

MiniSKiiP[®] 2

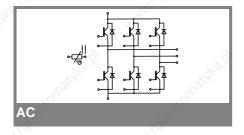
3-phase bridge inverter

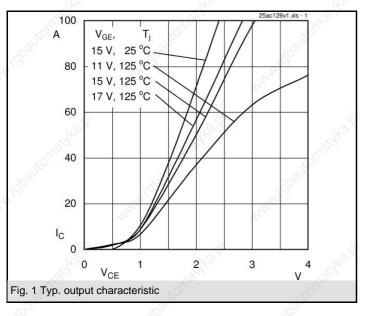
SKiiP 25AC126V1

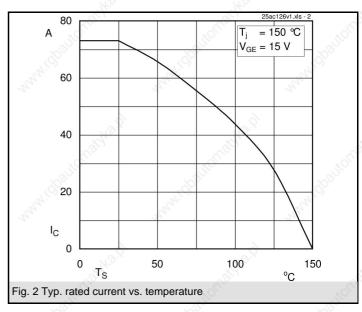
Features

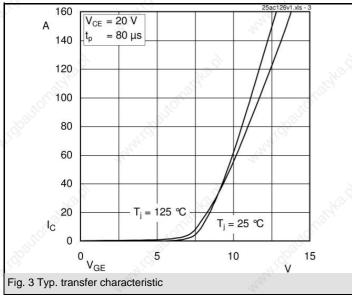
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

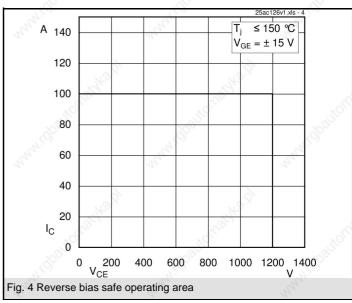
Typical Applications*

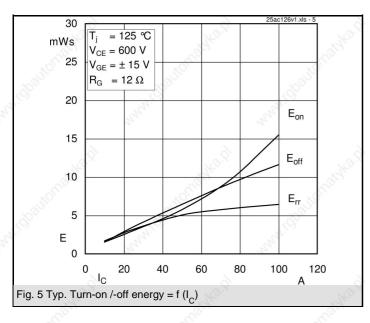

- Inverter up to 28 kVA
- Typical motor power 15 kW

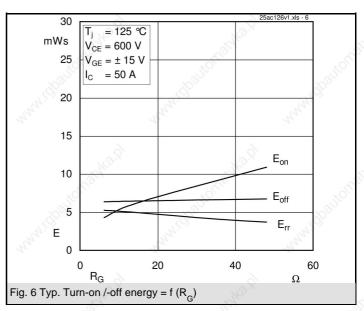

Remarks

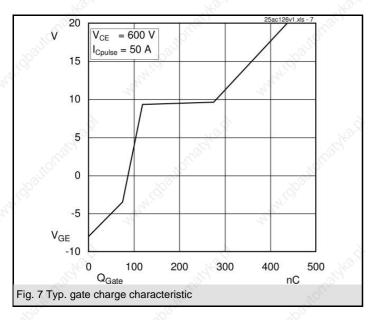

V_{CEsat}, V_F = chip level value

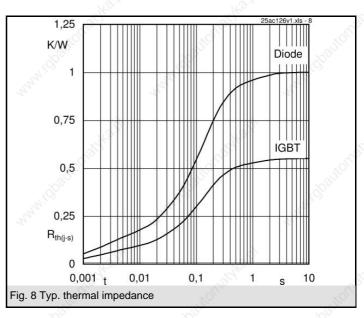

Absolute Maximum Ratings T _s = 25 °C, unless otherwise spec				
Symbol	Conditions	Values	Units	
IGBT - In	verter	1020	70%	
V _{CES}	$T_s = 25 (70) ^{\circ}C$ $t_0 \le 1 \text{ ms}$	1200 73 (55) 100	V A A	
I_{CRM} V_{GES} T_i	l _p ≤ 1 ms	± 20 - 40 + 150	°C	
Diode - Ir	nverter	787		
I _F I _{FRM} T _i	$T_s = 25 (70) ^{\circ}C$ $t_p \le 1 \text{ ms}$	62 (46) 100 - 40 + 150	A A °C	
I _{tRMS} T _{stg} V _{isol}	per power terminal (20 A / spring) $T_{op} \leq T_{stg}$ AC, 1 min.	100 - 40 + 125 2500	A °C V	

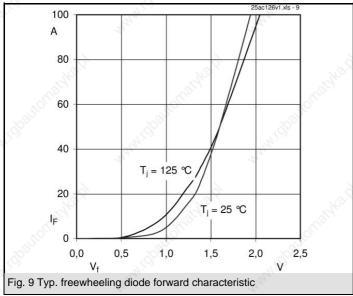

Characte	ristics	T _s = 25 °C	, unless ot	herwise sp	pecified
Symbol	Conditions	min.	typ.	max.	Units
IGBT - In		<u></u>	P -		O.
V_{CEsat} $V_{GE(th)}$ $V_{CE(TO)}$ r_{T} C_{ies} C_{oes}	$\begin{split} & I_{\text{Cnom}} = 50 \text{ A, } T_{\text{j}} = 25 \text{ (125) °C} \\ &V_{\text{GE}} = V_{\text{CE}}, I_{\text{C}} = 2 \text{ mA} \\ &T_{\text{j}} = 25 \text{ (125) °C} \\ &T_{\text{j}} = 25 \text{ (125) °C} \\ &V_{\text{CE}} = 25 \text{ V, } V_{\text{GE}} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{\text{CE}} = 25 \text{ V, } V_{\text{GE}} = 0 \text{ V, } f = 1 \text{ MHz} \end{split}$	5	1,7 (2) 5,8 1 (0,9) 14 (22) 3,7 0,8	2,1 (2,4) 6,5 1,2 (1,1) 18 (26)	V V V mΩ nF nF
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ per IGBT	×	0,7 0,55		nF K/W
$\begin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \end{array}$	under following conditions $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{Cnom} = 50 \text{ A}, T_j = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 12 \Omega$ inductive load	Many.	85 30 440 90 5,8	g) gran	ns ns ns ns mJ
E_{off}	Tage, Sales,		6,5		mJ
Diode - Ir $V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	Nerter $I_{Fnom} = 50 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $T_j = 25 (125) ^{\circ}\text{C}$ $T_j = 25 (125) ^{\circ}\text{C}$ per diode	Notes High	1,6 (1,6) 1 (0,8) 12 (16) 1		V V mΩ K/W
I _{RRM} Q _{rr} E _{rr}	under following conditions $I_{Fnom} = 50 \text{ A}, V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V}, T_j = 125 ^{\circ}\text{C}$ $d_{i_F}/dt = 1900 \text{ A/µs}$,\$\frac{1}{2}	71 11,5 5,1		Α μC mJ
Tempera	ture Sensor		50		90,00
R _{ts}	3 %, T _r = 25 (100) °C	74/2	1000(1670)		Ω
Mechanic	cal Data	122		120	
m M _s	Mounting torque	2	65	2,5	g Nm

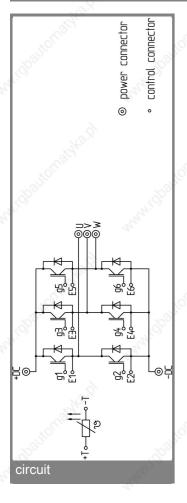


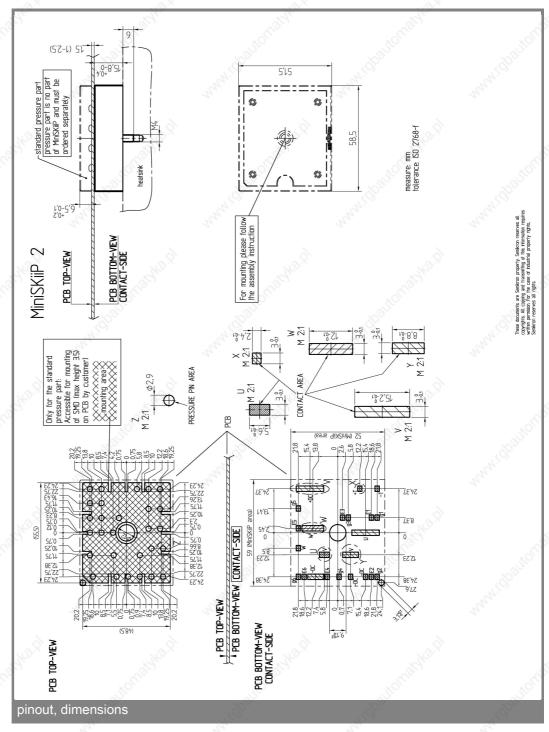












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.