal recovery, disassembly into individual components is necessary.

We guarantee that our products include no substances according to chemical ban regulations. Furthermore, our products are free of mercury, asbestos,

The metals also contain electrical and electronical components that can be recycled using special separation processes. The hereby arising plastics could be thermally recycled.

Returns

The products manufactured by us can be returned to our premises for waste disposal at no charge. This is possible only if the product does not contain any disturbing adhesions such asoil, grease or other contamination.

Furthermore, it is not permitted that the product contains inappropriate foreign materials when it is returned.

The products must be delivered postage-free to the following address:

Bosch Rexroth AG

Electric Drives and Controls

Buergermeister-Dr.-Nebel-Strasse 2

97816 Lohr, Germany

Packaging

High-quality products need optimal packaging. The packaging material consists of paper, wood and polystyrene.

They can be recycled everywhere.

For ecological reasons, a return transport of the packaging should not take place.

Appendix

13 Appendix

13.1 List of Standards

Standard	Edition	Title	Concordance
98/37/EG	1998-06- 22	Guideline 98/37/EC of the European Parliament and the Council dated June 22, 1998, for aligning the legal provisions and administrative regulations of the member states for ma- chines	TOLOGO HAVE
89/336/EEC	1989-05- 03	Guideline of the Council dated May 3, 1989, for aligning the legal provisions of the member states on electromagnetic compatibility	39
DIN EN 50178; VDE 0160	1998-04	Electronic equipment for use in power installations; German version EN 50178:1997	EN 50178(1997-10)
DIN IEC 60364-4-41; VDE 0100 part 410	2003-04	Standard draft) DIN IEC 60364-4-41 , Edition: 2003-04 Elec- trical installations of buildings – Part 4-41: Protection for safe- ty; Protection against electric shock (IEC 64/1272/CDV:2002)	HD 384.4.41 S2(1996- 04); IEC 6036-4-41(1992- 10)
DIN 332-2	1983-05	Center holes 60° with thread for shaft ends for rotating elec- trical machines	He g
DIN 6885-1	1968-08	Driver connection without pick-up; feather keys, grooves, high shape	Cart Allon
DIN EN 60034-1; VDE 0530 Part 1	2000-09	Rotating electrical machines - Part 1: Rating and performance (IEC 60034-1:1996, modified + A1:1997 + A2:1999); German version EN 60034-1:1998 + A1:1998 + A2:1999	EN 60034-1(1998-05); EN 60034-1/A1(1998-05); EN 60034-1/A2(1999-08); IEC 60034-1(1996-11); IEC 60034-1 AMD 1 (1997-06); IEC 60034-1 AMD 2(1999-05)
DIN VDE 0298-4; VDE 0298 Part 4	2003-08	Application of cables and cords in power installations - Part 4: Recommended current-carrying capacity for sheathed and non-sheathed cables for fixed wirings in buildings and for flex- ible calbes and cords	ALC: NOT
DIN EN 60204-1; VDE 0113 Part 1	1998-11	Safety of machinery - Electrical equipment of machines - Part 1: General requirements (IEC 60204-1:1997 + Corrigendum 1998); German version EN 60204-1:1997 (In addition, DIN EN 60204-1 (1993.06) is applicable until 2001.07.01. DIN VDE 60204-1 (1993.06) is applicable until further notice as the ref- erence standard for EN 60204-3-1 (1990.08), which has been published in Germany as DIN EN 60204-3-1 (1993.02).	EN 60204-1(1997-12); IEC 60204-1(1997-10)
DIN 42955	1981-12	Tolerances of shaft extension run-out and of mounting flanges for rotating electrical machinery, test	IEC 60072(1971)
DIN 748-1	1970-01	Cylindrical Shaft Ends for Electrical Machines	IEC 60072(1971)
DIN EN 60034-14; VDE 0530 Part 14	1997-09	Rotating electrical machines - Part 14: Mechanical vibration of certain machines with shaft heights 56 mm and higher; meas- urement, evaluation and limits of vibration (IEC 60034- 14:1996); German version EN 60034-14:1996	EN 60034-14(1996-12); IEC 60034-14(1996-11)

190/194 Bosch Rexroth AG | Electric Drives and Controls

Appendix

Standard	Edition	Title				Concordance
IEC 721-3-3 replaced by DIN EN 60721-3-3	1995-09	tion of groups ties; section 3 3:1994); Germ	of environmental : Fixed use, weath	conditions - Part 3: Cla parameters and their nerproof (IEC 60721-3 0721-3-3:1995 Change ly 1997	severi-	EN 60721-3-3(1995-01); IEC 60721-3-3(1994-12)
IEC 721-1 replaced by DIN IEC 60721-1	1997-02	mental param	eters and their se	conditions - Part 1: En verities (IEC 60721-1: ersion EN 60721-1:19	1990 +	EN 60721-1(1995-04); EN 60721-1/A2(1995-07); IEC 60721-1(1990-12); IEC 60721-1 AMD 1 (1992-12); IEC 60721-1 AMD 2(1995-04)
DIN EN 60529; VDE 0470 Part 1	2000-09	60529:1989 +	A1:1999); Germa ddition, DIN VDE	by enclosures (IP cod an version EN 60529:1 0470-1 (1992-11) may	991 +	EN 60529(1991-10); EN 60529/A1(2000-02); IEC 60529(1989-11); IEC 60529 AMD 1(1999-11)
DIN EN 60034-7; VDE 0530 Part 7	1996-06	constructions	and mounting arra	art 7: Classification of t angements (IM code) (n EN 60034-7:1993		EN 60034-7(1993-01); IEC 60034-7(1992-12)
DIN 3760	1996-09	Rotary shaft li	p type seals	No	X	ANO.X
DIN ISO 281	1993-01	Rolling bearing with ISO 281:	x.U	atings and rating life; io	dentical	- automan

Fig. 13-1: List of Standards

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 191/194 and Controls

Service & Support

14 Service & Support

14.1 Helpdesk

Our service helpdesk at our headquarters in Lohr, Germany, will assist you with all kinds of enquiries.

Contact us:

- By phone through the Service Call Entry Center, Mo - Fr 7:00 am - 6:00 pm CET
- +49 (0) 9352 40 50 60
- By Fax
 - +49 (0) 9352 40 49 41
- By email: service.svc@boschrexroth.de

14.2 Service Hotline

Out of helpdesk hours please contact our German service department directly: +49 (0) 171 333 88 26

or

+49 (0) 172 660 04 06

Hotline numbers for other countries can be found in the addresses of each region (see below).

14.3 Internet

Additional notes regarding service, maintenance and training, as well as the current addresses of our sales and service offices can be found on

http://www.boschrexroth.com

Outwith Germany please contact our sales/service office in your area first.

14.4 Helpful Information

For quick and efficient help please have the following information ready:

- detailed description of the fault and the circumstances
- information on the type plate of the affected products, especially type codes and serial numbers
- your phone / fax numbers and e-mail address so we can contact you in case of questions

Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG 193/194 and Controls

Index

Index

Α

Alignment 87 Ambient temperature 157 Appropriate use 5 Uses 5 Aqueous solution 172 Attachments 166 available motor variants 101 Axial load 164

В

Balance characteristics 87 Ball bearing pinion 167 Bearing wear 165 Bearing failure 165 Bearing Lifetime 165 Bearing load 164 Brake torque 167

C

CCC- test symbol 170 Centering hole 87 CE-Sign 169 Climatic conditions 157 Compatibility 160 **Concentricity 87** Conditions of installation 160 Connection cables 185 Connection technique Internal diameter 155 Connection techniques operating pressure 171 Constant voltage 17 Continuous stand-still current 16 Coolant 171 Coolant additive 172 Cooling fins 184 Core duct 170 **Corrosion Protection 172** Coupling 167 Couplings 166 cUR, UR Listing 169

D

Design 160 Disconnection temperature 174 Drag chains 185 Drive shaft 87, 103

Ε

Energy management chains 185

F

Flange 87 Foreign materials 160 Foreign systems 3 Frame length 101 Frame size 101

G

Gearbox GTE 136 GTM 136 Gear pinion 166 Getriebe 166

H

heat dissipation 184 Helical teeth 167 Holding brake 104 grind in 185 Holding brakes 167 commissioning 185 Danger notices 168 Dimension 168 Drive 169 electrically-released 167 Safety notes 169 Housing varnish 87, 161 Humidity absolute air humidity 157 relative air humidity 157

1

Identification 176 Inappropriate use, 6 Consequences, Discharge of liability 5 Installation positions 160 IP protection class 159

K

key 162 Keyway 87

Μ

Machine accuracy 15 Mass 17 Materials used 173 Maximum line length 154 Maximum torque 17 Mean speed 164 Moment of inerta of rotor 17 Monitoring of undervoltage 169 Motor cooling coolant 172 coolant temperature 173 Index

Motor design 87 Motor encoder 125

Ν

Number of pole pairs 17

0

Operating hours 165 Operating Mode 15 Operating time 16 Output shaft, 161 Key balancing 103 Smooth output shaft 161 Output Shaft 162 Overtermined bearing 166 Overview 141

Ρ

Peak current 17 Position resolution 125 Pressure drop 171 processing cycle 165 Product 101 Protection class 159

R

Radial load 164 Radial shaft sealing ring 15 Radial shaft sealing rings 162 RGS1000 150 RGS1001 151 RLS1100 142 RLS1101 143 RLS1200 144 RLS1201 145 RLS1300 147 RLS1301 148 running noise 184 Run-out 87

S

Safety instructions for electric drives and controls 7 Sealing air 136 Setup elevation 157 Shaft smooth 161 with key 162 Shaft end 87 Shaft load 164 Shaft Sealing Ring 162 Shock 158 Shock absorbability 178 Sinusoidal Vibrations 158 Sling belts 177 Standards 2 Standstill continuous torque 16 State-of-the-art 5 Storage 178 Systemaccuracy 125

Т

Temperature sensor 174 Temperature stroke on the housing 60K 15 Temperature stroke on the winding 100K 15 tightness 163 Torque constant 17 Transport 177

U

UL authorization 169 Umgebungstemperatur 152 UR, cUR Listing 169 Use

Appropriate use 5 Inappropriate use 6

V

Varnish 161 Vibration 158 Vibration characteristics 87

W

Warning temperature 174 Winding 101 Winding inductivity 17 Winding resistance 17 Project Planning Manual | Rexroth IndraDyn S

Electric Drives | Bosch Rexroth AG and Controls

Notes

Bosch Rexroth AG Electric Drives and Controls P.O. Box 13 57 97803 Lohr, Germany Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany Phone +49 (0)93 52-40-50 60 Fax +49 (0)93 52-40-49 41 service.svc@boschrexroth.de www.boschrexroth.com

Printed in Germany DOK-MOTOR*-MSK******-PR05-EN-P