Knick. Always better.

Preamble

Selection Matrix / Table of Contents $2 / 3$
Product Overview 4
The Company The whole range of perfection 6
timelineKnick. Chronology of innovations.10Discourse
Electrical isolation in industrial measuring technology 12

Modular Cases

Universal isolation amplifiers	VariTrans® P 27000	24
	VariTrans® ${ }^{\text {A }} 26000$	32
Isolation amplifiers for standard signals	VariTrans® P 15000	38
	VariTrans® B 13000	46
	VariTrans ${ }^{\text {® B }} 10000$	54
Loop-powered isolators for standard signals	IsoTrans® 41	60
	IsoTrans® ${ }^{\text {A }} 47$	68
Isolating terminal	IsoTrans ${ }^{\text {® }} \mathrm{B} 48$	74
Isolation amplifiers for shunt applications	IsoAmp® 23000/24000	80
Repeater power supplies	IsoAmp® PWR A 20100	86
	IsoAmp® PWR B 10116	92
Temperature transmitters	ThermoTrans® 205/206	98
	ThermoTrans ${ }^{\text {® }}$ 210/211	106
AC/DC transmitters Isolators for high isolation/ high input voltages	IsoTrans ${ }^{\text {® }} 600$	114
	IsoAmp® 7000/8000	122

Modular cases Hazardous area

Isolation amplifiers for standard signals	see Repeater power supply WG 20	136
Loop-powered isolators		128
for standard signals	IsoTrans® 36/37	136
Power supply/isolator	WG 20	142
Repeater power supply	WG 21	148
Loop-powered supply	WG 25	156
Temperature transmitters	ThermoTrans ${ }^{\circledR}$ 205/206	166

Eurocards

Universal isolation amplifiers	IsoAmp® 11000/12000	176
Isolation amplifiers for standard signals	IsoAmp® 3000/4000	184
Loop-powered isolators	IsoTrans® 41	192
for standard signals	IsoTrans® 46	198
Standard-signal multipliers	IsoAmp® EK 30/31	204

Modules

Universal isolation amplifiers	IsoAmp® 11000/12000	212
Isolation amplifiers for standard signals	IsoAmp® 3000/4000	218
Loop-powered isolators	IsoTrans® 41	226
for standard signals	IsoTrans ${ }^{\circledR} 46$	234

for standard signals
Standard-signal multipliers

MODULAR CASES Safe areas

MODULAR CASES Safe areas

MODULAR CASES Hazardous areas

Isolation amplifiers for
standard signals
IsoTrans@ $36 / 37$
WG 20

EUROCARDS

MODULES

IsoAmp® 11000/12000

Always better.

In the field of industrial galvanic isolation, Knick is the market leader. The state-of-the-art is constantly being redefined by the Knick module range. The devices have technical specifications that are continually above the maximum requirements. The aspect of reliability is taken into consideration as early as in the development stage, from the first definition phase. The advantages are in every detail. For example, the switching of measurement ranges is always calibrated on Knick isolators and there is no need for complicated recalibration.

Knick modules

The consistent use of high-quality components with an extremely long shelf life is part of the basic design principles at Knick just like intelligent circuit design and the planning of safety spans between the actual loading and possible maximum rating. Integrated protection measures against overloading ensure further optimization of the devices. Reliability checks and design verification are obligatory in product development.

Certified quality.

Numerous approvals also prove suitability for extraordinary requirements and fields of application. The Knick range contains devices with GL, UL, CSA, FM and ATEX approvals. The main focus is also on preventive quality assurance in production.
One result of this perfection is the proverbial long life of Knick isolators that sets standards with a 5-year warranty and a very high level of reliability. Not by chance, but as a declared design and development aim.

Since 1993 Knick has been certified to ISO 9001

Signals over long distances

If the measuring signal has a long path, for example, to reach the control room, potential differences can occur between the measuring point and the control equipment causing considerable measurement errors. The electrical isolation completely eliminates the effects of these potential differences thus rectifying measurement errors.

Signal adaptation

One common problem is the conversion of almost any measuring signals into standard signals. The VariTrans® series from Knick features universal and stan-dard-signal isolators with excellent characteristics in this area.

- High voltages in the measuring environment If the signal being measured is in a high-voltage area (for example, power supplies for buildings, railway facilities, production facilities), it needs to be kept away from the control technology (common-mode rejection, potential shift).

Signal amplification

If the power output of the signal source is not sufficient, active Knick isolators amplify the signals without falsifying the signal with interfering faults.

- Measuring high voltages

If high voltages and currents are measured (for example, the voltage of a streetcar contact wire or the current flowing through the drive motor), the control equipment needs to be protected.

Knick isolators provide the only really reliable protection in conjunction with good interference suppression.

Explosive mixtures

Ignition sparks must be avoided at all costs during operation in potentially explosive atmospheres. Galvanic isolation suitable for explosive atmospheres is required to connect measuring and control signals from a hazardous area to the control equipment. The Knick range features excellent isolators and transmitters for these applications.

Flexibility

If diverse applications should be covered with a minimum number of models, the VariTrans® P 27000 universal isolation amplifier provides a wide range of input, output and supply voltages in one unit. Also there is no need for adjustment by the user, the devices provide calibrated range selection for input and output.

Universal power supply

 We have a solution for all supply voltages: Our broad-range power supply works with any voltage between 20 V and 253 V , no matter whether $A C$ or $D C$.
Loop-powered isolation

 If there is no power supply or you want to avoid using a power supply, our passive isolators have excellent transmission properties.
- Space problems

If space is limited, the Knick isolators provide an enormous space advantage in their 6 mm enclosures - without losing out on performance. Due to the minimal heat generation, the isolators can be placed next to each other without 'ventilation gaps'.

Supply of 20 mA measuring loops

2-wire measuring systems are supplied via the $20-\mathrm{mA}$ signal line. Knick provides supply units for two-wire power supply and isolation of the sensor signal for hazardous and non-hazardous applications.

Signal multipliers

The measuring signal from a thermometer, for example, needs to be sent to an indicator and a data logger on site and to the control room, however, the out-
put power provided (max. load) is not sufficient for both consumers.
Solution: Knick supplies signal multipliers on Eurocards. When top-hat rails are used, two or more active Knick isolators can be connected due to the extremely good input values. Their outputs can then be used independently and without feedback to the inputs.

- Transmitters

Special sensors require special transmitters so that measuring signals can be understood by standardized control systems. Knick supplies temperature transmitters for resistance thermometers and thermocouples. The diverse configuration possibilities leave nothing to be desired.

$\hat{0}$ $\frac{\hat{\omega}}{5}$ $\underline{2}$

年
Knick.

The name Knick has been recognized for outstanding quality in the manufacture of electronic measuring instruments for more than half a century. Back in 1945 the company's founder, engineer Ulrich Knick, started manufacturing high-precision zero-pointstabilized DC amplifiers. These enabled the production of reliable laboratory pH meters and other precision measuring instruments.

Today, company policy still focuses on a high technical level and a highly innovative orientation. Every fourth employee works in Research and Development. A large number of patents and licensing agreements are the result. The current production range at Knick includes pioneering instruments for measurement and control.

A great deal of emphasis is placed on EMC and explosion protection, where the firm has made a name for itself by demonstrating its expertise. For example, Knick also produces standard-signal isolation amplifiers, repeater power supplies and temperature transmitters for use in potentially explosive atmospheres.

Knick. Chronology of innovations.

[^0]
1. Active and passive isolators

Functional principle:

Alternating voltages and alternating currents can easily be transmitted and electrically isolated using transformers. Transformers are reliable, easy to produce and suitable for high working voltages (isolation voltages) when configured accordingly.

The transformers are not suitable for the transmission of direct current (DC) signals. The DC measuring signal is therefore first converted into an alternating voltage using an electronic chopper. This AC voltage is transmitted to the secondary circuit by a transformer, where it is rectified in sync with the chopper frequency (see Figure 3) and then amplified or converted if necessary.

Another principle of signal processing is used in the modern, switchable isolation amplifiers from the VariTrans ${ }^{\circledR}$ series. The input signal is converted into a rectangular signal with a constant frequency. The duty cycle of the rectangular voltage is changed depending on the input voltages (pulse width modulation, PWM). The pulse width modulated rectangular signal is transmitted to the output side using a transformer (isolated) and then reconverted into a voltage or current using a low-pass filter. (see Figure 4)

The transmission ratio of the isolation amplifier is controlled by a microcontroller. The settings are made using DIL switches. Since these DIL switches are not incorporated in the negative feedback of amplifier circuits, but instead only switch digital signals, they do not carry currents and cannot cause any contact resistance faults.

1.1 Active isolators
 (isolation amplifiers)

Isolation amplifiers are the best known type of devices for galvanic isolation of measuring signals. In addition to potential isolation, these devices can also be used as transmitters for signal conversion of voltages or currents into standardized 20 mA or 10 V signals. When measuring signals are transmitted 1:1, they are also used to increase the signal load capacity. The loading of the input signal by the isolation amplifier is generally negligible. Isolation amplifiers generally require an external power supply. Typical examples are the switchable VariTrans ${ }^{\circledR}$ P 27000 and P 15000 isolation amplifiers.

1.1.1 Isolation amplifiers for unipolar signal processing

 Isolation amplifiers that are only suitable for transmitting unipolar measuring signals can be used for many applications, for example, for processing standard $0 / 4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$ signals. For the exact transmission even in the vicinity of zero, however, the control range of the Knick unipolar isolation amplifiers extends a few percent into the negative range. (see Figure 5)

Figure 3: Schematic diagram of an isolator with transformer isolation

Figure 4: PWM principle: Pulse width modulation

Figure 5: Schematic diagram of an active unipolar isolation amplifier

1.1.2 Isolation amplifiers for

 bipolar signal processing Bipolar measuring signals frequently need to be processed when, for example, motor currents are to be measured in both directions of rotation. Bipolar signals are also processed when distances are measured or for better resolution of measuring signals. Knick also supplies different types of bipolar isolation amplifiers, for example, the VariTrans® A 26000 for bipolar standard signals. (see Figure 6)
1.2 Passive isolators

Active isolation amplifiers are absolutely necessary for electrical isolation of injected current signals. Passive isolators can often also be used without limitations.

The passive isolators from Knick do not need a power supply, the power is provided from the measuring signal at the input terminals as a voltage drop. The load capability of the input signal is reduced by the natural voltage requirement of the passive isolator. Passive isolators do not allow signal amplification and do not work isolated, i. e. the output load is directly on the input signal.

As a result, a current can no longer flow in the input current circuit when the output is open (endless resistance) (see Figure 7). If temporary interruption of the output current circuit cannot be ruled out, the DC transformer output can be connected with a Zener diode that has a voltage value well below the maximum voltage transmitted by the DC transformer and above the actual load voltage required. When the output current circuit is open, the input current then flows via the Zener diode in the output of the passive isolator (see Figure 8).

Figure 6: Schematic diagram of an active bipolar isolation amplifier

Figure 7: Loop-powered isolator with open output

Figure 8: Loop-powered isolator with load connected to output and parallel-connected Zener diode

Figure 9: Circuit diagram for example 1

The operating current required to operate the devices is very low. It is approx. $2 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ depending on the model without appearing as an additional transmission fault.

Passive isolators are suitable for 1:1 transmission of unipolar current signals. The suitability for the respective application should be checked taking the load capability of the input signal and output load into consideration (see Figure 9).

Passive isolators are particularly advantageous due to the simple installation without additional supply lines.

Passive isolators are available as modular cases with up to 4 channels (e. g. IsoTrans ${ }^{\circledR}$ A 47 $\mathrm{H} 1 / 4$), solder-in modules and on Eurocards with up to 8-channels.

2. Transmission properties

The transmission properties required by a device for signal transmission are determined by various factors. In addition to the requirements regarding accuracy and speed of the signal transmission, the input data of the following devices, the properties of the signal being transmitted and the ambient conditions also need to be taken into account.

2.1 Current or voltage transmission

The initial criteria for selecting an isolator are the input signal to be processed and the output signal required. The output signal is generally determined by the following devices such as controllers, indicators, SPC, PCS etc., whereby many of these devices have either current or voltage inputs alternatively.

If both possibilities are available, current signals should be transmitted over longer transmission paths (see Figure 10). Injected current signals are considerably less insensitive than voltage signals.
inputs so that the signal being processed is practically not loaded. Only in a few cases (very low voltage signals with a high source resistance or low-load capability current signals) would the input resistance be a selection criterion for isolation amplifiers.

The input resistance of the isolation amplifiers from the IsoAmp ${ }^{\circledR}$ 23000/24000 series specially developed for shunt applications is, at approx. 25 kOhms, relatively low compared with other isolation amplifiers. However, for shunt applications with resistances in the mOhm range, the resistance is always several times to the power of ten higher than required.

2.2.1 Input voltage drop

 In various isolation amplifiers with a current input and looppowered DC transformers, the load on the input signal is specified as a voltage drop and not as an input resistance. This voltage drop is constant during normal operation and is max. 500 mV in isolation amplifiers depending on the model.

Figure 10: Transmission of a measuring signal across great distances

2.2 Input resistance

The input resistors of modern isolation amplifiers are generally dimensioned in a way that they are of sufficiently high resistance for voltage inputs and of sufficiently low resistance for current

In passive isolators, there is a voltage drop at the input resulting from the natural voltage requirement of the device plus the load voltage at the output. Before passive isolators are used, the load capability of the measuring signal and the load connected to the isolator output should be known.

2.3 Load capability of output

The load capability of voltage outputs is generally indicated by the max. current.

Almost all manufacturers specify a resistance value for the load capability at current outputs. This specification does not indicate the load capability of the output currents of Knick isolation amplifiers absolutely correctly. Therefore the output load capability is 'traditionally' given as a voltage value. A 20 mA current output with a load capability of 10 V can be loaded, for example, with 2 kOhms at 5 mA or 1 kOhm at 10 mA . The specification of the maximum permissible load voltage 10 V therefore applies for each current value, whereas 500 Ohms would apply exclusively for 20 mA .

2.4 Transmission accuracy

Knick isolation amplifiers are distinguished by partly extraordinarily low transmission errors so that the accuracy requirements of practically all measuring tasks in industrial measuring technology are easily met. The long-term stability of Knick electrical isolators ensures maximum transmission accuracy past the 5 -year warranty on Knick electrical isolators.
2.4.1 Measuring signal quality

As accurate a transmission of the input signal as possible is required not only for applications in test engineering. Signal distortions due to change in polarity, overshoots in the case of signal changes, extreme angles in square-wave transmission are the rule in many isolation amplifiers available on the market. These undesirable properties are not immediately visible to the user. They often do not become noticeable until inexplicable errors occur during operation. In the cyclical, digital scanning of measured values, signal distortions, for example, due to overshooting, can cause serious measuring errors. For this reason, Knick traditionally places great emphasis on the accurate transmission of signals in the development of its isolation amplifiers.

2.4.2 Residual ripple

The output signal of DC isolation amplifiers is principally superimposed by low interference voltages. These interference voltages are caused, for example, by the chopper frequency as well as by mains feedover. The amplitude of this interference voltage, referred to as residual ripple, should be as low as possible because otherwise measuring errors cannot be ruled out - especially with low modulation.

2.5 Temperature coefficient (gain droop)

The temperature coefficient or gain droop is a specification for changes in gain caused by temperature changes. Droop rates are specified as a relative variable in \%/K or as an absolute value, for example, in $n A / K$ or $\mu A / K$.

In absolute value specifications, you need to check whether the TC refers to the input or the output.

Figure 11: Offset voltage

Figure 12: Offset current

Examples:

The temperature coefficient (at the output) of an isolation amplifier is, for example, max. $10 \mathrm{nA} / \mathrm{K}$. A change in temperature of 20 K causes a change in the output current of 20 x $10 \mathrm{nA}=200 \mathrm{nA}$.

The TC of an isolation amplifier is, for example, $0.0025 \% / K$. A change in temperature of 20 K causes a change in amplification of 0.05%.

2.6 Offset voltage, offset current

In (real) amplifiers, the output variable is not exactly ' 0 ' even when the input signal is ' 0 '. The (input) offset voltage of an amplifier is by definition (gainindependent) the voltage that needs to be applied to the input in order for the output variable to become ' 0 '.
It therefore acts as an input voltage or an additional voltage acting in series with the input signal (see Figure 11).

The (input) offset current of an amplifier also acts as an additional input signal (see Figure 12). In amplifiers with a voltage input, the offset current generates a voltage drop at the internal resistor of a voltage source that is added to the input signal.

The offset voltage and offset current are so low in Knick isolation amplifiers that they are negligible for normal applications. Offset influences should only be considered for very special applications, for example, the $1: 1$ transmission of very small measuring signals or the transmission or amplification of very high-resistance signals.

The polarity of offset variables depends on each model and therefore is given as an amount variable without a plus or minus sign.

2.7 Cut-off frequency

DC isolation amplifiers are basically designed for the transmission or amplification of DC signals. In order to be able to transmit fast changes in the measured value almost without delay, DC isolation amplifiers are only conditionally suitable for transmission of alternating variables. The upper cut-off frequency for Knick isolation amplifiers and DC transformers is up to approx. 12 kHz for sinusoidal signals depending on the model.

As an upper limit frequency, as is common in electronics and telecommunications, the frequency is defined at which the gain is attenuated by 3 dB (in relation to the DC gain) or which corresponds to the amount divided by $\sqrt{2}$ (corresponding to approx. 71 \% of the DC gain) (see Figure 13).

2.8 Common-mode behavior

If the same voltage V_{cm} is applied to ground at both inputs of a (symmetrical) amplifier, the input voltage remains $\mathrm{V}_{\text {in }}=0$. This operating mode is called common-mode modulation. In an ideally symmetrical amplifier, the output voltage $\mathrm{V}_{\text {out }}$ would also remain at 0 . This is not the case in real amplifiers, however, i. e. a voltage deviating from 0 will appear at the output (see Figure 14). A commonmode modulation always exists when the signal voltage is not at ground potential, i. e. when there is a potential difference between the (two) input lines and the ground, for example, in voltage measurements on a shunt lying at a high potential against ground.

Common-mode voltages can also occur as common-mode interference voltages, for example, in switching processes, due to interference on the signal lines or due to compensating currents.

The ratio between an applied common-mode voltage and the resulting output voltage is known as common-mode gain. However, in practice, the deviation from the ideal commonmode behavior of an amplifier that is indicated as commonmode rejection is of greater interest. The common-mode rejection S is defined as a quotient between opposite-mode and com-mon-mode gain or as the (logarithmic) ratio between an applied common-mode voltage V_{cm} and a signal voltage V_{d} that would produce the same output signal.
$\mathrm{S}=20 * \log \left(\mathrm{~V}_{\mathrm{cm}} / \mathrm{V}_{\mathrm{d}}\right)[\mathrm{dB}]$

Example:

The common-mode modulation of an isolation amplifier with $\mathrm{V}_{\mathrm{cm}}=800 \mathrm{~V}$ causes a 'commonmode error' (at the input) of $800 \mathrm{~V} / 10(120 / 20)=0.8 \mathrm{mV}$ with a common-mode rejection of 120 dB . In an isolation amplifier with an input sensitivity of 60 mV , this results in a 'commonmode error' of approx. 1.3 \% of the end of range value.

For common-mode voltages in the DC and low-frequency AC range (50 Hz), high commonmode rejection is usually easy to achieve. The common-mode error in this range is negligible in Knick isolation amplifiers.

The common-mode rejection of amplifiers is, however, frequencydependent and becomes considerably lower as the frequency increases. This is essentially influenced by the coupling capacitance between the primary and secondary coils of the transformer used that cannot be reduced as desired.

Therefore the common-mode rejection is considerably lower with pulse-shaped commonmode voltages or fast commonmode voltage changes.

Transient common-mode voltages can be caused both by single and by periodic switching processes, for example, in thyris-tor-controlled convertors.

Bild 13: Frequency response of a DC isolation amplifier or Loop-powered isolator

Bild 14: Common-mode modulation

Figure 15: Test circuit for measuring the T-CMR

In the IsoAmp ${ }^{\circledR}$ 23000/24000 series isolation amplifiers, special constructional measures have been implemented to suppress this kind of common-mode pulse.

These isolation amplifiers are therefore particularly suited for measurements on shunts with which common-mode pulse voltages or rapidly changing common-mode voltages are to be expected.

The term T-CMR (Transient Common Mode Rejection) has been chosen for the corresponding data specification. It describes the quotient between differential DC gain and common-mode gain of a transient (interference) signal with a rise speed of $1000 \mathrm{~V} / \mathrm{hs}$ (see Figure 15).

3. Power supply

The universal and standard signal isolation amplifiers VariTrans ${ }^{\circledR}$ P 15000, VariTrans® A 26000 and VariTrans ${ }^{\circledR}$ P 27000 are equipped with the VariPower ${ }^{\circledR}$ broad-range power supply that is designed for supply voltages of 20 ... 253 V AC/DC. These isolation amplifiers are therefore suitable for connection to almost all mains supplies and can be used all over the world. This hugely simplifies storage and spare parts management.

Another advantage of the broadrange power supply is the insensitivity to mains voltage fluctuations within the specified range.

Other Knick isolation amplifiers in modular cases are supplied as standard for a supply voltage of 230 V AC , but are also available for the supply voltages 110 V AC, 24 V AC, 24 V DC and partly also for $60 \mathrm{~V} D C$ and $110 \mathrm{~V} D$.

3.1 Power requirement

A frequently neglected and often underestimated selection criterion is the power requirement of isolation amplifiers. It is not the additional energy required that is decisive, but the heat generated in the isolation amplifiers with unnecessarily high energy requirement due to the power loss. This disadvantage can have adverse effects especially in the case of high packing densities. The development of heat in isolation amplifiers is sometimes so great that these devices cannot be mounted next to each other without spacing. This cancels out the advantages of small dimensions. Another consequence of high temperatures is the reduced service life of the electronic components. A 10 K higher operating temperature in the range between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ (theoretically) causes the service life to be reduced by 50% and thus lowers product reliability considerably.

The power requirement of isolation amplifiers is therefore one selection criterion that should not be ignored. Since the output power of different isolation amplifiers is generally almost identical, the power requirement of different brands can be compared directly.

3.2 Potential isolation of the power supply circuit

3-port isolation is the technical standard for all Knick isolation amplifiers for mains supply, i. e. the input, output and power supply circuit are galvanically isolated from each other. In 3-port isolation amplifiers, the input and output circuits can be applied to any potentials taking the permitted working voltages into consideration. In rare cases, when the output needs to be applied to higher potentials, you should check whether the permitted working voltage (rated isolation voltage, previously isolation voltage) between the output and power supply circuit is sufficiently high.

Among the modular isolation amplifiers the IsoAmp® 11000/ 12000 series should be noted for having the output current circuit on the potential of the supply voltage. This is not a technical disadvantage for many applications. If floating outputs are absolutely necessary, 3-port isolation is also possible for modules from the IsoAmp ${ }^{\circledR}$ 11000/12000 M series in conjunction with the EK 16 Eurocard.

Some manufacturers who do not supply isolation amplifiers with 3-port isolation as standard distinguish between input isolation amplifiers, output isolation amplifiers and 3-port isolation amplifiers.

The input and output circuits can be applied to any potentials taking the permitted working voltages into consideration.

As previously mentioned, a distinction need not be made between input and output isolation amplifiers when selecting Knick isolation amplifiers as the 3-port isolation is the technical standard in this field.

4. Electrical safety

4.1 Working voltage

An important parameter when selecting a suitable electrical isolator is the permitted working voltage (rated isolation voltage). It indicates the permitted potential difference between the different circuits (input, output and supply current circuits). (see Figure 17).

The permitted working voltage of an isolation amplifier may differ between the different circuits. The highest of the specified working voltages generally applies across the input and output and across the input and power supply circuit. There can be a lower permitted working voltage between the output and supply current circuit.

The requirements for the working voltages are defined in EN 61010-1.

It should be noted that the permissible working voltage is not only determined by the voltage strength of the permanent insulation used for the isolating elements, but also by constructional features such as clearance and creepage distances as well as by external influences, particularly the pollution degree (environment-related, possible contamination) and the overvoltage category (value of superimposed pulse voltages).

The degree of contamination and overvoltage category are also defined in EN 61010-1. The following classifications apply:

[^1]

Figure 17: Visual aid model for meaning of working voltage

Pollution degree 1:
There is no or only dry, nonconductive contamination, for example, in air-conditioned or clean, dry rooms.

Pollution degree 2:

There is only non-conductive contamination. Occasional, temporary conductivity due to condensation can be expected, for example, in laboratories, precision mechanics workshops, test departments and salesrooms.

Pollution degree 3:

There is conductive contamination or dry, non-conductive contamination that becomes conductive due to expected condensation, for example, in rooms at industrial plants, agricultural plants, unheated warehouse rooms and boiler rooms.

Pollution degree 4:

The contamination leads to permanent conductivity, for example, due to conductive dust, rain or snow; in open rooms or outdoors.

Overvoltage category I:

No occurance of overvoltage or protection by lightening conductors or filters.

Overvoltage category II:

Systems with switching processes, but without lightening strikes, for example, in private households.

Overvoltage category III:

Plant without lightening strikes, connection of the device nearer to the power supply connection than the loads and/or special requirements for safety and availability of the device.

Overvoltage category IV:

Plants with lightening strikes.
The permitted working voltages for Knick isolation amplifiers and DC transformers are up to approx. 3600 V DC depending on the model.

4.2 Test voltage

The electric strength of the insulation material used for the isolating elements is many times greater than the working voltages permitted for the device. Therefore the test voltage with which each device is tested is specified additionally for isolating devices. This ensures that the specified limit values for the working voltage apply for each device.

The test voltage is also used occasionally as a parameter for the electric strength instead of the working voltage. This then needs to be a certain factor higher than the maximum possible potential difference between the circuits to be isolated according to the guideline for the specific application.

The test voltage for Knick potential isolators is up to 10 kV AC.

4.3 Safe electrical isolation

The term 'Safe Electrical Isolation' is defined in EN 61140. This safety standard for protecting people against electrical shock describes measures to achieve the necessary 'safe electrical isolation' in electrical equipment intended for connection to a nominal supply voltage up to 1000 V AC or 1500 V DC.

The implementation of this particularly high level of safety should be ensured both by constructive measures (clearance and creepage distances) and the insulation properties of the isolation elements used internally.

The specification 'Safe Electrical Isolation' always includes the indication of a rated isolation voltage (working voltage). The 'safe electrical isolation' is guaranteed below this voltage. Galvanic isolation is also guaranteed above this voltage up to a higher permitted working voltage.

4.4 Approvals

On an international basis, US and Canadian UL approvals (Under-writer Laboratories) and CSA (Canadian Standards Association) or their combination CUL are required. Many isolators from Knick have proven in strict approval tests that they fulfil these requirements for electrical safety and fire-protection regulations.

4.5 Hazardous area separation

When electrical equipment (including electrical and electronic measuring instruments) is used in potentially explosive atmospheres, you must ensure that these devices cannot ignite any explosive gas-air mixtures even when they malfunction. The possible protection classes include the 'intrinsic safety' type of protection that ensures that

Figure 18: Coupling of intrinsically safe and non-intrinsically safe circuits with the IsoTrans 36 A7 passive isolator
the intrinsically safe circuits in the respective device cannot generate sparks even in the event of a malfunction.

In practice, an isolated solution with intrinsically safe circuits is hardly ever possible, i. e. coupling with non-intrinsically safe circuits is necessary for signal processing. The direct link would cancel out the intrinsic safety and is therefore not permitted. Knick supplies suitable isolation amplifiers or loop-powered DC transformers for coupling the correspond-
ing circuits providing both electrical isolation and hazardous area separation between intrinsically safe and non-intrinsically safe circuits (see Figure 18).

The devices supplied by Knick with 'intrinsic safety' type of protection correspond with the directive 94/9/EC. This directive is generally called ATEX 100a (Atmosphère Explosible and Article 100a).

5. Functional safety

5.1 Surge withstand

In industrial plants, transient overvoltages with rise speeds of several $1000 \mathrm{~V} / \mu \mathrm{s}$ occur in particular due to switching processes. This kind of overvoltage can lead to damage or destruction of sensitive electronic components.

Newly developed Knick isolation amplifiers and DC transformers are surge proof in accordance with IEC 255-4. Both the individual circuits (input, output, supply) and the insulation between the circuits are protected against being destroyed by temporary overvoltages. The test is made with positive and negative pulses of 5 kV with $1.2 / 50 \mu \mathrm{~s}$ pulse duration.

5.2 Electromagnetic compatibility (EMC)

The term 'electromagnetic compatibility' defines the property of electrical and electronic devices not to emit intolerable electromagnetic interference and at the same time the capability to work safely under the effect of electromagnetic interference. The increasing use of all kinds of devices that could emit interference, the constantly increasing use of modern microelectronics in all fields of industry and the interaction of power electronics and microelectronics calls for measures protecting against mutual influence. Electromagnetic interference can cause malfunctions and even complete failure of unprotected electronic devices. The constantly lower energy requirement of microelectronics components and simultaneously increasing processing speeds lead to increased sensitivity to electromagnetic interference.

The limit values to be observed with regard to EMC are regulated, in addition to the requirements to be met, by standardized directives and norms within the European Union. The low-voltage directives and the EMC standards are relevant for isolation amplifiers. The CE certification of Knick products confirms conformity with the respective directives

5.3 Protection against mechanical loads

Mechanical loads, for example, caused by shaking or vibrations, are often inevitable in industrial plants, in vehicles, on ships etc. The operating safety of electrical and electronic components also needs to be ensured in these environments. The isolation amplifiers from the VariTrans ${ }^{\circledR}$ series have therefore been checked in accordance with the Germanischer Lloyd guidelines and have GL approval for environment category D: Use with increased heat development and increased vibration loading for example, devices for mounting on combustion engines and compressors.

5.4 Reliability

Knick gives a 5 -year warranty on electrical isolation modules. Due to their recognized quality and reliability, they are widespread in industrial measuring and control engineering across the world. The quality management used has also contributed to Knick being certified according to KTA*' 1401 as a recognized supplier of isolation amplifiers for use in nuclear power stations since 1994. Other corresponding certifications have also been awarded for products used in the safety-related areas of nuclear power stations.

Intelligent circuits with minimal use of components allow reliability values that were previously considered to be impossible. For example, the MTTF*2 is 1800 years for the IsoTrans® ${ }^{\circledR} 46 \mathrm{Mk}$.

The Knick quality assurance has been certified according to ISO 9001 for all areas of the company.

The quality of all Knick products is ensured by computer-supported individual checks. For the electrical isolation modules, this means that each individual device is checked again for perfect functioning and compliance with all data after the function check, adjustment, encapsulation where necessary and high-voltage check.
Only then is the device approved for delivery.

[^2]
VariTrans® P 27000

The "Multimeter" among the isolators. With 480 calibrated selectable measuring ranges and broad-range power supply.

The task

A wide range of measuring signals need to be galvanically isolated and converted into standard signals.
This applies to any input signals in the range $\pm 20 \mathrm{mV}$ to $\pm 200 \mathrm{~V}$ and from $\pm 0.1 \mathrm{~mA}$.

The problem

The variety of tasks results in a large number of different devices.

The solution

The calibrated switching of the input and output ranges using DIP switches allow the Knick

The enclosure

At just 12.5 mm wide, the modular case with pluggable screw terminals allows simple and fast assembly and prewiring of switch cabinets. Cases with fixed screw terminals are also available for extremely high mechanical loads.
The easy-to-open case allows easy configuration of the input and output ranges and good protection against touch and unintended adjustment.

The advantages

The analog transmission of the measuring signal with transformer isolation and the new digitally controlled range selection guarantee almost perfect signal transmission:

- Gain error only 0.08 \%
- Excellent pulse formation
- Extremely low residual ripple
- Maximum long-term stability and reliability

The technology

A microcontroller monitors the control element settings and controls the calibrated range selection. Interference to the signal transmission - for example, contact resistances in the range switches - is thus ruled out.

Thanks to the VariPower® ${ }^{\circledR}$ power supply, the devices can be used all over the world with almost any power supply. The extremely low power consumption and the related minimal self-heating significantly increase the reliability. That's why we give a 5 -year warranty.

The facts

Flexible and highly accurate
calibrated range selection
without complicated
recalibration
VariPower®
20 ... 253 V AC/DC
broad-range power supply
Extremely compact design
12.5 mm modular case, up to 80 active isolators per meter of top hat rail

Fast and easy configuration case simple to open

Pluggable screw terminals simple, time-saving assembly and prewiring of switch cabinets

3-port isolation

protection against incorrect
measurements or damage
Maximum accuracy
Individual test report
following EN 102042.3

Safe isolation

in accordance with EN 61140. Protection against high voltages (for example, with shunt measurements on high potentials or in 3-phase systems).

Maximum reliability no repair and failure costs

5-year warranty

c ${ }^{\circ}$

Product line

Devices			Order no.	Order no.
	Input	Output	With pluggable screw terminal	With fixed screw terminal
P 27000 with adjustable input and output	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{mV} / 20 \\ & 0 \ldots \pm 0.1 \mathrm{~mA} / 10 \mathrm{c} \end{aligned}$	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \\ & 0 \ldots \pm 10 \mathrm{~V} \\ & 0 \ldots \pm 20 \mathrm{~mA} \end{aligned}$	P 27000 H1	P 27000 F 1
P 27000 with	$0 \ldots \pm 20 \mathrm{~mA}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27016 H1	P 27016 F1
fixed settings	$0 \ldots \pm 20 \mathrm{~mA}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27018 H1	P 27018 F1
	$0 \ldots \pm 60 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27056 H1	P 27056 F1
	$0 \ldots 60 \mathrm{mV}$	$4 \ldots 20 \mathrm{~mA}$	P 27057 H 1	P 27057 F1
	$0 \ldots \pm 60 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27058 H1	P 27058 F1
	$0 \ldots \pm 150 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27066 H1	P 27066 F1
	$0 \ldots 150 \mathrm{mV}$	4 ... 20 mA	P 27067 H1	P 27067 F1
	$0 \ldots \pm 150 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27068 H1	P 27068 F1
	$0 \ldots \pm 300 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27076 H1	P 27076 F1
	$0 \ldots 300 \mathrm{mV}$	$4 \ldots 20 \mathrm{~mA}$	P 27077 H1	P 27077 F1
	$0 \ldots \pm 300 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27078 H1	P 27078 F1
	$0 \ldots \pm 500 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27086 H1	P 27086 F1
	$0 \ldots 500 \mathrm{mV}$	4 ... 20 mA	P 27087 H1	P 27087 F 1
	$0 \ldots \pm 500 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27088 H1	P 27088 F 1
	$0 \ldots \pm 1 \mathrm{~V}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27096 H1	P 27096 F1
	$0 \ldots 1 \mathrm{~V}$	4 ... 20 mA	P 27097 H1	P 27097 F1
	$0 \ldots \pm 1 \mathrm{~V}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27098 H1	P 27098 F 1
	$0 \ldots \pm 10 \mathrm{~V}$	$0 \ldots \pm 20 \mathrm{~mA}$	P 27036 H1	P 27036 F1
	$0 \ldots \pm 10 \mathrm{~V}$	$0 \ldots \pm 10 \mathrm{~V}$	P 27038 H1	P 27038 F 1

Power supply
20 ... 253 V AC/DC

Specifications

Input data

Inputs	P 27000 H1/F1: Voltage Current	Factory setting $\pm 10 \mathrm{~V}$ Configurable from $20 \mathrm{mV} . . .200 \mathrm{~V}$ and switchable in calibrated steps $60 \mathrm{mV}, 100 \mathrm{mV}, 150 \mathrm{mV}, 300 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 100 \mathrm{~V}$, unipolar/bipolar Configurable from $0.1 \mathrm{~mA} \ldots 100 \mathrm{~mA}$ and switchable in calibrated steps $1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 20 \mathrm{~mA}, 50 \mathrm{~mA}$, unipolar/bipolar and $4 \ldots 20 \mathrm{~mA}{ }^{1}$)	
Input resistance	Current input	$\begin{aligned} & \text { Ranges } \leq 5 \mathrm{~mA} \\ & \text { Ranges }>5 \mathrm{~mA} \end{aligned}$	approx. 100 Ohms approx. 5 Ohms approx. 1 MOhm
Overload	Current input Voltage input	Ranges $\leq 5 \mathrm{~mA}$ Ranges $>5 \mathrm{~mA}$ Ranges $\leq 500 \mathrm{mV}$ Ranges $>500 \mathrm{mV}$	$\begin{aligned} & \leq 100 \mathrm{~mA} \\ & \leq 300 \mathrm{~mA} \end{aligned}$ Limitation with suppressor diode 36 V , max. permitted continuous current $\leq 20 \mathrm{~mA}$ Limitation with suppressor diode 250 V , max. permitted continuous current $\leq 3 \mathrm{~mA}$

Output data

Output
Offset
Load
Offset error
Residual ripple
P $27000 \mathrm{H} 1 / \mathrm{F} 1$: Factory setting $\pm 10 \mathrm{~V}$
$20 \mathrm{~mA}, 5 \mathrm{~V}, 10 \mathrm{~V}$ unipolar/bipolar and
$4 \ldots 20 \mathrm{~mA}, 1 \ldots 5 \mathrm{~V}$ and $2 \ldots 10 \mathrm{~V}$ calibrated selection
$-100 \%,-50 \%, 0 \%, 50 \%, 100 \%$ span of selected output range
calibrated selection
With output current $\leq 12 \mathrm{~V}(600 \mathrm{Ohms}$ at 20 mA$)$
With output voltage $\leq 10 \mathrm{~mA}(1 \mathrm{kOhm} \text { at } 10 \mathrm{~V})^{2)}$
$20 \mu \mathrm{~A}$ or 10 mV
$<10 \mathrm{mV}$ rms

Transmission behavior

Adjustment range
of ZERO potentiometer
Adjustment range
of SPAN potentiometer
Gain error
Cut-off frequency
Temperature coefficient ${ }^{3)}$

Specifications, continued

Power supply
Power supply

20 ... $253 \mathrm{~V} \mathrm{AC/DC;} \mathrm{AC} 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA ; DC approx. 0.9 W

Isolation

$\longdiv { }$

Galvanic isolation
Test voltage

Working voltage
(basic isolation)
3-port isolation between input, output and power supply
5 kV AC input against output; 4 kV AC output against power supply
1000 V AC/DC with overvoltage category II and pollution degree 2 according to EN 61010-1.

Protection against electrical shock

For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Safe isolation according to EN 61140 (VDE 0140 Part 1) by reinforced insulation in accordance with EN 61010-1 (VDE 0411 Part 1).
Working voltages with overvoltage category II and pollution degree 2 for working voltages: up to 600 V AC/DC across input and output
up to 300 V AC/DC across output and power supply
up to category II and degree 2
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC ${ }^{\text {) }}$	EN 61326
Approvals	cUL: File No. E 216767, Standards UL 3101-1, CSA-C 22.2, No. 10101-1 GL: No. 14593-99 HH KTA: Applied for

Other data

Ambient temperature	Operation: $-10 \ldots+70^{\circ} \mathrm{C}$ Transport and storage: $-40 \ldots+85^{\circ} \mathrm{C}$
Version	Modular case, width 12.5 mm , see dimension drawing for other measurements, pluggable screw terminals: Type H1 fixed screw terminals: Type F1
Protection class	IP 20
Mounting	Metal lock for mounting on 35 mm top hat rail according to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 150 g

[^3]
Schematic diagram

Application examples

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics

Signal conversion or measuring range adaptation

For conversion of any measuring signals into standard signals 10 V or 20 mA

Application examples, continued

Simple shunt measurement

e. g. also with any overload range setting

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics

Dimension drawings and terminal assignments

Enclosure with pluggable screw terminals

Enclosure with fixed screw terminals

$\begin{array}{lll}5 & \text { Output }+ & \text { All dimensions in } \mathrm{mm} . \\ 6 & \text { Output - } & \\ 7 & \text { Power supply } \bar{\sim} & \\ 8 & \text { Power supply } \bar{\approx} & \end{array}$

1 Input + Current $>5 \mathrm{~mA}$
2 Input + Current $\leq 5 \mathrm{~mA}$, voltage $\leq 500 \mathrm{mV}$
3 Input + Voltage $>500 \mathrm{mV}$
4 Input-

Conductor cross section max. $2.5 \mathrm{~mm}^{2}$
Multi-wire connection max. $1 \mathrm{~mm}^{2}$ (two wires with the same cross section)

VariTrans ${ }^{\circledR}$ A 26000

The solution

Knick provides a tailormade solution. The calibrated switching of the input and output ranges using DIP switches allows the Knick VariTrans ${ }^{\circledR}$ P 26000 universal isolation amplifiers to be used without complicated recalibration. The broad-range power supply for all common supply voltages from 20 to 253 V AC/DC is unmatched in this kind of compact modular case.

The enclosure

At just 12.5 mm wide, the modular case with pluggable screw terminals allows simple and fast assembly and prewiring of switch cabinets. Cases with fixed screw terminals are also available for extremely high mechanical loads. The easy-to-open case allows easy configuration of the input and output ranges and good protection against touch and unintended adjustment.

Warranty - years.

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The advantages

The analog transmission of the measuring signal with transformer isolation and the digitally controlled measuring range selection guarantees excellent signal transmission:

- Gain error only 0.1 \%
- Excellent pulse formation
- Extremely low residual ripple
- Maximum long-term stability and reliability

The technology

A microcontroller monitors the control element settings and controls the calibrated measuring range selection. Interference to the signal transmission - for example, contact resistances in the range switches - is thus ruled out.

Thanks to the VariPower® ${ }^{\circledR}$ power supply, the devices can be used all over the world with almost any power supply. The extremely low power consumption and the related minimal self-heating significantly increase the reliability. That's why we give a 5 -year warranty.

The facts

Flexible and highly accurate calibrated range selection without complicated recalibration

VariPower ${ }^{\circledR}$
20 ... 253 V AC/DC broad-range power supply

Extremely compact design 12.5 mm modular case, up to 80 active isolators per meter of top hat rail

Fast and easy configuration case simple to open

Pluggable screw terminals simple, time-saving assembly and prewiring of switch cabinets

3-port isolation

protection against incorrect measurements or damage

Maximum accuracy
Individual test report
following EN 102042.3

Safe isolation

in accordance with EN 61140 (VDE 0140), protection against unpermitted high voltages

Maximum reliability
no repair and failure costs
5-year warranty

c

Product line

Devices			Order no.	Order no.
	Input	Output	With pluggable screw terminal	With fixed screw terminal
A 26000 with calibrated input and output selection	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA}, \\ & 0 \ldots \pm 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA}, \\ & 0 \ldots \pm 10 \mathrm{~V} \end{aligned}$	A 26000 H 1	A 26000 F1
A 26000 with fixed settings	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm 10 \mathrm{~V} \\ & 0 \ldots \pm 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm 10 \mathrm{~V} \\ & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm 10 \mathrm{~V} \end{aligned}$	A 26016 H1 A 26018 H1 A 26036 H1 A 26038 H1	A 26016 F1 A 26018 F1 A 26036 F1 A 26038 F1

Power supply
20 ... 253 V AC/DC

Specifications

Input data

Inputs	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm 10 \mathrm{~V} \end{aligned}$	Terminal selectable / switchable (factory setting $\pm 10 \mathrm{~V}$) or fixed settings (see Product line)
Input resistance	Current input Voltage input	Voltage drop approx. 250 mV at 20 mA approx. 1 MOhm
Overload	Current input Voltage input	$\leq 300 \mathrm{~mA}$ Voltage limitation with suppressor diode 30 V , max. permitted continuous current 30 mA

Output data

Outputs	$\begin{aligned} & 0 \ldots \pm 20 \mathrm{~mA} \\ & 0 \ldots \pm \pm \mathrm{V} \\ & 0 \ldots \pm \end{aligned}$	Terminal-selectable/switchable (factory setting $\pm 10 \mathrm{~V}$) or fixed settings (see Product line)
Load	With output current With output voltage	$\begin{aligned} & \leq 10 \mathrm{~V}(500 \mathrm{Ohms} \text { at } 20 \mathrm{~mA}) \\ & \leq 10 \mathrm{~mA}(1 \mathrm{kOhm} \text { at } 10 \mathrm{~V})^{1)} \end{aligned}$
Offset	$20 \mu \mathrm{~A}$ or 10 mV	
Residual ripple	$<10 \mathrm{mV}_{\text {rms }}$	
Transmission behavior		
Gain error	<0.1 \% meas. val.	
Cut-off frequency	$>5 \mathrm{kHz}-3 \mathrm{~dB}$	
Temperature coefficient ${ }^{2}$)	0.0075 \% /K full sca	(reference temperature $23{ }^{\circ} \mathrm{C}$)

Specifications, continued

Power supply

Power supply

20 ... 253 V AC/DC AC $48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
DC approx. 0.9 W

Isolation

Galvanic isolation	3-port isolation between input, output and power supply
Test voltage	4 kV AC input against output against power supply
Working voltage (basic isolation)	1000 V AC/DC with overvoltage category II and pollution degree 2 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Working voltages up to 300 V AC/DC with overvoltage category II and pollution degree 2 between input and output and power supply. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
EMC ${ }^{3}$	EN 61326
Approvals	cUL: File no. E 216767, Standards UL 3101-1, CSA-C 22.2, No. 10101-1 GL: No. 14593-99 HH

Other data

Ambient temperature	Operation: $-10 \ldots+70^{\circ} \mathrm{C}$ Transport and storage: $-40 \ldots+85^{\circ} \mathrm{C}$
Enclosure	Modular case, width 12.5 mm , see dimension drawing for other measurements, pluggable screw terminals: Type H1 fixed screw terminals: Type F1
Protection class	IP 20
Mounting	Metal lock for mounting on 35 mm top hat rail according to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 150 g

[^4]
Schematic diagram

Application examples

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics

Signal conversion

For conversion of voltage signals into current signals, for example, for interference-free signal transmission over long distances

Dimension drawings and terminal assignments

Case with pluggable screw terminals

Case with fixed screw terminals

Terminal assignments
1 Input + Current
2 Input - Current
3 Input + Voltage
4 Input- Voltage
5 Output +
6 Output -
7 Power supply ~
8 Power supply ~

Conductor cross section max. $2.5 \mathrm{~mm}^{2}$
Multi-wire connection max. $1 \mathrm{~mm}^{2}$ (two wires with same cross section)

All dimensions in mm .

VariTrans ${ }^{\circledR}$ P 15000

The enclosure

At just 12.5 mm wide, the modular case with pluggable screw terminals allows simple and fast assembly and prewiring of switch cabinets. Cases with fixed screw terminals are also available for extremely high mechanical loads.
The easy-to-open case allows easy configuration of the input and output ranges and good protection against touch and unintended adjustment.

The advantages

The analog transmission of the measuring signal with transformer isolation and the new digitally controlled measuring range selection guarantee almost perfect signal transmission:

- Gain error only 0.08 \%
- Excellent pulse formation
- Extremely low residual ripple
- Maximum long-term stability and reliability

The technology

A microcontroller monitors the control element settings and control the calibrated measuring range switching. Interference to the signal transmission - for example, contact resistances in the range switches - is thus ruled out.

Thanks to the VariPower ${ }^{\circledR}$ power supply, the devices can be used all over the world for all common supply voltages from 20 to 253 V AC/DC with almost any power supply. The extremely low power consumption and the related minimal self-heating significantly increase the reliability. That's why we give a 5 -year warranty.

The facts

Flexible and highly accurate
calibrated range selection without complicated recalibration

VariPower® ${ }^{\circledR}$
20 ... 253 V AC/DC
broad-range power supply
Extremely compact design
12.5 mm modular case, up to 80 active isolators per meter of top hat rail

Fast and easy configuration
case simple to open
Pluggable screw terminals simple, time-saving assembly and prewiring of switch cabinets

3-port isolation

protection against incorrect measurements or damage

Maximum accuracy

- Individual test report
following EN 102042.3
Safe isolation
in accordance with EN 61140, protection against unpermitted high voltages

Maximum reliability
no repair and failure costs
5-year warranty
${ }^{c} \mathrm{~N}_{\text {us }}$ GL

Product line

Devices			Order no.	Order no.
	Input	Output	With pluggable screw terminal	With fixed screw terminal
P 15000 with calibrated input and output selection	$\begin{aligned} & 0 \text {... } 20 \mathrm{~mA} \text {, } \\ & 4 . .20 \mathrm{~mA}, \\ & 0 . . .10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 . .20 \mathrm{~mA}, \\ & 4 \ldots 20 \mathrm{~mA}, \\ & 0 . . .10 \mathrm{~V} \end{aligned}$	P 15000 H 1	P 15000 F1
P 15000 with fixed settings	0 ... 20 mA 0 ... 20 mA 0... 20 mA 4 ... 20 mA 4 ... 20 mA $4 \ldots 20 \mathrm{~mA}$ 0 ... 10 V 0... 10 V 0 ... 10 V	0 ... 20 mA 4 ... 20 mA 0 ... 10 V 0 ... 20 mA 4 ... 20 mA 0 ... 10 V 0 ... 20 mA 4 ... 20 mA 0 ... 10 V	P 15016 H1 P 15017 H1 P 15018 H1 P 15026 H1 P 15016 H1 P 15028 H1 P 15036 H1 P 15037 H1 P 15038 H 1	P 15016 F1 P 15017 F1 P 15018 F1 P 15026 F1 P 15016 F1 P 15028 F1 P 15036 F1 P 15037 F1 P 15038 F1

Power supply
20 ... 253 V AC/DC

Specifications

Input data

Inputs	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Terminal-selectable/switchable (factory setting 0 ... 20 mA) or fixed settings (see Product line)
Input resistance	Current input Voltage input	Voltage drop approx. 250 mV at 20 mA approx. 1 MOhm
Overload	Current input Voltage input	$\leq 300 \mathrm{~mA}$ Voltage limitation with suppressor diode 30 V , max. permitted continuous current 30 mA

Output data

Outputs	$0 \ldots 20 \mathrm{~mA}$ Switchable (factory setting $0 \ldots 20 \mathrm{~mA}$ $4 \ldots 20 \mathrm{~mA}$ or fixed settings (see Product line) $0 \ldots 10 \mathrm{~V}$ (transmission of negative measuring signals up to approx. -5% of full scale)
Load	With output current $\leq 12 \mathrm{~V}(600$ Ohms at 20 mA$)$ With output voltage $\left.\leq 10 \mathrm{~mA}(1 \mathrm{kOhm} \text { at } 10 \mathrm{~V})^{1}\right)$
Offset	$20 \mu \mathrm{~A}$ or 10 mV
Residual ripple	$<10 \mathrm{mV}$ rms

Specifications, continued

Transmission behavior

Gain error	< 0.08 \% meas. val.
Cut-off frequency	> $10 \mathrm{kHz}-3 \mathrm{~dB}, \mathrm{P} 15000 \mathrm{~F} 1 / \mathrm{H} 1$ auf $<10 \mathrm{~Hz}-3 \mathrm{~dB}$ switchable
Temperature coefficient ${ }^{2 /}$	0.005 \%/K full scale (reference temperature $23{ }^{\circ} \mathrm{C}$)

Power supply

Power supply
20 ... 253 V AC/DC AC $48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
DC approx. 0.9 W

Isolation

Galvanic isolation
Test voltage
Working voltage (basic isolation)

Protection against electrical shock

4 kV AC input against output against power supply
1000 V AC/DC with overvoltage category II and pollution degree 2 according to EN 61010-1.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1.
Working voltages up to 300 V AC/DC with overvoltage category II and pollution degree 2 between input and output and power supply. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC ${ }^{3}$	EN 61326
Approvals	cUL: File no. E 216767, Standards UL 3101-1, CSA-C 22.2, No. 10101-1 GL: No. 14593-99 HH KTA: Applied for

[^5]3) Slight deviations are possible while there is interference

Specifications, continued

Other data

Schematic diagram

Application examples

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics

Signal conversion

For example, conversion of voltage signals into current signals for interference-free signal transmission over long distances

Voltage output
P 15000

Load increase

e. g. for low load capability measuring signals

Application examples, continued

Signal multiplication
e. g. for correct evaluation of the measuring signals in different devices

2-wire application

For simple set-up of 2-wire measuring circuits

2-wire

Dimension drawings and terminal assignments

Case with pluggable screw terminals

Terminal assignments
1 Input + Current
2 Input - Current
3 Input + Voltage
4 Input - Voltage
5 Output +
6 Output-
7 Power supply =
8 Power supply ~
Conductor cross section max. $2.5 \mathrm{~mm}^{2}$
Multi-wire connection max. $1 \mathrm{~mm}^{2}$ (two wires with same cross section)

Case with fixed screw terminals

All dimensions in mm.

VariTrans ${ }^{\circledR}$ B 13000

The problems

In particular with large-scale systems, the difficulties often lies in the financial pressure in addition to the lack of space for mounting the isolators. Up to now, low-cost single-range isolators have, however, caused relatively high purchase, logistics and storage costs, for example, also for stocking of spare parts.

The solution

The calibrated switching of the input and output ranges allows the VariTrans ${ }^{\circledR}$ B 13000 basic low-cost standard signal isolators to be used universally without complicated recalibration.
The settings are made simply using DIP switches.

Warranty
 - Méis.

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The enclosure

The modular case, just 12.5 mm in width, can also withstand high mechanical loads. The case is easy to open providing access to the setting elements.

The advantages

The analog transmission of the measuring signal with transformer isolation and the new digitally controlled range selection guarantee troublefree use in all standard industrial applications.

The technology

A microcontroller monitors the control element settings and controls the calibrated range selection. Interference to the signal transmission - for example, contact resistances in the range switches - are thus ruled out.

The integrated power supply is configured for 230 V AC or 24 V AC/DC. The extremely low power consumption and the related minimal self-heating significantly increase the reliability. That's why we give a 5-year warranty.

The facts

Flexible and accurate
calibrated range selection without complicated recalibration

Low-cost

the competitively priced solution for standard applications; considerable reduction in purchasing, logistics and storage costs, for example, for stocking of spare parts

Extremely compact design

12.5 mm modular case; up to 80 active isolators per meter of top hat rail

Fast and easy configuration
case simple to open

3-port isolation
protection against incorrect measurements or damage

- Maximum reliability
no repair and failure costs

5-year warranty

Product line

Devices	Input	Output	Order no.
B 13000 with calibrated input and output selection	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA}, \\ & 4 \ldots 20 \mathrm{~mA}, \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \text {... } 20 \mathrm{~mA} \text {, } \\ & 4 \ldots 20 \mathrm{~mA}, \\ & 0 \text {... } 10 \mathrm{~V} \end{aligned}$	B 13000 F1
B 13000 with fixed settings	0 ... 20 mA 0 ... 20 mA 0 ... 20 mA 4... 20 mA $4 \ldots 20 \mathrm{~mA}$ 4... 20 mA 0 ... 10 V $0 . . .10 \mathrm{~V}$ $0 . . .10 \mathrm{~V}$	0... 20 mA 4... 20 mA 0 ... 10 V 0 ... 20 mA 4... 20 mA 0... 10 V 0 ... 20 mA 4... 20 mA 0 ... 10 V	B 13016 F1 B 13017 F1 B 13018 F1 B 13026 F1 B 13016 F1 B 13028 F1 B 13036 F1 B 13037 F1 B 13038 F1
Power supply			
230 V AC			
24 V AC/DC			336

Specifications

Input data

Inputs	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Terminal-selectable/switchable (factory setting 0 ... 20 mA or fixed settings (see Product line)
Input resistance	Current input Voltage input	Voltage drop approx. 500 mV at 20 mA approx. 1 MOhm
Overload	Current input Voltage input	$\leq 300 \mathrm{~mA}$ Voltage limitation with suppressor diode 30 V , max. permitted continuous current 30 mA

Output data

Outputs	$0 \ldots 20 \mathrm{~mA}$ Switchable (factory setting $0 \ldots 20 \mathrm{~mA}$ $4 \ldots 20 \mathrm{~mA}$ or fixed settings (see Product line) $0 \ldots 10 \mathrm{~V}$ (Transmission of negative measuring signals up to approx. -5% of full scale)
Load	With output current $\leq 10 \mathrm{~V}$ (500 Ohms at 20 mA) With output voltage $\left.\leq 10 \mathrm{~mA}(1 \mathrm{kOhm} \text { at } 10 \mathrm{~V})^{1}\right)$
Offset	$20 \mu \mathrm{~A}$ or 10 mV
Residual ripple	$<20 \mathrm{mV}_{\text {rms }}$

Specifications, continued

Transmission behavior

Gain error	<0.4 \% meas. val.
Cut-off frequency	$>1 \mathrm{kHz}-3 \mathrm{~dB}$
Temperature coefficient ${ }^{2}$	$0.015 \% / \mathrm{K}$ full scale (reference temperature $23{ }^{\circ} \mathrm{C}$)

Power supply

$\stackrel{\Gamma}{\text { Power supply }}$
$230 \mathrm{~V} \mathrm{AC},-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
$24 \mathrm{VAC/DC} \quad \mathrm{AC}: \pm 15 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
$\mathrm{DC}: \pm 15 \%$, approx. 0.9 W

Isolation

Galvanic isolation	3-port isolation between input, output and power supply
Test voltage	3.25 kV AC input against output against power supply
Working voltage (basic isolation)	600 V AC/DC with overvoltage category II and pollution degree 2 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
EMC ${ }^{3}$	EMC directive 89/336/EEC, EN 61326
Approvals	cUL: File No. E 216767, Standards UL 3101-1, CSA-C 22.2, No. 10101-1 GL: No. 14627-99 HH

Other data

Ambient temperature	Operation: $-10 \ldots+60^{\circ} \mathrm{C}$ Transport and storage: $-20 \ldots+85^{\circ} \mathrm{C}$
Version	Modular case, type F1, with screw terminals, width 12.5 mm , see dimension drawing for other measurements
Protection class	IP 20
Mounting	For 35 mm top hat rail EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 150 g

2) Average TC in specific working temperature range $-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
3) Slight deviations are possible while there is interference

Schematic diagram

Application examples

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics

Signal conversion

For example, conversion of voltage signals into current signals for interference-free signal transmission over long distances

Application examples, continued

Load increase

e. g. for low load capability measuring signals

Current output
B 13000

Signal Multiplication
e. g. for correct evaluation of the measuring signals in different devices

2-wire application

For simple set-up of 2-wire loops

2-wire
transmitter B 13000

Dimension drawings and terminal assignments

Terminal assignments

All dimensions in mm.
1 Input + Current
5 Output +
2 Input - Current
6 Output -
3 Input + Voltage
7 Power supply =
4 Input - Voltage
8 Power supply ~
Conductor cross section max. $2.5 \mathrm{~mm}^{2}$
Multi-wire connection max. $1 \mathrm{~mm}^{2}$ (two wires with the same cross section)

VariTrans ${ }^{\circledR}$ B 10000

The only 3-port standard signal isolation amplifier in a $6 \mathbf{~ m m}$ modular case.

The task

Isolation and, if necessary, conversion of 0 ... 20 mA , $4 \ldots 20 \mathrm{~mA}$ as well as $0 \ldots 10 \mathrm{~V}$ standard signals. If you have limited space and budget, there could still be difficulties when it comes to selecting a suitable isolator despite the standard transmission requirements.

The problems

Up to now the only way of reducing costs substantially was to opt for low quality products. As a large number of different signals also required a large number of isolators, this also led to considerable stockkeeping costs.

The solution

The 3-port standard signal isolation amplifier from Knick sets new standards due to its extremely compact design and its low self-heating. The VariTrans ${ }^{\circledR}$ B 10000 is available with 9 selectable, calibrated ranges or as one of eight different variants with fixed settings. In any case it has an extremely attractive price.

The enclosure

Measuring only 6 mm , the closed modular case of the VariTrans ${ }^{\circledR}$ B 10000 allows up to 163 active isolation amplifiers per meter top-hat rail.

The advantages

In spite of the reduced space, the VariTrans ${ }^{\circledR}$ B 10000 provides true 3-port separation between input, output, and power supply $(24 \vee D C)$ to prevent parasitic voltages.

A pluggable cross-connection for power supply ensures quick and therefore inexpensive mounting.

The technology

Analog signal processing with transformer isolation ensures excellent signal transmission. The input and output ranges can easily be selected using DIP switches.

The facts

Safety in the smallest of spaces

3-port isolation in a 6 mm enclosure

Space-saving mounting

No ventilation clearances required since there is no noticeable heat development

- Attractive price

One of the cheapest quality isolators on the market

- Long life

Extremely low failure rate (MTBF of 440 years) due to reduced self-heating

Good accuracy

Exemplary signal transmission for standard applications

- Low-cost mounting using pluggable cross-connection allows the power supply to be connected to several VariTrans® B 10000 units easily and extremely cost efficient

Calibrated range switching no tedious readjustment

8 fixed range variants

if range shifting is to be avoided

- 3-port isolation
prevention of incorrect measurements caused by potential differences

- Simple configuration

DIL switches accessible from outside

5-year warranty

Product line

Devices			Order no.
	Input	Output	
B 10000 with calibrated input and output selection	$\begin{aligned} & 0 \text {... } 20 \mathrm{~mA}, \\ & 4 \ldots 20 \mathrm{~mA}, \\ & 0 \text {... } 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 . .20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 . . \mathrm{y} 10 \mathrm{~V} \end{aligned}$	B 10000 FO
B 10000 with fixed settings	0 ... 20 mA 0... 20 mA 0 ... 20 mA 4... 20 mA 4 ... 20 mA 4 ... 20 mA 0 ... 10 V 0... 10 V 0... 10 V	0 ... 20 mA 4 ... 20 mA 0 ... 10 V 0 ... 20 mA 4 ... 20 mA 0 ... 10 V 0 ... 20 mA 4... 20 mA 0 ... 10 V	B 10016 FO B 10017 FO B 10018 FO B 10026 FO B 10016 FO B 10028 FO B 10036 FO B 10037 FO B 10038 F0
Cross-connections	Pluggable cross power supply VariTrans ${ }^{\circledR}$ B	ooping through of the er supply connections	ZU 0542

Power supply
24 V DC

Specifications

Input data

Inputs	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Calibrated selection or fixed settings (see Product line)
Input resistance	Current input Voltage input	Voltage drop $<0.1 \mathrm{~V}$ at 20 mA Approx. 100 kOhms
Overload	Current input Voltage input	$<100 \mathrm{~mA}$ Voltage limitation with suppressor diode 30 V , max. permitted continuous current 3 mA

Output data

Outputs	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Calibrated selection or fixed settings (see Product line)
Load	With output current With output voltage	≤ 500 Ohms ≥ 10 kOhms

Specifications, continued

Transmission behavior

Transmission error ${ }^{1)}$	< 0.4 \%
Cut-off frequency	$>100 \mathrm{~Hz}-3 \mathrm{~dB}$

Power supply

Power supply
$24 \mathrm{VDC}(\pm 15 \%), 0.6 \mathrm{~W}$

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	510 V AC (higher test voltage up to 1.5 kV on request)
Working voltage (basic isolation)	100 V with overvoltage category II and pollution degree 2 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

EMC ${ }^{2)}$	Product standard EN 61326, emitted interference: Class B, Immunity to interference: Industry
Approval	cUL, File No. E 220033, Standards: UL 508 and CAN/CSA 22.2 No. 14
Other data	
Ambient temperature	Operation: $0 \ldots+55^{\circ} \mathrm{C}$ Transport and storage: $-25 \ldots+85^{\circ} \mathrm{C}$
Version	Modular case with screw terminals, power supply also possible via crossconnections, width 6.1 mm , see dimension drawing for other measurements
Protection class	IP 20
Mounting	For 35 mm top hat rail to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 50 g

1) Additional faults in live-zero operation $20 \mu \mathrm{~A}$ or 10 mV
2) Slight deviations are possible while there is interference

Schematic diagram

Application examples

Electrical isolation

For safe coupling of the measuring signals to the evaluation electronics
Transmitter B 10000

Signal conversion

For example, conversion of voltage signals into current signals for interference-free signal transmission over long distances

Voltage output B 10000

Load increase

e. g. for low load capability measuring signals

Current output B 10000

Dimension drawings and terminal assignments

All dimensions in mm.

IsoTrans ${ }^{\circledR} 41$

For separation of 0(4) ... 20 mA standard current signals, up to 3 channels

The task

If there is no power supply available, the galvanic isolation of 0(4) ... 20 mA standard current signals requires investment in supply units.

The problems

By many products loop-powered isolation is only achieved with insufficent accuracy. The desire for high accuracy demands an isolator concept that fulfils the highest expectations.

The load capability of the 20 mA source is limited and therefore requires economical handling of the load voltage.

The solution

Knick IsoTrans ${ }^{\circledR} 41$ DC transformers with transformer isolation have specifications well beyond other loop-powered DC isolators. 0.2 \% fault class and just 1.2 V natural voltage requirement allow diverse uses of this isolator.

The enclosure

The A2 modular case with a width of 22.5 mm for max. 3 isolators offers optimum space usage in multichannel mode. The A3 modular case for one isolator is just 17.5 mm wide.

The full encapsulation guarantees a high level of reliability even in extreme conditions.

5 years!

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The advantages

The galvanic isolation in the IsoTrans ${ }^{\circledR} 41$ is achieved using a passive isolator that obtains its power from the measuring signal as a voltage drop. This saves on supply units, cabling and increases the reliability accordingly.

The technology

The units work with a serial chopper generator in the current path. This avoids the accuracyreducing power losses of normal parallel connected generators, reduces the voltage drop accordingly and also ensures accurate transmission of the smallest currents.

The application

Galvanic isolation

- of input and output circuits
- of the supply voltage of 2-wire transformers
- with addition or other coupling of signals at different potentials
- for removal of double ground compensation currents
- when there is an insufficient insulation and test voltage
- of high-potential signal sources
- for battery-powered devices with a central battery

The facts

Loop-powered

no mains influences

Extremely high accuracy

Broad field of application
current transmission from
$2 \mu \mathrm{~A}$ to 50 mA

Maximum reliability

no unnecessary heat and therefore maximum service life of components

Negligible loading of the measuring signal natural voltage requirement just 1.2 V

Low signal delay

Space-saving due to multi-channel variants modular case with up to 3 channels

Computer-controlled testing guarantees quality

5-year warranty

Product line

Devices		Order no.
IsoTrans ${ }^{\circledR} 41$	1-channel, A2 modular case (width: 22.5 mm)	41 A2/1
	2-channel, A2 modular case (width: 22.5 mm)	41 A2/2
	3-channel, A2 modular case (width: 22.5 mm)	41 A2/3
	1-channel, A3 modular case (width: 17.5 mm)	41 A3

Power supply
None, supply from input signal

Specifications

Input data

Inputs	$\begin{aligned} & 0(4) \ldots 20 \mathrm{~mA} \\ & 0 \ldots 50 \mathrm{~mA} \end{aligned}$
Operating current	$<2 \mu \mathrm{~A}$
Voltage drop	Approx. 1.2 V (20 mA) Approx. 1.6 V (50 mA)
Overload	$100 \mathrm{~mA}, 20 \mathrm{~V}$ (see also page 64)

Output data

Output	0(4) ... $20 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds with 750 Ohm load) $0 \ldots 50 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds with 300 Ohm load)
Offset	$<5 \mu \mathrm{~A}$
Residual ripple ${ }^{1)}$	$<1.5 \mathrm{mV} \mathrm{pp} / \mathrm{mA}$

Transmission behavior

Transformation error ${ }^{2)}$

Load error
Rise or fall time

0.02 \% meas. val.
$<0.02 \%$ meas. val. per 100 Ohm
Approx. 2.5 ms at 500 Ohm load resistance

1) Slightly increased residual ripple can occur when load <5 Ohms
2) Temperature range $-10 \ldots+70^{\circ} \mathrm{C}$

Specifications, continued

Isolation

Test voltage	2.5 kV AC
Working voltage (basic isolation)	500 V DC between any inputs and outputs with overvoltage category II and pollution degree 3 according to EN 61010-1 (with type 41 A2/3 between neighbouring inputs and outputs with pollution degree 2 inside the case, degree 3 outside). For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
Immunity to interference	8 kV according to IEC 801-2

Other data

Ambient temperature	$-25 \ldots+80^{\circ} \mathrm{C}$
Enclosure	Modular case, width 22.5 mm , A2 case and 17.5 mm , A3 case, see dimension drawings for further measurements, screw terminals
Protection class	Protection class with terminal cover according to EN 60529: case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022 or M4 screw mounting See dimension drawings for conductor cross section
Weight	41 A2/1: approx. 140 g $41 \mathrm{~A} 2 / 2:$ approx. 190 g $41 \mathrm{~A} 2 / 3:$ approx. 210 g 41 A : approx. 70 g

Transfer functions

Reactions to square step of input current

Schematic diagram

Application examples

Electrical isolation

With impressed current, current output

Electrical isolation

WIth impressed input current, voltage output

Electrical isolation

in two-wire technology

Application examples, continued

Electrical isolation

For current addition with impressed currents

Dimension drawings and terminal assignments

Type A2 modular case

Channel 11 Input +
Channel 25 Input
$+$
Channel 39 Input +
2 Input -
6 Input -
7 Output -
10 Input -
3 Output -
4 Output + 8 Output + 12 Output +
11 Output -

M 2.5×8 connecting screws with self-releasing clamping pieces,
max. conductor cross section $2 \times 2.5 \mathrm{~mm}^{2}$ solid or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded with ferrule

Type A3 modular case

All dimensions in mm .

IsoTrans ${ }^{\circledR} \mathbf{A 7}$

Warranty 5 Vearranty

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The technology

is convincing: A transmission error of just 0.1%, excellent square-wave response and very low residual ripple guarantee perfect signal transmission. The low natural voltage requirement of approx. 2.5 V only loads the signal slightly.

The high test voltage up to 4 kV and safe isolation in accordance with EN 61140 (VDE 0140) up to 300 V protect operating personnel against the mains voltage, for example.

The facts

Extremely compact design

up to 177 channels per meter

1, 2 and 4-channel versions cheap and flexible for a wide range of applications

Practical screw terminals
simple, time-saving assembly and prewiring of switch cabinets

Galvanic isolation between input and output protection against incorrect measurements or damage to the measuring system due to parasitic voltages

No power supply required cost savings due to lower wiring requirement, no mains influences, no unnecessary heating and therefore maximum service life of components

High accuracy
no falsification of measuring signal

Maximum reliability
no repair and failure costs

5-year warranty

Product line

Specifications

Input data

Input	O(4) ... $20 \mathrm{~mA} / \mathrm{max} .30 \mathrm{~V}$ (linear transmission up to 50 mA)
Operating current	<20 $\mu \mathrm{A}$
Voltage drop	Approx. 2.5 V at 20 mA
Overload	$100 \mathrm{~mA}, 30 \mathrm{~V}$

Output data

Output	0(4) ... $20 \mathrm{~mA} / \mathrm{max} .27 .5 \mathrm{~V}$ (corresponds with 1375 Ohm load)
Residual ripple	$<5 \mathrm{mV}$ rms

Transmission behavior

Transmission error	<0.1 \% full scale
Load error	<0.02 \% meas.val. / 100 Ohms
Response time (T_{99})	Approx. 5 ms at 500 Ohm load
Temperature influence ${ }^{1)}$	$<0.002 \% / \mathrm{K}$ full scale per 100 Ohm load (reference temperature $23{ }^{\circ} \mathrm{C}$)

1) Average TC in specific working temperature range $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Specifications, continued

Isolation

Test voltage	1.5 kV AC input against output of the same channel 2.3 kV AC channels against each other

Standards and approvals

$\stackrel{\Gamma}{\text { EMC }}{ }^{2)}$

Approvals
UL: File no. E 220033, Standards: UL 508 and CAN/CSA 22.2 no. 14

Data for option 506

Test voltage	4 kV AC input against output of the same channel 2.3 kV AC channels against each other
Protection against dangerous currents	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Working voltages up to 300 V AC/DC with overvoltage category II and pollution degree 2 between all connections. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Other data

Ambient temperature	Operation: $-10 \ldots+70^{\circ} \mathrm{C}$ Transport and storage: $-40 \ldots+85^{\circ} \mathrm{C}$
Enclosure	Modular case, width 12.5 mm or 22.5 mm , with pluggable screw terminal See dimension drawings for further measurements
Protection class	IP 20
Mounting	Metal lock for mounting on 35 mm top hat rail according to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 100 g

[^6]
Transfer functions

Schematic diagram

Dimension drawings and terminal assignments

1 and 2-channel model

[^7]

All dimensions in mm.

4-channel model

$\begin{array}{ll}1 & \text { Input + Channel } 1 \\ 2 & \text { Input - Channel } 1 \\ 3 & \text { Input + Channel 2 } \\ 4 & \text { Input - Channel 2 } \\ 5 & \text { Input + Channel } 3 \\ 6 & \text { Input - Channel } 3 \\ 7 & \text { Input + Channel } 4 \\ 8 & \text { Input - Channel } 4\end{array}$

9 Output + Channel 1
10 Output - Channel 1
11 Output + Channel 2
12 Output - Channel 2
13 Output + Channel 3
14 Output - Channel 3
15 Output + Channel 4
16 Output - Channel 4

Conductor cross section max. $2.5 \mathrm{~mm}^{2}$
Multi-wire connection max. $1 \mathrm{~mm}^{2}$ (two wires with same cross section)

IsoTrans ${ }^{\circledR}$ B 48

Unbelievably simple isolation!

20 mA transmission with electrical isolation

The task

Preventing measuring errors or even destruction of the system normally requires floating connection of the sensors and actuators to the sensitive MSR electronics.

The problem

was solved up to now with additional devices for electrical isolation after the routing and distributor level.

The solution

is the 6 mm wide IsoTrans ${ }^{\circledR}$ B 48 isolating terminal.
It fulfills all tasks set for modern terminals and safely and reliably isolates 0(4) ... 20 mA signals using loop power without falsifying the measuring signal.

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The connections

use Z-springs and allow simple, fast and safe connection of the lines.

The technology

The constantly improved switching concept of our isolators that have been tried and tested over decades and draw their power from the measuring signal as a voltage drop and the use of a specially developed flat core transformer have led to this extremely narrow housing with a width of just 6 mm . That is up to 166 isolating terminals per meter of top hat rail.

The facts

Substantial costs and spacesavings
due to the omission of a whole installation stage

Minimum wiring work due to loop-powered electrical isolation and the combination of a terminal and isolator in one device

Fast, simple and safe wiring using Z-springs

High level of safety thanks to proven switching method

Galvanic isolation
protection against incorrect measurements or damage to the measuring system caused by parasitic voltages

Extremely compact design at just 6 mm in width the modular case allows up to 166 channels per meter

Easy to use and to maintain
simple and fast installation
due to innovative Z-springs
No power supply required cost saving due to lower wiring requirement, no mains influences

High accuracy
no falsification of measuring signal

5-year warranty

Product line

Devices	Input	Output	Order no.
IsoTrans ${ }^{\circledR} \mathrm{B} 48$	0... 20 mA	0 ... 20 mA	B 48 K1
	$4 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	
Power supply			
None, supply from			
Accessories			
End plate	Shock-hazard protection for the last isolating terminal in the row, required $1 \times$ per application!		ZU 0286

Specifications

Input data

Input	0 ... 20 mA (linear transmission up to 22 mA)
Operating current	< $100 \mu \mathrm{~A}$
Voltage drop	Approx. 2.7 V at 20 mA
Overload	$50 \mathrm{~mA}, 15 \mathrm{~V}$

Output data

Transmission behavior

Transmission error	< 0.1 \% full scale
Load error	< 0.05 \% meas.val./100 Ohms
Response time (T_{99})	Approx. 5 ms at 500 Ohm load
Temperature influence ${ }^{1)}$	$<0.005 \% / \mathrm{K}$ full scale per 100 Ohm load (reference temperature $23{ }^{\circ} \mathrm{C}$)

Isolation

Test voltage	510 V AC
Working voltage	100 V with overvoltage category II and pollution degree 2 according to EN 61010-1

[^8]Specifications, continued

Standards and approvals
EMC 2)
89/336/EEC directive, EN 61326

Other data

Ambient temperature

Operation:	$-25 \ldots+60^{\circ} \mathrm{C}$ also when mounted in a row
Transport and storage:	$-40 \ldots+8^{\circ} \mathrm{C}$

Enclosure

Terminal case, 6 mm width, terminal using Z-spring technology See dimension drawings for further measurements
Protection class

IP 20 in row or with end plate
For 35 mm top hat rail EN 50022
see dimension drawings for conductor cross section
Weight
12 g
2) Applies to $4 \ldots 20 \mathrm{~mA}$, slight deviations are possible while there is interference

Input voltage

Depending on the load at $\mathrm{I}_{0}=20 \mathrm{~mA}$

Schematic diagram

Dimension drawings and terminal assignments

ZU 0286 end plate, 1.5 mm wide, only required for last isolator in row as shock-hazard protection

Conductor cross sections:
$\begin{array}{ll}\text { Single-wire } & 0.5 \ldots 2.5 \mathrm{~mm}^{2} \\ \text { Fine-wire } & 0.5 \ldots 2.5 \mathrm{~mm}^{2} \\ \text { With ferrule } & 0.5 \ldots 1.5 \mathrm{~mm}^{2}\end{array}$

All dimensions in mm .

IsoAmp ${ }^{\circledR}$ 23000/24000

For conversion of shunt voltages to impressed $\pm 20 \mathrm{~mA}$ or $\pm 10 \mathrm{~V}$ signals

The task

Conversion of bipolar mV voltages with high accuracy into $0 \ldots \pm 20 \mathrm{~mA}$ or $0 \ldots \pm 10 \mathrm{~V}$ signals.

The problems

The high voltages occurring at the operating site will cause substantial measuring errors that could lead to unwanted shutdown of whole sections of the system if there is insufficient isolation and common mode rejection.

The solution

The DC isolation amplifiers from the IsoAmp® 23000/24000 series have been specially conceived for measurements on low-resistance signal sources, for example, shunt resistances. Frequent problems like commonmode interference or interferences from phase control are suppressed effectively.

The isolators provide safe isolation and high insulation from the input to the output and to the power supply.

Warranty
 5 years!

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The enclosure

The DC isolation amplifiers from the IsoAmp ${ }^{\circledR}$ 23000/ 24000 series work in 22.5 mm wide modular cases optionally with a 230 V AC, 115 V AC or 24 V AC/DC power supply.

The advantages

A specially developed chopper circuit allows these isolators to have extraordinarily high values for

- long-term stability
- transmision accuracy
- disruptive strength

The technology

The proven Knick vacuum encapsulation method allows maximum long-term protection against agressive environmental influences, shock and vibrations.

Their high zero stability and excellent linearity values make the $D C$ isolation amplifiers from the IsoAmp® 23000/24000 series ideally suited to transmissions both in DC and AC applications up to 5 kHz .

The facts

Effective interference suppression prevention of incorrect measurements or failure due to interference, for example, with high-rated shunt resistors in converters.

Safe isolation in accordance with EN 61140,
protection against unpermitted high voltages

3-port isolation

protection against incorrect measurements or damage

Test voltage $\mathbf{7} \mathbf{k V}$ AC
safety also with high potential differences between input and output

No additional power supply 230 V AC power supply, optional 24 V AC/DC or 115 V AC for supply of the amplifier

Modular case 22.5 mm
straightforward installation due to compact design

Maximum reliability
no repair and failure costs

Full encapsulation
reliable functioning also in aggressive atmospheres or with considerable mechanical loading, for example, due to vibrations

5-year warranty

Product line

Devices

Input	Output	Order no.
	\digamma	
$0 \ldots \pm 60 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	23206 A 2
$0 \ldots \pm 150 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	23215 A 2
$0 \ldots \pm 300 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	23230 A 2
$0 \ldots \pm 500 \mathrm{mV}$	$0 \ldots \pm 20 \mathrm{~mA}$	23250 A 2
$0 \ldots \pm 60 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	24206 A 2
$0 \ldots \pm 150 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	24215 A 2
$0 \ldots \pm 300 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	24230 A 2
$0 \ldots \pm 500 \mathrm{mV}$	$0 \ldots \pm 10 \mathrm{~V}$	24250 A 2

Power supply
230 V AC

24 V AC/DC	336
115 V AC	363

Options

Only 23000: Rectifier in signal path	152
Gain adjustment to customer requirements from $\pm 60 \ldots \pm 500 \mathrm{mV}$	500
Gain adjustment to customer requirements from $\pm 100 \ldots \pm 1200 \mathrm{~V}$ In A10 housing (see dimension drawing)	496
Increased test voltage 8.5 kV AC	514

Specifications

Input data
Input 1)
Input resistance
Offset current
Temperature coefficient
of the current
Offset voltage
Temperature coefficient
of the voltage
Overload

Specifications, continued

Output data

Output
Load
Residual ripple
23 xxx
$0 \ldots \pm 20 \mathrm{~mA}$
$\leq 10 \mathrm{~V}$
$<10 \mathrm{mV}_{\mathrm{pp}}$
24 xxx
$0 \ldots \pm 10 \mathrm{~V}$
$\leq 20 \mathrm{~mA}$

$\stackrel{\square}{ } \quad$| mV |
| :--- |
| <10 |

Transmission behavior

Gain error	< 0.1 \% meas. val.
Cut-off frequency	Approx. $5 \mathrm{kHz}-3 \mathrm{~dB}$
Common mode rejection ratio	$\begin{array}{ll}\text { CMRR }{ }^{2)} & \text { Approx. } 160 \mathrm{~dB}(\mathrm{DC/AC}: 50 \mathrm{~Hz}) \\ \text { T-CMR }{ }^{3)} & \text { Approx. } 115 \mathrm{~dB}(1000 \mathrm{~V}, \mathrm{tr}=1 \mu \mathrm{~S})\end{array}$
Temperature coefficient	$0.0025 \% / \mathrm{K}$ (reference temperature $23{ }^{\circ} \mathrm{C}$)

Power supply

Power supply	230 V AC -15\% + $10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
Opt. 336:	24 V AC/DC AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 0.6 VA DC: $-15 \%+20 \%$, approx. 0.6 W
Opt. 363:	115 V AC -15\% + $10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA

Isolation

Galvanic isolation	3-port isolation between input, output and power supply
Test voltage	7 kV AC (input against output/power supply) 4 kV AC (output against power supply)
Working voltage	2000 V DC ${ }^{4}$) input against output and power supply with overvoltage category II and pollution degree 2 , 1000 V DC output against power supply with overvoltage category II and pollution degree 2, according to EN 61010-1 For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Working voltages up to overvoltage category III and pollution degree 2 Up to 500 V AC / DC input against output and power supply Up to 300 VAC/DC output against power supply. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

2) Common-Mode Rejection Ratio $=\frac{\text { Differential-mode voltage gain }}{\text { Common-mode voltage gain }} \quad$ 3) Transient Common-Mode Rejection $=\frac{\text { Differential-mode DC voltage gain }}{\text { Common-mode transient crest value gain }}$
3) For circuits according to table 6 from EN 61010-1 (transient overvoltage 2600 V)

Reference temperature for TC specifications $23^{\circ} \mathrm{C}$, the average TC is always specified

Specifications, continued

Standards and approvals

Surge withstand
EMC
$5 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
EMC directive 89/336/EEC

Other data

Ambient temperature	Operation: $-10 \ldots+70^{\circ} \mathrm{C}$ Transport and storage: $-30 \ldots+80^{\circ} \mathrm{C}$
Enclosure	Modular case, width 22.5 mm , see dimension drawing for other measurements
Protection class	IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022 or M4 screw mounting M4, see dimension drawing for conductor cross section
Weight	Approx. 250 g

Schematic diagram

IsoAmp® 23000 series

IsoAmp ${ }^{\circledR} 24000$ series

Dimension drawings and terminal assignments

Screw mounting with extending lugs

IsoAmp ${ }^{\circledR}$ PWR A 20100

Repeater power supply in 6-mm case

 $4 \ldots 20 \mathrm{~mA}$ measuring line with data protocols for SMART transmitters / HART ${ }^{\circledR}$ communication. Conversion of the output signalGood isolator properties in conjunction with high transmission accuracy often lead to complex systems that cost space and money.

The task

The flexible and safe supply of 2-wire transmitters via the simultaneous transmission of to 0 ... 20 mA or 0 ... 10 V if necessary.

The problems

The galvanic isolation of the supply and signal processing is frequently indispensable to exclude measuring problems from the start. The selection of possible alternatives within the budget is often limited.

The solution

Knick is the first manufacturer to supply a repeater power supply in an extremely compact 6-mm case for 2-wire transmitters: IsoAmp ${ }^{\circledR}$ PWR A 20100. It supplies the transmitter with power and transmits the measuring signal galvanically isolated to the output with a high level of accuracy. In case a signal other than the 4 to 20 mA signal is required, you can select output signals on the repeater power supply using DIP switches. HART® signals are of course transmitted without alteration. The width of just 6 mm also allows use of the repeater power supply in the tightest of spaces.

The enclosure

Structure in tried and tested modular case with 6.1 mm width and screw terminals. The outputs are switched using DIP switches that can be accessed without opening the case.

The advantages

The new IsoAmp ${ }^{\circledR}$ PWR A 20100 repeater power supply unites small dimensions with excellent features. Safe isolation and 0.1 \% accuracy also allow use for applications with higher requirements.

The technology

The output signal can be switched between 0 ... 20 mA , $4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$. The ranges are calibrated and selected via DIP switches.

In addition to the analog signal, the repeater power supply transmits data protocols for SMART transmitters (according to the HART® specification). It allows bidirectional communication with the field device via a host computer or HART® ${ }^{\circledR}$ communicators (hand-held communicator).

The facts

Powerful supply

of 4 to 20 mA loop-powered
2-wire transmitters

Extremely flat

3 -port isolation in a 6 mm enclosure

Flexible and highly accurate calibrated output signal switching

Simple and fast configuration

switching with DIL switches on the side so they are easy to access and still protected against accidental adjustment

Low-cost assembly

supply of the measuring supply circuit and galvanic isolation of the measuring signal in one unit

Safe isolation

in accordance with EN 61140 up to 300 V

SMART transmitter
(according to HART®
specification)

Cross-connections

for power supply
power supply only wired once for almost any number of parallel repeater power supplies

5-year warranty

Product line

Devices	Input	Output	Order no.
IsoAmp ${ }^{\circledR}$ PWR A 20100	$4 \ldots 20 \mathrm{~mA}$	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 10 \mathrm{~V} \\ & \text { calibrated selection } \end{aligned}$	A 20100 F0
Power supply			

Specifications

Input data

Input (current loop)	Supply voltage 16.5 V , constant for $3 \ldots 22 \mathrm{~mA}$, current limited to max. 25 mA
Residual ripple	$<10 \mathrm{mV}$ rms

Output data

Output	4 ... $20 \mathrm{~mA}, 0 \ldots 20 \mathrm{~mA}$ or 0 ... 10 V calibrated selection
Output signal with input short-circuit	$22 \ldots 25 \mathrm{~mA}$ or $11 . . .12 .5 \mathrm{~V}$
Output signal with open input	$<3 \mathrm{~mA}$ or 0 for outputs $0 \ldots 20 \mathrm{~mA}$ or $0 \ldots 10 \mathrm{~V}$
Load with output current with output voltage	$\begin{aligned} & \leq 10 \mathrm{~V}(\leq 500 \text { Ohms at } 20 \mathrm{~mA}) \\ & \leq 1 \mathrm{~mA}(\leq 10 \mathrm{kOhms} \text { at } 10 \mathrm{~V}) \end{aligned}$
Offset Current output 1) Voltage output	$\begin{aligned} & <30 \mu \mathrm{~A} \\ & <30 \mathrm{mV} \end{aligned}$
Residual ripple at output	<10 mV ${ }_{\text {rms }}$

Transmission behavior

Gain error
Current output
<0.1 \% meas. val.
Voltage output < 0.2 \% meas. val.

Response time

[^9]Specifications, continued

Transmission behavior
Communication ${ }^{2)} \quad$ Bidirectional transmission of FSK signals between output and current loop
(Output 4 ... 20 mA)

Bidirectional transmission of FSK signals between output and current loop according to the HART® ${ }^{\text {® }}$ specification

Power supply

Power supply

Isolation

$\sqrt{\text { Galvanic isolation }}$

Working voltage (basic isolation)

3-port isolation between input, output and power supply
2.5 kV AC current loop against output/power supply 510 V AC output against power supply

Up to 600 V AC/DC with overvoltage category II and pollution degree 2
Between current loop and output/power supply.
Up to 100 V AC/DC between output power with category II and degree 2 according to EN 61010-1.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Up to 300 V with overvoltage category II and pollution degree 2 between current loop and output/power supply For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.	
EMC ${ }^{2}$	Product standard	EN 61326
	Emitted interference:	Class B
	Immunity to interference:	Industry
Approval	cUL (applied for)	

2) Slight deviations are possible while there is interference

Specifications, continued

Other data

Ambient temperature	$\begin{array}{lr}\text { Operation: } & 0 \ldots+55^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -25 \ldots+85^{\circ} \mathrm{C}\end{array}$
Enclosure	Modular case with screw terminals, width 6.1 mm See dimension drawings for further measurements
Protection class	IP 20
Mounting	For 35 mm top hat rail to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 50 g

Schematic diagram

Application example

Application example

IsoAmp® PWR B 10116

The enclosure

Assembly in 6-pin terminal block housing with 6.1 mm row width. Connection with screw terminals.

The technology

Transformer transmission of signals and energy. The output signal is permanently set to 4 ... 20 mA .

The facts

Powerful supply

of 4 to 20 mA loop-powered
2-wire transmitters

Extremely flat

3 -port isolation in a 6 mm modular case

Low-cost assembly

supply of the current loop and galvanic signal isolation in one unit

Safety in the smallest of spaces

3 -port isolation in a 6 mm enclosure

Supplies all common signal sources

Power supply 24 V DC

Cross-connections

for power supply

power supply only wired once for almost any number of parallel repeater power supplies

5-year warranty

Product line

Devices	Input	Output	Order no.
IsoAmp® PWR B 10116 ®	$4 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	B 10116 FO
Power supply			
24 V DC			

Specifications

Input data

$\stackrel{\text { Input (current loop) }}{ }$	Supply voltage 16.5 V , constant for $3 \ldots 22 \mathrm{~mA}$, current limited to max. 25 mA Residual ripple
$\stackrel{<10 \mathrm{mV}_{\mathrm{rms}}}{ }$	

Output data

Output	$4 \ldots 20 \mathrm{~mA}$
Output signal with input short-circuit	$22 . . .25 \mathrm{~mA}$
Output signal with open input	$<3 \mathrm{~mA}$
Load	$\leq 10 \mathrm{~V}(\leq 500$ Ohms at 20 mA$)$
Offset	$<30 \mu \mathrm{~A}$
Residual ripple at output	$<10 \mathrm{mV}$ rms

Transmission behavior

Gain error	< 0.1 \% meas. val.
Response time	$<5 \mathrm{~ms}$

Power supply

[^10]24 V DC ($\pm 15 \%)$, approx. 1 W
The power supply can be routed fom once device to another via cross-connections.

Specifications, continued

Isolation

$\stackrel{\Gamma}{\text { Galvanic isolation }}$

Working voltage
(basic isolation)

3-port isolation between input, output and power supply
1.5 kV AC current loop against output/power supply

510 V AC output against power supply
Up to 300 V AC/DC with overvoltage category II and pollution degree 2 between current loop and output/power supply.
Up to 100 V AC/DC between output and power supply with category II and degree 2 according to EN 61010-1.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

$\left.\begin{array}{lll}\boxed{\text { EMC 1) }} & & \begin{array}{l}\text { Product standard } \\ \text { Emitted interference: }\end{array}\end{array} \begin{array}{l}\text { EN 61326 } \\ \text { Class B } \\ \text { Industry }\end{array}\right]$

Other data

Ambient temperature	Operation: $0 \ldots+55^{\circ} \mathrm{C}$ Transport and storage: $-25 \ldots+85^{\circ} \mathrm{C}$
Enclosure	Modular case, width 6.1 mm , see dimension drawing for other measurements, with screw terminals
Protection class	IP 20
Mounting	For 35 mm top hat rail to EN 50022 See dimension drawings for conductor cross section
Weight	Approx. 50 g

[^11]
Schematic diagram

Application example

Dimension drawings and terminal assignments

ThermoTrans ${ }^{\circledR}$ 205/206

The practical solution for temperature measurement with resistance thermometers.

The ThermoTrans ${ }^{\circledR}$ 205/206 temperature transmitters provide you with the flexibility you need:

- Adjustment work where it is only really necessary, instead of complicated parameter tables.
- High level of reliability and compact design due to digital signal processing specially developed for the measuring task instead of unnecessary reduction in reliability due to overburdening with complicated technology.

For the majority of the standard applications with fixed preset parameters, you simply select one of the numerous preconfigured standard models.

You can solve special measuring tasks with a transmitter that we configure according to your specifications.

Configuration or adaptation to the measuring task is also not a problem "on site" via the optical interface. The user-friendly, menu-guided Paraly ${ }^{\circledR}$ communication software is supplied together with a fiber-optic cable incl. PC adapter.

The ThermoTrans ${ }^{\circledR}$ 205/206 temperature transmitters provide safe isolation and high insulation resistance between the input, output and power supply.

Vacuum encapsulation protects the devices against aggressive environmental influences, shock and vibrations.

ThermoTrans ${ }^{\circledR}$ 205/206 for resistance thermometers.

Resistance thermometers are highly accurate temperature sensors with long-term stability for measuring temperatures up to max. $850^{\circ} \mathrm{C}$.
They are mainly used to measure low and medium temperatures, for example, in air-conditioning, process engineering and the food industry.

The ThermoTrans ${ }^{\circledR}$ 205/206 transmitters allow connection of all common resistance thermometers either in 2, 3 or 4-wire circuits.

The possibility for connecting resistance-type sensors and potentiometers creates a wide range of application possibilities, for example, in the field of position measurement. Converting the input signal into a proportional current/voltage signal allows simple further processing.

The facts

Extensive range of standard models

for standard applications, configuration not necessary

Adjustable via optical interface
universal for a wide range of measuring tasks, can also be configured "on site"

Paraly ${ }^{\circledR}$ PC configuration software with tag database

 simple, menu-guided configuration in accordance with VDI/ VDE 2187, archiving of configuration dataSafe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages

22.5 mm wide modular case with 73.5 mm standard height
compact design means easy installation, also easy to fit in standard cabinets
5-year warranty

HDeip whingin belect a button fron the dialoy windou
Δ You can use the menu-guided Paraly ${ }^{\circledR}$ communication software (according to VDI /VDE 2187) to configure the transmitters. Data from different measuring points can be easily archived and managed in the corresponding tag database.

Product line

Adjustable models Order No.
Adjustable via interface. See Configuration Schedule for factory setting.

Fixed-range standard models	Order no

Sensors	$\begin{array}{r} \text { Pt } 100\left(-200 \ldots+850^{\circ} \mathrm{C}\right) \\ \text { Pt } 1000\left(-200 \ldots+850^{\circ} \mathrm{C}\right) \\ \text { Ni } 100\left(-60 \ldots+180^{\circ} \mathrm{C}\right) \\ 1000 \text { Ohms } \\ 5000 \text { Ohms } \end{array}$
Span	50 K
	100 K
	150 K
	200 K
	300 K
	400 K
	1000 Ohms
	5000 Ohms
Start of scale	$-100{ }^{\circ} \mathrm{C}$
	$-50{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$
	$50^{\circ} \mathrm{C}$
	$100^{\circ} \mathrm{C}$
	$200^{\circ} \mathrm{C}$
	0 Ohm
Output	0 ... 20 mA
	4 ... 20 mA
	$0 \ldots 10 \mathrm{~V}$

ThermoTrans ${ }^{\circledR} 205$
with current output
205 A7 000000

ThermoTrans ${ }^{\circledR} 206$ with voltage output

206 A7 000000

$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$			
	$\begin{aligned} & 05 \\ & 10 \\ & 15 \\ & 20 \\ & 30 \\ & 40 \\ & 70 \\ & 88 \end{aligned}$		
		$\begin{aligned} & 02 \\ & 01 \\ & 00 \\ & 11 \\ & 12 \\ & 14 \\ & 30 \end{aligned}$	

Sensors with 4-wire connection (3-wire connection Opt. 494), rising output curve, without filter constant ThermoTrans ${ }^{\circledR}$ 205: open circuit recognition 22 mA ; ThermoTrans ${ }^{\circledR}$ 206: open circuit recognition 11 V

Power supply
Order no
230 V AC

230 V AC	
24 V AC /DC	336
115 V AC	363

Options
ThermoTrans ${ }^{\circledR}$ 205/206 standard model with 3-wire connection 494

Accessories

Communications kit

For configuration of the temperature transmitter, with ZU 0254 tag database according to VDI/VDE 2187, consisting of:

- Optical fibre connecting cable 3 m - Optical interface adapter - RS 232
- Adapter D-Sub 9-pole - D-Sub 25-pole - Paraly ${ }^{\circledR}$ configuration software and tag database

Product line

		ThermoTrans ${ }^{\circledR} 205$ with current output	ThermoTrans ${ }^{\circledR} 206$ with voltage output
Customer-specific models	Order no.	205 A7 999999	206 A7 999999

Configuration schedule

Important! Please fill in the configuration schedule completely and enclose it with your order. If entries are missing, the value entered in square brackets or the dark-colored setting \square will be set.

ThermoTrans ${ }^{\circledR}$ 205/206

Specifications

Temperature coefficient at input

Output data

Output signal
$(0 \ldots 100 \%)$
Resolution Control range Overrange with error message Output error limits Temperature coefficient at output Residual ripple at output

Model 205: 0/4 ... 20 mA , impressed current, load voltage $\leq 10 \mathrm{~V}$ Model 206: 0 ... 10 V , impressed voltage, load current $\leq 10 \mathrm{~mA}$

Approx. 8000 steps (for 0 ... 100%)
-2.5 \% ... 102.5 \% of span

Model 205: - 1.0 mA or 22 mA
Model 206: -0.5 V or 11 V
0.1 \% full scale
$0.01 \% / \mathrm{K}$ full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)
$<10 \mathrm{mV}_{\mathrm{pp}}+$ digitalization error of input

Specifications, continued

Transmission behavior

Characteristic	Resistance or temperature-linear rising or falling
Meas. rate	Approx. 1/s
Response time T_{99}	$\leq 900 \mathrm{~ms}$
Digital output filter	$\mathrm{T}_{99}=0 \ldots 100 \mathrm{~s}$ (1st order filter)

Power supply

Power supply	230 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
Option 336:	24 V AC/DC AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.5 VA DC: $-15 \%+20 \%$, approx. 1.2 W
Option 363:	115 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	$4 \mathrm{kV} \mathrm{AC} \mathrm{(input} \mathrm{against} \mathrm{output} \mathrm{and} \mathrm{power} \mathrm{supply)}$
	$3 \mathrm{kV} \mathrm{AC} \mathrm{(output} \mathrm{against} \mathrm{power} \mathrm{supply)}$
Working voltage (basic isolation)	1000 V AC/DC input against output and power supply with overvoltage category II and pollution degree 2 ,
	330 V AC/DC output against power supply with overvoltage category II and pollution degree 2 according to EN 61010-1
	For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1.
	Working voltages with overvoltage category II and pollution degree 2 :
	600 V AC /DC for input against output and power supply
	with overvoltage category II and pollution degree 2:
	300 V AC/DC for output against power supply.
	For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC 1)	EMC directive 89/336/EEC, EN 61326; NAMUR recommendation NE 21

[^12]Specifications, continued

Other data

Interface
(only user-definable models)
Ambient temperature

$\boxed{\text { Enclosure }}$

Protection class
Mounting

Weight

Optical, interface adapter on RS 232 interface (PC) is included in the ZU 0254 communications kit

Operation: $\quad-10 \ldots+60^{\circ} \mathrm{C}$
Transport and storage: $\quad-30 \ldots+80^{\circ} \mathrm{C}$
Modular case A7, width 22.5 mm, screw terminals
See dimension drawings for further measurements
Case IP 40, terminals IP 20
With snap-on mounting for 35 mm top hat rail according to EN 50022-35, width 22.5 mm , see dimension drawings for conductor cross section

Approx. 300 g

Schematic diagram

Application examples

Dimension drawings and terminal assignments

Captive M3x8 clamp screws, box terminals with self-releasing wire protection, max. conductor cross section
$1 \times 4 \mathrm{~mm}^{2}$ solid
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
All dimensions in mm.

ThermoTrans ${ }^{\circledR}$ 210/211

The practical solution for temperature measurement with thermocouples.

The ThermoTrans ${ }^{\circledR}$ 210/211 temperature transmitters provide you with the flexibility you need:

- Adjustment work where it is only really necessary, instead of complicated parameter tables.

High level of reliability and compact design due to digital signal processing specially developed for the measuring task instead of unnecessary reduction in reliability due to overburdening with complicated technology.

For the majority of the standard applications with fixed preset parameters, you simply select one of the numerous fixedrange standard models.

You can solve special measuring tasks with a transmitter that we configure according to your specifications.

Configuration or adaptation to the measuring task is also not a problem on site via the optical interface. The user-friendly, menu-guided Paraly ${ }^{\circledR}$ communication software is supplied together with a fiber-optic cable incl. PC adapter.

The ThermoTrans® 210/211 temperature transmitters provide safe isolation and high insulation resistance between the input, output and power supply.

Vacuum encapsulation protects the devices against aggressive environmental influences, shock and vibrations.

ThermoTrans® 210/211 for thermocouples.

Thermocouples are very lowresistance and thus noise-free. Their preferred field of application is high temperature ranges, for example, for measurements in ovens, smelting plants and plastic machines.

The range of standard thermocouples is very wide. The ThermoTrans ${ }^{\circledR}$ 210/211 transmitters therefore provide consistent connection possibilities for all regular thermocouples.

To avoid long extension wires, an external reference junction can also be used in addition to the internal one. For thermostatic reference junctions, the reference temperature can be fixed or measured with a Pt 100.

The ThermoTrans ${ }^{\circledR}$ 210/211 transmitters can also be used to measure voltages in the range $-20 \ldots+100 \mathrm{mV}$ with a transfer rate of $1 / \mathrm{s}$. Due to the transfer curve freely configured with various functions or interpolation points, they are intended for difficult measuring tasks, for example, the level in spherical tanks.

The facts

Extensive range of standard models

for standard applications, configuration not necessary

Adjustable via optical interface
universal for a wide range of measuring tasks, can also be configured on site

Paraly ${ }^{\circledR}$ PC configuration software with tag database

simple, menu-guided configuration in accordance with VDI/VDE 2187, archiving of configuration data

Safe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages

22.5 mm wide modular case with 73.5 mm standard height
 compact design means easy installation, also easy to fit in standard cabinets

5-year warranty

Product line

Adjustable types Order No.
Adjustable via interface. See Configuration Schedule for factory setting.

Fixed-range standard models	Order no.
Sensors	J
	K
	S
Span	700 K
	1000 K
	1700 K
Start of scale	$0^{\circ} \mathrm{C}$
Output	0 ... 20 mA
	$4 \ldots 20 \mathrm{~mA}$
	$0 \ldots 10 \mathrm{~V}$

ThermoTrans ${ }^{\circledR} 210$ with current output

210 A7 000000

ThermoTrans ${ }^{\circledR} 211$ with voltage output

211 A7 000000

211 A7x xx xx V

Output curve rising, without filter constant, internal reference junction
ThermoTrans ${ }^{\circledR} 210$: open circuit recognition 22 mA ; ThermoTrans ${ }^{\circledR} 211$: open circuit recognition 11 V
Power supply
Order no.
230 V AC

24 V AC/DC	336
115 V AC	363

Accessories

Communications kit		For configuration of the temperature transmitter, with tag database according to VDI/VDE 2187, consisting of:
	- Optical fibre connecting cable 3 m	
	- Optical interface adapter - RS 232	
	- Adapter D-Sub 9-pole - D-Sub 25-pole	
	- Paraly ${ }^{\text {® }}$ configuration software and tag database	

Product line

		ThermoTrans ${ }^{\otimes} 210$ with current output	ThermoTrans ${ }^{\circledR} 211$ with voltage output
Customer-specific set models	Order no.	210 A7 999999	211 A7 999999

Configuration schedule

Important! Please fill in the configuration schedule completely and enclose it with your order. If entries are missing, the value entered in square brackets or the dark-colored setting \quad will be set.

ThermoTrans ${ }^{\circledR}$ 210/211

Specifications

Input data
Voltage input
Input resistance
Span (configurable)
Sensor failure monitoring
Input error limits
Temperature coefficient
at input
Reference junction input
(configurable)

Output data
Output signal
$(0 \ldots 100 \%)$
Resolution
Control range
Overload range
with error message
Output error limits
Temperature coefficient
at output
Residual ripple at output

Transmission behavior

Characteristic
Meas. rate
Response time T_{99}
Digital output filter

Model 210: 0/4 ... 20 mA , impressed current, load voltage $\leq 10 \mathrm{~V}$
Model 211: 0 ... 10 V , impressed voltage, load current $\leq 10 \mathrm{~mA}$
-2.5%... 102.5% of span
Model 210: - 1.0 mA or 22 mA
Model 211: -0.5 V or 11 V
0.1% full scale
$0.01 \% / \mathrm{K}$ full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)
$<10 \mathrm{mV}_{\mathrm{pp}}+$ digitalization error of input

Sensor type	Range
Model B DIN/IEC 584-1	$0 \ldots+1820^{\circ} \mathrm{C}$
Model E DIN/IEC 584-1	$-270 \ldots+1000^{\circ} \mathrm{C}$
Model J DIN/IEC 584-1	$-210 \ldots+1200^{\circ} \mathrm{C}$
Model K DIN/IEC 584-1	$-270 \ldots+1372{ }^{\circ} \mathrm{C}$
Model L DIN 43710	$-200 \ldots+900^{\circ} \mathrm{C}$
Model N ASTM E 230-87	$-270 \ldots+1300{ }^{\circ} \mathrm{C}$
Model R DIN/IEC 584-1	$-50 \ldots+1767^{\circ} \mathrm{C}$
Model S DIN/IEC 584-1	$-50 \ldots+1767^{\circ} \mathrm{C}$
Model T DIN/IEC 584-1	$-270 \ldots+400^{\circ} \mathrm{C}$
Model U DIN 43710	$-200 \ldots+600^{\circ} \mathrm{C}$
$-20 \ldots+100 \mathrm{mV}$	
> 10 MOhms	
Min. $\geq 2 \mathrm{mV}$, max. measuring end - measuring start	
All inputs for open circuit (not with voltage measurement)	
$\pm 10 \mu \mathrm{~V}+0.05 \%$ of meas. val.	
0.01 \%/K full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)	
Internal Pt 100 External Pt 100	of Pt 100 used

```
Approx. 8000 steps (for 0 ... 100 \%)
Approx. }8000\mathrm{ steps (for 0 ... 100 %)
```

-2.5%... 102.5% of span
mA
1 \% full scale
reference temperature 23 C)

Temperature-linear, voltage-linear or customer-specific rising or falling
Approx. 1/s
$\leq 900 \mathrm{~ms}$
$\mathrm{T}_{99}=0 \ldots 100 \mathrm{~s}$ (1st order filter)

Specifications, continued

Power supply

Power supply	230 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
Option 336:	24 V AC/DC AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.5 VA DC: $-15 \%+20 \%$, approx. 1.2 W
Option 363:	$115 \mathrm{~V} \mathrm{AC}-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	4 kV AC (input against output and power supply) 3 kV AC (output against power supply)
Working voltage (basic isolation)	1000 V AC/DC input against output and power supply with overvoltage category II and pollution degree 2 , 330 V AC/DC output against power supply with overvoltage category II and pollution degree 1 according to EN 61010-1 For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Working voltages with overvoltage category II and pollution degree 2 : 600 V AC /DC for input against output and power supply with overvoltage category II and pollution degree 2 : 300 V AC/DC for output against power supply. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC 1)	EMC directive 89/336/EEC, EN 61326, NAMUR recommendation NE 21

Other data

Interface
(only user-definable models)
Ambient temperature
Enclosure
Protection class
Mounting
Weight

Optical, interface adapter on RS 232 interface (PC) is included in the
ZU 0254 communications kit
Operation: $\quad-10 \ldots+60^{\circ} \mathrm{C}$
Transport and storage: $-30 \ldots+80^{\circ} \mathrm{C}$
Modular case A7, width 22.5 mm , screw terminals See dimension drawings for further measurements

Case IP 40, terminals IP 20
With snap-on mounting for 35 mm top hat rail according to EN 50022-35, width 22.5 mm , See dimension drawings for conductor cross section

Approx. 300 g

Schematic diagram

Interface

1) For temperature measurement of external reference junctions

Application examples

With external
reference junction

Summing connection with external reference junction

Differential connection

Internal/external reference junction selectable

Dimension drawings and terminal assignments

All dimensions in mm.
Captive M3x8 clamp screws, box terminals with
self-releasing wire protection, max. conductor cross section
$1 \times 4 \mathrm{~mm}^{2}$ solid
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with ferrule

IsoTrans ${ }^{\circledR} 600$

The advantages

The accuracy class is $0.5-$ no need to recalibrate the switchable measuring ranges. IsoTrans ${ }^{\circledR} 600$ provides safe isolation in accordance with EN 61010-1 up to 600 V . This allows use in 3 -phase systems. Further measures for ensuring safe isolation are not necessary.

Except for output $4 \ldots 20 \mathrm{~mA}$, IsoTrans ${ }^{\circledR} 600$ is supplied with power directly from the measuring signal. There are no costs for a power supply and wiring.

Optimized switching technology makes the power consumption and the resulting self-heating very low. This protects against unnecessary temperature-related component aging and thus increases the reliability.

The technology

For conversion, the average input values are calibrated to form r. m. s values.

Short rise times, very low residual ripple and excellent overload behavior guarantee maximum transmission quality.

The facts

Calibrated measuring range switchover

 simple stockkeeping due to universal application possibilities, no need for complicated recalibrationModels with 0 ... 20 mA and 0 ... 10 V output, loop-powered
little wiring work and no line influences

Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages

Modular case 22.5 mm low space requirement due to compact design

High long-term stability and accuracy
reliable operation without recalibration

Very low power consumption

allows a minimum rating of the upstream current and voltage transformer

Very low self-heating
no temperature-related component aging, high MTBF

Maximum reliability
no repair and failure costs
High reliability
5-year warranty

Product line

Devices

IsoTrans ${ }^{\circledR} 600$ with current input	Input	Output	Order No.
IsoTrans® 611-1	0 ... 1 A	0 ... 20 mA	611-1 A2
IsoTrans ${ }^{\circledR}$ 621-1 (with power supply)	0 ... 1 A	$4 \ldots 20 \mathrm{~mA}$	621-1 A2
IsoTrans ${ }^{\text {® 6 3 }}$ 61-1	0 ... 1 A	0 ... 10 V	631-1 A2
IsoTrans ${ }^{\circledR}$ 615-1	0 ... 5 A	0 ... 20 mA	615-1 A2
IsoTrans ${ }^{\circledR}$ 625-1 (with power supply)	0... 5 A	$4 \ldots 20 \mathrm{~mA}$	625-1 A2
IsoTrans ${ }^{\text {® }}$ 635-1	0... 5 A	0 ... 10 V	635-1 A2

IsoTrans ${ }^{\circledR} 600$ with voltage input
IsoTrans ${ }^{\circledR} 647-2$
IsoTrans ${ }^{\circledR} 648-2$
IsoTrans ${ }^{\circledR} 650-2$ (with power supply)
0 ... 100/120 V
switchable
$0 \ldots 250 / 400 \mathrm{~V}$
switchable
$0 \ldots 100 / 120 / 250 /$
400 V , terminal-
selectable

$0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$ terminal-selectable $0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$ terminal-selectable	$647-2 \mathrm{~A} 2$
$0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$	$650-2 \mathrm{~A} 2$
0... 10 V , switchable/ terminal-selectable	

Power supply
621-1, 625-1, 650-2: 230 V AC. Others: none, supply from input signal

Options

IsoTrans ${ }^{\circledR}$ 635-1 and IsoTrans ${ }^{\circledR}$ 650-2 for input frequency $162 / 3 \mathrm{~Hz}$

Selection aid

Output

		0 ... 20 mA	4 ... 20 mA	0 ... 10 V
Input	0... 1 A AC	611-1 A2	621-1 A2*)	631-1 A2
	0 ... 5 A AC	615-1 A2	625-1 A2*)	635-1 A2
	$0 \ldots 100$ V AC	$\begin{aligned} & 647-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$	650-2 A2*)	$\begin{aligned} & 647-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$
	0 ... 120 V AC	$\begin{aligned} & 647-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$	650-2 A2*)	$\begin{aligned} & 647-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$
	0 ... 250 V AC	$\begin{aligned} & 648-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$	650-2 A2*)	$\begin{aligned} & 648-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$
	$0 \ldots 400 \mathrm{VAC}$	$\begin{aligned} & 648-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$	650-2 A2*)	$\begin{aligned} & 648-2 \text { A2 } \\ & 650-2 \text { A2*) } \end{aligned}$

[^13]
Specifications

Response

Transmission accuracy

Class 0.5 (EN 60688)

Power supply

Power supply (only Models with 4 ... 20 mA output)

230 V AC - 15 \% + 10 \%,
$47 \ldots 63 \mathrm{~Hz}$, approx. 1 VA (IsoTrans® 650 approx. 1.5 VA)

[^14]Specifications, continued

Isolation

Galvanic isolation	With power supply: Loop-powered:	3-port isolation between input, output and power supply Isolation between input and output
Test voltage	With current input:	6 kV AC for models with power supply: 6 kV AC (input against output/ power supply) 4 kV AC (output against power supply)
	With voltage input:	4 kV AC
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1. Working voltages with overvoltage category II and pollution degree 2 : up to 400 V AC/DC between output and power supply. up to 600 V AC/DC between input and output and, where necessary, power supply (current isolator up to category III, degree 2). For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.	

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC	EMC directive 89/336/EEC, EN 61326

Other data

Ambient temperature	Operation: $-10 \ldots+70^{\circ} \mathrm{C}$ Transport and storage: $-30 \ldots+80^{\circ} \mathrm{C}$
Enclosure	Modular case A7, width 22.5 mm, screw terminals See dimension drawings for further measurements
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022 or M4 screw mounting, See dimension drawings for conductor cross section
Weight	$6 x x-1$: approx. 350 g 6xx-2: approx. 250 g

Schematic diagram

AC/DC transducers with current input

AC/DC transducers with voltage input

Dimension drawings and terminal assignments

Screw mounting with extending lugs
AC/DC transducers with current input 6**-1
1 Input~
2 Input~
5 Output +
6 Output -
7 Power supply ~\}
8 Power supply ~ 7
(only for models 621 and 625, otherwise not connected)

AC/DC transducers with

voltage input 647-2 and 648-2
1 Input~
2 Input~
5 Output + 20 mA
6 Output -
7 Output + 10 V

All dimensions in mm.

AC/DC transducer with voltage input 650-2

1 Input 0
9 Input 100 V ~
5 Input 120 V ~
2 Input 250 V ~
10 Input 400 V ~
7 Output-
11 Output + 20 mA
3 Output + 10 V
4 Power supply ~
8 Power supply ~

IsoAmp ${ }^{\circledR}$ 7000/8000

Universal models up to $I_{1}=3000 \mathrm{~V}$ and $I_{1}=5 \mathrm{~A}$

The IsoAmp ${ }^{\circledR} 7000 / 8000$ DC isolation amplifiers work bipolar as active amplifiers with transformer isolation between the input and sequential circuit. A special winding technique in conjunction with continuous Kapton insulation allows high isolation voltages.

At the same time the switching technology and device construction ensure excellent transmission values that are reflected, among other things, in the zero stability, linearity, longterm stability and frequency response.

Extensive optional equipment allows special applications for input voltages of 200 V to 3000 V or input current of 50 mA to 5 A to be implemented.

Warranty 5 years

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

Product line

Devices	Order no.
Free wiring, with current output	7001 A1
Free wiring, with voltage output	8001 A1
Power supply	
230 V AC	
$24 \mathrm{~V}, \pm 15 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA	06
$110 \mathrm{~V}, \pm 15 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA	63
$11.5 \ldots 15.5 \mathrm{~V}$ DC or $20.5 \ldots 27.5 \mathrm{~V}$ DC, switchable, approx. 1.5 W	74
$60 \vee \mathrm{DC}, \pm 15$ \%, approx. 1.5 W	213
110 V DC, ± 15 \%, approx. 1.5 W	243
Options	
Gain adjustment to customer requirements in the range $\mathrm{V}_{1}>200 \mathrm{~V} \leq 800 \mathrm{~V}$ or $\mathrm{I}_{1}>50 \mathrm{~mA} \leq 5 \mathrm{~A}$ 1)	155
Gain adjustment to customer requirements in the range $\mathrm{V}_{1}>800 \mathrm{~V} \leq 1000 \mathrm{~V}$ 1)	156
Gain adjustment to customer requirements in the range $\mathrm{V}_{1}>1000 \mathrm{~V} \leq 3000 \mathrm{~V}$ 1)	414
Zero offset to customer requirements ${ }^{1}$	50
Unipolar input, output $4 \ldots 20 \mathrm{~mA}$, live zero, additional error $\pm 10 \mu \mathrm{~A}$ at output	55
Output $20 \mathrm{~mA}, 20 \mathrm{~V}$, unipolar	59
8000 A1: Output voltage unipolar $\leq 20 \mathrm{~V}$	189
7000 A1: Rectifier in signal path	152
Test voltage $7 \mathrm{kV} \mathrm{AC} \mathrm{input} \mathrm{against} \mathrm{output/power} \mathrm{supply}$	179
Silicone emission free	253
Increased shock, vibration and moisture resistance	255

Specifications

Input data

Input (optional fixed setting upon customer request ${ }^{1}$))
$\longdiv { \text { Input resistance } }$

Overload

7001
$\mathrm{V}: \pm 200 \mathrm{~V}$ to $\pm 3000 \mathrm{~V}$
$\mathrm{I}: \pm 50 \mathrm{~mA}$ to $\pm 5 \mathrm{~A}$ 8001
V: $\pm 200 \mathrm{~V}$ to $\pm 3000 \mathrm{~V}$
$\mathrm{I}: \pm 50 \mathrm{~mA}$ to $\pm 5 \mathrm{~A} \quad \mathrm{I}: \pm 50 \mathrm{~mA}$ to $\pm 5 \mathrm{~A}$
Dependent on measuring range

Input:	$<250 \mathrm{~V}$	$>250 \mathrm{~V}$	$\leq 150 \mathrm{~mA}$	$>150 \mathrm{~mA}$
Overload:	300 V	$20 \% \mathrm{fs}$	300 mA	$100 \% \mathrm{fs}$

Output data
Output impressed
Residual ripple

Transmission behavior

Gain error

Cut-off frequency
Temperature coefficient

Power supply

Power supply ${ }^{2)}$

Isolation

Galvanic isolation
Test voltage
Working voltage (basic isolation)

Dependent on measuring range (from 0.2 \% of measured value)
$10 \mathrm{kHz}-3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{o}} \leq 3 \mathrm{~V}_{\mathrm{pp}}$
$2 \mathrm{kHz}-3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{o}} \leq 10 \mathrm{~V}_{\mathrm{pp}}$ (other values available upon request)
$\leq 5 \mathrm{nA} / \mathrm{K}, \leq 10 \mu \mathrm{~V} / \mathrm{K} \pm 0.0025 \% / \mathrm{K}$ of measured value (reference temperature $23^{\circ} \mathrm{C}$)

3-port isolation between input, output and power supply

Input/output/power supply:	5 kV AC
Opt. 213 and 243: Output/power supply:	1.5 kV AC
Opt. 74:	Output/power supply:
Opt. 179:	Output/power supply:
On AC	

Permitted working voltage/overvoltage category/pollution degree according to EN 61010-1 Version
Input against output
and power supply

> Power supply against output
All versions
1500 V-/III/degree 1
1500 V- /III/degree 1
1300 V- /III/degree 2
630 V / /III/degree 3
$630 \mathrm{~V} \approx / \mathrm{III} /$ degree 3
Option 74
1500 V- /III/degree 1 1400 V - /III/degree $2 \quad 150 \mathrm{~V}=/ \mathrm{I} /$ degree 2 $630 \mathrm{~V} \approx /$ III/degree $3 \quad 63 \mathrm{~V} \approx / \mathrm{II} /$ degree 3
Options 213 or 243

1500 V-/III/degree $1 \quad 200 \mathrm{~V} \approx / I I /$ degree 2 1400 V -/III/degree $2 \quad 150 \mathrm{~V}=/ \mathrm{III} /$ degree 2 630 V / /III/degree $3 \quad 63 \mathrm{~V} \approx /$ III/degree 3

For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Specifications, continued

Standards and approvals

| EMC directive 89/336/EEC |
| :---: | :---: |

Other data

Ambient temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Enclosure	See dimension drawings for further measurements, screw clamps
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm standard rail according to EN 46277 or screw mounting max. M5, see dimension drawing for conductor cross section
Weight	Approx. 400 g

Wiring examples

Voltage input:
Range settings with series resistor for any input voltages

Current input:
Range setting with shunt resistor R_{s} (voltage drop at $\mathrm{R}_{5}: 100 \mathrm{mV}$)

Model 7001:
$\mathrm{R}_{\mathrm{N}}=5 \Omega$
Model 7001, Opt. 55: $\mathrm{R}_{N}=6.25 \Omega$
Model 8001:
$R_{N}=207 \Omega$
$R_{1}=\frac{V_{1}}{0.1 \mathrm{~mA}}-1 \mathrm{k} \Omega$
Input current: 0.1 mA
$C_{P}=\frac{47 \mathrm{nF} \cdot 1 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{I}}}$
Input resistance: $\mathrm{R}_{\mathrm{I}}+1 \mathrm{k} \Omega$
See Specifications for cut-off frequency
V_{1} in $m V$

$$
\begin{array}{lrl}
\text { Model 7001: } & \mathrm{R}_{N}=5 \Omega \\
\text { Model 7001, Opt. } 55: & \mathrm{R}_{N}=6.25 \Omega \\
\text { Model 8001: } & \mathrm{R}_{N}=207 \Omega
\end{array}
$$

$R_{S}=\frac{100 \mathrm{mV}}{\mathrm{I}_{\mathrm{I}}}$
I, in mA
Voltage drop at $\mathrm{R}_{\mathrm{s}}: 100 \mathrm{mV}$
See Specifications for cut-off frequency

Dimension drawings and terminal assignments

All dimensions in mm.

IsoTrans ${ }^{\circledR}$ 36/37

For hazardous area/ safe area isolation of 0 ... 20 mA standard signals without power supply

The task

Hazardous area normally means systems in constant operation that require highly reliable components. The measuring signals need to be transmitted to the control system outside the hazardous area very accurately to control the processes optimally.

The problems

Complex systems with power supplies are used for reliable hazardous/safe area isolation combined with electrical isolation for preventing measuring errors.

The solution

Knick loop-powered isolators for 0(4) ... 20 mA signal transmission. They are available as isolators with intrinsically safe input or output. Due to their patented design (German patent 3526997), they are considered to be the most reliable solution for isolating standard signals without external power supply.

The advantages

The IsoTrans ${ }^{\circledR} 36$ and 37 isolators are not only suitable as highly reliable isolators for normal applications, they also meet the most extreme requirements that can be set for signal isolation. There is no need to wire a power supply.

The technology

The pioneering TransShield ${ }^{\circledR}$ technology allows specifications that previously could not be implemented:

- Extremely high reliability
- Safe isolation, transient protection
- 10 kV test voltage (optional)
- High electromagnetic compatibility
- Extremely low residual ripple and common-mode interference
- Excellent pulse formation
- High transmission accuracy
- SMART transmission
- Hazardous / safe-area isolation

In addition to the analog signals, they also transmit data protocols for SMART transmitters (HART®). They allow bidirectional communication from every point of the cabling.

Special type available! Measure voltage without a power supply

Measuring voltages in the range from 250 to 1200 V DC can be converted into current signals up to 5 mA using a special looppowered version of the isolator. This allows, for example, the contact wire voltage to be checked easily. Please contact us if you need detailed information on this special model.

The facts

Galvanic isolation between

 input and output signal protection against measuring errors caused by grounding problems and parasitic interference voltageNo power supply required cost saving due to lower wiring requirement, no mains influences

Very low residual ripple no interference of the connected measuring or control system

Explosion protection according to ATEX

High transmission accuracy excellent pulse formation, exact transmission of measured values

Very low common-mode interference

avoiding incorrect measurements or failure due to interference signals

Maximum reliability
no repair and failure costs
10 kV test voltage (optional)

Safe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages

SMART transmission

bidirectional point-to-point transmission of digital data according to HART® specification

5-year warranty

Product line

Devices		Order no.
IsoTrans® 36 Input intrinsically safe 36 A7 IsoTrans 37 Output intrinsically safe 37 A7 IsoTrans special type Passive voltage measurement, details on request	36 A9-xxx	
Power supply		

None, supply from input signal
Option
$\begin{array}{ll}\text { Increased test voltage } 10 \mathrm{kV} \mathrm{AC} & 471\end{array}$

Specifications

Input data	36 A7	37 A7
Input 1)	0 ... 20 mA , intrinsically safe	0... 20 mA
Operating current	$\leq 20 \mu \mathrm{~A}$	
Overload	50 mA	
Voltage drop	Approx. 4.5 V at $20 \mathrm{~mA}{ }^{2}$	Approx. 4 V at 20 mA
Output data	36 A7	37 A7
Output	0 ... 20 mA , max. 10 V (corresponds to 500 Ohm load)	0 ... 20 mA , max. 20 V , intrinsically safe (corresponds to 1000 Ohm load)
Load error	<0.15 \% meas. val. per 100 Ohm	
Offset	$<20 \mu \mathrm{~A}$	
Residual ripple $\mathrm{V}_{\text {rms }}$	$<10 \mathrm{mV}$ at 20 mA and 500 Ohm	
Transmission behavior		
Transmission error	0.2 \% meas. val.	
Rise or fall time	$\leq 400 \mu \mathrm{~s}$ at 500 Ohm load (10 ... 90 \%, jump from 0 ... 20 mA or 20 ... 0 mA)	
HART attenuation	$<10 \mathrm{~dB}$	

[^15]Specifications, continued

Isolation

Test voltage Working voltages (basic isolation)	4.4
	36
	acco
	For

4.4 kV AC

10 kV AC with option 471
3600 VAC/DC, 2500 V AC ${ }^{3)}$ at overvoltage category II and pollution degree 2 according to EN 61010-1
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. Permissible working voltages for other overvoltage categories and pollution degrees on request.
When used in hazardous areas, the max. working voltage is 250 V .
Protection against
Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1.
Working voltages with overvoltage category II and pollution degree 2 : 600 V AC/DC
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Standards and approvals
 Explosion protection
 EMC 4)

36 A7

II (1) G [EEx ia] IIC, input intrinsically safe PTB 02 ATEX 2134

For further details see certificates of conformity page 134
EMC directive 89/536/EEC
NAMUR NE 21, EN 61326

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+50^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Enclosure	Modular case, width 22.5 mm , screw terminals, see dimension drawings for further measurements
Protection class	Case IP 20, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022, See dimension drawings for conductor cross section
Weight	Approx. 120 g

3) For circuits according to table 6 from EN 61010-1 (transient overvoltage 2600 V)
4) In the range from $1 \mathrm{~mA} \ldots 20 \mathrm{~mA}$

Schematic diagrams

IsoTrans® ${ }^{\circledR} \mathbf{3 6}$ A7

IsoTrans ${ }^{\circledR} 37$ A7

Application examples IsoTrans 36 A7

Without HART communication

Safe area

Input

Output

For connecting to intrinsically safe current circuits with the following maximum values:
$\mathrm{I} \leq 100 \mathrm{~mA}$
P $\leq 1.1 \mathrm{~W}$
C_{1} ineffective
LI ineffective

Application examples for IsoTrans® 36 A7, continued

With HART communication

Application examples IsoTrans® 37 A7

With HART communication

Dimension drawings and terminal assignments

All dimensions in mm.

IsoTrans ${ }^{\circledR} 36 \mathrm{~A} 7$	IsoTrans ${ }^{\circledR} 37 \mathrm{A7}$	
1 Input +	1 Input +	
2 Input -	2 Input -	
5 Output +	3 HHT non-intrinsically safe	
6 Output -	4 HHT non-intrinsically safe	
		5 Output +
	6 Output -	
	7 HHT intrinsically safe	
	8 HHT intrinsically safe	
		HHT $=$ handheld terminal

Captive clamping screws M3 $\times 8$
Box terminals with self-releasing
wire protection
Max. conductor cross section
$1 \times 4 \mathrm{~mm}^{2}$ solid
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded with ferrule
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded with ferrule

Certificates of Conformity

print preview

Physikalisch-Technische Bundesanstalt Anemtany mins

Physikalisch-Technische Bundesanstalt

SCHEDULE

(4) ECTMPEXAMunOw CERTRCATE PTB az ATEX 213

Exacian
nearent:
 yyincimis. movily thanumans

 c mondor
oturntit
 (1) Iminesptatasexiv
taver 30

Physikalisch-Technische Bundesanstalt P/B Brewthevig und Berte

coly lientieloni peter

Hencso

Physikalisch-Technische Bundesanstalt
Brenesterig =ad livita

 Ons

Physilkalisch-Technische Bundesanstalt
PTB Onenthariy uns Best

Physikalisch-Technische Bundesanstalt

crib	$\underline{4}$	[5	-
5			3004	200]
4	915	B1an	drem	Name

Iternon mesembist

-

WG 20

For supply of intrinsically safe 2-wire transmitters

The WG 20 power supply/isolator is used to supply intrinsically safe 2-wire transmitters. It supplies the transmitter with power and transmits the measuring signal to the output with high accuracy.

The WG 20 provides safe isolation and high insulation from the input to the output and to the power supply.

An additional measuring current input allows use as a highly accurate standard signal isolator in hazardous areas.

High supply voltage, good hazardous area specifications and the simple LiveZero (4... 20 mA)/ DeadZero ($0 . . .20 \mathrm{~mA}$) switching allow universal applications.

The WG 20 achieves an extraordinarily high transmission accuracy for hazardous-area applications.

The control range of the measuring circuit extends to the negative values and thus allows strictly linear transmission also in the zero range.

The encapsulation technique allows maximum operating safety, long-time stability and disruptive strength even under extreme conditions.

The facts

- Universal use for 2-wire transmitters or as standard signal isolators
low stockkeeping costs with many application possibilities

- Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages

- 3-port isolation

protection against incorrect measurements or damage to the measuring system due to parasitic voltages

- High transmission accuracy exact transmission of measured values

- Explosion protection

 according to ATEXtrouble-free use in hazardous areas

- Output 0 ... 20 mA or 4 ... 20 mA switchable universal adaptation to the following devices
- Measuring circuit with linear zero crossing no transmission loss in the zero range
- Modular case 22.5 mm straightforward installation

Warranty

due to compact design

[^16]Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

Product line

Devices	Order no.
WG 20	WG 20 A2
Power supply	
24 V AC/DC	

Specifications

Operation as a repeater power supply

Input (current loop)	4 ... 20 mA , intrinsically safe
Output	$4 \ldots 20 \mathrm{~mA} / 0 . . .20 \mathrm{~mA}$ selectable ${ }^{1)}$
Current loop	Intrinsically safe supply voltage 20 V , constant for $0 \ldots 22 \mathrm{~mA}$, floating, resistant to continuous short-circuit, current limited to 30 mA ; residual ripple $\leq 10 \mathrm{mV}_{\text {pp }}$

Operation as isolation amplifier

Input ${ }^{\text {2 }}$	0 ... 20 mA , intrinsically safe	$4 \ldots 20 \mathrm{~mA}$, intrinsically safe
Output	0 ... 20 mA	$4 \ldots 20 \mathrm{~mA} / 0 \ldots 20 \mathrm{~mA}$ selectable ${ }^{1)}$
Overload capacity (at input)	$\leq 300 \mathrm{~mA}$, limitation with diode $\leq 1 \mathrm{~V}, 13$ Ohms	
Input voltage drop	$\leq 300 \mathrm{mV}$	

Output data

Load	$\leq 12 \mathrm{~V}$
Offset	$<10 \mu \mathrm{~A}$
Residual ripple at output	$\leq 10 \mathrm{mV} \mathrm{pp}$

Transmission behavior

Transmission error (at output)	0.1% meas. val. Cut-off frequency Temperature coefficient $1 \mathrm{kHz}-3 \mathrm{~dB}$ (at output) $1 \mu \mathrm{~A} / \mathrm{K}$ (reference temperature $23^{\circ} \mathrm{C}$)

Specifications, continued

Power supply

Power supply
24 V AC/DC
AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 3.3 VA DC $-15 \%+20 \%$, approx. 2.2 W

Isolation
Galvanic isolation
Test voltage
Working voltages
(basic isolation)

3-port isolation between input, output and power supply
4 kV AC (current loop, input/output/power supply)
1000 V AC/DC current loop, input against output and power supply 800 V AC/DC output against power supply with overvoltage category II and pollution degree 2, according to EN 61010-1
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Protection against electrical Safe isolation according to EN 61140 by reinforced insulation in accordance with shock EN 61010-1.

Working voltages with overvoltage category II and pollution degree 2
Up to 600 V AC/DC between loop current, input and output/power supply as well as 250 V AC/DC between output and power supply.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Standards and approvals

Explosion protection	II (1) G [EEx ia] IIC current loop, input intrinsically safe, PTB 99 ATEX 2047, For further details see certificates of conformity page 140
EMC	EMC directive 89/336/EEC3)

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+60^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Enclosure	Modular case, width 22.5 mm , screw terminals See dimension drawings for further measurements
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022 or M4 screw mounting, see dimension drawings for conductor cross section
Weight	Approx. 250 g

3) Deviations are possible while there is interference

Schematic diagram

Application example

Dimension drawings and terminal assignments

Certificates of Conformity

print preview

Physikalisch-Te


```
(0) twatrmemmach
(0) Sreatanotion)wrehum
    not mevere
```



```
    erlotementelom\mp@code{luNin}
```


iA $\angle \pi+6$

Physikalisch-Technische Bundesanstalt PTB Mnesiong und Berts

1. SUPPLEMENT methew Doven Nowc demen
 (Tresatation]

Enturifin

 Henveruen $4=\equiv \mathrm{y}$

 C andoy

[^17]Physikalisch-Technische Bundesanstalt PTB


```
Tenmetiochelome oploten poo we meave
```



```
    wothiturg lim
```


Bem 39
"numen

 from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

WG 21

For supply of intrinsically safe $\mathbf{2}$-wire transmitters and SMART transmitters

The WG 21 repeater power supply is used to supply intrinsically safe 2 -wire transmitters. It supplies the transmitter with power and transmits the measured signal to the output galvanically isolated and with high accuracy.

In addition to the analog signal, the WG 21 also optionally transmits data protocols for SMART transmitters (HART®). It allows bidirectional communication with the field device from every point of the cabling.

The WG 21 provides safe isolation and high insulation between the input, output and power supply.

The high supply voltage, the good hazardous area specifications and the broad-range power supply allow universal use. Cables 1400 m in length can therefore be used without any problems.

Thanks to a new transformer transmission technique, the WG 21 achieves an extraordinarily high transmission accuracy for hazardous-area applications.

The encapsulation provides maximum operating safety, longterm stability and disruptive strength even under extreme ambient conditions.

The facts

- SMART transmission
(optional) bidirectional point-to-point transmission of digital data according to HART® specifications
- High supply voltage and good hazardous area specifications
universal use

- Broad range supply

 just 2 versions for all mains voltages- Safe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages

3-port isolation

protection against incorrect measurements or damage to the measuring system due to parasitic voltages

- High transmission accuracy exact transmission of measured values

Explosion protection

 according to ATEXtrouble-free use in hazardous areas

- Modular case 22.5 mm straightforward installation due to compact design
-5-year warranty

Product line

Devices	Order no.
WG 21	WG 21 A7
Power supply	
$90 \ldots 253$ V AC	336
$24 \vee$ AC/DC	470
Options	
Transmission of data protocols for SMART transmitters (HART)	

Specifications

Input data

Current loop	Intrinsically safe supply voltage $\geq 18 \mathrm{~V}$, constant for $0 \ldots 22 \mathrm{~mA}$, floating, current limited to 30 mA ; residual ripple $<10 \mathrm{mV}$

Output data

Output	$4 . . .20 \mathrm{~mA}{ }^{1}$)
Load	$\leq 13 \mathrm{~V}$
Offset	$<20 \mu \mathrm{~A}$
Residual ripple at output	$<10 \mathrm{mV}$

Transmission behavior

Transmission errors	0.2 \% meas. val.
Response time	< 10 ms
Temperature coefficient	$<0.5 \mu \mathrm{~A} / \mathrm{K}+0.005 \% / \mathrm{K}$ full scale (average TC), (reference temperature $23{ }^{\circ} \mathrm{C}$)
Communication (Option 470)	Bidirectional transmission of FSK signals according to the HART® ${ }^{\text {® }}$ specification between output and current loop

Power supply

[^18]Specifications, continued

Isolation

Galvanic isolation	3-port isolation between input, output and power supply
Test voltage	4 kV AC (current loop against output and power supply) 3 kV AC (power supply against output)
Working voltages (basic isolation)	1000 V AC/DC current loop against output and power supply, 600 V AC/DC output against power supply with overvoltage category II and pollution degree 2 according to EN 61010-1 For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. Permitted working voltage for other overvoltage categories and pollution degrees on request. When used in hazardous areas, the max. working voltage is 250 V .
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1. 600 V AC/DC working voltage with overvoltage category II and pollution degree 2, 300 V AC/DC current loop against output and power supply, output against power supply For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Explosion protection	II (1) G [EEx ia] IIC PTB 01 ATEX 2059 current loop intrinsically safe For further details see certificates of conformity page 147
EMC ${ }^{2}$	EMC directive 89/336/EEC, EN 61326, NAMUR NE 21

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+60^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Version	Modular case, width 22.5 mm , screw terminals, see dimension drawings for further measurements
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022, see dimension drawings for conductor cross section
Weight	Approx. 250 g

Schematic diagram

Application example

HART communication between transmitter and HHT on intrinsically safe current loop.
The communication signals are also transmitted to the non-intrinsically safe output circuit. A HART resistor of 390Ω is integrated in the WG 21.

HART communication between transmitter and PLC, HHT at nonintrinsically safe output circuit.
The communication signals are transmitted bidirectionally via the WG 21. A minimum load resistance of 230Ω is required that should also be connected in addition.

Dimension drawings and terminal assignments

Captive M3x8 clamp screws, box terminals with self-releasing wire protection,
max. conductor cross section $1 \times 4 \mathrm{~mm}^{2}$ solid
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
Installation, commissioning and maintenance may only be carried out by trained personnel.

Certificates of Conformity

print preview

Physikalisch-Technische Bundesanstalt P|B

Hnerotiong mit lote

彩

EC-TYPE-EXAMINATION CERTIFICATE

pre vi atex asse

8. sire mix mex

Physikalisch-Technische Bundesanstalt PTB

Onewherif millive

(th tavar anathontry
nor

For supply of intrinsically safe $\mathbf{2}$-wire transmitters and SMART transmitters

The passive WG 25 repeater power supply is loop-powered. It is used for galvanic hazardous area isolation of a 2 -wire supply line and transmits both 4 ... 20 mA and HART® signals in each direction. With a voltage drop of just 4.2 V , the WG 25 uses the supply optimally so that all common 2-wire transmitters can be connected.

Compared with active repeater power supplies, it has considerable price and reliability advantages.

For example, only a central, safe-area power supply that does not even need safe isolation is required for multi-channel systems.

Using Knick TransShield® technology, the WG 25 has specifications that have not yet been achieved by passive repeater power supplies:

- Extremely high reliability, MTTF of 300 years
- Safe isolation, transient protection
- 10 kV test voltage (optional)
- High electromagnetic compatibility
- Extremely low residual ripple and common-mode interference
- Excellent pulse formation
- HART® transmission
- Hazardous/safe-area isolation

The facts

- Low-cost

good price due to omission of integrated power supply

No mains supply required cost saving due to lower wiring requirement,
no mains influences

Low power loss

no unnecessary heating
in switch cabinet

- Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages

- HART ${ }^{\circledR}$ transmission

bidirectional point-to-point transmission of digital data according to HART® specifications

EMC tested
RFI suppressed and surge
proof, reliable operation even with electromagnetic interference

Maximum reliability

no maintenance work, therefore the related costs are not incurred

- 5-year warranty

HART® is a registered trademark of the HART Communication Foundation

Warranty 5 years!

Product line

Devices	Order no.
WG 25	WG 25 A7
Power supply	
None, supply from output signal	471
Options	
Increased test voltage 10 kV AC	

Specifications

Input data

Input (current loop)	4 ... 20 mA (transmission up to 22 mA possible), intrinsically safe
Supply voltage	$\geq 17 \mathrm{~V}$, short-circuit-proof, see diagram on page 149
Operating current	$<1 \mathrm{~mA}$
Input short-circuit current	$\leq 28 \mathrm{~mA}$
Voltage drop	$<4.2 \mathrm{~V}$ at 20 mA and supply $\leq 20 \mathrm{~V}$, see diagram on page 151

Output data

Output	4 ... $20 \mathrm{~mA}, 1: 1$ transmission (22 mA)
Overload	$50 \mathrm{~mA}, 30 \mathrm{~V}$ (corresponds to 600 Ohm load)
Offset	$<20 \mu \mathrm{~A}$
Residual ripple $\mathrm{V}_{\text {rms }}$	$<1.5 \mathrm{mV} / \mathrm{mA}$

Transmission behavior

Transmission errors	0.2 \% meas. val.
Supply voltage influence	$<15 \mu \mathrm{~A} / \mathrm{V}$
HART attenuation	$<10 \mathrm{~dB}$

Specifications, continued

Isolation

Test voltage	4.4 kV AC 10 kV AC with option 471
Working voltages (basic isolation)	1000 V AC/DC with overvoltage category II and pollution degree 2 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. Permitted working voltage for other overvoltage categories and pollution degrees on request. When used in hazardous areas, the max. working voltage is 250 V .
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1. Working voltage with overvoltage category II and pollution degree 2 up to 600 V AC/DC For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Standards and approvals

Explosion protection
\qquad
EMC

II (2) G [EEx ib] IIC PTB 02 ATEX 2063, for further details see certificates of conformity on page 154

EMC directive 89/336/EEC, EN 61326, NAMUR NE 21

Other data

Ambient temperature	Operation: $-10 \ldots+50^{\circ} \mathrm{C}$ Transport and storage: $-30 \ldots+80^{\circ} \mathrm{C}$
Version	Modular case, width 22.5 mm , screw terminals See dimension drawings for further measurements
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022, see dimension drawings for conductor cross section
Weight	Approx. 120 g

Supply voltage dependent on supply

Supply voltage on 2-wire transmitter [V]	20					

Schematic diagram

Wiring examples

Without HART communication

With HART communication

of 230Ω is required. It should be added if necessary.

Dimension drawings and terminal assignments

Installation, commissioning and maintenance may only be carried out by trained personnel.

Certificates of Conformity

Physikalisch-Technische Bundesanstalt

Physikalisch-Technische Bundesanstalt PTB

tixe	\%	-	-	5
4	2010	$0 \pm$	04	408
4	$05 \times$	10, ${ }^{\text {an }}$	97 me	150 mm

"

ThermoTrans ${ }^{\circledR}$ 205/206

ThermoTrans® 205/206 for resistance thermometers

Resistance thermometers are highly accurate temperature sensors with long-term stability for measuring temperatures up to max. $850^{\circ} \mathrm{C}$.

They are mainly used to measure low and medium temperatures, for example, in air-conditioning, process engineering and the food industry.

The ThermoTrans ${ }^{\circledR}$ 205/206 transmitters allow connection of all common resistance thermometers either in 2, 3 or 4 -wire circuits.

The possibility for connecting resistance-type sensors and potentiometers creates a wide range of application possibilities, for example, in the field of position measurement. Converting the input signal into a proportional current/voltage signal allows simple further processing.

The facts

Explosion protection

[EEx ia] IIC

according to ATEX, trouble-
free use in hazardous areas

Extensive range of standard models

for standard applications, configuration not necessary

Adjustable via optical interface

universal for a wide range of measuring tasks, can also be configured on site

Paraly ${ }^{\circledR}$ PC configuration software with tag database

 simple, menu-guided configuration in accordance with VDI/VDE 2187, archiving of configuration dataEMC-tested according to European EMC regulations and NAMUR NE 21
reliable operation even with electromagnetic interference in the mains or in the environment

Safe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages
22.5 mm wide modular case with 73.5 mm standard height
compact design means easy installation, also easy to fit in standard cabinets

[^19]
Product line

Adjustable models

Order no.

ThermoTrans ${ }^{\circledR} 205$ with current output

205 A7 000000 Opt. 444

ThermoTrans ${ }^{\circledR} 206$ with voltage output

206 A7 000000 Opt. 444

206 A7 x xx xx V Opt. 444

Standard model with 4-wire connection (3-wire connection Opt. 494), rising output curve, without filter constant ThermoTrans ${ }^{\circledR}$ 205: open circuit recognition 22 mA . ThermoTrans ${ }^{\circledR}$ 206: open circuit recognition 11 V

Power supply
Order no.
230 V AC

$24 \mathrm{~V} \mathrm{AC/DC}$	336
115 V AC	363

Options
ThermoTrans ${ }^{\circledR}$ 205/206 standard model with 3-wire connection
494

Accessories

$\longdiv { \text { Communications kit } }$

For configuration of the temperature transmitter, with ZU 0254 tag database according to VDI/VDE 2187, consisting of:

- Optical fibre connecting cable 3 m - Optical interface adapter - RS 232
- Adapter D-Sub 9-pole - D-Sub 25-pole - Paraly ${ }^{\circledR}$ configuration software and tag database

Product line

		ThermoTrans ${ }^{\circledR} 205$ with current output	ThermoTrans ${ }^{\circledR} 206$ with voltage output
Customer-specific models	Order no.	205 A7 999999 Opt. 444	206 A7 999999 Opt. 444

Configuration schedule

Important! Please fill in the configuration schedule completely and enclose it with your order. If entries are missing, the value entered in square brackets or the dark-colored setting \square will be set.

ThermoTrans ${ }^{\circledR}$ 205/206

Specifications

Temperature coefficient at input

Output data

Output signal
$(0 \ldots 100 \%)$
Resolution
Control range
Overrange
with error message
Output error limits
Temperature coefficient
at output
Tesidual ripple at output

Model 205: 0/4 ... 20 mA , impressed current, load voltage $\leq 10 \mathrm{~V}$
Model 206: 0 ... 10 V , impressed voltage, load current $\leq 10 \mathrm{~mA}$
Approx. 8000 steps (for 0 ... 100%)
-2.5%... 102.5% of span
Model 205: - 1.0 mA or 22 mA
Model 206: -0.5 V or 11 V
0.1 \% full scale
$0.01 \% / \mathrm{K}$ full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)
$<10 \mathrm{mV}_{\mathrm{pp}}+$ digitalization error of input

Specifications, continued

Transmission behavior

Characteristic	Resistance or temperature-linear rising or falling
Meas. rate	Approx. 1/s
Response time T_{99}	$\leq 900 \mathrm{~ms}$
Digital output filter	$\mathrm{T}_{99}=0 \ldots 100 \mathrm{~s}$ (1st order filter)

Power supply

Power supply	230 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
Option 336:	24 V AC/DC AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.5 VA DC: $-15 \%+20 \%$, approx. 1.2 W
Option 363:	115 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	$4 \mathrm{kV} \mathrm{AC} \mathrm{(input} \mathrm{against} \mathrm{output} \mathrm{and} \mathrm{power} \mathrm{supply)}$
	3 kV AC (output against power supply)
Working voltage (basic isolation)	1000 V AC/DC input against output and power supply with overvoltage category II and pollution degree 2,
	330 V AC/DC output against power supply with overvoltage category II and pollution degree 2, according to EN 61010-1
	For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1.
	Working voltages with overvoltage category II and pollution degree 2:
	600 V AC / DC for input against output and power supply
	with overvoltage category II and pollution degree 2 :
	300 V AC/DC for output against power supply.
	For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Explosion protection (opt. 444)	II (1) G [EEx ia] II C PTB 02 ATEX 2107 For further details see certificates of conformity page 164
Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC 1)	EMC directive 89/336/EEC, EN 61326; NAMUR recommendation NE 21

[^20]Specifications, continued

Other data

Interface
(only user-definable models)
Ambient temperature

Enclosure
Protection class

Protection class

Mounting

Weight

Optical, interface adapter on RS 232 interface (PC) is included in the ZU 0254 communications kit

Operation: $\quad-10 \ldots+60^{\circ} \mathrm{C}$
Transport and storage: $\quad-30 \ldots+80^{\circ} \mathrm{C}$
Modular case A7, width 22.5 mm , screw terminals, see dimension drawings for further measurements

Case IP 40, terminals IP 20
With snap-on mounting for 35 mm top hat rail according to EN 50022-35, width 22.5 mm , see dimension drawings for conductor cross section

Approx. 300 g

Schematic diagram

Application examples

Dimension drawings and terminal assignments

Snap-on mounting for 35 mm top hat rail EN 50022-35

ThermoTrans ${ }^{\circledR}$ 205/206
1 Input
$2 \rightarrow$ Sense line
3 Sense line
4 Input
5 Output +
6 Output -
7 AC/DC power supply
8 AC/DC power supply

Removable cover,
only with user-definable models

[^21]
Certificates of Conformity

print preview

 Primionisulatm

Mntaver
Tomernen on Dish

Physikalisch-Technische Bundesanstalt P|B

89

- EC-TYPE-EXAM NATION CERTIFICATE

Gopert PTB \& atEX216?

Noxture 3 I teat lioth oun

10

Physikalisch-Technische Bundesanstalt

 PTB

 " Numa

Physikalisch-Technische Bundesanstalt

SCHEDULE

TTi Enevitonatiaikest

Denturation

$y: 0$
$y=0 n$
y
Treetir =

Meine ther
 4 napity

Ptysilkallisch-Technische Bundesanstalt averivaig una But

-
ve Lewtunat notuhanawasa
retiot tevierderit peted

wenes

ThermoTrans ${ }^{\circledR}$ 210/211

The practical solution for temperature measurement with thermocouples.

The ThermoTrans ${ }^{\circledR}$ 210/211 temperature transmitters provide you with the flexibility you need:

- Adjustment work where it is only really necessary, instead of complicated parameter tables.
- High level of reliability and compact design due to digital signal processing specially developed for the measuring task instead of unnecessary reduction in reliability due to overburdening with complicated technology.

For the majority of the standard applications with fixed preset parameters, you simply select one of the numerous fixed range standard models.

You can solve special measuring tasks with a transmitter that we configure according to your specifications.

Configuration or adaptation to the measuring task is also not a problem "on site" via the optical interface. The user friendly, menu-guided Paraly ${ }^{\circledR}$ communication software is supplied together with a fiber-optic cable incl. PC adapter.

The ThermoTrans ${ }^{\circledR}$ 210/211 temperature transmitters provide safe isolation and high insulation resistance between the input, output and power supply. They meet the strict NAMUR EMCrequirements and can easily be used for measurements in hazardous areas.

Vacuum encapsulation protects the devices against aggressive environmental influences, shock and vibrations.

Warranty 5 years!

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

ThermoTrans ${ }^{\circledR}$ 210/211 for thermocouples

Thermocouples are very lowresistance and thus noise-free. Their preferred field of application is high temperature ranges, for example, for measurements in ovens, smelting plants and plastic machines.

The range of standard thermocouples is very wide. The ThermoTrans ${ }^{\circledR}$ 210/211 transmitters therefore provide consistent connection possibilities for all regular thermocouples.

To avoid long extension wires, an external reference junction can also be used in addition to the internal one. For thermostatic reference junctions, the reference temperature can be fixed or measured with a Pt 100.

The ThermoTrans ${ }^{\circledR}$ 210/211 transmitters can also be used to measure voltages in the range $-20 \ldots+100 \mathrm{mV}$ with a transfer rate of $1 / \mathrm{s}$. Due to the transfer curve freely configured with various functions or interpolation points, they are intended for difficult measuring tasks, for example, the level in spherical tanks.

The facts

Explosion protection

[EEx ia] IIC

according to ATEX, trouble-
free use in hazardous areas

Extensive range of standard models

for standard applications, configuration not necessary

Adjustable via optical interface

universal for a wide range of measuring tasks, can also
be configured on site

Paraly ${ }^{\circledR}$ PC configuration software with tag database

 simple, menu-guided configuration in accordance with VDI/ VDE 2187, archiving of configuration dataEMC-tested according to European EMC regulations and NAMUR NE 21
reliable operation even with electromagnetic interference in the mains or in the environment

Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages
22.5 mm wide modular case with 73.5 mm standard height
compact design means easy installation, also easy to fit in standard cabinets

5-year warranty

Product line

Adjustable models Order no.
Adjustable via interface. See Configuration Schedule for factory setting.

ThermoTrans ${ }^{\circledR} 210$
with current output
210 A7 000000 Opt. 444

ThermoTrans ${ }^{\circledR} 211$ with voltage output

211 A7 000000 Opt. 444

Output curve rising, without filter constant, internal reference junction
ThermoTrans ${ }^{\circledR} 210$: open circuit recognition 22 mA . ThermoTrans ${ }^{\circledR} 211$: open circuit recognition 11 V
Power supply

$230 \vee ~ A C$	
$24 \vee$ AC/DC	336
$115 \vee ~ A C$	363

Accessories

Communications kit	For configuration of the temperature transmitter, with tag database according to VDI/VDE 2187, consisting of: - Optical fibre connecting cable 3 m - Optical interface adapter - RS 232 - Adapter D-Sub 9-pole - D-Sub 25-pole - Paraly ${ }^{\circledR}$ configuration software and tag database	ZU 0254

Product line

		ThermoTrans ${ }^{\circledR} 210$ with current output	ThermoTrans ${ }^{\circledR} 211$ with voltage output
Customer-specific models	Order no.	210 A7 999999 Opt. 444	211 A7 999999 Opt. 444

Configuration schedule

Important! Please fill in the configuration schedule completely and enclose it with your order. If entries are missing, the value entered in square brackets or the dark-colored setting \square will be set.

ThermoTrans ${ }^{\circledR}$ 210/211

Specifications

Input data	Sensor type			Range
Intrinsically safe	Type B	DIN/	584-1	$0 \ldots+1820^{\circ} \mathrm{C}$
	Type E	DIN/	584-1	$-270 \ldots+1000^{\circ} \mathrm{C}$
	Type J	DIN/	584-1	$-210 \ldots+1200^{\circ} \mathrm{C}$
	Type K	DIN/	584-1	$-270 \ldots+1372{ }^{\circ} \mathrm{C}$
	Type L	DIN		$-200 \ldots+900^{\circ} \mathrm{C}$
	Type N	ASTM	230-87	$-270 \ldots+1300^{\circ} \mathrm{C}$
	Type R	DIN/	584-1	$-50 \ldots+1767^{\circ} \mathrm{C}$
	Type S	DIN/	584-1	$-50 \ldots+1767^{\circ} \mathrm{C}$
	Type T	DIN/	584-1	$-270 \ldots+400^{\circ} \mathrm{C}$
	Type U	DIN		$-200 \ldots+600^{\circ} \mathrm{C}$
Voltage input	$-20 \ldots+100 \mathrm{mV}$			
	>10 MOhms			
Span (configurable)	$\leq 2 \mathrm{mV}$, max. measuring end - measuring start			
Sensor failure monitoring	All inputs for open circuit (not for voltage measurement)			
Input error limits	$\pm 10 \mu \mathrm{~V}+0.05 \%$ of meas. val.			
Temperature coefficient at input	$0.01 \% / K$ full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)			
Reference junction input (user-defined)	$\begin{array}{ll}\text { Internal Pt } 100 & < \pm 1.0 \mathrm{~K} \\ \text { External Pt } 100 & < \pm 0.3 \mathrm{~K}+\text { error of Pt } 100 \text { used }\end{array}$			
Output data				
Output signal $\text { (} 0 . . .100 \% \text {) }$	Model 210: $0 / 4 \ldots 20 \mathrm{~mA}$, impressed current, load voltage $\leq 10 \mathrm{~V}$ Model 211: 0 ... 10 V , impressed voltage, load current $\leq 10 \mathrm{~mA}$			
Resolution	Approx. 8000 steps (for $0 . . .100 \%$)			
Control range	-2.5 \% ... 102.5 \% of span			
Overload range with error message	Model 210: -1.0 mA or 22 mA Model 211: -0.5 V or 11 V			
Output error limits	0.1 \% full scale			
Temperature coefficient at output	$0.01 \% / \mathrm{K}$ full scale (average TC in permitted operating temperature range, reference temperature $23^{\circ} \mathrm{C}$)			
Residual ripple at output	$<10 \mathrm{mV}$ pp + digitalization error of input			

Specifications, continued

Transmission behavior

\ulcorner Characteristic	Temperature, voltage-linear or customer-specific rising or falling
$\boxed{\text { Meas. rate }}$	Approx. $1 / \mathrm{s}$ Response time T_{99}
$\leq 900 \mathrm{~ms}$ Digital output filter	$\mathrm{T}_{99}=0 \ldots 100 \mathrm{~s}$ (1st order filter)

Power supply

Power supply	230 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA
Option 336:	24 V AC/DC AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.5 VA DC: $-15 \%+20 \%$, approx. 1.2 W
Option 363:	115 V AC $-15 \%+10 \%, 48 \ldots 62 \mathrm{~Hz}$, approx. 2 VA

Isolation

Galvanic isolation
Test voltage

Working voltage
(basic isolation)

Protection against electrical shock

3-port isolation between input, output and power supply

4 kV AC (input against output and power supply)
3 kV AC (output against power supply)
1000 V AC/DC input against output and power supply with overvoltage category II and pollution degree 2 ,
330 V AC/DC output against power supply with overvoltage category II and pollution degree 1, according to EN 61010-1
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1.
Working voltages with overvoltage category II and pollution degree 2 :
600 V AC /DC for input against output and power supply
with overvoltage category II and pollution degree 2 :
300 V AC/DC for output against power supply.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks. When used in hazardous areas, the max. working voltage is 250 V .

Standards and approvals

Explosion protection (Opt. 444)	II (1) G [EEx ia] II C PTB 02 ATEX 2107 For further details see certificates of conformity page 174
Surge withstand	$5 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
EMC 1)	EMC directive 89/336/EEC, EN 61326; NAMUR recommendation NE 21

Specifications, continued

Other data

Interface (only user-definable models)	Optical, interface adapter on RS 232 interface (PC) is included in the ZU 0254 communications kit
Ambient temperature	Operation: $\quad-10 \ldots+60^{\circ} \mathrm{C}$
	Transport and storage: $-30 \ldots+80^{\circ} \mathrm{C}$
Enclosure	Modular case A7, width 22.5 mm , screw terminals
	See dimension drawings for further measurements
Protection class	Case IP 40, terminals IP 20
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 50022-35, width 22.5 mm , See dimension drawings for conductor cross section
Weight	Approx. 300 g

Schematic diagram

Application examples

With external reference junction

Summing connection with external reference junction

Differential
connection

Internal/external reference junction selectable

Pt 100 internal
 Dimension drawings and terminal assignments

Certificates of Conformity

print preview

Physikalisch-Technische Bundesanstalt P/B onvinionemat tetm

Physilkalisch-Technische Bundesanstalt P/B monertariand bit

Ptysilkalisch-Technische Bundesanstalt
Ownitave una Bet

(a) litiat mollonale whet
-

IsoAmp ${ }^{\circledR} 11000 / 12000$

Models with connections for external gain adjustment, zeroing and live-zero switching ($0 . . .20 \mathrm{~mA} / 4$... 20 mA) are available for special tasks.

The isolation amplifiers are easy to use and can be used anywhere where small dimensions are needed together with high isolation voltage, highly accurate measuring and maximum reliability.

The facts

Symmetrical input with high common mode rejection

Excellent specifications

High isolation voltage

High output power

Optional external gain adjustment with just one resistor

Live-zero switching

Complete modules without external connection

Eurocard up to 4 channels

Eurocard up to 2 channels, floating outputs

High quality and reliability

100 \% computer-supported production monitoring and final check

5-year warranty

Product line

Eurocards

$\boxed{\text { For up to } 4 \text { channels }}$	EK $14-\ldots{ }^{1)}$	
	With isolation transformer for isolated supply, for up to 2 channels	EK $16-\ldots{ }^{1)}$

1) Please indicate the required channel configuration when ordering. Any channel combination possible.
$\left.\begin{array}{lllll}\begin{array}{l}\text { Channels for } \\ \text { Eurocards }\end{array} & \begin{array}{l}\text { Input } \\ \text { symmetric }\end{array} & \begin{array}{l}\text { Output } \\ \text { impressed }\end{array} & \text { Load capability }\end{array}\right)$ Order no.
2) EK 14: $\pm 10 \mathrm{~V}$ or 20 V unipolar (note power supply)

Options		Order no
Eurocard	INTERMAS front panel for EK 14 or EK 16 Eurocard, mounted	174
	Eurocard EK 14 or EK 16 m . Wiring to customer requirements in range $\mathrm{V}_{\mathrm{I}} \geq 20 \mathrm{mV} \ldots \leq 200 \mathrm{~V}$ or $\mathrm{I}_{\mathrm{I}} \geq 100 \mu \mathrm{~A} \ldots \leq 50 \mathrm{~mA}$	1853)
Channels for Eurocard	Output $\pm 0 \ldots 20 \mathrm{~mA}$ and $+4 \ldots 20 \mathrm{~mA}$ Switchable (additional error at live-zero: $\pm 10 \mu \mathrm{~A}$)	173
	Gain error < 0.1 \% of measured value (not Model 11202)	043)

[^22]
Specifications

Input data

Input	see Product line
Configuration	EK 14 max. 4 channels also in combined version
	EK 16 max. 2 channels also in combined version
	(EK 16 with isolation transformer for isolated supply)
Input resistance	> 1 MOhm, for models with $\mathrm{I}_{1} \pm 20 \mathrm{~mA}$: 7.5 Ohm
Overload	$\mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{I}_{1} \leq 300 \mathrm{~mA}$

Output data

Output	see Product line
Offset current ${ }^{2}$)	$<50 \mathrm{nA}$
Offset voltage ${ }^{2}$	<500 nA, external zeroing
Drift	$<5 \mu \mathrm{~V} /$ month
Residual ripple	$\leq 10 \mathrm{mV}_{\mathrm{pp}}$

Transmission behavior

Gain error
Cut-off frequency 1)

Cut-off frequency ${ }^{1)}$
<0.2 \% meas. val., Opt. 04: < 0.1 \% meas.val.
$>1.5 \ldots 5 \mathrm{kHz}-3 \mathrm{~dB}(20 \mathrm{mV} \ldots 500 \mathrm{mV}$ or 10 V$)$
(different values on request)
Temperature coefficient ${ }^{2)}$ 3)
$<1 \mathrm{nA} / \mathrm{K},<2 \mu \mathrm{~V} / \mathrm{K}$ (reference temperature $23^{\circ} \mathrm{C}$)

Power supply

EK 14	$\pm 14.5 \ldots 15.5 \mathrm{~V}$ stabilized, approx. 30 mA for unipolar operation up to 20 V output voltage: $-5,+25 \mathrm{~V}$ stabilized
EK 16 with isolation transformer for isolated supply	24 V DC ± 10 \%, approx. 80 mA $30 \mathrm{~V}^{4}- \pm 10 \%$, approx. 60 mA selectable

[^23]Specifications, continued

Isolation

$\stackrel{\square}{\text { Galvanic isolation }}$

Test voltage between input and output/power supply:
$\stackrel{\rightharpoonup}{ }$

3 -port isolation between input, output and power supply	
4 kV AC	
EK 14:	600 V AC/DC
EK 16:	900 V DC each input against all other inputs and outputs
	250 V DC power supply against all other circuits with overvoltage category II and pollution degree 2 according to EN 61010-1
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.	

Standards and approvals

$\stackrel{\text { EMC }}{ } \quad$ EMC directive 89/336/EEC

Other data

Ambient temperature	$-10 \ldots+70{ }^{\circ} \mathrm{C}$
Version	Eurocard 5 TE
Pin connector	Type F according to DIN 41612, see also dimension drawings
Socket connector ${ }^{5}$)	Type F according to DIN 41612 (wire-wrap connection), see also dimension drawings
Front panel	Opt. 174: INTERMAS SP/K 3-n 05 T plastic, gray, see also dimension drawings
Weight	Approx. 45 g per channel

5) The socket connector belongs to package contents

Dimension drawing and pin assignment

EK 14, configuration with 11000 M

All dimensions in mm.

When using fixed-range
models, no wiring is necessary!
When used with R_{v}, C_{V}
separate strip conductors.
R_{G} : Negative feedback resistor
R_{p} : Shunt resistor
R_{V} : Sym. voltage divider $\left(R_{V}, R_{P}, R_{V}\right)$
C_{V} : Frequency compensation
P1 ... P4 = Nulling potentiometers

Model 11001: $\mathrm{R}_{\mathrm{G}}=\frac{\mathrm{V}_{\mathrm{I}}}{20}[\Omega, \mathrm{mV}](1 \ldots 25 \Omega)$

Output with Option 173

	$\pm 0 \ldots 20 \mathrm{~mA}$	$+4 \ldots 20 \mathrm{~mA}$
Output 1	d 18	z 18
Output 2	d 20	z 20
Output 3	d 22	z 22
Output 4	d 24	z 24

Dimension drawing and pin assignment

EK 14, configuration with 12000 M

When using fixed-range
models, no wiring is necessary!
When R_{v}, C_{v} are mounted,
separate the strip conductors.
R_{G} : Negative feedback resistor
R_{P} : Shunt resistor
R_{v} : Sym. voltage divider ($\left.R_{V}, R_{P}, R_{V}\right)$
C_{v} : Frequency compensation
P1 ... P4 = Nulling potentiometers

Model 12001: $\mathrm{R}_{\mathrm{G}}=\frac{20500 \mathrm{~V}_{\mathrm{I}}}{10000-\mathrm{V}_{\mathrm{I}}}[\Omega, \mathrm{mV}](41.1 \ldots 1079 \Omega)$

All dimensions in mm.

Dimension drawing and pin assignment

EK 16, configuration with $\mathbf{1 1 0 0 0}$ M/12000 M

When using fixed-range models, no wiring is necessary!
$R_{G 11}, R_{G 21}$: Negative feedback resistor 11000 M
$R_{G 12}, R_{G 22}$: Negative feedback resistor 12000 M
R_{p} : \quad Shunt resistor
R_{v} : \quad Sym. voltage divider ($\left.R_{V}, R_{P}, R_{V}\right)$ Frequency compensation
P1, P2 $=$ Nulling potentiometer
Separate the strip conductors when $\mathrm{Rv}, \mathrm{Cv}_{\mathrm{V}}$ are mounted!

12000 M : Base emitters of $\mathrm{T}_{1}, \mathrm{~T}_{2}$ or $\mathrm{T}_{3}, \mathrm{~T}_{4}$ must be jumpered.

IsoAmp ${ }^{\circledR 3000 / 4000}$

For transmission and conversion of impressed measuring signals

The DC isolation amplifiers from the IsoAmp ${ }^{\circledR} 3000 / 4000$ series transmit and convert impressed $0(4) \ldots 20 \mathrm{~mA}$ or $0 \ldots 10 \mathrm{~V}$ standard signals according to our DBP 3412843 patent with maximum accuracy.

They provide safe isolation and high insulation from input to output to power supply.

The control range extends into the negative values and allows strict linear transmission in the zero range. Compared with conventional unipolar amplifiers, this has a great advantage: The often asymptotic setting of the zero point, for example, when calibrating together with a sensor, is ruled out.

The transmission accuracy is unusually high. The reason for this is mainly a negative feedback circuit that is incorporated in the electrical isolation. It has no measuring resistor with 1:1 transmission and just one measuring resistor for current/ voltage conversion. Differentiated signal return allows the circuit to remain stable even with strong complex loads.

The components required in conventional concepts for matching amplifiers and resistor networks are omitted. The reliability is accordingly high.

The computer-controlled production monitoring and final check ensure high and constant quality. The full encapsulation guarantees maximum safety and reliability even in extreme conditions.

Warranty 5 years!

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

The devices can be used for many galvanic isolation applications, for example:

- in measuring and control engineering
- for linking measured signals to different potentials
- for removal of double ground compensation currents
- for isolation of dangerous touch voltages
- for computer interfacing
- for increasing the load voltage and decoupled signal transmission

Each Eurocard can carry a maximum of 4 channels.

The 16 mm high channel design even allows just 4 TE rack width. Therefore 21 cards with 84 channels can be accommodated per 19" rack.

For safe isolation in accordance with EN 61140, the required clearance and creepage distance should be taken into consideration.

Model overview

IsoAmp ${ }^{\circledR} 3820$

transforms the input current 1:1 into an impressed output current without negative feedback resistors by means of negativefeedback current transformation.

IsoAmp ${ }^{\circledR} 4820$

converts the input current 2:1
into an impressed output voltage with just a precision resistor after current transformation.

IsoAmp® 3310
converts the input voltage 3:1 into an impressed output current with just a precision resistor after voltage transformation.

IsoAmp ${ }^{\circledR} 4310$

converts the input voltage $1: 1$ into an impressed output voltage without negative-feedback resistors after voltage transformation.

The facts

Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages

3-port isolation

protection against incorrect measurements or damage to the measuring system due to parasitic voltages

Decoupled

no load impedance effect on the signal source

Maximum reliability

no maintenance work, therefore the related costs are not incurred

High accuracy no falsification of measured signal

Simple live zero/dead zero switching option

multiple application possibilities due to optional switching of input or output

5-year warranty

Product line

Eurocards	Order no.
For up to 3 channels EK 8-1)2) For up to 4 channels EK 9-1)2) 1) Any module combination possible 2) 'Card disconnected' safety circuit on request	

Channels for Eurocards

Input: $0 \ldots 20 \mathrm{~mA}$, output: $0 \ldots 20 \mathrm{~mA}$	3820 Mh
Input: $0 \ldots 20 \mathrm{~mA}$, output: $0 \ldots 10 \mathrm{~V}$	4820 Mh
Input: $0 \ldots 10 \mathrm{~V}$, output: $0 \ldots 20 \mathrm{~mA}$	3310 Mg
Input: $0 \ldots 10 \mathrm{~V}$, output: $0 \ldots 10 \mathrm{~V}$	4310 Mg

Power supply
24 V AC/DC

Options

Input 0 ... 20 mA or $4 \ldots 20 \mathrm{~mA}$, switchable	2503)
Output $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$, switchable	2513)
INTERMAS front panel, width 25 mm , for EK 8 or EK 9 Eurocard, mounted	174
INTERMAS front panel, width 20 mm , for EK 8 or EK 9 Eurocard, mounted when equipped with 3820 Mh and 4820 Mh , only	301

3) Options 250 and 251 cannot be combined; additional error at output: $\pm 10 \mu \mathrm{~A}$, with Model $4820: \pm 10 \mathrm{mV}$

Accessories

Inspection Certificate 3.1 B according to EN 10204	ZU 0267
Inspection Certificate 3.1 B according to EN 10204, with description and results from inspections	ZU 0202

Selection aid for modules and options

Output

		0 ... 20 mA	0... $20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}^{4}$)	0 ... 10 V
Input	0 ... 20 mA	3820 Mh	3820 Mh Opt. 251	4820 Mh
	0/4 ... $20 \mathrm{~mA}^{4}$)	3820 Mh Opt. 250	$3820 \mathrm{Mh} 5)$	4820 Mh Opt. 250
	$0 \ldots 10 \mathrm{~V}$	3310 Mg	3310 Mg Opt. 251	4310 Mg

[^24]
Specifications

Input data	3820 Mh	4820 Mh	$\mathbf{3 3 1 0} \mathbf{M g}$	4310 Mg
Input6)	0 ... 20 mA impresse Opt. 250: 0/4 ... 20	current A switchable7)	0 ... 10 V	
Input voltage drop	Approx. 100 mV At open output: approx. 750 mV Upon power failure: approx. 750 mV	Approx. 150 mV Upon power failure: approx. 750 mV	-	
Input resistance	-		> 5 MOhms	>2 MOhms
Offset current ${ }^{\text {8 }}$	-		$<500 \mathrm{nA} \pm 10 \mathrm{nA} / \mathrm{K}$	$<1 \mu \mathrm{~A} \pm 10 \mathrm{nA} / \mathrm{K}$
Overload	$\leq 300 \mathrm{~mA}$ Limitation to 750 mV	with diode	$\leq 100 \mathrm{~mA}$ Limitation to 13 V	h suppressor diode
Output data	3820 Mh	4820 Mh	$\mathbf{3 3 1 0} \mathbf{M g}$	4310 Mg
Output6)	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA}, 14 \mathrm{~V} 9) \\ & \text { Opt. } 251: \\ & 0 / 4 \ldots 20 \mathrm{~mA} \end{aligned}$ Switchable7)	$0 \ldots 10 \mathrm{~V}, 10 \mathrm{~mA}$	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA}, 10 \mathrm{~V} \\ & \text { Opt. } 251 \text { : } \\ & 0 / 4 \ldots 20 \mathrm{~mA} \end{aligned}$ Switchable7)	$0 \ldots 10 \mathrm{~V}, 20 \mathrm{~mA}$
Residual ripple	$<10 \mathrm{mV}$ pp			
Transmission errors	0.01 \% meas. val.	0.1 \% meas. val.	0.1 \% meas. val.	0.02 \% meas. val.
Offset	$<2 \mu \mathrm{~A}$	$<2 \mathrm{mV}$	$<5 \mu \mathrm{~A}$	<2 mV
Cut-off frequency	$5 \mathrm{kHz}-3 \mathrm{~dB}$	$\begin{aligned} & 10 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{\mathrm{O}} \leq 3 \mathrm{~V}_{\mathrm{pp}} \\ & 3 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{\mathrm{O}} \leq 10 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$	$10 \mathrm{kHz}-3 \mathrm{~dB}$	$\begin{aligned} & 10 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{\mathrm{O}} \leq 3 \mathrm{~V}_{\mathrm{pp}} \\ & 3 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{0} \leq 10 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$
Temperature coefficient ${ }^{\text {8 }}$	<10 nA/K	$\begin{aligned} & <40 \mu \mathrm{~V} / \mathrm{K} \\ & \pm 0.0025 \% / \\ & \mathrm{K} \text { meas. val. } \end{aligned}$	$\begin{aligned} & <100 \mathrm{nA} / \mathrm{K} \\ & \pm 0.0025 \% / \\ & \mathrm{K} \text { meas. val. } \end{aligned}$	<40 $\mu \mathrm{V} / \mathrm{K}$

Power supply

Power supply			
	$24 \mathrm{~V} \mathrm{AC/DC}$		$\mathrm{AC}:-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.3 VA
:---			
$\mathrm{DC}:-15 \%+20 \%$, approx. 0.6 VA			

Isolation

\ulcorner Test voltage		kV AC (input/output/power supply) Galvanic isolation
	3-port isolation between input, output and power supply	

[^25]Specifications, continued

Isolation

Working voltages
(basic isolation)

According to EN 61010-1
Type EK8
Each input against
all other circuits
all other circuits

Each output against all other circuits
Power supply against all other circuits
Type EK9
Each input against
all other circuits
Each output against
all other circuits
Overvoltage category /
perm. pollution degree
II / degree 2
II / degree 3
I / degree 1
II / degree 2
II / degree 1
III / degree 2

Permitted working voltage

1000 V DC 660 V DC / 630 V AC

1000 V DC 660 V AC/DC
1000 V DC 600 V AC/DC
Overvoltage category /
perm. pollution degree

Permitted working voltage
1000 V DC
$600 \mathrm{~V} \mathrm{AC/DC}$
1000 V DC
$600 \mathrm{~V} \mathrm{AC/DC}$
1000 V DC
$600 \mathrm{~V} \mathrm{AC/DC}$
600 V AC/DC

Permissible working voltages for other overvoltage categories and pollution degrees and for reinforced insulation/safe isolation on request.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Protection against electrical shock

Safe isolation according to EN 61140 by reinforced insulation in accordance with EN 61010-1.
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand
EMC
$5 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
According to EMC directive 89/336/EEC ${ }^{10}$)

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+70^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Version	Eurocard 5 TE (Opt. 174) / 4 TE (Opt. 301)
Pin connector	Type F according to DIN 41612, see also dimension drawings
Socket connector ${ }^{11)}$	Type F according to DIN 41612 (wire-wrap connection), see also dimension drawings
Front panel	Opt. 174: INTERMAS, SP/K3-n05T plastic, gray, see also dimension drawings Opt. 301: INTERMAS, SP/K3-n04T plastic, gray, see also dimension drawings
Weight	Approx. 60 g to 73 g per channel

[^26]
Schematic diagrams

Model 3820

Model 4820

Model 3310

Model 4310

Dimension drawing and pin assignment

for EK 8 Eurocard

Dimension drawings and pin assignment

for EK 9 Eurocard

Terminal assignments for Options 250 or 251

Model	Option	Input*)	Output	Output connection	Jumper (output)
3820	250	0 ... 20 mA	0... 20 mA	dz	
		$4 \ldots 20 \mathrm{~mA}$	0 ... 20 mA	dz	db
	「	\bigcirc	\bigcirc	\checkmark	「
3820	251	$0 \ldots 20 \mathrm{~mA}$	0... 20 mA	dz	
		$0 \ldots 20 \mathrm{~mA}$	4... 20 mA	db	
4820	250	$0 . .20 \mathrm{~mA}$	0...10 V	dz	db
		4... 20 mA	0... 10 V	dz	
3310	251	0... 10 V	0.20 mA	dz	
		$0 \ldots 10 \mathrm{~V}$	4... 20 mA	db	

IsoTrans ${ }^{\circledR} 41$

The advantages

IsoTrans ${ }^{\circledR} 41$ with a voltage drop of 1.2 V is the $1: 1$ isolator for all applications where loop-powered isolators are not suitable because of technical problems, for example, voltage drop too high.

The application

Galvanic isolation

- of input and output circuits
- of the supply voltage for 2-wire transmitters
- in the case of addition or another coupling of signals at different potentials
- for eliminating double ground compensation currents
- when there is an insufficient insulation and test voltage
- of high-potential signal sources
- for battery-powered devices with a central battery

The technology

Knick's IsoTrans® 41 DC isolators with transformer isolation have specifications well beyond any other loop-powered isolators. They feature a chopper generator connected in series into a current path and current conversion which gradually changes from sine to square wave over the measuring range. This avoids the accuracy-reducing power losses of normal parallel connected generators, reduces the voltage drop accordingly and also ensures accurate transmission of the smallest currents.

The facts

Lower costs due to multichannel design

Eurocard up to a maximum of 8 channels

Minimum loading

Voltage drop from 1.2 V , current transmission from $2 \mu \mathrm{~A}$ to 50 mA

Good signal transmission
Low signal delay

No power supply required
Cost saving due to lower wiring requirement, no mains influences

Maximum reliability
No repair and failure costs

Extremely high accuracy

5-year warranty

Product line

Eurocards	Order no.
For up to 8 channels	EK $15-41 \mathrm{Mi} \ldots{ }^{1)}$
Power supply	
None, supply from input signal	
Options	301

1) Please indicate the required channel number when ordering. Model EK $5-\ldots$ is still available for replacement purposes.

Specifications

Input data

Input	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 50 \mathrm{~mA} \end{aligned}$
Operating current	$<2 \mu \mathrm{~A}$
Configuration	Max. 8 modules
Voltage drop	Approx. 1.2 V (20 mA) Approx. 1.6 V (50 mA)
Overload	$100 \mathrm{~mA}, 20 \mathrm{~V}$ (see also page 193)

Output data

Output	0 ... $20 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds to 750 Ohm load) 0 ... $50 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds to 300 Ohm load)
Offset	$<5 \mu \mathrm{~A}$
Residual ripple ${ }^{2)}$	$<1.5 \mathrm{mV}_{\mathrm{pp}} / \mathrm{mA}$

Transmission behavior

Transformation error ${ }^{3)}$	0.02 \% meas. val.
Load error	<0.02 \% measured value per 100 Ohms
Rise or fall time	Approx. 2.5 ms at 500 Ohm load resistanc

Specifications, continued

Isolation

Test voltage	2.5 kV AC
Working voltage	≤ 4 channels 500 V DC with overvoltage category II and pollution degree 2
(basic isolation)	≥ 5 channels 500 V DC with overvoltage category II and pollution degree 1 according to EN 61010-1
	For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
Immunity to ESD	8 kV according to IEC 801-2

Other data

Ambient temperature	$-25 \ldots+80^{\circ} \mathrm{C}$
Version	Eurocard 4 TE
Pin connector	Type F according to DIN 41612, see also dimension drawings
Socket connector ${ }^{4}$	Type F according to DIN 41612 (wire-wrap connection), see also dimension drawings
Weight	Approx. 40 g per channel

4) Included in package contents.

Transfer functions

Schematic diagram

Typical configurations

Electrical isolation

With impressed current, current output

Electrical isolation

in two-wire technology

Electrical isolation

With impressed input current, current output

Electrical isolation

For current addition with impressed currents

e. g. grounded

Dimension drawing and pin assignment

for EK 15 Eurocard

All dimensions in mm.

Plug-in connection
Front panel Opt. 301

Type F according to DIN 41612
INTERMAS SP/K3-n04 T,
plastic, gray

IsoTrans ${ }^{\circledR} 46$

Product line

Eurocards	Order no.
For up to 8 channels	EK 15-46Mk/... 1)
Power supply	
None, supply from input signal	
Options	
INTERMAS SP/K3-n04T front panel, plastic, gray, width 15 mm, for EK 15 Eurocard, mounted Safe electrical isolation to VDE 0100 Part 410	446

1) Please indicate the required module number when ordering.

Specifications

Input data

Input	$0 . . .20 \mathrm{~mA}^{2}$)
Operating current	$<20 \mu \mathrm{~A}$
Configuration	Max. 8 channels
Overload	$100 \mathrm{~mA}, 30 \mathrm{~V}$
Voltage drop	Approx. 2.5 V 3$)$

Output data

Specifications, continued

Transmission behavior

Transmission errors	<0.1 \% full scale
Rise and fall time	Approx. 5 ms at 500 Ohm load
Temperature coefficient ${ }^{4)}$	0.002 \%/K full scale per 100 Ohm load

Isolation

Test voltage
Working voltages
(basic isolation)

Protection against electrical shock (Opt. 453)

510 V AC 4 kV AC with option 453		
According to EN 61010-1		
Type EK15	Overvoltage category / perm. pollution degree	Permitted working voltage
Input against output of the same channel	\| / degree 4	150 V AC/DC
	II / degree 4	100 V AC/DC
	III / degree 4	50 V AC/DC
With ≤ 4 channels Inputs/outputs against inputs or outputs of external channels	III / degree 2	600 V AC/DC
	IV / degree 3	300 V AC/DC
With ≥ 5 channels Inputs/outputs against inputs or outputs of external channels		
	III / degree 2	600 V AC/DC
	III / degree 2	300 V
Permitted working voltages for modules with protective separation (Opt. 453) and other overvoltage categories and pollution degrees on request. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.		
Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.		

Standards and approvals

Surge withstand according to IEC 255-4	$5 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$ (only with Opt. 453)
Surge withstand according to EN 61010-1	$\begin{aligned} & 850 \mathrm{~V} \\ & >6 \mathrm{kV} \text { with option } 453 \end{aligned}$
EMC 5)	NAMUR NE 21, European EMC regulations

[^27]5) Valid for $4 \ldots 20 \mathrm{~mA}$, slight deviations possible during interference.

Specifications, continued

Other data
Ambient temperature

$\boxed{\text { Version }}$
\square

Pin connector
Socket connector
\square

Front panel (Opt. 446)
Weight

Operation: $\quad-10 \ldots+70^{\circ} \mathrm{C}$
Transport and storage: $\quad-30 \ldots+80^{\circ} \mathrm{C}$
Eurocard 3 TE
Type F according to DIN 41612, see also dimension drawings
Type F according to DIN 41612, wire-wrap connection (included in package contents),
see also dimension drawings
INTERMAS SP/K3-n03T, plastic, gray, see also dimension drawings
Approx. 13 g per channel

Schematic diagram

Dimension drawing and pin assignment

for EK 15 Eurocard

| d |
| :--- | :--- |
| $-\quad+$ |

All dimensions in mm.
Plug-in connection Type F according to DIN 41612
Front panel Opt. 446 INTERMAS SP/K3-n3 T,
plastic, gray

IsoAmp ${ }^{\circledR}$ EK 30/31

For isolation and conversion of impressed measured signals

The task

Reliable transmission and conversion of (0) 4 ... 20 mA and $0 . . .10 \mathrm{~V}$ signals with high accuracy in up to four 0(4) ... 20 mA output signals.

The problems

Almost perfect signal transmission with avoidance of dangerous electrical shock.

The solution

The Knick standard-signal multipliers provide perfect solutions for

- the signal multiplication to up to four output channels with galvanic isolation,
- increasing the output load to a max. of 40 V (series connection of the output circuits),
- the conversion of the standard current or of the voltage input signal into any standard current output signals,
- the prevention of dangerous electrical shocks by means of safe isolation.

The enclosure

The compact design allows the use of a Eurocard with a width of just 4 TE. This means up to 84 channels can be accommodated in a 19" rack.

The advantages

There are no negative feedback resistors as normally required in conventional amplifiers. The number of components is thus reduced to a minimum. Accuracy and reliability are increased accordingly.

The modular concept allows simple retrofitting of output channels. Your measuring point is therefore also expandable for future measuring tasks.

The technology

With an optimized signal concept, the Knick standard-signal multipliers achieve almost perfect signal transmission.

The facts

Simple signal switching

universal use for numerous signal combinations

3-port isolation

protection against incorrect measurements or damage to the measuring system due to parasitic voltages

Safe isolation

protection against unpermitted high voltages

Compact design

Eurocard with width of just 4 TE, up to 84 output channels in a 19" rack

High accuracy
no falsification of measured signal

Maximum reliability

no repair and failure costs

Expandable

outputs can be retrofitted, expandable for future measuring tasks

5-year warranty

Product line

Eurocards	Configuration	Order no.
EK 30	2 output channels	EK 30/2
	3 output channels	EK 30/3
	4 output channels	EK 30/4
EK 31	2 output channels	EK 31/2
with safe isolation	3 output channels	EK 31/3
also of the outputs	4 output channels	EK 31/4
Power supply		
24 V AC/DC		
Option		
INTERMAS SP/K3-n04T front panel, width 20 mm , plastic, gray, mounted		301
Accessories		
Output module for EK 30, individually retrofittable		46 Mk
Output module with safe isolation, for EK 31, individually retrofittable		46 Mk Op

Specifications

Input data

Input ${ }^{1)}$	0 ... 20 mA or $4 \ldots 20 \mathrm{~mA}$, voltage drop approx. 400 V 0 ... 10 V , input resistance 1 MOhm
Configuration	Max. 4 output channels
Overload	100 mA

Output data

Output	Up to 4 channels, 0 ... 20 mA or 4 ... 20 mA (selectable via slide switches for all channels together)
Load	≤ 500 Ohm per channel at 20 mA
Load error	<0.02 \% meas. val./ 100 Ohms
Offset	$20 \mu \mathrm{~A}$ at input 0 (4) ... 20 mA $25 \mu \mathrm{~A}$ at input $0 . . .10 \mathrm{~V}$
Residual ripple	$<5 \mathrm{mV}$

Specifications, continued

Transmission behavior

Transmission error ${ }^{2)}$	0.1% meas. val. at input 0 (4) ... 20 mA 0.25 \% meas. val. at input $0 \ldots 10 \mathrm{~V}$
Rise or fall time	Approx. 5 ms at 500 Ohm load
Temperature coefficient ${ }^{3}$)	0.01 \% meas. val./K at input 0 (4) ... 20 m 0.015 \% meas. val./ K at input 0 ... 10 V

Power supply

Power supply

24 V DC $-15 \%+20 \%$, approx. 2.7 W
$24 \mathrm{~V} \mathrm{AC}-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 3.5 VA

| 3-port isolation between input, output and power supply | |
| :--- | :--- | :--- |
| EK 30 Power supply against all other circuits 4 kV AC
 Outputs among each other and against input 510 V AC
 EK 31 All isolating distances 4 kV AC | |

According to EN 61010-1

Type EK30

Outputs against each other
and against input
$\longdiv { \text { Power supply against input } }$ and against output

Type EK31

All isolating distances

Overvoltage category / perm. pollution degree	Permitted working voltage
\| / degree 4	150 V AC/DC
II / degree 4	100 V AC/DC
I / degree 4	50 V AC/DC
II / degree 2	1000 V AC/DC
III / degree 2	600 V AC/DC
III / degree 3	410 V AC/DC
IV / degree 3	300 V AC/DC
Overvoltage category / perm. pollution degree	Permitted working voltage
II / degree 2	1000 V AC/DC
III / degree 2	600 V AC/DC
III / degree 3	410 V AC/DC
IV / degree 3	300 V AC/DC

For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Safe isolation according to EN 61140 through reinforced insulation according to EN 61010-1.
Working voltage up to overvoltage category III and pollution degree 2
with EK 30: 300 V AC/DC between power supply and all other circuits,
with EK 31 between each output and all other circuits as well as
between power supply and all other circuits
For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Specifications, continued

Standards and approvals
EMC
EMC directive 89/336/EEC, EN 61326; NAMUR NE 21

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+70^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Version	Eurocard, 4 TE, see also dimension drawing
Pin connector	Type F according to DIN 41612, see also dimension drawings
Socket connector	Type F according to DIN 41612 (included in package contents), see also dimension drawings
Weight	Approx. 170 g with 2 channels, approx. 185 g with 3 channels, approx. 200 g with 4 channels

Schematic diagram

Application examples

Galvanically isolated actuation of computer, recorder and indicator with additional measuring output

Series connection for increasing the load voltage

Dimension drawing and pin assignment

For Eurocard EK 30/31

Plug-in connection: $\begin{aligned} & \text { Type F according } \\ & \text { to DIN } 41612\end{aligned}$
Front panel Opt. 301: INTERMAS SP/K3-n04T, plastic, gray

All dimensions in mm .

soAmp ${ }^{\circledR}$

 Amplifier
$80-$ Power Supply $24 V=$ $10+$

234 $+6 \cdot-$ Output

IsoAmp® 11000/12000

Product line

Devices	Symmetrical input	Impressed output	Load capability	Order no.
Free wiring	Up to $\pm 500 \mathrm{mV}$ depending on wiring	$\pm 20 \mathrm{~mA}$	$10 \mathrm{~V} 1{ }^{1}$	11001 M
	Up to $\pm 500 \mathrm{mV}$ depending on wiring	$\pm 10 \mathrm{~V}^{1}$	20 mA	12001 M
Fixed setting	$\begin{aligned} & \pm 20 \mathrm{mV} \\ & \pm 60 \mathrm{mV} \\ & \pm 150 \mathrm{mV} \\ & \pm 500 \mathrm{mV} \\ & \pm 10 \mathrm{~V} \\ & \pm 20 \mathrm{~mA} \end{aligned}$	$\pm 20 \mathrm{~mA}$	$10 \mathrm{~V} 1{ }^{1}$	$\begin{aligned} & 11202 \mathrm{M} \\ & 11206 \mathrm{M} \\ & 11215 \mathrm{M} \\ & 11250 \mathrm{M} \\ & 11310 \mathrm{M} \\ & 11820 \mathrm{M} \end{aligned}$
	$\begin{aligned} & \pm 20 \mathrm{mV} \\ & \pm 60 \mathrm{mV} \\ & \pm 150 \mathrm{mV} \\ & \pm 500 \mathrm{mV} \\ & \pm 10 \mathrm{~V} \\ & \pm 20 \mathrm{~mA} \end{aligned}$	$\pm 10 \mathrm{~V}$	20 mA	$\begin{aligned} & 12202 \mathrm{M} \\ & 12206 \mathrm{M} \\ & 12215 \mathrm{M} \\ & 12250 \mathrm{M} \\ & 12310 \mathrm{M} \\ & 12820 \mathrm{M} \end{aligned}$

Power supply
$15 \vee D C$

Options
Order no.

Output $\pm 0 \ldots 20 \mathrm{~mA}$ and $+4 \ldots 20 \mathrm{~mA}$, switchable (with live-zero: unipolar input, additional error $\pm 10 \mu \mathrm{~A})$	173
	04

1) $\pm 10 \mathrm{~V}$ or 20 V unipolar (check power supply!)

Specifications

Input data

Input	See Product line
Input resistance	> 1 MOhm, for models with $\mathrm{I}_{1} \pm 20 \mathrm{~mA}: 7.5 \mathrm{Ohm}$
Overload	$\mathrm{V}_{1}=25 \mathrm{~V}, \mathrm{I}_{1}=300 \mathrm{~mA}$

Output data

Output	see Product line
Offset current ${ }^{3}$)	< 50 nA

Specifications, continued

Output data

Offset voltage ${ }^{3)}$	$<500 \mu \mathrm{~V}$, external zeroing
Drift	$<5 \mu \mathrm{~V} /$ month
Residual ripple	$\leq 10 \mathrm{mV} \mathrm{pp}$

Transmission behavior

Gain error	<0.2 \% meas. val., Opt. 04: <0.1\% meas. val.
Cut-off frequency ${ }^{2}$	> $1.5 \ldots 5 \mathrm{kHz}-3 \mathrm{~dB}(20 \mathrm{mV} \ldots 500 \mathrm{mV}$ or 10 V$)$; different values on request
Temperature coefficient 3) 4)	$<1 \mathrm{nA} / \mathrm{K},<2 \mu \mathrm{~V} / \mathrm{K}$ (reference temperature $23^{\circ} \mathrm{C}$)

Power supply

Power supply

$\pm 14.5 \ldots 15.5 \mathrm{~V}$ DC stabilized, approx. 30 mA
for unipolar operation up to 20 V output voltage: $-5,+25 \mathrm{~V}$ stabilized

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	$4 \mathrm{kV} \mathrm{AC} \mathrm{between} \mathrm{input} \mathrm{and} \mathrm{output/power} \mathrm{supply}$
Working voltages (basic isolation)	1000 V DC with overvoltage category II and pollution degree 3 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

EMC EMC directive 89/336/EEC

Other data

Ambient temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Version	Module, encapsulated, see dimension drawings for measurements
Weight	Approx. 45 g

2) Current output up to 250 Ohm load, Models 11310 and 12310 up to $10 \mathrm{~V}_{\mathrm{pp}}$
3) $\times 10$ for Models 11310,12310
4) Offset set to zero

Connection diagrams

11000 M connection diagram

12000 M connection diagram

Dimension drawings and pin assignment

11000 M

Connect 0 output to 0 V power supply.

12000 M

$R=$ spacing $=2.54$
Pin view

All dimensions in mm.

IsoAmp ${ }^{\circledR 3000 / 4000}$

For transmission and conversion of impressed measuring signals

The DC isolation amplifiers from the IsoAmp ${ }^{\circledR} 3000 / 4000$ series transmit and convert impressed $0(4)$... 20 mA or $0 \ldots 10 \mathrm{~V}$ standard signals according to our DBP 3412843 patent with a high level of accuracy.

They provide safe isolation and high insulation from input to output to power supply.

The devices can be used for many galvanic isolation applications, for example:

- In measuring and control engineering across the world
- For linking measured signals to different potentials
- For removal of double ground compensation currents
- For isolation of dangerous touch voltages
- For computer interfacing
- For increasing the load voltage and decoupled signal transmission

The DC isolation amplifier is available as a module for universal 24 V AC/DC power supply for use on printed circuit boards.

For safe isolation in accordance with EN 61140, the required clearance and creepage distance should be taken into consideration.

Model overview

IsoAmp ${ }^{\circledR} 3820$

transforms the input current 1:1 into an impressed output current without negative feedback resistors by means of negativefeedback current transformation.

IsoAmp ${ }^{\circledR} 4820$
converts the input current 2:1 into an impressed output voltage with just one precision resistor after current transformation.

IsoAmp® 3310

converts the input voltage $3: 1$ into an impressed output current with just one precision resistor after voltage transformation.

IsoAmp ${ }^{\circledR} 4310$

converts the input voltage 1:1 into an impressed output voltage without negative-feedback resistors after voltage transformation.

The facts

Safe isolation in accordance with EN 61140
protection of the maintenance staff and the subsequent devices against non-permitted high voltages

3-port isolation

protection against incorrect measurements or damage to the measuring system due to parasitic voltages

Decoupled

no load impedance effect on the signal source

Maximum reliability

no maintenance work, therefore the related costs are not incurred

Full encapsulation

reliable functioning also in aggressive atmospheres or with considerable mechanical loading, for example, due to vibrations

High accuracy
no falsification of measured signal

Simple live zero/dead zero switching option

 multiple application possibilities due to optional switching of input or output 0 ... 20 mA , 4 ... 20 mA5-year warranty

Product line

Devices	Order no.
Input: $0 \ldots 20 \mathrm{~mA}$, output, $0 \ldots 20 \mathrm{~mA}$ Input: $0 \ldots 20 \mathrm{~mA}$, output, $0 \ldots 10 \mathrm{~V}$	3820 Mh
Input: $0 \ldots 10 \mathrm{~V}$; output, $0 \ldots 20 \mathrm{~mA}$	4820 Mh
Input: $0 \ldots 10 \mathrm{~V}$; output, $0 \ldots 10 \mathrm{~V}$	3310 Mg
Power supply	4310 Mg
24 V AC/DC	
Options	$2501)$
Input $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$, switchable	$2511)$
Output $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$, switchable	
1) Options 250 and 251 cannot be combined; additional error at output: $\pm 10 \mu \mathrm{~A}$, at Model $4820: \pm 10 \mathrm{mV}$	

Accessories

Inspection Certificate 3.1 B according to EN 10204	ZU 0267
Inspection Certificate 3.1 B according to EN 10204, with description and results from inspections	ZU 0202

Selection aid for modules and options

		Output		
		0 ... 20 mA	0... $20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}{ }^{2}$)	0 ... 10 V
Input	0 ... 20 mA	3820 Mh	3820 Mh Opt. 251	4820 Mh
	0/4 ... $20 \mathrm{~mA}^{2}$)	3820 Mh Opt. 250	3820 Mh3)	4820 Mh Opt. 250
	0... 10 V	3310 Mg	3310 Mg Opt. 251	4310 Mg

2) Switchable
3) Transmisssion 1:1

Specifications

Input data	3820 Mh	4820 Mh	$\mathbf{3 3 1 0} \mathbf{M g}$	4310 Mg
Input ${ }^{1}$	0 ... 20 mA impress Opt. 250: 0/4 ... 20	current mA switchable2)	$0 \ldots 10 \mathrm{~V}$	
Input resistance	-		>5 MOhms	>2 MOhms
Input voltage drop	Approx. 100 mV With open output: approx. 750 mV Upon power failure: approx. 750 mV	Approx. 150 mV Upon power failure: approx. 750 mV	-	
Offset current ${ }^{3}$	-		$<500 \mathrm{nA} \pm 10 \mathrm{nA} / \mathrm{K}$	$<1 \mu \mathrm{~A} \pm 10 \mathrm{nA} / \mathrm{K}$
Overload	$\leq 300 \mathrm{~mA}$ Limitation to 750 mV	with diode	$\begin{aligned} & \leq 100 \mathrm{~mA} \\ & \text { Limitation to } 13 \mathrm{~V} \mathrm{w} \end{aligned}$	h suppressor diode
Output data	3820 Mh	4820 Mh	$\mathbf{3 3 1 0} \mathbf{M g}$	4310 Mg
Output ${ }^{1}$	$\begin{aligned} & 0 \ldots .20 \mathrm{~mA}, 14 \mathrm{~V} 4) \\ & \text { Opt. } 251 \text { : } \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { switchable2) } \end{aligned}$	0 ... $10 \mathrm{~V}, 10 \mathrm{~mA}$	0 ... $20 \mathrm{~mA}, 10 \mathrm{~V}$ Opt. 251: 0/4 ... 20 mA switchable ${ }^{2)}$	0 ... $10 \mathrm{~V}, 20 \mathrm{~mA}$
Offset	$<2 \mu \mathrm{~A}$	$<2 \mathrm{mV}$	$<5 \mu \mathrm{~A}$	$<2 \mathrm{mV}$
Residual ripple	$<10 \mathrm{mV}$ pp			
Transmission error	0.01 \% meas. val.	0.1 \% meas. val.	0.1 \% meas. val.	0.02 \% meas. val.
Cut-off frequency	$5 \mathrm{kHz}-3 \mathrm{~dB}$	$\begin{aligned} & 10 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{0} \leq 3 \mathrm{~V}_{\mathrm{pp}} \\ & 3 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{\mathrm{O}} \leq 10 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$	$10 \mathrm{kHz}-3 \mathrm{~dB}$	$\begin{aligned} & 10 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{0} \leq 3 \mathrm{~V}_{\mathrm{pp}} \\ & 3 \mathrm{kHz}-3 \mathrm{~dB} / \\ & \mathrm{V}_{0} \leq 10 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$
Temperature coefficient ${ }^{3}$	< $10 \mathrm{nA} / \mathrm{K}$	$\begin{aligned} & <40 \mu \mathrm{~V} / \mathrm{K} \\ & 0.0025 \% / \mathrm{K} \end{aligned}$ meas. val.	< $100 \mathrm{nA} / \mathrm{K}$	$<40 \mu \mathrm{~V} / \mathrm{K}$ 0.0025 \%/K meas. val.

Power supply

Power supply	24 V AC/DC	AC: $-15 \%+10 \%, 48 \ldots 500 \mathrm{~Hz}$, approx. 1.3 VA
		DC: $-15 \%+20 \%$, approx. 0.6 VA

[^28]Specifications, continued

Isolation

Galvanic isolation	3 -port isolation between input, output and power supply
Test voltage	$4 \mathrm{kV} \mathrm{AC} \mathrm{(input/output/power} \mathrm{supply)}$
Working voltages (basic isolation)	1000 V DC with overvoltage category II and pollution degree 3 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock	Safe isolation according to EN 61140 by reinforced insulation according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals

Surge withstand	$5 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ according to IEC 255-4
EMC	EMC directive 89/336/EEC ${ }^{5}$)

Other data

Ambient temperature	$\begin{array}{ll}\text { Operation: } & -10 \ldots+70^{\circ} \mathrm{C} \\ \text { Transport and storage: } & -30 \ldots+80^{\circ} \mathrm{C}\end{array}$
Version	Height: Module Mg (Models 3310/4310): 19 mm , Module Mh (Models 3820/4820): 15.9 mm See dimension drawings for further measurements
Weight	Approx. 45 g

[^29]
Schematic diagrams

Model 3820

Model 4820

Model 3310

Model 4310

Dimension drawings and pin assignment

Pin view

Mg		
A	19	15.9
B	Appr. 6.8	Appr. 9.8

All dimensions in mm.

Terminal assignments of Options 250 or 251

Model	Option	Input *)	Output	Output connection	Jumper (output)
3820	250	0 ... 20 mA	0 ... 20 mA	2-4	
		$4 \ldots 20 \mathrm{~mA}$	$0 \ldots 20 \mathrm{~mA}$	2-4	3-4
3820	251	0... 20 mA	0... 20 mA	2-4	
		0... 20 mA	$4 \ldots 20 \mathrm{~mA}$	3-4	
4820	250	0... 20 mA	$0 \ldots 10 \mathrm{~V}$	2-4	
		4... 20 mA	$0 \ldots 10 \mathrm{~V}$	2-4	3-4
3310	251	$0 \ldots 10 \mathrm{~V}$	0 ... 20 mA	2-4	
		$0 \ldots 10 \mathrm{~V}$	$4 \ldots 20 \mathrm{~mA}$	3-4	

*) See dimension drawing

IsoTrans ${ }^{\circledR} 41$

For isolation of

 0 ... 20 standard signals
The task

Galvanic isolation of measured signals on circuit boards, cost cutting by means of minimum work in series production.

The problems

The application possibilities for loop-powered isolators are mainly defined by the following critical data:

- Voltage drop
- Operating current
- Accuracy
- Load voltage
- Signal delay
- Isolation voltage
- Dimensions

The solution

Knick's IsoTrans ${ }^{\circledR} 41$ isolator has unmatched technical specifications. The isolator draws its power as voltage drop from the measured signal without influencing it noticeably. This saves on supply units and cabling and increases the reliability accordingly.

The enclosure

The full encapsulation guarantees a high level of reliability even in extreme conditions.

The advantages

The IsoTrans ${ }^{\circledR} 41$ with a voltage drop of 1.2 V is the $1: 1$ isolator for all applications where looppowered isolators are not suitable because of technical problems, for example.

The application

Galvanic isolation

- of input and output circuits
- of the supply voltage of 2-wire transformers
- in the case of addition or other coupling of signals on different potential
- or eliminating double ground compensation currents
- when there is an insufficient insulation and test voltage
- of high-potential signal sources
- for battery-powered devices with a central battery

The technology

Knick's IsoTrans® 41 DC isolators with transformer isolation have specifications well beyond any other loop-powered isolators. They feature a chopper generator connected in series into a current path and current conversion which gradually changes from sine to square wave over the measuring range.
This avoids the accuracy-reducing power losses of normal parallel connected generators, reduces the voltage drop accordingly and also ensures accurate transmission of the smallest currents.

The facts

Minimum loading

Voltage drop from 1.2 V , current transmission from $2 \mu \mathrm{~A}$ to 50 mA

Good signal transmission
low signal delay

No power supply required cost saving due to lower wiring requirement, no mains influences

Maximum reliability
no repair and failure costs

Extremely high accuracy

5-year warranty

Product line

Devices	Order no.
IsoTrans ${ }^{\circledR} 41$ 41 Mi	

Power supply
None, supply from input signal

Specifications

Input data

Input	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 50 \mathrm{~mA} \end{aligned}$
Operating current	$<2 \mu \mathrm{~A}$
Overload	$100 \mathrm{~mA}, 20 \mathrm{~V}$ (see also page 229)
Voltage drop	Approx. 1.2 V (20 mA) Approx. 1.6 V (50 mA)

Output data

Output
Load error
Offset
Residual ripple 1)

0 ... $20 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds to 750 Ohm load)
0 ... $50 \mathrm{~mA} / \mathrm{max} .15 \mathrm{~V}$ (corresponds to 300 Ohm load)
<0.02 \% meas. val. per 100 Ohm
$<5 \mu \mathrm{~A}$
$<1.5 \mathrm{mV}_{\mathrm{pp}} / \mathrm{mA}$

Transmission behavior

Transformation error ${ }^{2)}$
Rise or fall time
0.02 \% meas. val.

Approx. 2.5 ms at 500 Ohm load resistance

Isolation

Test voltage	2.5 kV AC
Working voltages (basic isolation)	500 V DC with overvoltage category II and pollution degree 4 according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Specifications, continued

Standards and approvals

Surge withstand

Immunity to ESD
$5 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ according to IEC 255-4
8 kV according to IEC 801-2

Other data

Ambient temperature
Version
$-25 \ldots+80^{\circ} \mathrm{C}$
Module Mi height 16 mm , see also dimension drawings

Transfer functions

Schematic diagram

Application examples

Electrical isolation

With impressed current, current output

Electrical isolation

With impressed input current, current output

Electrical isolation

in two-wire technology

Electrical isolation

For current addition with impressed currents

Application examples, continued

Electrical isolation

in short-circuit operation,
current output referred to ground

Electrical isolation

with high-resistance voltage input and impressed output current

Electrical isolation

with precision rectification, high-resistance voltage input, impressed output current

Electrical isolation

with impressed input current and lowresistance voltage output

Electrical isolation

with precision full wave rectifier, impressed input and output current

$$
l_{0}=\left|l_{1}\right|
$$

Dimension drawing and pin assignment

All dimensions in mm.
Pin view

IsoTrans ${ }^{\circledR} 46$

For isolation of

0 ... 20 standard signals

Knick has expanded its range of loop-powered isolators with the IsoTrans ${ }^{\circledR} 46$, a competitively priced compact model with a modular design.

The IsoTrans ${ }^{\circledR} 46$ isolates 0 ... 20 mA standard current signals avoiding parasitic voltages or currents and eliminating grounding problems. It is also optionally available with safe isolation to EN 61140.

The IsoTrans ${ }^{\circledR} 46$ draws power as voltage drop directly from the measured signal. This saves on the costs for power supplies and cabling and increases reliability.

The facts

Galvanic isolation between input and output signal protection against measuring errors caused by grounding problems and accidental interference voltage

Safe isolation in accordance with EN 61140

protection of the maintenance staff and the subsequent devices against non-permitted high voltages

Module mounting height

 11 mmextremely low mounting height, mounting on Eurocard with width of just 3 TE

- No power supply required cost saving due to lower wiring requirement, no mains influences
- Maximum reliability
no maintenance work, therefore the related costs are not incurred

[^30]

Defects occurring within 5 years from delivery are remedied free of charge at our plant (carriage and insurance paid by sender).

Product line

Devices	Order no.
IsoTrans® 46, module	46 Mk
Power supply	
None, supply from input signal	453
Options	

Specifications

Input data

Input	$0 . . .20 \mathrm{~mA}{ }^{1)}$
Operating current	$<20 \mu \mathrm{~A}$
Overload	$100 \mathrm{~mA}, 30 \mathrm{~V}$
Voltage drop	Approx. $2.5 \mathrm{~V}^{2}$

Output data

Output	0 ... 20 mA , max. 27.5 V
Load error	<0.02 \% meas. val. /100 Ohms
Residual ripple	$<5 \mathrm{mV}$

Transmission behavior

Transmission error	<0.1 \% full scale
Rise and fall time	Approx. 5 ms at 500 Ohm load
Temperature coefficient ${ }^{\text {3 }}$	<0.002 \%/K meas. val. per 100 Ohm load

1) Linear transmission up to 50 mA
2) Approx. 3.5 V at 50 mA
3) Average TC, reference temperature $23^{\circ} \mathrm{C}$

Specifications, continued

Isolation

Test voltage	510 V AC 4 kV AC with option 453
Working voltages (basic isolation)	150 V AC with overvoltage category I and pollution degree 4 according to EN 61010-1. Permissible working voltages for other overvoltage categories and pollution degrees and for reinforced insulation/safe isolation on request. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.
Protection against electrical shock (Opt. 453)	Safe isolation according to EN 61140 through reinforced insulation according to EN 61010-1. For applications with high working voltages, you should ensure there is sufficient spacing or isolation from neighboring devices and protection against electrical shocks.

Standards and approvals
Surge withstand
according to IEC 255-4
Surge withstand
according to EN 61010-1
EMC 4)

5 kV 1.2/50 $\mu \mathrm{s}$ (only with Opt. 453)

850 V
$>6 \mathrm{kV}$ with option 453
According to NAMUR NE 21,EMC directive 89/336/EEC, EN 61326

Other data

4) Valid for 4 ... 20 mA , slight deviations possible during interference.

Schematic diagram

Dimension drawing and pin assignment

Pin view

All dimensions in mm.

Process Analytics

Mnick?

Sensors and Fittings

Knick

Elektronische Messgeräte

 GmbH \& Co. KGBeuckestrasse 22, 14163 Berlin
P. O. Box 3704 15, 14134 Berlin

Germany
Phone: +49 30-801 91-0
Fax: +49 30-801 91-200
E-Mail: knick@knick.de
Internet: www.knick.de

Knick. Always better.

[^0]: - Figure 2: Avoiding interference caused by differences in potential

[^1]: Figure 16: Diagram of typical 3-port isolation amplifier

[^2]: ${ }^{*}$ Nuclear plants
 ${ }^{2}$ Mean time to failure

[^3]: 4) Slight deviations are possible while there is interference
[^4]: 3) Slight deviations are possible while there is interference
[^5]: 2) Average TC in specific working temperature range $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
[^6]: 2) Applies to $4 \ldots 20 \mathrm{~mA}$, slight deviations are possible while there is interference
[^7]: 1 Input +
 2 Input-
 3 Input +
 4 Input-
 Channel 1 Channel 1 Channel 2 Channel 2
 5 Output + Channel 1
 6 Output - Channel 1
 7 Output + Channel 2
 8 Output - Channel 2

[^8]: 1) Average TC in specific working temperature range $-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
[^9]: 1) Additional error $30 \mu \mathrm{~A}$ for output 0 ... 20 mA
[^10]: Power supply

[^11]: 1) Slight deviations are possible while there is interference
[^12]: 1) Slight deviations are possible while there is interference from RF radiation
[^13]: *) with power supply

[^14]: 1) Other input values up to 10 A or 800 V in the frequency range $16 \ldots 63 \mathrm{~Hz}$ are available on request
[^15]: 2) Approx. 8.5 V at 50 mA
[^16]: - 5-year warranty

[^17]: กen

[^18]: 1) Linear transmission of $3.6 \ldots 22 \mathrm{~mA}$
[^19]: 5-year warranty

[^20]: 1) Slight deviations are possible while there is interference from RF radiation
[^21]: Captive M3x8 clamp screws, box terminals with self-releasing wire protection, max. conductor cross section $1 \times 4 \mathrm{~mm}^{2}$ solid
 $1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
 $2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with ferrule
 All dimensions in mm.

[^22]: 3) Options 04 and 185 cannot be combined
[^23]: 1) Current output up to 250 Ohm load, models 11310 and 12310 up to $10 \mathrm{~V}_{\mathrm{pp}}$ 2) $\times 10$ for models 11310,12310
 2) Offset set to zero
 3) For operation with $\pm 15 \mathrm{~V}$ without 0 V line
[^24]: 4) Switchable
 5) Transmission $1: 1$
[^25]: 6) Transmission of negative measuring signals up to approx. -3 \% of the full scale
 7) Options 250 and 251 cannot be combined
 8) Reference temperature for $T C$ specifications: $23^{\circ} \mathrm{C}$
 9) Opt. 250 and $251: 12 \mathrm{~V}$
[^26]: 10) Deviations are possible while there is interference
 11) The socket connector belongs to package contents
[^27]: 4) Average TC , reference temperature $23^{\circ} \mathrm{C}$
[^28]: 1) Transmission of negative measuring signals up to approx. -3 \% of the full scale
 2) Options 250 and 251 cannot be combined
 3) Reference temperature for TC specifications: $23^{\circ} \mathrm{C}$
 4) Options 250 and 251: 12 V
[^29]: 5) Deviations are possible while there is interference
[^30]: - 5-year warranty

