

Current Transducer LA 305-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16173

Electrical data

I _{PN}	Primary nominal r.m.s. current		500				Α
I _P	Primary current, measuring range		0 ± 800			Α	
\mathbf{R}_{M}	Measuring resistance @		$T_A = 70^{\circ}C \mid T_A = 8$			= 85°C	;
			$\mathbf{R}_{\mathrm{M}\ \mathrm{min}}$	$\boldsymbol{R}_{\text{M max}}$	R _{M min}	$R_{\text{M max}}$	
	with ± 12 V	$@ \pm 500 A_{max}$	0	15	0	14	Ω
		@ ± 750 A max	0	1	01)	21)	Ω
	with ± 15 V	@ ± 500 A max	1.2	25	9	24	Ω
		@ \pm 800 A _{max}	1.2	6	91)	91)	Ω
I _{SN}	Secondary nominal r.m.s. current		250			mΑ	
K _N	Conversion ratio		1 : 2000				
V _c	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption			20(@±15V)+ I _s mA			
V _b	R.m.s. rated voltage 2), safe separation			17	50	_	V
-		basic isolation		350	00		V

Accuracy - Dynamic performance data

$\mathbf{X}_{\scriptscriptstyle{G}}$	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.8		%
$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity error	< 0.1		%
		Тур	Max	
I_{0}	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.25	mΑ
I _{OM}	Residual current $^{3)}$ @ $I_p = 0$, after an overload of 3 x $I_p = 0$	PN	± 0.50	mΑ
I _{OT}	Thermal drift of I_o - 10°C + 85°C	± 0.15	± 0.30	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns
t ,	Response time 4) @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed	> 100		A/µs
f	Frequency bandwidth (- 3 dB)	DC '	100	kHz

General data

T _A	Ambient operating temperature		- 10 + 85	°C	
T _s	Ambient storage temperature		- 40 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	27	Ω	
Ü		$T_A^{\prime\prime} = 85^{\circ}C$	28	Ω	
m	Mass	A	230	g	
	Standards 5)		EN 50178 : 1997		

Notes: 1) Measuring range limited to ± 710 A man

- Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

$I_{DN} = 500 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 500 A
- $I_{P} = 0.. \pm 800 \,\text{A}$
- $\mathbf{K}_{N} = 1:2000$
- Partly potted.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060628/5

Dimensions LA 305-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- · Connection of secondary

± 0.5 mm 2 holes Ø 5.5 mm 2M5 steel screws 4 Nm or 2.95 Lb. - Ft. 25.5 x 25.5 mm Molex 5046-04/AG

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.