Preface, Contents

System Overview	$\mathbf{1}$
Technical Description	$\mathbf{2}$
Mechanical and Electrical Installation	$\mathbf{3}$
Address Assignment Parameteri- zation with COM ET 200	$\mathbf{4}$
Startup and Test with COM ET 200	$\mathbf{5}$
Fault Diagnostics	$\mathbf{6}$
General Technical Specifications	$\mathbf{7}$
Digital Modules	$\mathbf{8}$
Analog Modules	$\mathbf{9}$
Type Files	\mathbf{A}
Safety-Related Guidelines	\mathbf{B}
Glossary, Index	

Safety-Related

 Guidelines

Qualified Personnel

This manual contains notices intended to ensure personal safety, as well as to protect the products and connected equipment against damage. These notices are highlighted by the symbols shown below and graded according to severity by the following texts:

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not taken.

Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

contains important information about the product, its operation or a part of the document to which special attention is drawn.

A device/system may only be commissioned or operated by qualified personnel. Qualified personnel as referred to in the safety guidelines in this document are persons authorized to energize, ground, and tag circuits, equipment and systems in accordance with established safety practice.

Please observe the following:

Warning

The equipment/system or the system components may only be used for the applications described in the catalog or the technical description, and only in combination with the equipment, components and devices of other manufacturers as far as this is recommended or permitted by Siemens.

The product will function correctly and safely only if it is transported, stored, set up, and installed as intended, and operated and maintained with care.

SIMATIC ${ }^{\circledR}$ and SINEC ${ }^{\circledR}$ are registered trademarks of SIEMENS AG.

Copyright

Copyright © Siemens AG 1994 All Rights Reserved
The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Exclusion of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual is reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Preface

Purpose of the Manual

The information contained in this manual will allow you:

- To install, wire and start up the ET 200B distributed I/O station.
- To find module characteristics and technical specifications quickly and easily.

The following explains the structure of the contents of the manual:

This manual describes all the ET 200B modules which can be accessed with the DP Standard bus protocol. These ET 200B modules all have a 6ES7 Order Number (see Chapters 8 and 9).
This manual is valid for operation of the ET 200B with:

- IM 308-B master interface module and COM ET 200 V4.x
- IM 308-C master interface module and COM ET 200 WINDOWS

Operation with the IM 308-B master interface module and COM ET 200 V4.x is described in detail in this manual.

Scope of the Manual (Continued)

Further Sources

Organizational conventions

Standards

Questions

Corrections

As far as operation of the ET 200B with the IM 308-C master interface module and COM ET 200 WINDOWS is concerned, this manual only explains the parameters which must be set with COM ET 200 WINDOWS. Please refer to the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12) for further information about how to use COM ET 200 WINDOWS and for details of the FB IM308C standard function block.

COM ET 200 WINDOWS also provides extensive support for starting up the ET 200B modules through its integrated help system.

This manual is based on the master description ET 200 Distributed I/O System.

To understand this manual properly, you require the ET 200 Distributed I/O System manual.

The following organizational conventions are used in this manual to make it easier for you to find specific information:

- At the front of the manual is a complete table of contents, together with a list of all the figures and tables contained in the manual.
- The left-hand column of each page in the individual chapters has headings to help you find information more quickly.
- The Appendix is followed by a glossary containing definitions of the most important technical terms used in the manual.
- At the end of the manual is a detailed index which you can use to refer to specific sections.

The ET 200B modules are equivalent to DP Standard slaves in accordance with DIN E 19245, Part 3.

If you have any questions regarding the ET 200B distributed I/O station, please address them to:

SIMATIC Hotline

Erlangen
Tel.: +49 9131 7-43344

At the end of the manual, we have inserted correction forms. Please enter on these your suggestions for corrections and improvements and return the form to us. This will help us to improve the next edition of the manual.

Contents

1 System Overview 1-1
1.1 What is the ET 200? 1-2
1.2 What is the ET 200B? 1-3
1.2.1 Terminal Block 1-5
1.2.2 Electronics Block 1-6
2 Technical Description 2-1
2.1 Design of the Terminal Block 2-2
2.2 Design of the Electronics Block 2-4
3 Mechanical and Electrical Installation 3-1
3.1 Installing and Setting the Terminal Block 3-2
3.2 Installing the Electronics Block 3-9
3.3 Dismantling the Terminal Block and the Electronics Block 3-11
3.4 Electrical Installation 3-12
3.4.1 Grounded Configuration 3-13
3.4.2 Ungrounded Configuration 3-16
3.5 Wiring the Terminal Block 3-18
3.6 Wiring the Bus Interface 3-22
4 Address Assignment and Parameterization with COM ET 200 4-1
4.1 Address Assignment with COM ET 200 V4.x 4-2
4.1.1 Entering the Station Number 4-4
4.1.2 Entering the Address Area and the Station Type 4-6
4.1.3 Entering the Station Name, Addresses and Address ID 4-8
4.2 Entering the Parameterization Frame with COM ET 200 V. $4 x$ 4-13
4.2.1 Parameterizing the ET 200B-4/8AI (6ES7 134-0KH00-0XB0) 4-14
4.2.2 Parameterization of the ET 200B-4AI (6ES7 134-0HF00-0XB0) 4-17
4.2.3 Parameterization of the ET 200B-4AO (6ES7 135-0HF00-0XB0) 4-19
4.2.4 Structure of the Parameterization Frame in KH Format (Summary) 4-21
$5 \quad$ Startup and Test with COM ET 200 5-1
5.1 Constraints in Operation and Testing 5-2
5.2 Startup of the ET 200B Distributed I/O Station 5-3
5.3 Testing the ET 200B Distributed I/O Station 5-5
6 Fault Diagnostics 6-1
6.1 Fault Diagnostics Through LEDs 6-2
6.2 Fault Diagnostics with COM ET 200 V4.x 6-3
6.3 Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-B 6-5
6.3.1 Diagnostics "Overview" with IM 308-B 6-8
6.3.2 Diagnostics "Parameterization and Accessibility" with IM 308-B 6-10
6.3.3 Station Status Diagnostics with IM 308-B 6-12
6.3.4 Diagnostics of the Manufacturer Identification with IM 308-B 6-15
6.3.5 Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM308-B 6-17
6.3.6 Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-B 6-19
6.4 Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-C 6-23
6.4.1 Station Status Diagnostics with IM 308-C 6-26
6.4.2 Diagnostics of the Manufacturer Identification with IM 308-C 6-29
6.4.3 Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM 308-C 6-31
6.4.4 Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-C 6-33
7 General Technical Specifications 7-1
7.1 General Technical Specifications 7-2
8 Digital Modules 8-1
8.1 Digital Modules 8-2
8.1.1 Terminal Blocks TB1/DC (6ES7 193-0CA10-0XA0), TB1-4/DC (6ES7 193-0CA20-0XA0) and TB3/DC (6ES7 193-0CA30-0XA0) 8-4
8.1.2 Terminal Blocks TB2/DC (6ES7 193-0CB10-0XA0), TB2-4/DC (6ES7 193-0CB20-0XA0) and TB4/DC (6ES7 193-0CB30-0XA0) 8-8
8.1.3 Terminal Block TB6/AC (6ES7 193-0CC10-0XA0) 8-12
8.1.4 Electronics Block ET 200B-16DI (6ES7 131-0BH00-0XB0) 8-14
8.1.5 Electronics Blocks ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0) 8-19
8.1.6 Electronics Block ET 200B-16DO (6ES7 132-0BH00-0XBO) 8-24
8.1.7 Electronics Block ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) 8-29
8.1.8 Electronics Block ET 200B-32DO (6ES7 132-0BL00-0XB0) 8-34
8.1.9 Electronics Block ET 200B-8RO (6ES7 132-0GF00-0XBO) 8-39
8.1.10 Electronics Block ET 200B-8DI/8DO (6ES7 133-0BH00-0XBO) 8-44
8.1.11 Electronics Blocks ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) 8-49
8.1.12 Electronics Block ET 200B-16DI-AC (6ES7 131-0HF00-0XB0) 8-54
8.1.13 Electronics Block ET 200B-16DO-AC (6ES7 132-0HF00-0XB0) 8-58
8.1.14 Electronics Block ET 200B-16RO-AC (6ES7 132-0HH00-0XB0) 8-62
8.1.15 Electronics Block ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0) 8-67
$9 \quad$ Analog Modules 9-1
9.1 Analog Modules 9-2
9.1.1 Setting and Parameterizing the Analog Modules 9-3
9.1.2 TB8 Terminal Block (6ES7 193-0CD40-0XA0) 9-5
9.1.3 Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0) 9-7
9.1.4 Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0) 9-33
9.1.5 Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0) 9-50
A Type Files A-1
A. 1 Contents of the type file for the COM ET 200 V4.x A-2
B Safety-Related Guidelines B-1
B. 1 Active and Passive Faults in Automation Equipment B-2
B. 2 Guidelines for the Planning and Installation of the Product B-3

Figures

1-1 ET 200 Bus Node Described in this Manual 1-2
1-2 ET 200B Components 1-3
2-1 TB1/DC Terminal Block 2-2
2-2 TB8 Terminal Block 2-3
2-3 ET 200B-16DI Electronics Block 2-4
3-1 Clearances Required for Installation of the Electronics Block 3-2
3-2 Hanging the Terminal Block on the Standard Sectional Rail and Setting the Coding Slide Switch 3-4
3-3 Mounting the Shield Connecting Element on the Standard Sectional Rail 3-5
3-4 Mounting the Terminal Block on the Shield Connecting Element 3-6
3-5 Hanging the Electronics Block on the Terminal Block 3-9
3-6 Dismantling the ET 200B 3-11
3-7 Both Screws Tightened in a Grounded Configuration 3-14
3-8 Grounded Configuration for 24 V DC Digital Modules of the ET 200B 3-14
3-9 Grounded Configuration for 120/230 V AC Digital Modules of the ET 200B 3-15
3-10 Upper Screw Removed in an Ungrounded Configuration 3-17
3-11 Ungrounded Configuration for 24 V DC Digital Modules of the ET 200 B 3-17
3-12 Securing the Wire in a Spring-Loaded Connection 3-20
3-13 Shield Connecting Element on Terminal Block TB8 3-21
4-1 "CONFIGURING" Screen Form (1) 4-5
4-2 "CONFIGURING" Screen Form (2) 4-7
4-3 "CONFIGURING" Screen Form (3) 4-10
4-4 Structure of the Parameterization Frame of the ET 200B-4/8AI: Byte 3 4-14
4-5 Structure of the Parameterization Frame of the ET 200B-4/8AI: Byte 4 4-15
4-6 Structure of the Parameterization Frame of the ET 200B-4AI: Byte 3 4-17
4-7 Structure of the Parameterization Frame of the ET 200B-4AO: Byte 3 4-19
5-1 "STARTUP/TEST: STATION SELECTION" Screen Form 5-4
5-2 "STARTUP/TEST: STATUS/CONTROL" Screen Form 5-6
6-1 "INDIVIDUAL DIAGNOSTICS" Screen Form 6-4
6-2 Structure of the Diagnostics Word After Requesting the Diagnostics "Overview" 6-9
6-3 Structure of the Diagnostics Word After Requesting the Diagnostics "Parameterization and Accessibility" 6-11
6-4 Structure of the Diagnostics Word (Station Status 1 and Station Status 2) 6-13
6-5 Structure of the "Station Status 3 and Master Address" Diagnostics Word 6-14
6-6 Structure of the "Manufacturer Identification" Diagnostics Word 6-16
6-7 Structure of the "Header and Device-Related Diagnostics" Diagnostics Word in the Case of Digital ET 200B Modules 6-18
6-8 Structure of the "Header" Diagnostics Word in the Case of Analog ET 200B Modules 6-20
6-9 Structure of the "Device-Related Diagnostics (Byte 2)" Diagnostics Word in the Case of Analog ET 200B Modules $6-20$
6-10 Structure of the "Device-Related Diagnostics (Bytes 3, 4)" Diagnostics Word in the Case of Analog ET 200B Modules 6-21
6-11 Structure of the "Device-Related Diagnostics (Byte 5, 6)" Diagnostics Word in the Case of Analog ET 200B Modules 6-21
6-12 Structure of the "Device-Related Diagnostics (Byte 7, 8)" Diagnostics Word in the Case of Analog ET 200B Modules $6-22$
6-13 Structure of the Diagnostics Word (Station Status 1 and Station Status 2) 6-27
6-14 Structure of the "Station Status 3 and Master Station Number" Diagnostics Word 6-28
6-15 Structure of the "Manufacturer Identification" Diagnostics Word 6-30
6-16 Structure of the "Header and Device-Related Diagnostics" Diagnostics Word in the Case of Digital ET 200B Modules" 6-32
6-17 Structure of the "Header" Diagnostics Word in the Case of Analog ET 200B Modules 6-34
6-18 Structure of the "Device-Related Diagnostics (Byte 2)" Diagnostics Word in the Case of Analog ET 200B Modules 6-35
6-19 Structure of the "Device-Related Diagnostics (Bytes 3, 4)" Diagnostics Word in the Case of Analog ET 200B Modules 6-35
6-20 Structure of the "Device-Related Diagnostics (Bytes 5, 6)"
Diagnostics Word in the Case of Analog ET 200B Modules 6-36
6-21 Structure of the "Device-Related Diagnostics (Bytes 7, 8)" Diagnostics Word in the Case of Analog ET 200B Modules 6-36
6-22 Structure of the "Header and Device-Related Diagnostics (Bytes 9, 10)" Diagnostics Word in the Case of Analog ET 200B Modules 6-37
6-23 Structure of the "Header and Device-Related Diagnostics (Bytes 13, 14)" Diagnostics Word in the Case of Analog ET 200B Modules 6-38
8-1 Dimension Drawing: Terminal Block TB1/DC (Screw-Type Terminal, 3-Tier) 8-4
8-2 Dimension Drawing: Terminal Block TB1-4/DC (Screw-Type Terminal, 4-Tier) 8-5
8-3 Dimension Drawing: Terminal Block TB3/DC (Spring-Loaded Terminal) 8-6
8-4 Dimension Drawing: Side Elevation of Terminal Blocks, TB1/DC, TB1-4/DC and TB3/DC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0) 8-7
8-5 Dimension Drawing: Side Elevation of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21) 8-7
8-6 Dimension Drawing: Terminal Block TB2/DC (screw-type terminal, 3-tier) 8-8
8-7 Dimension Drawing: Terminal Block TB2-4/DC (screw-type terminal, 4-tier) 8-9
8-8 Dimension Drawing: TB4/DC (Spring-loaded terminal) 8-10
8-9 Dimension Drawing: Side Elevation of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0) 8-11
8-10 Dimension Drawing: Side Elevation of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21) 8-11
8-11 Dimension Drawing: Terminal Block TB6/AC (screw-type terminal, 3-tier) 8-12
8-12 Dimension Drawing: Side Elevation of Terminal BlockTB6/AC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and6ES7 972-0BB00-0XA0)8-13
8-13 Dimension Drawing: Side Elevation of Terminal Block TB6/AC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21) 8-13
8-14 Dimension Drawing: ET 200B-16DI (6ES7 131-0BH00-0XB0) 8-14
8-15 Schematic Circuit Diagram: ET 200B-16DI (6ES7 131-0BH00-0XB0) and TB1/DC or TB3/DC 8-15
8-16 Schematic Circuit Diagram: ET 200B-16DI (6ES7 131-0BH00-0XB0) and TB1-4/DC 8-16
8-17 Dimension Drawing: ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0) 8-19
8-18 Schematic Circuit Diagram: ET 200B-32DI (6ES7 131-0BL00-0XB0) or ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0) and TB2/DC or TB4/DC 8-20
8-19 Schematic Circuit Diagram: ET 200B-32DI (6ES7 131-0BL00-0XB0) or ET 200B-32DI 0.2 ms (6ES7 131-0BL10-0XB0) and TB2-4/DC 8-21
8-20 Front Elevation: ET 200B-16DO (6ES7 132-0BH00-0XB0) 8-24
8-21 Schematic Circuit Diagram: ET 200B-16DO (6ES7 132-0BH00-0XB0) and TB1/DC or TB3/DC 8-25
8-22 Schematic Circuit Diagram: ET 200B-16DO (6ES7 132-0BH00-0XB0) and TB1-4/DC 8-26
8-23 Front Elevation: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) 8-29
8-24 Schematic Circuit Diagram: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) and TB2/DC or TB4/DC 8-30
8-25 Schematic Circuit Diagram: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) and TB2-4/DC 8-31
8-26 Front Elevation: ET 200B-32DO (6ES7 132-0BL00-0XB0) 8-34
8-27 Schematic Circuit Diagram: ET 200-B-32DO (6ES7 132-0BL00-0BXO) and TB2/DC or TBA/DC 8-35
8-28 Schematic Circuit Diagram: ET 200B-32DO (6ES7 132-0BL00-0XB0) and TB2-4/DC 8-36
8-29 Front Elevation: ET 200B-8RO (6ES7 132-0GF00-0XB0) 8-39
8-30 Schematic Circuit Diagram: ET 200B-8RO (6ES7 132-0GF00-0XB0) and TB1/DC or TB3/DC 8-40
8-31 Schematic Circuit Diagram: ET 200B-8RO (6ES7 132-0GF00-0XB0) and TB1-4/DC 8-41
8-32 Front Elevation: ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0) 8-44
8-33 Schematic Circuit Diagram: ET 200B-8DI/8DO ($6 E S 7$ 133-0BH00-0XB0) and TB1/DC or TB3/DC 8-45
8-34 Schematic Circuit Diagram: ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0) and TB1-4/DC 8-46
8-35 Front Elevation: ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) 8-49
8-36 Schematic Circuit Diagram: ET 200B-24DI/8DO (6ES7 133-0BN00-0XBO) or ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) and TB2/DC or TB4/DC 8-50
8-37 Schematic Circuit Diagram: ET 200B-24DI/8DO
(6ES7 133-0BN00-0XB0) or ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) and TB2-4/DC 8-51
8-38 Front Elevation: ET 200B-16DI-AC (6ES7 131-OHF00-0XB0) 8-54
8-39 Schematic Circuit Diagram: ET 200B-16DI-AC (6ES7 131-0HF00-0XB0) and TB6/AC 8-55
8-40 Front Elevation: ET 200B-16DO-AC (6ES7 132-0HF00-0XB0) 8-58
8-41 Schematic Circuit Diagram: ET 200B-16DO-AC (6ES7 132-0HF00-0XBO) and TB6/AC 8-59
8-42 Front Elevation: ET 200B-16RO-AC (6ES7 132-0HH00-0XB0) 8-62
8-43 Schematic Circuit Diagram: ET 200B-16RO-AC ($6 E S 7$ 132-0HH00-0XB0) and TB6/AC 8-63
8-44 Front Elevation: ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0) 8-67
8-45 Schematic Circuit Diagram: ET 200B-8DI/8RO-AC
($6 E S 7$ 133-0HH00-0XB0) and TB6/AC 8-68
9-1 Changing the Setting of the Coding Plug 9-4
9-2 Dimension Drawing: TB8 Terminal Block (Spring-Loaded Terminal) 9-5
9-3 Dimension Drawing: Side Elevation of the Terminal Block TB8 with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0) 9-6
9-4 Dimension Drawing: Side Elevation of the Terminal Block TB8 with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21) 9-6
9-5 Dimension Drawing: ET 200B-4/8AI (6ES7 134-0KH00-0XB0) 9-7
9-6 Connection of Thermocouples with a Compensating Box
(Floating-Ground Measurement) 9-12
9-7 Connection of Thermocouples with a Compensating Box (Ground-Referenced Measurement) 9-13
9-8 Connection of Resistance Thermometers (Pt 100) with 2-Wire Connections (Floating-Ground Measurement) 9-14
9-9 Connection of Resistance Thermometers (Pt 100) with 2-Wire Connections (Ground-Referenced Measurement) 9-15
9-10 Connection of Resistance Thermometers (Pt 100) with 4-Wire Connections (Floating-Ground Measurement) 9-16
9-11 Connection of Resistance Thermometers (Pt 100) with
4-Wire Connections (Ground-Referenced Measurement) 9-17
9-12 Two-Wire Connection of Voltage Sensors to 6ES7 134-0KH00-0XB0 (Floating-Ground Measurement) 9-18
9-13 Two-Wire Connection of Voltage Sensors to 6ES7 134-0KH00-0XB0 (Ground-Referenced Measurement) 9-19
9-14 Schematic Circuit Diagram: ET 200B-4/8AI (6ES7 134-0KH00-0XB0) and TB8 9-29
9-15 Front Elevation: ET 200B-4AI (6ES7 134-0HF00-0XB0) 9-33
9-16 Two-Wire Connection of Voltage Sensors to 6ES7 134-0HF00-0XB0 (Floating-Ground Measurement) 9-36
9-17 Two-Wire Connection of Voltage Sensors 6ES7 134-0HF00-0XB0 (Ground-Referenced Measurement) 9-37
9-18 Two-Wire Connection of Current Sensors (Floating-Ground Measurement) 9-38
9-19 Two-Wire Connection of Current Sensors (Ground-Referenced Measurement) 9-39
9-20 Schematic Circuit Diagram: ET 200B-4AI (6ES7 134-0HF00-0XB0) and TB8 9-47
9-21 Front Elevation: ET 200B-4AO (6ES7 135-0HF00-0XB0) 9-50
9-22 4 -Wire Connection of Loads in the Case of Voltage Output 9-52
9-23 2-Wire Connection of Loads in the Case of Voltage Output 9-53
9-24 2-Wire Connection of Loads in the Case of Current Output 9-54
9-25 Schematic Circuit Diagram: ET 200B-4AO (6ES7 135-0HF00-0XB0)and TB89-58

Tables

3-1 Assignment of the Electronics Blocks to the Coding Slide Switch 3-7
3-2 Permissible Fuses in the Terminal Block 3-8
3-3 Pin Assignments of the Terminal Block 3-19
3-4 SINEC L2 Bus Connectors 3-22
4-1 Designation of the Type Files for the ET 200B 4-2
4-2 Address IDs for ET 200B 4-9
4-3 Parameters for the ET 200B-4/8AI (Bytes 6 to 10 of the Parameterization Frame) 4-16
4-4 Parameters for the ET 200B-4AI (Bytes 7 to 10 of the Parameterization Frame) 4-18
4-5 Parameters for the ET 200B-4AO (Bytes 7 to 10 of the Parameterization Frame) 4-20
4-6 Contents and Meaning of the Bytes 4-21
6-1 LED Indicators 6-2
6-2 Diagnostics Functions Using STEP 5 in combination with an IM 308-B 6-5
6-3 Structure of the Station Diagnostics for the ET 200B in combination with an IM 308-B 6-6
6-4 Combination of Diagnostics "Overview" and Diagnostics
"Parameterization and Accessibility" 6-11
6-5 Diagnostics Functions Using STEP 5 in Combination with an IM 308-C $6-23$
6-6 Structure of the Station Diagnostics for the ET 200B in Combination with an IM 308-C 6-24
6-7 Position of the Diagnostics Data in a Data Block 6-26
6-8 Position of the Diagnostics Data in a Data Block (Digital ET 200B) 6-31
6-9 Position of the Diagnostics Data in the Data Block
(Analog ET 200B) 6-33
8-1 ET 200B Digital Electronics Blocks (24 V DC) 8-2
8-2 ET 200B Digital Terminal Blocks 8-3
8-3 Terminal Assignments of Terminal Blocks TB1/DC, TB2-4/DC and TB3/DC for the ET 200B-16DI (6ES7 131-0BH00-0XB0) 8-17
8-4 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC8-22 for ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2 ms (6ES7 131-0BL10-0XB0) 8-22
8-5 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-16DO (6ES7 132-0BH00-0XB0) 8-27
8-6 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) 8-32
8-7 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-32DO (6ES7 132-0BL00-0XB0) 8-37
8-8 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-8RO (6ES7 132-0GF00-0XB0) 8-42
8-9 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0) 8-47
8-10 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) 8-52
8-11 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16DI-AC (6ES7 131-0HF00-0XB0) 8-56
8-12 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16DO-AC (6ES7 132-0HF00-0XB0) 8-60
8-13 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16RO-AC (6ES7 132-0HH00-0XB0) 8-64
8-14 Terminal Assignments of Terminal Block TB6/AC for ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0) 8-69
9-1 Analog Electronics Blocks of the ET 200B 9-2
9-2 Analog Terminal Block of the ET 200B 9-2
9-3 Compensating Box Type U with Current Stabilizer. 9-10
9-4 Reference Junction with Built-In Power Supply Unit 9-11
9-5 Parameters for ET 200B-4/8AI 9-20
9-6 Representing an Analog Input Value as a Bit Pattern (6ES7 134-0KH00-0XB0) 9-22
9-7 Description of the Bits (6ES7 134-0KH00-0XB0) 9-22
9-8 Representation of Digitized Measured Values of the ET 200B-4/8AI (6ES7 134-0KH00-0XB0; Measuring Ranges: " 80 mV , " 250 mV , " 500 mV and " 1000 mV ; Two's Complement) 9-23
9-9 Representation of Digitized Measured Values of the ET 200B-4/8AI (6ES7 134-0KH00-0XB0; Measuring Ranges: " 80 mV , " 250 mV , " 500 mV and " 1000 mV ; Amount and Sign) 9-24
9-10 Representation of Digitized Measured Values of the ET 200B-4/8AI in the Case of Resistance Thermometers (Two's Complement) 9-25
9-11 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type K (Nickel-Chromium/ Nickel-Aluminum, to IEC 584) (Two's Complement) 9-26
9-12 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type J (Iron/Copper-Nickel (Constantan), to IEC 584) (Two's Complement) 9-27
9-13 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type L (Iron/Copper-Nickel (Constantan), to DIN 43710) (Two's Complement) 9-28
9-14 Terminal Assignments of the TB8 for ET 200B-4/8AI (6ES7 134-0KH00-0XB0) 9-30
9-15 Parameter für ET 200B-4AI 9-40
9-16 Representing an Analog Input Value as a Bit Pattern (6ES7 134-0HF00-0XB0) 9-41
9-17 Description of the Bits (6ES7 134-0HF00-0XB0) 9-41
9-18 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$; Two's Complement) 9-42
9-19 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$; Amount and Sign) 9-42
9-20 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, ± 10 V; Binary) 9-43
9-21 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$;
Two's Complement) 9-44
9-22 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$; Amount and Sign) 9-44
9-23 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$; Binary) 9-45
9-24 Representation of Digitized Measured Values of the ET 200B-4AI (6 ES7 134-0HF00-0XB0; Measuring Range: 0 to 20 mA) 9-45
9-25 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-OXBO; Measuring Range: 4 to 20 mA) 9-46
9-26 Terminal Assignments of the TB8 for ET 200B-4AI (6ES7 134-0HF00-0XB0) 9-48
9-27 Parameters for the ET 200B-4AO 9-55
9-28 Representing an Analog Input Value as a Bit Pattern (6ES7 135-0HF00-0XB0) 9-56
9-29 Description of the Bits (6ES7 135-0HF00-0XB0) 9-56
9-30 Analog Output Signals of the ET 200B-4AO (Value Ranges: $\pm 10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 20 \mathrm{~mA}, 0$ to 20 mA , 4 to 20 mA ; Two's Complement) 9-57
9-31 Terminal Assignments of the TB8 for ET 200B-4AO (6ES7 135-0HF00-0XB0) 9-59

System Overview

In this Chapter The System Overview gives you information on the following:

- The place of the ET 200B distributed I/O station in the ET 200 distributed I/O system.
- The components that make up the ET 200B.

1.1 What is the ET 200?

Definition
 The ET 200 distributed I/O system is based on the PROFIBUS standard (DIN 19245, Part 1) and the PROFIBUS-DP draft standard (DIN 19245, Part 3).

The SIEMENS PROFIBUS is called SINEC L2.
The field bus on which the ET 200 distributed I/O system is based is a variant of SINEC L2 called SINEC L2-DP. This version is designed for communication with distributed I/O at extremely short response times.

Bus Node Described in this Manual

The distributed I/O system consists of active and passive nodes, the SINECL2-DP field bus and the SINECL2 network components. The ET 200B distributed I/O station is a passive bus node (slave).

Figure 1-1 ET 200 Bus Node Described in this Manual

1.2 What is the ET 200B?

Definition

Range of Modules

The ET 200B distributed I/O station (B for block I/O) belongs to the ET 200 distributed I/O system with the SINEC L2-DP field bus. The ET 200B is a slave station with degree of protection IP 20.

The ET 200B distributed I/O station incorporates a SINEC L2-DP bus interface and digital or analog inputs/outputs.

The range of modules for the ET 200B includes:

- 24 V DC digital modules
- $120 / 230$ V AC digital modules
- Analog modules

Application

Components

Thanks to its compact and flat design, the ET 200B distributed I/O station is primarily suited to applications where space is a priority.

The ET 200B distributed I/O station can be mounted either on a standard sectional rail or directly onto the wall. Vertical and horizontal installation are both possible.

The ET 200B consists of 2 parts: the terminal block and the electronics block.

The terminal block (TB) incorporates the permanent wiring and does not contain any function-related electrical components. The electronics block is attached to the terminal block. The electronics block (EB) contains the logic circuits.

The terminal block and the electronics block have matching mechanical coding elements to prevent destruction of the electronics block.

Figure 1-2 ET 200B Components

What is the ET 200B?, continued

Characteristics

All the ET 200B modules can be accessed with the DP Standard bus protocol.

Note

The ET 200B can be operated with the following master interface modules and versions of COM ET 200:

- IM 308-B (Version 5 or higher) and COM ET 200 (Version 4.0 or higher, see Chapters 4 and 5)
or
- IM 308-C (Version 1 or higher) and COM ET 200 WINDOWS.

DP Standard DP Standard is the bus protocol of the ET 200 distributed I/O system in accordance with the Draft Standard DIN 19245, Part 3.

1.2.1 Terminal Block

Definition
 The terminal block incorporates the permanent wiring.

Characteristics

The terminal block has the following characteristics:

- The supply voltage for the electronics block (logic) can be switched on/off (except for the TB6/AC terminal block).
- The terminal block can be mounted both on standard sectional rails and on smooth surfaces, that is, direct wall mounting is possible.
- The SINEC L2-DP bus is interfaced via a SINEC L2 bus connector.
- Station numbers between 00 and 99 can be set by means of an implement such as a screwdriver:
- When operating with an IM 308-B master interface, station numbers 3 to 99 are permissible.
- When operating with an IM 308-C master interface, station numbers 1 to 99 are permissible.

1.2.2 Electronics Block

Definition

Characteristics

The electronics block contains the logic circuits and is plugged onto the terminal block.

The electronics block has the following characteristics:

- There is galvanic isolation between the SINEC L2-DP bus and the internal electronics.
- The block has LEDs for indicating the following:
- Voltage supply to the logic circuits (RUN)
- Bus fault (BF)
- Group diagnostics: short-circuit, wire break or load voltage failure (DIA, only for electronics blocks which can be diagnosed)
- Load voltage monitoring (L1+, L2+, L3+, L4+, only for digital electronics blocks (24 V DC) with output channels)
- Status of the inputs or outputs (for digital electronics blocks only)
- Labelling strips are inserted in the electronics block. Fill in the labelling strips to ensure unambiguous assignment of name, channel and LED.

Technical Description

[^0]
2.1 Design of the Terminal Block

Design Principle of the Digital TBs

All digital terminal blocks are built on the same design principle explained below using the TB1/DC terminal block as a typical example:

Figure 2-1 TB1/DC Terminal Block

1 Coding slide switch
2 Fuse
3 STOP/RUN switch (not TB6/AC). The power supply for logic circuits in the electronics block can be switched on or off with the STOP/RUN switch. It can also be used to switch the ET 200B distributed I/O station on and off.
4 Terminals for power supplies
5 Terminals for inputs/outputs
6 Slide for removing the terminal block from the standard sectional rail
7 M4 screw (connects chassis with PE)
8 M5 screw for connecting PE
9 SINEC L2-DP interface
10 Switch for setting the station number (the station number is valid only after operation of the STOP/RUN switch (STOP -> RUN)).

Design Principle of the TB8 Analog Block

On the front of the TB8 analog terminal block, there are an additional 5 coding switches:

Figure 2-2 TB8 Terminal Block

1 Coding slide switch
2 Fuse
3 STOP/RUN switch. The power supply for logic circuits in the electronics block can be switched on or off with the STOP/RUN switch. It can also be used to switch the ET 200B distributed I/O station on and off.

4 Terminals for power supplies
5 Terminals for inputs/outputs
6 Slide for removing the terminal block from the standard sectional rail
7 Coding connectors. You use the coding connectors for setting the wiring of the TB8 for analog value processing.

8 M5 screw for connecting PE
9 SINEC L2-DP interface
10 Switch for setting the station number (the station number is valid only after operation of the STOP/RUN switch (STOP -> RUN)).

2.2 Design of the Electronics Block

Design Principle

All types of electronics block are built on the same design principle which is explained below using the ET 200B-16DI electronics block as a typical example:

Figure 2-3 ET 200B-16DI Electronics Block

1 Ventilation slots
2 Screws for mounting the electronics block on the terminal block
3 Printed schematic diagram
4 Indication of the coding slide switch setting on the top of the terminal block
5 Labelling strip; for indicating the status of the inputs or outputs in the case of digital electronics blocks with LEDs
6 LEDs for

- Voltage supply to the logic circuits (RUN)
- Bus fault (BF)
- Group diagnostics; short-circuit, wire break or load voltage failure (DIA, only for electronics blocks which can be diagnosed)
- Monitoring the load voltage (L1+ for ET 200B-8DI/8DO, ET 200B-24DI/8DO and ET 200B-24DI/8DO 0.2 ms ; L1+, L2+ for ET 200B-16DQ; L1+/L2+, L3+/L4+ for ET 200B-32DO and ET 200B-16DO/2A).

Coding The electronics blocks are coded by the manufacturer. Some types of electronics blocks have a recess at the bottom. This recess ensures that the terminal block is assigned safely to the correct electronics block.

Mechanical and Electrical Installation

In this Chapter In this chapter, you will find out
- How to install the terminal block and the electronics block.
- The settings to be made on the terminal block.
- How to perform the electrical wiring on the terminal block.
You will find a detailed description of the technical specifications of the ET 200B modules in Chapters 7,8 and 9.

3.1 Installing and Setting the Terminal Block

Two Methods

You can install the terminal block either

- on a standard sectional rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$ to DIN EN 50022)
or
- on smooth surfaces, that is, direct wall mounting (for dimensions of the mounting holes see Dimension Drawings in Chapters 8 and 9).

Installation Clearances

Figure 3-1 shows you the minimum clearances that are required to hang the electronics block on the standard sectional rail:

Figure 3-1 Clearances Required for Installation of the Electronics Block

Shield Connecting Element for TB8

In the case of analog value processing, we recommend that the cable shielding of the signal lines is applied directly at terminal block TB8.

For this application, you can hang the TB8 onto a shield connecting element after first mounting the shield connecting element on a standard sectional rail (35×15 or $35 \times 7.5 \mathrm{~mm}$ to DIN EN 50022) or a smooth surface.

To apply the shield braiding, install metal terminal elements on the shield connecting element.

You can order the shield connecting element and the terminal elements under the following numbers:

- Shield connecting element \rightarrow Order no. 6ES7 193-0CD40-7XA0
- Terminal elements (1 pair each):
- Single version \rightarrow Order no. 6ES7 390-5BA00-0AA0
(one shield cable per terminal element with a diameter of 3 to 8 mm to be clamped)
- Double version \rightarrow Order no. 6ES7 390-5BA00-0AA0
(two shield cables per terminal element with a diameter of 2 to 6 mm to be clamped)

Note

If you mount the TB8 with shield connecting element on a standard sectional rail, you must install the ET 200B horizontally.

Installing and Setting the Terminal Block, continued

Mounting on a Standard Sectional Rail

If you mount the terminal block on a standard sectional rail...

1. Hang the terminal block on the standard sectional rail (1) and
2. Swing it back until the slide on the module snaps into place (2).

Note:
The meanings of the coding switch settings are explained in Table 3-1.

Figure 3-2 Hanging the Terminal Block on the Standard Sectional Rail and Setting the Coding Slide Switch

Mounting with Shield Connecting Element on a Standard Sectional Rail

If you mount the terminal block with shield connecting element on a standard sectional rail...

1. Hang the shield connecting element on the standard sectional rail from below (1) and swing it back (2).
2. Secure the shield connecting element on the standard sectional rail by tightening the screws (3).

Figure 3-3 Mounting the Shield Connecting Element on the Standard Sectional Rail

Installing and Setting the Terminal Block, continued

3. Hang the terminal block on the supporting lugs of the shield connecting element (4).
4. Secure the terminal block on the shield connecting element by tightening the screws (5).

Figure 3-4 Mounting the Terminal Block on the Shield Connecting Element

Setting the Coding Slide Switch

In order to prevent the wrong electronics block being plugged in, the terminal block has a coding slide switch (see Section 2.1, Figure 2-1, 1).

The coding switch can be engaged in 6 settings. Each setting is assigned to a module class of the ET 200B distributed I/O station:

Table 3-1 Assignment of the Electronics Blocks to the Coding Slide Switch

Setting	Module Class
1	24 V digital modules
2	24 V special modules
3	Analog modules
4	Reserved
5	Reserved
6	230 V digital modules

Setting the Station

 Number
Setting the Coding Plugs

Any station number from 00 to 99 can be set using an object such as a screwdriver (see Section 2.1, Figure 2-1, 10):

- Station numbers 3 to 99 are permissible when operating with the IM308-B master interface.
- Station numbers 1 to 99 are permissible when operating with the IM 308-C master interface.

The station number becomes valid only after a STOP/RUN transition of the ET 200B slave station.

In the case of analog modules, you can set the necessary defaults for analog value measurement or analog value output for each channel via coding plugs (see Section 2.1, Figure 2-2, 7).

See Section 9 "Analog Modules" for a description of the possible settings and their meanings.

Installing and Setting the Terminal Block, continued

Changing the Fuse

The fuse in the terminal block is a protection against overcurrent of the sensor supply and the supply to the internal logic circuits. If the fuse blows, the internal logic circuits of the module receive no voltage.
Use only the following fuses for replacement purposes:

Table 3-2 Permissible Fuses in the Terminal Block

Terminal Block	Fuse
TB1/DC	Minature fuse TR5-T 1.6; 125 V
TB1-4/DC	Minature fuse TR5-T 1.6; 125 V
TB2/DC	Minature fuse TR5-T 2.5; 250 V
TB2-4/DC	Minature fuse TR5-T 2.5; 250 V
TB3/DC	Minature fuse TR5-T 1.6; 125 V
TB4/DC	Minature fuse TR5-T 2.5; 250 V
TB8 analog	Minature fuse TR5-T 1.6; 125 V
TB6/AC	Miniature fuse TR5-T 1; 250 V AC

Proceed as follows when changing the fuse:

1. Switch the STOP/RUN switch to the "STOP" position.
2. Pull the electronics block off the terminal block.
3. Lever the fuse out of its base using a screwdriver.
4. Insert the new fuse.
5. Attach the electronics block to the terminal block.
6. Switch the RUN/STOP switch to "RUN".

Note

The TB6/AC terminal block has no STOP/RUN switch. Make sure that the external power supply is switched off before removing the electronics block and changing the fuse.

3.2 Installing the Electronics Block

Hanging the Electronics Block on the Terminal Block

After having coded the terminal block via the coding slide switch, you can hang the electronics block on the terminal block:

Warning

Avoid electrical destruction of the electronics block.
The electronics block may only be hung onto the terminal block when the STOP/RUN switch of the terminal block is in the "STOP" position!

The TB6/DC terminal block has no STOP/RUN switch. Always switch off the external power supply before attempting to hang an electronics block ($120 / 230 \mathrm{~V} \mathrm{AC}$) onto the TB6/DC.

1. Hang the electronics block on the terminal block. (1).
2. Press the electronics block onto the terminal block (2).
3. Secure the electronics block by tightening the screws (3).

Figure 3-5 Hanging the Electronics Block on the Terminal Block

Installing the Electronics Block, continued

Labelling the Electronics Block

A labelling strip is inserted in the electronics block.
Individual DIN A4 sheets consisting of several labelling strips can be additionally ordered. Please refer to Catalog ST 54.2 for order numbers.

Versions:

- For electronics blocks with 16DI, 16DQ, 8DI/8DO, 8RO:

10 labelling strips on one DIN A4 sheet

- For electronics blocks with 16DI-AC, 16DO-AC, 32 DI, 16DO/2A, 32DO, 24DI/8DO, 16RO-AC, 8DI/8RO-AC:

7 large labelling strips and 9 small labelling strips on one DIN A4 sheet.

3.3 Dismantling the Terminal Block and the Electronics Block

Dismantling (from the Standard Sectional Rail)

Proceed according to the following steps:

1. Remove the electronics block in the reverse sequence to that described in Figure 3-5.
2. Press the slide (1) on the bottom of the terminal block down using a screwdriver and
3. Swing the terminal block out of the standard sectional rail (2).

Figure 3-6 Dismantling the ET 200B

Dismantling (from the Shield Connecting Element)

Proceed according to the following steps:

1. Remove the electronics block in the reverse sequence to that described in Figure 3-5.
2. Remove the terminal block and the shield connecting element in the reverse sequence to that described in Figures 3-3 and 3-4.

3.4 Electrical Installation

Introduction
 The ET 200B distributed I/O station allows both grounded and ungrounded

The Following Chapters configurations.

The following two chapters explain the configuration rules and give circuit examples for

- Grounded configuration
- Ungrounded configuration

The text contains numbers referring to their counterparts in the associated figures.

3.4.1 Grounded Configuration

Definition

In a grounded configuration, the reference potential of the ET 200B logic circuits and the protective ground conductor (PE) are connected to each other galvanically.

Rules
You must note the following points for a grounded configuration:

- You must provide a main switch (1) in accordance with DIN VDE 0100 for the ET 200B modules, the signal sensors and the actuators.
- If the spur lines are a maximum of 3 m long and are ground-fault-resistant and short-circuit-proof, the supply connection for the ET 200B and the load circuit requires no additional fuse (2).
- Use a Siemens load power supply unit (3) in the 6EV1 series (Catalog ET 1) for supplying the 24 V DC to the ET 200B.
If you connect another load power supply unit (24 V DC), please note that the voltage must be in the range 20 to 30 V (including ripple). The load power supply unit must generate a functional low voltage with safe electrical isolation in accordance with DIN VDE 0106. In the case of non-stabilized load power supply units, you require a back-up capacitor (rating $200 \mu \mathrm{~F}$ per 1 A load current).
- Provide a detachable connection to the protective ground conductor (4) in the secondary circuit of the load power supply unit (M terminal).
- A fuse (5) is required for fusing the supply voltage.
- For both grounded and ungrounded configurations, the PE terminal $\stackrel{\perp}{-}$ of the ET 200B must have a low-impedance connection to the protective ground conductor or the cabinet ground (machine parts) (6).
- Use a minimum cross-section of $4 \mathrm{~mm}^{2}$ and a maximum of $10 \mathrm{~mm}^{2}$ for equipotential bonding and ground connections.
- All machine parts must be grounded.

Grounded Configuration, continued

Connecting the
Reference
Potential of the Logic Circuits to PE

For a grounded configuration, you must also do the following at the digital terminal blocks:

1. Connect the PE terminal to the lower screw.
2. Tighten the upper screw. The upper screw connects the ground potential to PE.

Figure 3-7 Both Screws Tightened in a Grounded Configuration

Figure 3-8 shows the grounded configuration for 24 V DC digital modules of the ET 200B:

Figure 3-8 Grounded Configuration for 24 V DC Digital Modules of the ET 200B

Electrical

 Configuration, continuedFig. 3-9 shows the grounded configuration for 120/230 V AC digital modules of the ET 200B:

Figure 3-9 Grounded Configuration for 120/230 V AC Digital Modules of the ET 200B

3.4.2 Ungrounded Configuration

Definition

In an ungrounded configuration, there is no galvanic connection between the reference potential of the ET 200B logic circuits and the protective ground conductor (PE).

Rules
You must note the following points for an ungrounded configuration:

- You must provide a main switch (1) in accordance with DIN VDE 0100 for the ET 200B modules, the signal sensors and the actuators.
- If the spur lines are a maximum of 3 m long and are ground-fault-resistant and short-circuit-proof, the supply connection for the ET 200B and the load circuit requires no additional fuse (2).
- Use a Siemens load power supply unit (3) in the 6 EV 1 series (Catalog ET 1) for supplying the 24 V DC to the ET 200B.
If you connect another load power supply unit (24 V DC), please note that the voltage must be in the range 20 to 30 V (including ripple). The load power supply unit must generate a functional low voltage with safe electrical isolation in accordance with DIN VDE 0106. In the case of non-stabilized load power supply units, you require a back-up capacitor (rating $200 \mu \mathrm{~F}$ per 1 A load current).
- A fuse (5) is required for fusing the supply voltage.
- For both grounded and ungrounded configurations, the PE terminal $\underset{=}{ }$ of the ET 200B must have a low-impedance connection to the protective ground conductor or the cabinet ground (machine parts) (core cross-section of PE min. $4 \mathrm{~mm}^{2}$ and max. $10 \mathrm{~mm}^{2}$) (6).
- Provide an insulation monitoring circuit against ground with voltage limitation in accordance with the regulations applying to the system, for example DIN VDE 0160 (7).

Warning

The ungrounded configuration can be cancelled out by grounded machine parts and grounded electrical equipment.

Example: A grounded sensor or a grounded actuator connects the PE to the reference potential (M terminal) of the controller.

Disconnecting the Reference Potential of the Logic Circuits from PE

For an ungrounded configuration, you must also do the following at the digital terminal blocks:

1. Connect the PE terminal to the lower screw.
2. Remove the upper screw for an ungrounded configuration.

Figure 3-10 Upper Screw Removed in an Ungrounded Configuration

Figure 3-11 shows the ungrounded configuration for 24 V DC digital modules of the ET 200B:

Figure 3-11 Ungrounded Configuration for 24 V DC Digital Modules of the ET 200 B

3.5 Wiring the Terminal Block

Introduction

Wiring

Non-Floating Electronics Blocks

Connect the following to the terminal block:

- Supply voltage for internal logic circuits
- Sensor supply for input channels
- Load voltage supply for output channels
- Sensors/loads

The wiring of the terminal block is dependent on the electronics block used.
A distinction is made between floating and non-floating electronics blocks.

In floating electronics blocks, the internal logic circuits and the load current circuit are galvanically isolated from each other.

Floating electronics blocks include:

- All analog electronics blocks
- All 120/230 V AC electronics blocks
- Floating 24 V DC electronics blocks.

Note

You can use floating electronics blocks regardless of whether the reference potential of the supply voltage for the internal logic circuits is grounded or not.

In non-floating electronics blocks, the internal logic circuits and the load current circuit share a common reference potential (M ground).

Non-floating electronics blocks include:

- Non-floating 24 V DC electronics blocks.

Pin Assignments
In Chapter 8 "Range of Modules", you will find the pin assignments of each electronics block. Table 3-3 will help you.

Table 3-3 Pin Assignments of the Terminal Block

Pin Assignments of the ...	For Electronics Block ...	Described in ...
TB1/DC, TB1-4/DC and TB3/DC	ET 200B-16DI	Table 8-3
	ET 200B-16DO	Table 8-5
	ET 200B-8DI/8DO	Table 8-9
	ET 200B-8RO	Table 8-8
TB2/DC, TB2-4/DC and	ET 200B-16DO/2A	Table 8-6
	ET 200B-32DI, ET 200B-32DI 0.2ms	Table 8-4
	ET 200B-32DO	Table 8-7
	ET 200B-24DI/8DO,	
ET 200B-24DI/8DO 0.2ms	Table 8-10	
TB6/AC	ET 200B-16DI-AC	Table 8-11
	ET 200B-16DO-AC	Table 8-12
	ET 200B-16RO-AC	Table 8-13
	ET 200B-8DI/8RO-AC	Table 8-14
TB8 analog	ET 200B-4/8DI	Table 9-14
	ET 200B-4AI	Table 9-26
	ET 200B-4AO	Table 9-31

Wire Cross-Section

The following cross-sections are permissible for all power and signal lines:

- Line with connector sleeve:
- Line without connector sleeve:
$\max .1 .5 \mathrm{~mm}^{2}$
$\max .2 .5 \mathrm{~mm}^{2}$
(min $0.08 \mathrm{~mm}^{2}$ for TB3, TB4, TB8)
(min $0.14 \mathrm{~mm}^{2}$ for TB1, TB1-4,
TB2, TB2-4)

Use the following cross-section for the protective ground conductor PE to the terminal block of the TB1-4/DC or the TB2-4/DC:

- Line with connector sleeve: max. $2.5 \mathrm{~mm}^{2}$.

Wiring the Terminal Block, continued

Connections The wires are secured either in screw connections or spring-loaded

 connections, depending on the terminal block (see Fig. 3-12).

Figure 3-12 Securing the Wire in a Spring-Loaded Connection

Shielding for Analog Value Processing

How to Proceed when Applying the Shielding

For analog value processing, connect the cable shields of the signal lines directly at the TB8 to the shield connecting element (Order No.: 6ES7 193-0CD40-7XA0).

Follow the steps listed below:

1. Hang the TB8 terminal block on the shield connecting element after first mounting the shield connecting element on the standard sectional rail or a smooth surface (wall) (see Section 3.1).
2. Mount metallic terminal elements (see Section 3.1) on the bottom edge of the shield connecting element ($\mathbf{1}$ and $\mathbf{2}$).
3. Strip the insulation of the signal lines.
4. Secure the bare cable ends to the terminal elements ($\mathbf{3}$ and $\mathbf{4}$).
5. Connect the shield connecting element to the protective ground conductor (PE). The cross-section of PE must be a minimum of $4 \mathrm{~mm}^{2}$ and a maximum of $10 \mathrm{~mm}^{2}$.
6. Connect the shield of the bus cable in such a way that the maximum bend radius when bent once ($10 \mathrm{xd}_{\mathrm{O}} ; \mathrm{d}_{\mathrm{O}}=$ outer diameter of the cable $)$ is not exceeded.

Figure 3-13 Shield Connecting Element on Terminal Block TB8

3.6 Wiring the Bus Interface

Bus Interface
 The SINEC L2-DP bus is connected via bus connectors.

Bus Connectors

There are bus connectors in various installation sizes available for the ET 200B.

The previous SINEC L2 bus connectors (Order No.: 6ES5 ...) exceeded the installation height of the ET 200B. For this reason, new SINEC L2 bus connectors have been developed which do not exceed the installation height of the ET 200B when plugged in (Order No.: 6ES7 ...).

You can find the precise installation heights of the different SINEC L2 bus connectors in the Dimension Drawings in Section 8.1.1.

For the ET 200B, use one of the following SINEC L2 bus connectors with degree of protection IP 20:

Table 3-4 SINEC L2 Bus Connectors

Version	Order No.
Without programmer port	6ES7 972-0BA00-0XA0
With programmer port	6ES7 972-0BB00-0XA0
Without programmer port	6ES5 762-2AA12
With programmer port	6ES5 762-2AA21

Address Assignment and Parameterization with COM ET 200

Fundamentals

In this Chapter

COM ET 200 WINDOWS

This chapter is based on the ET 200 Distributed I/O System manual.
The fundamentals of COM ET 200 are described in the ET 200 Distributed I/O System manual.

Address assignment is an important component of COM ET 200. The ET 200 Distributed I/O System manual contains useful information about the address assignment methods (linear and dual-port RAM addressing).

In this chapter, you will learn how to use the "CONFIGURING" screen form of the COM ET 200 software package V4.x to configure and parameterize the ET 200B distributed I/O station.

You can define the following for each ET 200B slave station with this mask:

- The station number (see Section 4.1.1)
- The address range and the type of the station (see Section 4.1.2)
- The addresses of the inputs and outputs (see Section 4.1.3)
- The parameters for analog modules (see Section 4.2).

If you are operating the ET 200B with COM ET 200 WINDOWS, you do not need to study this chapter.

The simple procedure for configuring and parameterizing slave stations with COM ET 200 WINDOWS is identical for all the ET 200 slaves and is not described in this manual. Please refer to the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12) for further details about how to use COM ET 200 WINDOWS.

COM ET 200 WINDOWS also provides extensive support for starting up the ET 200B modules through its integrated help system.

Chapter 9 "Analog Modules" lists all the parameters which you can set for the analog modules of the ET 200B with COM ET 200 WINDOWS.

4.1 Address Assignment with COM ET 200 V4.x

In this Section

Type Files

In this section, you will learn how to use the "CONFIGURING" screen form of the COM ET 200 software package V4.x to configure the ET 200B distributed I/O station.

To start up an ET 200B with COM ET 200 V4.x, you must ensure that the type file of the ET 200B module has been installed in the COM ET 200 directory. The type files have the following designations:

Table 4-1 Designation of the Type Files for the ET 200B

Station Type		Order Number	Type File
B-16DI	DP	6ES7 131-0BH00-0XB0	SI0001TD.200
B-32DI	DP	6ES7 131-0BL00-0XB0	SI0004TD.200
B-32DI.2	DP	6ES7 131-0BL10-0XB0	SI000CTD.200
B-16DO	DP	6ES7 132-0BH00-0XB0	SI0002TD.200
B-16DO/2A	DP	6ES7 132-0BH10-0XB0	SI0005TD.200
B-32DO	DP	6ES7 132-0BL00-0XB0	SI000DTD.200
B-8DI/8DO	DP	6ES7 133-0BH00-0XB0	SI000BTD.200
B-24DI/8DO	DP	6ES7 133-0BN00-0XB0	SI000FTD.200
B-24DI/8DO.2	DP	6ES7 133-0BN10-0XB0	SI000ETD.200
B-16DI-AC	DP	6ES7 131-0HF00-0XB0	SI0019TD.200
B-16DO-AC	DP	6ES7 132-0HF00-0XB0	SI001ATD.200
B-16RO-AC	DP	6ES7 132-0HH00-0XB0	SI001CTD.200
B-8DI/8RO-AC	DP	6ES7 133-0HH00-0XB0	SI001DTD.200
B-8RO	DP	6ES7 132-0GF00-0XB0	SI0003TD.200
B-4/8AI	DP	6ES7 134-0KH00-0XB0	SI801ATD.200
B-4AI	DP	6ES7 134-0HF00-0XB0	SI8019TD.200
B-4AO	DP	6ES7 135-0HF00-0XB0	SI8018TD.200

Availability of Type

 FilesAll the type files are made available centrally in the Interface Center, from where you can pick them up by modem under the following mailbox number:
Tel.: (Germany) 0911/73-7972
The contents of the type files are reproduced in Appendix A of this manual. If any of the files are missing, you can thus create them yourself if necessary using an ASCII editor.

Installing the Type Files

Copy the files into the COM ET 200 directory as follows:

Installation under S5-DOS/ST (MS-DOS):

Copy the type files into the COM ET 200 directory with
PCOPY OA:*. $200 \mathrm{C}: \backslash C O M E T 200$

Installation under S5-DOS/ST (PCP/M):

Copy the type files into the user area of the programmer containing COM ET 200 with
PIP C:=A:*.200[g0rvw

4.1.1 Entering the Station Number

Starting Point You have edited the ET 200 system parameters in the "ET 200 SYSTEM

 PARAMETERS" screen form of COM ET 200 (see ET 200 Distributed I/O System manual).
Rules

Please note the following when editing the station number:

- An ET 200B station must have a station number in the range 3 to 99 . (Only two-digit station numbers can be set on the ET 200B slave station.)

How to Proceed When Entering the Station Number

To enter the station number, execute the following steps:

1. Press <F2> in the "FUNCTIONS" screen form to branch to the "CONFIGURING" screen form.
2. Correct the station number here if necessary.

Valid Entries:

Possible station numbers for ET 200B: 3 to 99

Help:

Press <F7> (HELP) to see a window with all previously assigned station numbers and station types. You can select a station and display its configuration. If no station numbers have yet been assigned, the message "No stations configured" appears.
3. Confirm the entry with 〈F6> (ENTER).

Result If the station whose number you have entered has already been configured, the configuration appears on the screen after you have made your entry.

If the station has not yet been configured, two further input fields appear in the "CONFIGURING" screen form. These are "Area" and "Station type" (see Section 4.1.2).

Example In our example, we assign the station number " 5 " to the station

Figure 4-1 "CONFIGURING" Screen Form (1)

4.1.2 Entering the Address Area and the Station Type

Starting Point
How to Proceed When Entering the Address Area and the Station Type

If the station has not yet been configured, two further input fields appear in the "CONFIGURING" screen form after the station number has been confirmed. These are "Area" and "Station type" (see Section 4.1.1).

Execute the following steps to define the address area and the station type of the ET 200B:

1. Enter the address area of the station in the "Area" input field.

Valid Entries:

If you have set the ET 200 system parameter "Dual-port RAM addressing"(paging) with a default of "Y" (yes), enter the abbreviation of the I/O area with the page number here (example: "P3" for page no. 3 in the P area).

If you have set the ET 200 system parameter "Dual-port RAM addressing)" (paging) with a default of " N " (no), enter one of the permissible areas here (P or Q for linear addressing).

Fundamentals:

The fundamentals of addressing for the ET 200 (linear addressing or dualport RAM addressing (paging)) are described in the ET 200 Distributed I/O System manual.
2. Enter the relevant designation for your ET 200B station in the "Station type" input field.

Help:

Press <F7> (HELP) to see a window showing all the station types you can enter in the input field.

If the desired station does not appear, check to see if the relevant type file is located in a directory known to COM ET 200 (see Table 4-1).
3. Confirm the entry with <F6> (ENTER).

Result

After the entries have been made, further input fields appear for configuring the inputs and outputs in the "CONFIGURING" screen form (see Section 4.1.3).

Example	In our example, the ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) slave station is to be configured. The inputs of the module are addressed linearly in the P area.

Figure 4-2 "CONFIGURING" Screen Form (2)

4.1.3 Entering the Station Name, Addresses and Address ID

Starting Point

"Station Name"

"Next Available Address"

How to Proceed

 When Entering Addresses and Address IDs for configuring the inputs and outputs in the "CONFIGURING" screen form.If desired, you can enter a name for the ET 200B distributed I/O station in the "Station name" input field (all keyboard characters permissible).

COM ET 200 automatically displays the "Next available address" for digital inputs (DIs), digital outputs (DOs), analog inputs (AIs) and analog outputs (AOs).

When the "CONFIGURING" screen form is called for the first time in the selected program file, the next available addresses are set to " 0 ".

Execute the following steps to define the addresses and the address ID of the ET 200B:

1. If desired, enter another available address which you want to use for the inputs or outputs of the ET 200B in the input fields "Next available address".

Valid Entries:

In the case of linear addressing: 0 ... 255
In the case of dual-port RAM addressing in the Q area: $0 \ldots 254$
In the case of dual-port RAM addressing in the P area: $192 \ldots 254$
2. Enter the address IDs of the ET 200B in the input fields in the "Configuration area" (Figure 4-3 : [1)

Note

Enter the details for one ET 200B station per "CONFIGURING" screen form.

Analog ET 200B modules always have the slot " 0 .". In the case of digital ET 200B modules, all output ports have the slot " 0 .". All input ports have slot "1.".

Valid Entries:

You can see from Table 4-2 how to enter the address IDs:

Precondition:

The cursor must be on the input field for the address ID.
3. Confirm the entries with $\langle\mathrm{F} 6\rangle$ (ENTER).

Result
COM ET 200 automatically displays the area starting address in the output field "Area address: I: O:"

- In field "I:", the area starting address for the inputs
- In field "O:", the area starting address for the outputs

Address IDs
The following address IDs are valid for the ET 200B:

Table 4-2 Address IDs for ET 200B

Module	Order Number	Address ID		Consistency	Address Range (Bytes)		Address Area
		Slot 0	Slot 1		I	0	
ET 200B-16DI	6ES7 131-0BH00-0XB0	000	017	Byte	2	-	Digital
ET 200B-32DI	6ES7 131-0BL00-0XB0	000	019	Byte	4	-	Digital
ET 200B-32DI 0.2ms	6ES7 131-0BL10-0XB0						
ET 200B-16DO	6ES7 132-0BH00-0XB0	033	000	Byte	-	2	Digital
ET 200B-16DO/2A	6ES7 132-0BH10-0XB0	033	000	Byte	-	2	Digital
ET 200B-32DO	6ES7 132-0BL00-0XB0	035	000	Byte	-	4	Digital
ET 200B-8DI/8DO	6ES7 133-0BH00-0XB0	8DA or 032	8DE or 016	Byte	1	1	Digital
ET 200B-24DI/8DO	6ES7 133-0BN00-0XB0	8DA or 032	018	Byte	3	1	Digital
$\begin{aligned} & \text { ET 200B-24DI/8DO } \\ & 0.2 \mathrm{~ms} \end{aligned}$	6ES7 133-0BN10-0XB0						
ET 200B-8RO	6ES7 132-0GF00-0XB0	032	000	Byte	-	1	Digital
ET 200B-16DI-AC	6ES7 131-0HF00-0XB0	000	017	Byte	2	-	Digital
ET 200B-16DO-AC	6ES7 132-0HF00-0XB0	033	000	Byte	-	2	Digital
ET 200B-16RO-AC	6ES7 132-0HH00-0XB0	033	000	Byte	-	2	Digital
ET 200B-8DI/8RO-AC	6ES7 133-0HH00-0XB0	8DA or 032	8DE or 016	Byte	1	1	Digital
ET 200B-4/8AI	6ES7 134-0KH00-0XB0	087	-	Word	16	-	Analog
ET 200B-4AI	6ES7 134-0HF00-0XB0	4AE or 083	-	Word	8	-	Analog
ET 200B-4AO	6ES7 135-0HF00-0XB0	099	-	Word	-	8	Analog

Entering the Station Name, Addresses and Address IDs, continued

Example \quad In our example, the ET 200B-24DI/8DO is to be used for a "press control".

Address IDs:

24 digital inputs: 018
8 digital outputs: 032

Figure 4-3 "CONFIGURING" Screen Form (3)

Entering the Address IDs Individually

You can find all the address IDs you require for the ET 200B in Table 4-2.
If the address IDs are not available to you, you can have COM ET 200 generate them for you. For this purpose, you must fill out the "DP Identifier" window.

Example
This example shows how to enter the address ID for ET 200B-24DI/8DO:

1. Position the cursor at the input field for slot " 0 .".
2. Press <F7> (HELP).

The "DP Identifier" window appears:

```
DP Identifier Length: ## Format: # Consistency: # ,
Help: \cdots-\cdots\cdots
    X: Input/output,
Length: 1 - 16
Format: B: Byte, W: Word,
Consistency:0: Byte/Wort 1: Total
            (depending on format)
```

3. Fill out the 4 input fields with the help of the legend.
"DP Identifier" window for the 8 outputs of the ET 200B-24DI/8DO (slot "0."):
```
D/ Identifier 11 0:
I/O: O Length: 1 Format: B Consistency: 0
Help:
I/O: I: Input, O: Output,
Length: 1 - 16
Format: B: Byte, W: Word,
Consistency:0: Byte/Word 1: Total
    (depending on format)
```

4. Confirm the entries with <F6> (ENTER).
5. Position the cursor at the input field for slot " 1. ."
6. Press 〈F7> (HELP) again.

The "DP Identifier" window appears again.

Entering the Station Name, Addresses and Address IDs, continued

7. Fill out the 4 input fields for the 24 inputs too with the help of the legend.
"DP Identifier" window for the 24 inputs of the ET 200B-24DI/8DO (slot " 1. ."):
```
DP Identifier
I/O: I Length: 3 Format: B Consistency: 0
Help:
I/O: I: Input, O: Output,
    X: Input/output,
Length: 1 - 16
Format: B: Byte, W: Word,
Consistency:0: Byte/Wort 1: Total
    (depending on format)
```

8. Confirm the entries with <F6> (ENTER).

Result The input fields for the address ID contain the correct address IDs for the ET 200B-24DI/8DO (see Figure 4-3):

032: for 8 outputs in slot " 0 ."
018 : for 24 inputs in slot " 1 ."

4.2 Entering the Parameterization Frame with COM ET 200 V.4x

Introduction

How to Proceed When Entering Parameters

The diagnostics characteristics for the analog ET 200B modules and the necessary defaults for analog value measurement or analog value output are defined in the parameterization frame.

In the case of the digital ET 200B modules, settings cannot be made via the parameterization frame. When the "DP Slave Parameterization frame" window is selected, 5 bytes are pre-assigned with " 00_{H} ".

Note

You are not allowed to overwrite the 5 bytes of the parameterization frames of the digital ET 200B modules which have been pre-assigned with " 00_{H} ".

Execute the following steps to enter the parameterization frame of the ET 200B:

1. Press (Shift) <F6> (DP Slave Parameterization Frame)

The "DP Slave Parameterization Frame" window appears with the default parameters for the ET 200B station.

Example:

Below is the pre-assigned parameterization frame for the ET 200B-4AI:
|
| Bytel (Input in KH format)

0	13	00	00	00	00	00	00	19
19	19							
10	19	00	00	00	00	00	00	00
20	FF	00	00	00	00		06	

2. Enter the parameters in "KH". The figures and tables on the following pages explain the valid entries and their meanings.
3. Terminate entry of the parameterization frame with <F6> (ENTER).
4. Confirm the configuration with 〈F6> (ENTER).

Result

The configuration is then stored in the default file.
COM ET 200 automatically ensures that areas that must be transferred consistently are also marked as consistent areas. This means that analog values, for example, are transferred in one frame (consistency over an area of 2 bytes).

4.2.1 Parameterizing the ET 200B-4/8AI (6ES7 134-0KH00-0XB0)

Pre-Assignment of the Parameterization Frame

When the "DP SLAVE PARAMETERIZATION FRAME" window is selected for the first time, the parameterization frame for the ET 200B-4/8AI is preassigned as follows:
\ulcorner DP SLAVE PARAMETERIZATION FRAME
| Byte| (Input in KH format)

0	13	00	00	00	00	00	AA	14	14	14
10	14	00	00	00	00	00	00	00	00	06
20	FF	00	00	00	00					

Note

Only bytes 3, 4, 6 to 10 and 23 (marked in the figure with '") are relevant for parameterizing the function of the ET 200B-4/8AI.

All other bytes contain " 00_{H} " or COM ET 200 -specific codes (" 13_{H} " in byte 0 ; " 06_{H} " in byte 19 ; " FF_{H} " in byte 20), which you must not overwrite!

In byte 3, you define the diagnostics characteristics for the input channels of the ET 200B-4/8AI:

Structure of the Parameterization Frame: Byte 3

Figure 4-4 Structure of the Parameterization Frame of the ET 200B-4/8AI: Byte 3

Structure of the Parameterization Frame, Byte 4

In byte 4, you define the response of the ET 200B-4/8AI to wire break:

Structure of the Parameterization Frame: Byte 4

1: Enable wire break detection for channel group 0
0 : Enable off
1: Enable wire break detection for channel group 1
0 : Enable off
1: Enable wire break detection for channel group 2
0 : Enable off
1: Enable wire break detection for channel group 3
0 : Enable off

Figure 4-5 Structure of the Parameterization Frame of the ET 200B-4/8AI: Byte 4

Note

You can only parameterize wire break detection if the following sensors are connected:

- Thermocouple: type J, K, L
- Resistance thermometer: Pt 100
- Voltage sensor: $\pm 80 \mathrm{mV}$

In all other measured value ranges, you must assign byte 4 the value " 00 ".

Parameterizing the ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Structure of the Parameterization
 Frame,
 Bytes 6 to 10

Table 4-3 contains the permissible entries for bytes 6 to 10 of the parameterization frame of the ET 200B-4/8AI.

Table 4-3 Parameters for the ET 200B-4/8AI (Bytes 6 to 10 of the Parameterization Frame)

Byte	Parameter	Explanation	Value Range	Hex Code
6	Integration time	Specify an optimal integration time of the A/D converter for the purpose of noise suppression.	$\begin{gathered} \hline 20 \mathrm{~ms} \\ 16.7 \mathrm{~ms} \end{gathered}$	$\begin{gathered} \mathrm{AA}_{\mathrm{H}} \\ 55_{\mathrm{H}} \end{gathered}$
7	Type and range of the measurement for channel group 0 (channels 0,1) (terminals $0.1 / 0.2$, 0.3/0.4)	Set the type and the range of the measurement according to the channel group.		
8	Type and range of the measurement for channel group 1 (channels 2, 3) (terminals 1.1/1.2, 1.3/1.4)	in the case of voltage measurement:	$\begin{gathered} \pm 1 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \\ \pm 0.25 \mathrm{~V} \\ \pm 80 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 14_{\mathrm{H}} \\ & 13_{\mathrm{H}} \\ & 12_{\mathrm{H}} \\ & 11_{\mathrm{H}} \end{aligned}$
9	Type and range of the measurement for channel group 2 (channels 4, 5) (terminals 2.1/2.2, 2.3/2.4)	in the case of resistance thermometer with linearization:	Pt 100 standard range	82_{H}
10	Type and range of the measurement for channel group 3 (channels 6,7) (terminals 3.1/3.2, 3.3/3.4)	in the case of a thermocouple with external reference junction:	Type J with linearization Type K with linearization Type L with linearization	$\begin{aligned} & \mathrm{E} 5_{\mathrm{H}} \\ & \mathrm{E8}_{\mathrm{H}} \\ & \mathrm{E} 6_{\mathrm{H}} \end{aligned}$
23	Measured value representation		Two's complement Amount with sign	$\begin{array}{r} 00_{\mathrm{H}} \\ { }^{01_{\mathrm{H}}} \end{array}$

: Default in the parameterization frame

4.2.2 Parameterization of the ET 200B-4AI (6ES7 134-0HF00-0XB0)

Pre-Assignment of the Parameterization Frame

When the "DP SLAVE PARAMETERIZATION FRAME" window is selected for the first time, the parameterization frame for the ET 200B-4AI is pre-assigned as follows:

Note

Only bytes 3,7 to 10 and 23 (marked in the figure with \square ') are relevant for parameterizing the function of the ET 200B-4AI.

All other bytes contain " 00_{H} " or COM ET 200 -specific codes (" 13_{H} " in byte 0 ; " $06{ }_{\mathrm{H}}$ " in byte 19 ; " FF_{H} " in byte 20), which you must not overwrite!

Structure of the Parameterization Frame, Byte 3

In byte 3, you define the diagnostics characteristics for the input channels of the ET 200B-4AI:

Figure 4-6 Structure of the Parameterization Frame of the ET 200B-4AI: Byte 3

Parameterization of the ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Table 4-4 Parameters for the ET 200B-4AI (Bytes 7 to 10 of the Parameterization Frame)

[^1]
4.2.3 Parameterization of the ET 200B-4AO (6ES7 135-0HF00-0XB0)

Pre-Assignment of the Parameterization Frame

When the "DP SLAVE PARAMETERIZATION FRAME" window is selected for the first time, the parameterization frame for the ET 200B-4AO is pre-assigned as follows:

Note

Only bytes 3,7 to 10 (marked in the figure with') are relevant for parameterizing the function of the ET 200B-4AO.

All other bytes contain " 00_{H} "or COM ET 200 -specific codes (" 13_{H} " in byte 0 ; " 06_{H} " in byte 19 ; " FF_{H} " in byte 20), which you must not overwrite!

Structure of the Parameterization

 Frame, Byte 3In byte 3, you define the diagnostics characteristics for the output channels of the ET 200B-4AO:

Structure of the Parameterization Frame: Byte 3

Figure 4-7 Structure of the Parameterization Frame of the ET 200B-4AO: Byte 3

Parameterization of the ET200B-4A0 (6ES7 135-0HF00-0XB0), continued

Structure of the Parameterization Frame, Bytes 7 to
 10

Table 4-5 contains the permissible entries for bytes 7 to 10 of the parameterization frame of the ET 200B-4AO.

Table 4-5 Parameters for the ET 200B-4AO (Bytes 7 to 10 of the Parameterization Frame)

Byte	Parameter	Explanation	Value Range	Hex Code
7	Type and range of the measu- rement for channel 0 (termi- nals 0.1/0.2)	Set the type and the range of the output according to the channel.		
8	Type and range of the measu- rement for channel 1 (termi- nals 1.1/1.2)	in the case of voltage output: in the case of current output:	$\pm 10 \mathrm{~V}$ 0 to 10 V	19_{H} 18_{H}
9	Type and range of the measu- rement for channel 2 (termi- nals 2.1/2.2)	$\pm 20 \mathrm{~mA}$ 0 to 20 mA 4 to 20 mA	24_{H} 22_{H}	
10	Type and range of the measu- rement for channel 3 (termi- nals 3.1/3.2)		23_{H}	

: Defaults in the parameterization frame

4.2.4 Structure of the Parameterization Frame in KH Format (Summary)

Structure \quad The 25-byte parameterization frame has the following structure:

Byte No.	0	1	2	3	4	5	6	7	8	9	10	$11 \ldots 18$	19	20	21	22	23	24
Contents in Hex	13	00	00	xx	xx	00	xx	xx	xx	xx	xx	00	06	FF	00	00	xx	00

The bytes indicated with " $x x$ " have the following meanings:

Table 4-6 Contents and Meaning of the Bytes

Byte	Structure	Code		
03	Enables diagnostics message for channel (group).			
	Bit $0=$ channel (group) 0 Bit $1=$ channel (group) 1 Bit $2=$ channel (group) 2 Bit $3=$ channel (group) 3	Bit at " 1 ": diagnostics message enabled Bit at " 0 ": diagnostics message not enabled (default)		
04	Enables wire break detection, only in the case of the ET 200B-4/8AI with selected value range Pt 100, thermocouple or voltage sensor $\pm 80 \mathrm{mV}$			
	Bit $0=$ channel group 0 Bit $1=$ channel group 1 Bit $2=$ channel group 2 Bit 3 = channel group 3	Bit at " 1 ": diagnostics message enabled Bit at " 0 ": diagnostics message not enabled (default) (In the event of a wire break, the overflow bit is also set.)		4/8AI
06	Sets the integration time, only for ET 200B-4/8AI			
		$\begin{aligned} & \mathrm{AA}_{\mathrm{H}} \\ & 55_{\mathrm{H}} \end{aligned}$	Integration time 20 ms for 50 Hz supply (default) Integration time 16.7 ms for 60 Hz supply	$\begin{aligned} & \text { 4/8AI } \\ & 4 / 8 \mathrm{AI} \end{aligned}$
$\begin{aligned} & \hline 07,08, \\ & 09,10 \end{aligned}$	Sets the analog value range			
	Byte $7=$ channel (group) 0 Byte $8=$ channel (group) 1 Byte $9=$ channel (group) 2 Byte $10=$ channel (group) 3	$\begin{aligned} & \hline 19_{\mathrm{H}} \\ & 18_{\mathrm{H}} \\ & 16_{\mathrm{H}} \\ & 15_{\mathrm{H}} \\ & 14_{\mathrm{H}} \\ & 14_{\mathrm{H}} \\ & 13_{\mathrm{H}} \\ & 12_{\mathrm{H}} \\ & 11_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 0 \text { to } 10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \pm 1.25 \mathrm{~V} \text {, for ET 200B-4AI } \\ & \pm 1 \mathrm{~V}, \text { for ET 200B-4/8AI } \\ & \pm 0.5 \mathrm{~V} \\ & \pm 0.25 \mathrm{~V} \\ & \pm 80 \mathrm{mV} \end{aligned}$	$\begin{array}{\|l} \hline 4 \mathrm{AI}, 4 \mathrm{AO} \\ 4 \mathrm{AO} \\ 4 \mathrm{AI} \\ 4 \mathrm{AI} \\ 4 \mathrm{AI} \\ 4 / 8 \mathrm{AI} \end{array}$
		$\begin{aligned} & 24_{\mathrm{H}} \\ & 22_{\mathrm{H}} \\ & 23_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { 4AI, 4AO } \\ & \text { 4AI, 4AO } \\ & \text { 4AI, 4AO } \end{aligned}$
		$\begin{aligned} & 82_{\mathrm{H}} \\ & \mathrm{E5}_{\mathrm{H}} \\ & \mathrm{E} 8_{\mathrm{H}} \\ & \mathrm{E} 6_{\mathrm{H}} \end{aligned}$	Pt 100 standard Theromocouple type J with linearization Theromocouple type K with linearization Theromocouple type L with linearization	$\begin{aligned} & \hline 4 / 8 \mathrm{AI} \\ & 4 / 8 \mathrm{AI} \\ & 4 / 8 \mathrm{AI} \\ & 4 / 8 \mathrm{AI} \end{aligned}$

Parameterization of the ET200B-4A0 (6ES7 135-0HF00-0XB0), continued

Table 4-6 Contents and Meaning of the Bytes, continued

Byte	Structure	Code		
$\mathbf{2 3}$	Selects the measured value representation (ET 200B-4AI and ET 200B-4/8AI only)			
		00_{H}	Two's complement 	01_{H}
Amount and sign				
	02_{H}	Binary	4AI, 4/8AI	
4AI, 4/8AI				
4AI				

Startup and Test with COM ET 200

Startup Methods

Handheld

In this Chapter

COM ET 200 WINDOWS

There are two methods of starting up and testing the ET 200B distributed I/O station:

- Using the ET 200 Handheld (only ET 200B digital modules)
- Using COM ET $200 \mathrm{v} 4 . \mathrm{x}$ and a programmer (with the CP 5410 S5-DOS/ ST interface module)

Startup and test of the ET 200B digital modules using the ET 200 Handheld is described in the ET 200 Handheld manual.

Starting up the ET 200B analog modules using the ET 200 Handheld is not possible.

This chapter describes startup and testing of the ET 200B using a programmer and COM ET 200 V4.x.
You will learn

- Which constraints are important for operation and testing (see Section 5.1)
- How to select the station and transfer the configuration data to the station (see Section 5.2)
- How you can test the station (see Section 5.3).

If you are operating the ET 200B with COM ET 200 WINDOWS, you do not need to study this chapter.

The simple procedure for starting up slave stations with COM ET 200 WINDOWS is identical for all the ET 200 slaves and is not described in this manual. Please refer to the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12) for further details about whether or not test and startup functions are possible with COM ET 200 WINDOWS, and if so with which version.
COM ET 200 WINDOWS also provides extensive support for starting up the ET 200B modules through its integrated help system.

5.1 Constraints in Operation and Testing

Response Power

 Off/Power OnIn the case of "power off/power on" occuring repeatedly within a short period of time it is possible in exceptional cases that the ET 200B digital module will not be accepted by the SINEC L2-DP bus.

Remedy:

Switch the STOP/RUN switch to STOP and then back to RUN.

Baud Rate Change

With the ET 200B digital modules, it is not possible to correct a wrong configuration and simultaneously to change the baud rate. If this is attempted, the station will not be accepted by the SINEC L2-DP bus.

Remedy:

Switch the STOP/RUN switch to STOP and then back to RUN.

Minimum Configuration

If there is only one IM 308-B and only one ET 200B analog input module on the bus at a baud rate of ≤ 93.75 kbaud, it can happen that the analog input values will not be transferred to the IM 308-B (analog inputs $=0$).

Remedy:

- Select "Programmer connected to the bus: Y" in COM ET 200
or
- Select a higher baud rate
or
- If you require a further ET 200B station for your application, operate this on the bus also.

5.2 Startup of the ET 200B Distributed I/O Station

Precondition

Procedure When Selecting the Station

Result

The correct station number must be set on the terminal block.

Note

A station number (set with a screwdriver, for example) only becomes valid when you have executed a cold restart on the ET 200B slave station (STOPRUN switch changed from STOP \rightarrow RUN position).

Execute the following steps to parameterize the ET 200B:

1. Connect the programmer (with CP5410 S5-DOS/ST interface module) to the SINEC L2-DP bus or directly to the ET 200B module.
2. Call up the "STARTUP/TEST" screen form of the COM ET 200 software package (<F5> in the "FUNCTIONS" screen form).
3. Enter the station number of the plugged-in ET 200B station.
4. Confirm the entry with 〈F6〉 (ENTER).

After a safety prompt, COM ET 200 establishes a connection with the plugged-in station, parameterizes it and branches to the "STARTUP/TEST: MODULE SELECTION" screen form if the configuration and the actual station structure agree.

If they do not agree, COM ET 200 reports an error in the message line. If this happens, you must correct the structure of the station in the "CONFIGURING" screen form.

Caution

If you start up an ET 200B station during "bus operation" using the programmer connected to the bus, you must note the following: The station cannot be controlled by the master while it is beeing accessed by the programmer!

Startup of the ET 200B Distributed I/O station, continued

Example In our example, the ET 200B station with station number " 6 " is to be started

 up.

Figure 5-1 "STARTUP/TEST: STATION SELECTION" Screen Form

5.3 Testing the ET 200B Distributed I/O Station

Starting Point COM ET 200 branches automatically to the "STARTUP/TEST: MODULE SELECTION" screen form after parameterizing the ET 200B station (see Section 5.2).

How to Proceed When Selecting the Slots

Execute the following steps to select the slots of the input or output ports:

1. Position the cursor at the slot of the ET 200B station whose input status you want to evaluate or whose outputs you want to control.
2. Press 〈F5> (SELECT).

Result:

The selected slot is marked with a "*". Press <F5> (SELECT) again to undo the selection.
3. Confirm the selection with <F6> (ENTER).

Result
The "STARTUP/TEST: STATUS/CONTROL" screen form for the selected station appears with the following contents:

The "Station status" output field contains diagnostics messages in plain text concerning the entire station.

Two tables show the inputs and outputs in "KH" format:

Testing the ET200B Distributed I/O station, continued

Example In our example, the ET 200B-4AI analog input module (address ID 4AI) is tested.

Figure 5-2 "STARTUP/TEST: STATUS/CONTROL" Screen Form

How to Proceed When Testing Inputs

Execute the following steps to test inputs:

1. Specify the input signals (sensor signals) for the module.
2. Press 〈F6> (ENTER).

Result:

The input data of the selected module and the (station) diagnostics data are requested. The diagnosis appears as plain text in the "Station status" field.

The assignments of the function keys on the screen form change.
3. Press <F6> (STOP) to freeze the screen, that is to stop the output fields in the "Inputs" line from being updated.

Displayed inputs in the case of the ET 200B-4AI (address ID 4AI):

Channel	0	1	2	3
KH $=$	0100	$00 F F$	00AB	01AA

Testing the ET 200B Distributed I/O Station, continued

How to Proceed When Testing Outputs

Execute the following steps to test outputs:

1. Enter output signals in the "Outputs" line.
2. Press 〈F6> (ENTER).

Result:

The output data is transferred cyclically to the selected module.
The assignments of the function keys on the screen form change.
3. Press <F6> (STOP) to freeze the screen, that is to stop the outputs from being controlled.

Caution

Setting outputs when the load current circuit is switched on can cause hazardous plant conditions.

Outputs are only reset in the following cases:

- If you call the MODULE SELECTION screen form
- If you reset the outputs in the MODULE SELECTION screen form
- If you exit the MODULE SELECTION screen form with <F8> (EXIT) and "YES".

Set outputs in the case of the ET 200B-32DO (address ID 035):

Byte	0	1	2	3
KH $=$	$\mathbf{2 C}$	A0	01	34

Fault Diagnostics

In this Chapter

COM ET 200 WINDOWS

If you are operating the ET 200B with COM ET 200 WINDOWS, you do not need to study Section 6.2.

The simple procedure for diagnosing faults in slave stations with COM ET 200 WINDOWS is identical for all ET 200 slaves and is not described in this manual. Please refer to the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12) for further details about whether or not fault diagnostics are possible with COM ET 200 WINDOWS, and if so with which version.

COM ET 200 WINDOWS also provides extensive support for starting up the ET 200B modules through its integrated help system.

6.1 Fault Diagnostics Through LEDs

Introduction

Fault Indications

The LEDs on the front of the ET 200B modules give you initial information on the type of fault.

Table 6-1 explains the meanings of the LED signals on the ET 200B modules.

Table 6-1 LED Indicators

LED	Indication	Meaning
RUN	Lit (green)	ET 200B in operation (power supply switched on; STOP/RUN switch in "RUN" position ${ }^{1}$).
BF	Lit (red)	The monitoring time has elapsed without the ET 200B station being addressed (either because the connection to the IM 308-B or IM 308-C has failed or because the IM 308-B or IM $308-\mathrm{C}$ is set to STOP) or The ET 200B station was not parameterized during startup/restart.
DIA	Lit (red)	For digital 24 V DC output modules: - Short-circuit or load voltage failure (L1+, L2+, L3+, L4+) at at least one output For analog modules: - Diagnosis for at least one input or output
L1+	Lit (green)	For ET 200B-16DO 8DI/8DO, 24DI/8DO and 24DI/8DO 0.2 ms : - Voltage is applied for channel group Q0: . 0 to .7. ${ }^{2}$
L2+	Lit (green)	For ET 200B-16DO: - Voltage is applied for channel group Q1: .0 to .7. ${ }^{2}$
L1+/L2+	Lit (green)	For ET 200B-32DO: - Voltage is applied for channel groups Q0: . 0 to .7 and Q1: . 0 to .7. ${ }^{2}$ For ET 200B-16DO/2A: - Voltage is applied for channel groups Q0: . 0 to .3 and Q0: . 4 to .7. ${ }^{2}$
L3+/L4+	Lit (green)	For ET 200B-32DO: - Voltage is applied for channel groups Q2: . 0 to .7 and Q3: . 0 to .7. ${ }^{2}$ For ET 200B-16DO/2A: - Voltage is applied for channel groups Q1: . 0 to .3 and Q1: . 4 to .7. ${ }^{2}$

Not 120/230 V AC digital modules. These have no STOP/RUN switch.
LED goes out if fuse blows or voltage drops below a certain limit (typically: 15.5 V).

6.2 Fault Diagnostics with COM ET 200 V4.x

Introduction

Precondition
The COM ET 200 software package provides the "DIAGNOSTICS" screen form for diagnostics functions.

The following preconditions must be met before using the diagnostics functions:

- You must have connected a programmer to the SINEC L2-DP bus using the CP5410 S5-DOS/ST programmer interface module.
- You must have indicated "Programmer connected to the bus: Y " in the "ET 200 SYSTEM PARAMETERS" screen form.
- The selected program file must be identical to the program file on the E(E)PROM.

How to Proceed When Requesting Station Diagnostics

Execute the following steps to request station diagnostics:

1. Call the "DIAGNOSTICS: OVERVIEW" screen form (<F6> in the "FUNCTIONS" screen form).

Result:

All numbers of stations on which diagnostics data is available are listed under "Station number" in the screen form.
2. Press <F1> (INDIVIDUAL DIAGNOSTICS).

Result:

COM ET 200 prompts you for a "Station number".
3. Enter the number of the faulty station you wish to diagnose in the "Station number" input field.
4. Press <F6> (ENTER) in order to evaluate diagnostics messages from this station.

After you press <F6> (ENTER), COM ET 200 branches to the "INDIVIDUAL DIAGNOSTICS" screen form with the following contents:
The diagnostics messages for the entire station are displayed in the "Station status" output field in plain text (see Figure 6-1).

The "Device-Related Diagnostics" give the channel-group-related diagnostics in "KH" format. See Sections 6.3.5 and 6.3.6 for more detailed information on the structure of the device-related diagnostics of the ET 200B.

Fault Diagnostics with COM ET 200 V4.x, continued

$$
\begin{array}{ll}
\text { Example } & \text { In our example, one or more signal sensor lines of the ET 200B-4AI are } \\
\text { interrupted. The ET 200B-4AI has device-related diagnostics of } 9 \text { bytes. } \\
\text { See Section } 6.3 .6 \text { for the precise meaning of the bytes. }
\end{array}
$$

Figure 6-1 "INDIVIDUAL DIAGNOSTICS" Screen Form

6.3 Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-B

Introduction
Diagnostics
Functions Using STEP 5

You can locate and evaluate a fault systematically with STEP 5.

Table 6-2 lists the STEP 5 diagnostics functions in combination with an IM 308-B:

Table 6-2 Diagnostics Functions Using STEP 5 in combination with an IM 308-B

Diagnostics	Information
Diagnostics "Overview"	Determines all stations for which diagnostics data is available.
Diagnostics for "Parameterization and accessibility"	Determines the stations which are parameterized and can be contacted.
Station diagnostics	Provides information on the status of the slave station and displays diagnostics data for individual channel groups (only in the case of modules with diagnostics capability).

The "Overview" and "Parameterization and Accessibility" diagnostics functions each comprise two bytes organized in one word.

Diagnostics
 "Overview" and "Parameterization and Accessibility"

Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-B, continued

Structure:
 Station Diagnostics

16 bytes are reserved per slave station for station diagnostics purposes. The 16 bytes are organized into 8 words.

To avoid misunderstandings, the two diagnostics bytes of the diagnostics word will be referred to in the following as "diagnostics address" and "diagnostics address +1 ".

You will find a description of device-related diagnostics as follows:

- In Section 6.3.5 for digital ET 200Bs
- In Section 6.3.6 for analog ET 200Bs

Table 6-3 Structure of the Station Diagnostics for the ET 200B in combination with an IM 308-B

Code	Diagnostics Address	Diagnostics Address + 1
0	Station status 1	Station status 2
1	Station status 3	Master address
2	Manufacturer identification	
3	Digital: Header Analog: Header	Digital: Device-related diagnostics (group diagnostics) Analog: Reserved (byte 0)
4	Digital: Free Analog: Device-related diagnostics (byte 1) (reserved)	Digital: Free Analog: Device-related diagnostics (byte 2) (system-related diagnostics)
5	Digital: Free Analog: Device-related diagnostics (byte 3) (system-related diagnostics	Digital: Free Analog: Device-related diagnostics (byte 4) (system-related diagnostics)
7	Digital: Free Analog: Device-related diagnostics (byte 5) (system-related diagnostics	Digital: Free Analog: Device-related diagnostics (byte 6) (input or output channels)
Digital: Free Analog: Device-related diagnostics (byte 7) (reserved)	Digital: Free	
Analog: Device-related diagnostics (byte 8)		
(no. of channels)		

Requesting
Diagnostics
The diagnostics are loaded word by word and transferred to the diagnostics word. (The load and transfer operations always refer in the following to the default diagnostics address 252.)

In the case of dual-port RAM addressing, the diagnostics word is located on the "basic page". Before requesting diagnostics in the case of dual-port RAM addressing, you must also "switch" to the basic page number.

Structure of the STEP 5 listing for diagnostics:

STL	Explanation
L KB (basic page number)	Page selection
T PY 255	(basic page number: $\mathrm{n} \times 16, \mathrm{n}=0,1, \ldots$)
L KY (station number), (code)	Load diagnostics (station number:
T PW 252	3 to 99, code: $->$ Table 6-3) and transfer to the diagnostics word (diagnostics word: in this case, PW 252) .
L PW 252	Evaluate diagnostics word (hex code:
L KH (hex-code: no error)	\rightarrow Sections 6.3.1 to 6.3.6)
$!=F$	Error?
BEC	
JC FBx	Evaluate error in FBx

6.3.1 Diagnostics "Overview" with IM 308-B

Introduction

Requesting the Diagnostics "Overview"

The diagnostics "Overiew" encompasses all stations for which diagnostics data is available.

Program the following in STEP 5:

Structure: The diagnostics word has the following structure after requesting the Diagnostics Word "Overview" diagnostics "Overview":

Figure 6-2 Structure of the Diagnostics Word After Requesting the Diagnostics "Overview"

6.3.2 Diagnostics "Parameterization and Accessibility" with IM 308-B

Introduction

Requesting the Diagnostics "Parameterization and Accessibility"

The diagnostics "Parameterization and Accessibility" encompass all stations which have been parameterized and are accessible.

Program the following in STEP 5:

Structure:
 Diagnostics Word "Parameterization and Accessibility"

The diagnostics word has the following structure after requesting the diagnostics "Parameterization and Accessibility":

Figure 6-3 Structure of the Diagnostics Word After Requesting the Diagnostics "Parameterization and Accessibility"

Diagnostics
 "Overview" and "Parameterization and Accessibility"

The following diagnostics messages can be generated by combining diagnostics "Overview" and diagnostics "Parameterization and Accessibility":

Table 6-4 Combination of Diagnostics "Overview" and Diagnostics "Parameterization and Accessibility"

Overview	Parameterization and Accessibility	Meaning: Station is ...
0	0	... not parameterized and not accessible
0	1	... error-free and accessible
1	0	... parameterized and not accessible
1	1	... contains errors but is accessible

6.3.3 Station Status Diagnostics with IM 308-B

Introduction

The diagnostics bytes "Station status 1 to 3" give information on the station. The station number of the master station which has parameterized the slave station is stored in the "Master address" diagnostics byte.

Requesting Station Program the following in STEP 5:

Status 1 and 2

STL	Explanation
$\begin{array}{lll} \text { L } & K Y & n, 0 \\ \text { T } & \text { PW } & 252 \end{array}$	Store in the "Diagnostics address"
	byte the number of the slave station
	($\mathrm{n}=$ station number) from which the
	station status is to be requested;
	store the code for "Station status 1
	and station status $2^{\prime \prime}$ (code $=0$) in the "Diagnostics address +1 " byte.
L PW 252	Load the diagnostics word
L KH 000C	Threshold monitoring activated
$!=F$	No error?
BEC	
JC FBx	Evaluate error in FBx

Structure:
Diagnostics Word Station Status 1 and 2

The diagnostics word has the following structure when station status 1 and 2 (code $=0$) has been requested:

Diagnostics word "Station Status 1 and Station Status 2", Code $=0$

1: Slave station must be reparameterized.
1: Slave station cannot continue to operate until fault corrected.
1 : Bit is always " 1 ".
1: Threshold monitoring has been activated.
1: Slave station is in "FREEZE" mode.
1: Slave station is in "SYNC" mode.
0 : Bit is always " 0 ".
1: Slave station deactivated.
1: Slave station cannot be accessed.
1: Slave station not yet ready for data exchange.
1: The configuration data sent from the master to the slave station does not correspond to the structure of the slave station.
1: There are individual diagnostics.
1: Requested function not supported by slave station.
1:Response of slave station to master cannot be interpreted.
1: Parameterization error.
1:Slave station has been parameterized by another master.

Figure 6-4 Structure of the Diagnostics Word (Station Status 1 and Station Status 2)

Note

If you are operating with the IM 308-B and the slave station has not been configured with COM ET 200 (V4.0), the diagnostics word "Station status 1 and station status 2 " has the following structure (in KH format):
Station status $1: 01_{\mathrm{H}}$
Station status 2: 44_{H}

Station Status Diagnostics with IM 308-B, continued

Requesting Station
Status 3 and Master Address

Structure:

Diagnostics Word Station Status 3 and Master Address

Program the following in STEP 5:

STL	Explanation
L KY n, 1	Store the number of the slave
T PW 252	station ($\mathrm{n}=$ station number) from
	which the master address is to be
	requested in the "Diagnostics
	address" byte; store the code for "Station status 3 and master
	address" (code $=1$) in the
	"Diagnostics address +1 " byte.

The diagnostics word has the following structure after station status 3 and the master address $($ code $=1)$ has been requested.

Figure 6-5 Structure of the "Station Status 3 and Master Address" Diagnostics Word

6.3.4 Diagnostics of the Manufacturer Identification with IM 308-B

Introduction

Requesting the Manufacturer Identification

The "Manufacturer identification" diagnostics word describes the type of the slave station.

Program the following in STEP 5:

STL	Explanation
L KY $\mathrm{n}, 2$	Store the number of the slave sta-
T PW 252	tion ($\mathrm{n}=$ station number) from which
	the manufacturer identification is
	to be requested in the "Diagnostics address" byte; store the code for
	"Manufacturer identification" (code
	= 2) in the "Diagnostics address +1"
	byte.
L PW 252	Load the manufacturer identification
L KH 0001	(e.g. "0001 ${ }^{\text {" }}$ for ET 200B-16DI)
$!=F$	No error?
BEC	
JC FBx	Evaluate error in FBx.

Diagnostics of the Manufacturer Identification with IM 308-B, continued

Structure: \quad The diagnostics word has the following structure when the manufacturer
 Diagnostics Word Manufacturer Identification
 $$
\text { identification (code }=2 \text {) has been requested: }
$$

```
Diagnostics word "Manufacturer Identification", Code = 2
     Diagnostics address \ _Diagnostics address + 1 
    7
```



```
\begin{tabular}{|c|c|c|}
\hline \(0001_{\mathrm{H}}\) : & ET 200B-16DI & (6ES7 131-0BH00-0XB0) \\
\hline 0002H: & ET 200B-16DO & (6ES7 132-0BH00-0XB0) \\
\hline \(0003_{\mathrm{H}}\) : & ET 200B-8RO & (6ES7 132-0GF00-0XB0) \\
\hline 0004H: & ET 200B-32DI & (6ES7 131-0BL00-0XB0) \\
\hline \(0005_{\mathrm{H}}\) : & ET 200B-16DO/2A & (6ES7 131-0BH10-0XB0) \\
\hline \(000 \mathrm{~B}_{\mathrm{H}}\) : & ET 200B-8DI/8DO & (6ES7 133-0BH00-0XB0) \\
\hline \(0^{000} \mathrm{C}_{\mathrm{H}}\) & ET 200B-32DI 0.2ms & (6ES7 131-0BL10-0XB0) \\
\hline \(000 \mathrm{D}_{\mathrm{H}}\) & ET 200B-32DO & (6ES7 132-0BL00-0XB0) \\
\hline \(000 \mathrm{E}_{\mathrm{H}}\) : & ET 200B-24DI/8DO 0.2 ms & (6ES7 133-0BN10-0XB0) \\
\hline \(000 \mathrm{~F}_{\mathrm{H}}\) : & ET 200B-24DI/8DO & (6ES7 133-0BN00-0XB0) \\
\hline 0019 \({ }_{\text {H }}\) : & ET 200B-16DI-AC & (6ES7 131-0HF00-0XB0) \\
\hline \(001 \mathrm{~A}_{\mathrm{H}}\) : & ET 200B-16DO-AC & (6ES7 132-0HF00-0XB0) \\
\hline \(0^{001 C_{H}}\) & ET 200B-16RO-AC & (6ES7 132-0HH00-0XB0) \\
\hline 001D \({ }_{\text {H }}\) & ET 200B-8DI/8RO-AC & (6ES7 133-0HH00-0XB0) \\
\hline 8018H: & ET 200B-4AO & (6ES7 135-0HF00-0XB0) \\
\hline 8019 \({ }_{\text {H: }}\) : & ET 200B-4AI & (6ES7 134-0HF00-0XB0) \\
\hline \(801 \mathrm{~A}_{H}\) : & ET 200B-4/8AI & (6ES7 134-0KH00-0XB0) \\
\hline
\end{tabular}
```

Figure 6-6 Structure of the "Manufacturer Identification" Diagnostics Word

6.3.5 Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM308-B

Introduction You can detect faults in inputs and outputs using device-related diagnostics.
The header gives information on the length of the device-related diagnostics.

Note

Device-related diagnostics are only possible in the case of ET 200B stations with diagnostics capability.

ET 200B stations without diagnostics capability contain the value " 07_{H} " in the header and the remaining bytes are reserved.

Requesting Device-Related Diagnostics

Program the following in STEP 5:

STL	Explanation
L KY n, 3	Store the number of the slave
T PW 252	station ($\mathrm{n}=$ station number) from
	which the device-related diagnostics
	are to be requested in the
	"Diagnostics address" byte; store the code for "Header and
	(code $=3$) in the "Diagnostics
	address +1 ' byte. ${ }^{\text {d }}$
L KH 0700	Load the diagnostics word.
L PW 252	
$!=F$	No error?
BEC	
JC FBx	Evaluate error in FBx.

Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM 308-B, continued

Structure:
 Diagnostics Word
 Header and
 Device-Related Diagnostics

The diagnostics word has the following structure after device-related diagnostics (code $=3$) has been requested in the case of digital ET 200B modules:

Diagnostics word "Header and Device-Rel. Diag." in the case of digital ET 200B modules

Figure 6-7 Structure of the "Header and Device-Related Diagnostics" Diagnostics Word in the Case of Digital ET 200B Modules

Note

The channel group of a digital ET 200B module always comprises one byte in the $\mathrm{S5}$ address range of the CPU (corresponding to 8 inputs or 8 outputs), irrespective of the galvanic isolation of the module (grouping).
Example: ET 200B-16DO/2A (galvanic isolation in groups of 4)
Channel group 0 corresponds to Q0: outputs . 0 7 .
Potential group 0 corresponds to Q 0 : outputs . 0 3 .

6.3.6 Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-B

Introduction

Using the device-related diagnostics for an analog ET 200B, you can detect which faults the ET 200B reports. The header gives information on the length of the device-related diagnostics.

Note

Under analog value representation in Chapter 9, you will find "Supplementary Bits" which will provide you with additional diagnostics information.

Requesting Device-Related Diagnostics

To request device-related diagnostics for an analog ET 200B, program the following in STEP 5:

STL	Explanation
L KY n, 4	Store the number of the slave
T PW 252	station ($n=$ station number) from
	which device-related diagnostics are
	to be requested in the "Diagnostics
	address" byte; store the code for "Device-related diagnostics (byte 1,
	2)" in the "Diagnostics address +1" byte.
L KH 0000	Load the diagnostics word
L PW 252	
$!=F$	No error?
BEC	
JC FBx	Evaluate error in FBx.

Select code $=5$ (bytes 3, 4), 6 (bytes 5,6) or 7 (bytes 7, 8) for further device-related diagnostics.

Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-B, continued

Structure:
 Diagnostics Word Header

The diagnostics word "Header" has the following structure after device-related diagnostics (code $=3$) has been requested in the case of analog ET 200B modules:

```
Diagnostics word "Header" in the case of analog ET 200B modules
    Diagnostics address Diagnostics address + 1
    "Header"
    Dev.-rel. diag.
```



```
*-
    Bits Length of device-related Fixed
    are diagnostics incl. "Hea-
    always der"
        (length = 10 bytes)
```

Figure 6-8 Structure of the "Header" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
Diagnostics Word Device-Related Diagn. (Byte 2)

The diagnostics word has the following structure after device-related diagnostics (code $=4$) has been requested in the case of analog ET 200B modules:

Diagnostics word "Device-Related Diagnostics (Byte 2)" in the case of analog ET 200B modules

Figure 6-9 Structure of the "Device-Related Diagnostics (Byte 2)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
 Diagnostics Word Device-Related
 Diag. (Bytes 3, 4)

The diagnostics word has the following structure after device-related diagnostics $($ code $=5$) has been requested in the case of analog ET 200B modules:

Figure 6-10 Structure of the "Device-Related Diagnostics (Bytes 3, 4)" Diagnostics Word in the Case of Analog ET 200B Modules

```
Structure:
Diagnostics Word
Device-Related
Diagn. (Bytes 5, 6)
```

The diagnostics word has the following structure after device-related diagnostics (code $=6$) has been requested in the case of analog ET 200B modules:

```
Diagnostics word "Device-Related Diagnostics (Bytes 5, 6)" in the case of analog ET 200B modules
```



```
Type of anaog ET 200B:
\(71_{\mathrm{H}}\) : 4AI, 4/8AI
\(73_{\mathrm{H}}: 4 \mathrm{AO}\)
- 1: Internal fault of the ET 200B
(EEPROM error, ET 200B-4AI only)
: Internal fault of the ET 200B
(analog-digital conversion, ET 200B-4AO only)
```

Figure 6-11 Structure of the "Device-Related Diagnostics (Byte 5, 6)" Diagnostics Word in the Case of Analog ET 200B Modules

Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-B, continued

Structure:
 Diagnostics Word Device-Related Diagnostics
 (Bytes 7, 8)

The diagnostics word has the following structure after device-related diagnostics (code $=7$) has been requested in the case of analog ET 200B modules:

Figure 6-12 Structure of the "Device-Related Diagnostics (Byte 7, 8)" Diagnostics Word in the Case of Analog ET 200B Modules

6.4 Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-C

Introduction You can locate and evaluate a fault systematically with STEP 5.
Diagnostics
Functions
Using STEP 5
Table 6-5 lists the STEP 5 diagnostics functions in combination with an IM 308-C:

Table 6-5 Diagnostics Functions Using STEP 5 in Combination with an IM 308-C

Diagnostics	Contents
Master diagnostics	-Determines all slaves for which diagnos- tics data is available. Determines all slaves with which data transfers have taken place during a speci- fied period. Provides information on the operating mode of the DP master. Station diagnostics Provides information on the status of the slave and displays diagnostics data separately for each channel group (only in the case of mod- ules with diagnostics capability).

In this Section
Master diagnostics with the IM 308-C are independent of the station type of the slaves. They are described in detail in the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12).

Station diagnostics for the ET 200B are described below.

Fault Diagnostics with STEP 5 (Station Diagnostics) in Combination with an IM 308-C, continued

Structure: Station
 Diagnostics

25 bytes are reserved per slave station for station diagnostics purposes.
Table 6-6 shows the structure of the station diagnostics for the ET 200B:

Table 6-6 Structure of the Station Diagnostics for the ET 200B in Combination with an IM 308-C

Byte	\quad Contents
Diagnostics byte 0	Station status 1
Diagnostics byte 1	Station status 2
Diagnostics byte 2	Station status 3
Diagnostics byte 3	Master station number
Diagnostics byte 4	Manufacturer identification (high)
Diagnostics byte 5	Manufacturer identification (low)
Diagnostics byte 6	Header (device-related diagnostics)
Diagnostics byte 7	Digital: Device-related diagnostics (group diagnostics) Analog: Device-related diagnostics (byte 0)
Diagnostics bytes 8 to 24	Dree

Requesting Station Diagnostics

Description

In order to request the station diagnostics for an ET 200B station, you must invoke the FB IM308C function block (FB 192) with the FCT = SD function.

FB IM308C saves the station diagnostics in the S5 data area of the CPU which was opened by the function block call (data block or flag area).

FB IM308C handling comprises general access to the diagnostics data of the IM $308-\mathrm{C}$ and is described in detail in the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12).

The example given below shows how you can request the station diagnostics with the aid of FB IM308C and save them in a data block.

The procedure for analyzing the station diagnostics is described next. We have assumed that the diagnostics data have already been saved in a data block.

Example: Request- This example shows how the station diagnostics of a slave with station numing Diagnostics with FB IM308C ber 3 can be requested with FB IM308C (FB 192). The diagnostics data should be saved in data block DB 10 , starting at data word DW 0 .
 Basic structure of the STEP 5 listing (e.g. in OB 1):

Note

The block parameters of FB IM308C and the error numbers in the ERR parameter of FB IM308C are described in detail in the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12).

6.4.1 Station Status Diagnostics with IM 308-C

Introduction

Assumption

The diagnostics bytes "Station status 1 to 3" give information on the station. The number of the station which has parameterized the slave station is stored in the "Master station number" diagnostics byte.

The station diagnostics of a digital ET 200B module have been requested by the CPU; they are saved in a data block (DB) starting at data word DW n ($\mathrm{n}=0$).

Table 6-7 shows the position of the diagnostics data in a data block:

Table 6-7 Position of the Diagnostics Data in a Data Block

Data Word	DL	DR
DW n	Station status 1	Station status 2
DW $n+1$	Station status 3	Master station number
DW n + 2	Manufacturer identification	
DW $n+3$	Header	Device-related diagnostics (byte 0
\ldots	\ldots	\ldots
DW n +12	Device-related diagnostics (byte $17)$	Free

$\mathrm{n}=$ Word address starting at which the diagnostics data is saved in the DB.

Reading Station
Status 1 and 2

Program the following in STEP 5:

STL	Explanation
C DB 10	Invoke the data block (in this example:
L DW 0	DB 10) Load the diagnostics word "Station
L KH 0004	status 1 and station status 2
$!=F$	"No error?
BEC	
JC FBx	Evaluate error in FBx.

Structure:
Diagnostics Word Station Status 1 and 2

The diagnostics word has the following structure for station status 1 and 2 (in this example: DW 0):

Figure 6-13 Structure of the Diagnostics Word (Station Status 1 and Station Status 2)

Station Status Diagnostics with IM 308-C, continued

Reading Station

 Status 3 and Master Station NumberProgram the following in STEP 5:

STL	Explanation
C DB 10	Invoke the data block (in this exam-
L DW 1	ple: DB 10) Load the diagnostics
L KH 0001	word "Station status 3 and master station number" (in this example: 1)

The diagnostics word has the following structure for station status 3 and the master station number (in this example: DW 1):

Figure 6-14 Structure of the "Station Status 3 and Master Station Number" Diagnostics Word

6.4.2 Diagnostics of the Manufacturer Identification with IM 308-C

Introduction The "Manufacturer identification" diagnostics word describes the type of the slave station.

Assumption

Reading the Manufacturer Identification

The station diagnostics have been requested by the CPU; they are saved in data block DB 10 starting at data word DW $n(n=0)$ (see Table 6-7).

Program the following in STEP 5:

STL	Explanation
C DB 10	Invoke the data block (in this exam-
L DW 2	ple: DB 10) Load the diagnostics
L KH 0001	word "Manufacturer identification"
$!=F$	(e.g. "0001H" for ET 200B-16DI)
	No error?
BEC	Evaluate error in FBx.
JC FBx	

Diagnostics of the Manufacturer Identification with IM 308-C, continued

Structure:
Diagnostics Word
Manufacturer
Identification

The diagnostics word has the following structure for the manufacturer identification (in this example: DW 2):

Figure 6-15 Structure of the "Manufacturer Identification" Diagnostics Word

6.4.3 Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM 308-C

Introduction You can detect faults in inputs and outputs using device-related diagnostics.

The header gives information on the length of the device-related diagnostics.

Note

Device-related diagnostics are only possible in the case of ET 200B stations with diagnostics capability.

ET 200B stations without diagnostics capability contain the value " 07 H " in the header and the remaining bytes are reserved.

Assumption

The station diagnostics of a digital ET 200B module have been requested by the CPU; they are saved in data block DB 10 starting at data word DW n $(\mathrm{n}=0)$. Device-related diagnostics with a length of 7 bytes exist.
Table 6-8 shows the position of the diagnostics data in a data block:

Table 6-8 Position of the Diagnostics Data in a Data Block (Digital ET 200B)

Data Word	DL	DR
DW n	Station status 1	Station status 2
DW $n+1$	Station status 3	Master station number
DW $n+2$	Header	Device-related diagnostics (group diagnostics)
DW $n+3$	Reserved	Reserved
DW $n+4$ \ldots	DW $n+6$	

$\mathrm{n}=$ Word address starting at which the diagnostics data is saved in the DB.

Reading DeviceRelated Diagnostics

Program the following in STEP 5:

STL	Explanation
C DB 10	Invoke the data block (in this example: DB
L DW 3	10) Load the diagnostics word "Header and
L KH 0700	device-related diagnostics"
$!=$ F	No error?
BEC	
JC FBx	Evaluate error in FBx.

Device-Related Diagnostics (Digital ET 200B) in the Case of Operation with IM 308-C, continued

Structure:
 Diagnostics Word
 Header and
 Device-Related Diagnostics

The diagnostics word has the following structure for the header and devicerelated diagnostics (in this example: DW 3) in the case of digital ET 200B modules:

Figure 6-16 Structure of the "Header and Device-Related Diagnostics" Diagnostics Word in the Case of Digital ET 200B Modules"

Note

The channel group of a digital ET 200B module always comprises one byte in the S5 address range of the CPU (corresponding to 8 inputs or 8 outputs), irrespective of the galvanic isolation of the module (grouping).
Example: ET 200B-16DO/2A (galvanic isolation in groups of 4)
Channel group 0 corresponds to Q0: outputs . 0 7 .
Potential group 0 corresponds to Q0: outputs . 0 3 .

6.4.4 Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-C

Introduction

Assumption

Using the device-related diagnostics for an analog ET 200B, you can detect which faults the ET 200B reports. The header gives information on the length of the device-related diagnostics.

Note

Under analog value representation in Chapter 9 you will find "Supplementary Bits" which will provide you with additional diagnostics information.

The station diagnostics of analog ET 200B modules have been requested by the CPU; they are saved in data block DB 10 starting at data word DW $\mathrm{n}(\mathrm{n}=0)$.

Table 6-9 Position of the Diagnostics Data in the Data Block (Analog ET 200B)

Data Word	DL	DR
DW n	Station status 1	Station status 2
DW $\mathrm{n}+1$	Station status 3	Master station number
DW $\mathrm{n}+2$	Manufacturer	identification
DW n + 3	Header	Reserved (byte 0)
DW n + 4	Reserved (byte 1)	System-specific diagnostics (byte 2)
DW n + 5	System-specific diagnostics (byte 3)	System-specific diagnostics (byte 4)
DW n + 6	System-specific diagnostics (byte 5)	Input or output channels (byte 6)
DW n + 7	Reserved (byte 7)	Number of channels (byte 8)
DW n + 8	Channel fault (byte 9)	Channel-specific diagnostics (byte 10) Channel 0: 4/8AI, 4AI, 4AO
DW n + 9	Channel-specific diagnostics (byte 11) Channel 1: 4/8AI, 4AI, 4AO	Channel-specific diagnostics (byte 12) Channel 2: 4/8AI, 4AI, 4AO
DW n + 10	Channel-specific diagnostics (byte 13) Channel 3: 4/8AI, 4AI, 4AO	Channel-specific diagnostics (byte 14) Channel 4: 4/8AI
DW n + 11	Channel-specific diagnostics (byte 15) Channel 5: 4/8AI	Channel-specific diagnostics (byte 16) Channel 6: 4/8AI
DW n + 12	Channel-specific diagnostics (byte 17) Channel 7: 4/8AI	Free

$\mathrm{n}=$ Word address starting at which the diagnostics data is saved in the DB.

Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-C, continued

Reading DeviceRelated Diagnostics

STL	Explanation
C DB 10	Invoke the data block (in this example: DB
L DW 4	10) Load the diagnostics word "Device-re-
L KH 0700	lated diagnostics (bytes 1, 2)
$!=F$	"No error?
BEC	Evaluate error in FBx.
JC FBx	

Load the appropriate data words of the DB instead of DW 4 for further de-vice-related diagnostics (see Table 6-9).

Structure:
 Diagnostics Word Header

Program the following in STEP 5:

The diagnostics word "Header and device-related diagnostics" (in this example: DW 3) has the following structure in the case of analog ET 200B modules:

Figure 6-17 Structure of the "Header" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
Diagnostics Word
Device-Related
Diagnostics
(Byte 2)

The diagnostics word (in this example: DW 4) has the following structure in the case of analog ET 200B modules:

Figure 6-18 Structure of the "Device-Related Diagnostics (Byte 2)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
Diagnostics Word
Device-Related
Diagnostics
(Bytes 3, 4)

Figure 6-19 Structure of the "Device-Related Diagnostics (Bytes 3, 4)" Diagnostics Word in the Case of Analog ET 200B Modules

Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-C, continued

Structure:
 Diagnostics Word Device-Related Diagn. (Bytes 5, 6)

The diagnostics word (in this example: DW 6) has the following structure in the case of analog ET 200B modules:

```
Diagnostics word "Device-Related Diagnostics (Bytes 5, 6)" in the case of analog ET 200B modules
    DL n + 6
                                DR n + 6
    Device-rel. diag. (byte Device-rel. diag. (byte
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\Gamma\) & \multicolumn{7}{|l|}{5)} & \multicolumn{8}{|l|}{\[
\begin{aligned}
& \text { Device-rel. diag. (byte } \\
& \Gamma \quad 6)
\end{aligned}
\]} \\
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & & 0 & & 0 & 0 & & & & & & & & \\
\hline
\end{tabular}
                            Type of analog ET 200B:
                                    71H: 4AI, 4/8AI
                                    73H: 4AO
                            - 1: Internal fault of the ET 200B
                        (EEPROM error, ET 200B-4AI only)
            1: Internal fault of the ET 200B
            (analog-digital conversion, ET 200B-4AO only)
```

Figure 6-20 Structure of the "Device-Related Diagnostics (Bytes 5, 6)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
 Diagnostics Word Device-Related Diagn. (Bytes 7, 8)
 The diagnostics word (in this example: DW 7) has the following structure in the case of analog ET 200B modules:

Figure 6-21 Structure of the "Device-Related Diagnostics (Bytes 7, 8)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
Diagnostics Word
Device-Related
Diagnostics
(Bytes 9, 10)

The diagnostics word (in this example: DW 8) has the following structure in the case of analog ET 200B modules:

Diagnostics word "Device-Related Diagnostics (Bytes 9, 10)" in the case of analog ET 200B modules

DL $n+8$
Device-rel. diag. (byte 9)

DR $n+8$
Device-rel. diag.
(byte 10)
$7 \quad \Gamma$

1: Configuration/ parameterization error (4/8AI, 4AI, 4AO)
1: Common mode fault (4/8AI)
0 : Bit is always " 0 ".
1: Short-circuit to M (4AO)
1: Wire break, feed current monitoring transducer, Pt 100 (4/8AI, 4AO)

0 : Bit is always " 0 "

1: Underrange (4/8AI, 4AI)
1: Overrange (4/8AI, 4AI)
1: Channel 0 faulty (4/8AI, 4AI, 4AO)
1: Channel 1 faulty (4/8AI, 4AI, 4AO)
1: Channel 2 faulty (4/8AI, 4AI, 4AO)
1: Channel 3 faulty ($4 / 8 \mathrm{AI}, 4 \mathrm{AI}, 4 \mathrm{AO}$)
1: Channel 4 faulty (4/8AI)
1: Channel 5 faulty (4/8AI)
1: Channel 6 faulty (4/8AI)
1: Channel 7 faulty (4/8AI)

Figure 6-22 Structure of the "Header and Device-Related Diagnostics (Bytes 9, 10)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
 Diagnostic Word
 Device-Related
 Diagnostics
 (Bytes 11, 12)

Diagnostics bytes 11 and 12 (in this example: DW 9) have the same structure as byte 10 ; they describe the channel-specific diagnostics for channels 1 and 2.

Device-Related Diagnostics (Analog ET 200B) in the Case of Operation with IM 308-C, continued

Structure:
 Diagnostics Word Device-Related Diagnostics
 (Bytes 13, 14)

Diagnostics word "Device-Related Diagnostics (Bytes 13, 14)" in the case of analog ET 200B modules							

Figure 6-23 Structure of the "Header and Device-Related Diagnostics (Bytes 13, 14)" Diagnostics Word in the Case of Analog ET 200B Modules

Structure:
Diagnostic Word
Device-Related
Diagnostics
(Bytes 15, 16, 17)

The diagnostics word (in this example: DW 8) has the following structure in the case of analog ET 200B modules:

General Technical Specifications

In this Chapter This chapter contains the technical specifications.
The general technical specifications contain the standards and test values all ET 200B modules comply with and the test criteria for which all modules were checked.

7.1 General Technical Specifications

Electromagnetic compatibility (EMC)/noise immunity

Static electricity to IEC 801-2

- Test voltage

Electromagnetic fields to

IEC 801-3
Fast transient burst to
IEC 801-4, Class III

- Digital input/output module

for $\mathrm{V}=24 \mathrm{~V}$	2 kV
for $\mathrm{V}>24 \mathrm{~V}$	2 kV

- Analog input/output module 2 kV
- Communications 2 kV interface
IEC/VDE safety information
Degree of protection to
IEC 529
- Type IP 20
- Class I to IEC 536

Insulation rating

- Between electrically to DIN VDE 0160 independent circuits
(05.1988) and and circuits connected to a central grounding point
- Between all circuits to DIN VDE 0160 and central grounding (05.1988) and point (standard IEC 1131-2 sectional rail)
Test voltage for a nominal to DIN VDE 0160 and
voltage $\mathrm{V}_{\text {input }}$ of the IEC 1131-2
circuits (AC/DC)

$\mathrm{V}_{\text {input }}=0$ to 50 V	500 V DC
$\mathrm{V}_{\text {input }}=50$ to 125 V	1250 V AC
$\mathrm{V}_{\text {input }}=125$ to 250 V	1500 V AC
Radio interference	to VDE 0871

interference

A

- Limit class

1 Vibrations and shocks permanently reaching the specified values as well as bumps must be prevented by adequate measures.

Digital Modules

[^2]
8.1 Digital Modules

Introduction

List of Electronics Blocks

Table 8-1 ET 200B Digital Electronics Blocks (24 V DC)

Electronics Block	Order No.	Description
ET 200B-16DI	6ES7 131-0BH00-0XB0	Inputs: $16 \times$ DC $24 \mathrm{~V}(3 \mathrm{~ms})$
ET 200B-32DI	6ES7 131-0BL00-0XB0	Inputs: $32 \times$ DC $24 \mathrm{~V}(3 \mathrm{~ms})$
ET 200B-32DI 0.2ms	6ES7 131-0BL10-0XB0	Inputs: $32 \times$ DC $24 \mathrm{~V}(0,2 \mathrm{~ms}$)
ET 200B-16DO	6ES7 132-0BH00-0XB0	Outputs: $16 \times$ DC $24 \mathrm{~V}(0,5 \mathrm{~A} / 2 \mathrm{~A})$
ET 200B-16DO/2A	6ES7 132-0BH10-0XB0	Outputs: $16 \times$ DC $24 \mathrm{~V}(2 \mathrm{~A})$
ET 200B-32DO	6ES7 132-0BL00-0XB0	Outputs: $32 \times$ DC $24 \mathrm{~V}(0,5 \mathrm{~A})$
ET 200B-8DI/8DO	6ES7 133-0BH00-0XB0	Inputs: $8 \times$ DC $24 \mathrm{~V}(3 \mathrm{~ms})$ Outputs: $8 \times$ DC $24 \mathrm{~V}(0,5 \mathrm{~A})$
ET200B-24DI/8DO	6ES7 133-0BN00-0XB0	Inputs: $24 \times$ DC $24 \mathrm{~V}(3 \mathrm{~ms})$ Outputs: $8 \times$ DC $24 \mathrm{~V}(0,5 \mathrm{~A})$
ET 200B-24DI/8DO 0.2 ms	6ES7 133-0BN10-0XB0	Inputs: $24 \times$ DC $24 \mathrm{~V}(0,2 \mathrm{~ms})$ Outputs: $8 \times$ DC $24 \mathrm{~V}(0,5 \mathrm{~A})$
ET 200B-8RO	6ES7 132-0GF00-0XB0	Outputs: $8 \times$ REL. DC $24 \ldots 60 \mathrm{~V}$
ET 200B-16DI-AC	6ES7 131-0HF00-0XB0	Inputs: $16 \times \mathrm{AC} 120 / 230 \mathrm{~V}$
ET 200B-16DO-AC	6ES7 132-0HF00-0XB0	Outputs: $16 \times \mathrm{AC} 120 / 230 \mathrm{~V}$ (0,5 A)
ET 200B-16RO-AC	6ES7 132-0HH00-0XB0	Outputs: $16 \times$ REL. AC 120/230 V/DC $24 \ldots 150 \mathrm{~V}$
ET 200B-8DI/8RO-AC	6ES7 133-0HH00-0XB0	Inputs: $8 \times \mathrm{AC} 120 / 230 \mathrm{~V}$ Outputs: $8 \times$ REL. AC 120/230 V/DC 24 ... 150 V

List of Terminal The following types of digital terminal blocks are available:
Blocks
Table 8-2 ET 200B Digital Terminal Blocks

Terminal Block	Order No.	Description
TB1/DC	6ES7 193-0CA10-0XA0	16-channel, screw-type terminal, 3-tier
TB1-4/DC	6ES7 193-0CA20-0XA0	16-channel, screw-type terminal, 4-tier
TB2/DC	6ES7 193-OCB10-0XA0	32-channel, screw-type terminal, 3-tier
TB2-4/DC	6ES7 193-0CB20-0XA0	32-channel, screw-type terminal, 4-tier
TB3/DC	6ES7 193-0CA30-0XA0	16-channel, spring-loaded terminal
TB4/DC	6ES7 193-0CB30-0XA0	32-channel, spring-loaded terminal
TB6/AC	6ES7 193-0CC10-0XA0	16-channel, screw-type terminal, 3-tier

8.1.1 Terminal Blocks TB1/DC (6ES7 193-0CA10-0XA0), TB1-4/DC (6ES7 193-0CA20-0XA0) and TB3/DC (6ES7 193-0CA30-0XA0)

Dimension Dimension drawing: Terminal block TB1/DC (screw-type terminal, 3-tier)
 Drawing TB1/DC

Figure 8-1 Dimension Drawing: Terminal Block TB1/DC (Screw-Type Terminal, 3-Tier)

Dimension Dimension drawing: Terminal block TB1-4/DC (screw-type terminal, 4-tier) Drawing TB1-4/DC

Figure 8-2 Dimension Drawing: Terminal Block TB1-4/DC (Screw-Type Terminal, 4-Tier)

Terminal Blocks TB1/DC (6ES7 193-0CA10-0XA0), TB1-4/DC (6ES7 193-0CA20-0XA0) and TB3/DC (6ES7 193-0CA30-0XA0), continued

Dimension Dimension Drawing: Terminal block TB3/DC (spring-loaded terminal) Drawing TB3/DC

Figure 8-3 Dimension Drawing: Terminal Block TB3/DC (Spring-Loaded Terminal)

Dimension Drawing TB with Bus Connector (6ES7 ...)

Dimension drawing: Side elevation TB1/DC, TB1-4/DC or TB3/DC with SINEC L2 bus connector (6ES7 ...)

Figure 8-4 Dimension Drawing: Side Elevation of Terminal Blocks, TB1/DC, TB1-4/DC and TB3/DC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0)

Dimension Dimension drawing: Side elevation TB1/DC, TB1-4/DC or TB3/DC with
Drawing TB with Bus Connector
(6ES5 ...) SINEC L2 bus connector (6ES5 ...)

Figure 8-5 Dimension Drawing: Side Elevation of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21)

8.1.2 Terminal Blocks TB2/DC (6ES7 193-0CB10-0XA0), TB2-4/DC (6ES7 193-0CB20-0XA0) and TB4/DC (6ES7 193-0CB30-0XA0)

Dimension Drawing TB2/DC

Figure 8-6 Dimension Drawing: Terminal Block TB2/DC (screw-type terminal, 3-tier)

Dimension Dimension Drawing: Terminal Block TB2-4/DC (screw-type terminal, 4-tier) Drawing TB2-4/DC

Figure 8-7 Dimension Drawing: Terminal Block TB2-4/DC (screw-type terminal, 4-tier)

Terminal Blocks TB2/DC (6ES7 193-0CB10-0XA0), TB2-4/DC (6ES7 193-0CB20-0XA0) and TB4/DC (6ES7 193-0CB30-0XA0), continued

Dimension Dimension Drawing: TB4/DC (Spring-loaded terminal)
Drawing TB4/DC

Figure 8-8 Dimension Drawing: TB4/DC (Spring-loaded terminal)

Dimension Drawing TB with Bus Connector (6ES7 ...)

Dimension drawing: Side elevation TB2/DC, TB2-4/DC or TB4/DC with SINEC L2 bus connector (6ES7 ...)

Figure 8-9 Dimension Drawing: Side Elevation of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0)

Dimension Drawing TB with Bus Connector (6ES5 ...)

Dimension drawing: Side elevation TB2/DC, TB2-4/DC or TB4/DC with SINEC L2 bus connector (6ES5 ...)

Figure 8-10 Dimension Drawing: Side Elevation of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21)

8.1.3 Terminal Block TB6/AC (6ES7 193-0CC10-0XA0)

Dimension Drawing TB6/AC
 Dimension Drawing: Terminal Block TB6/AC (screw-type terminal, 3-tier)

Figure 8-11 Dimension Drawing: Terminal Block TB6/AC (screw-type terminal, 3-tier)

Dimension Drawing Dimension drawing: Side elevation TB6/AC with SINEC L2 bus connector TB6/AC with Bus Connector
(6ES7 ...)

Figure 8-12 Dimension Drawing: Side Elevation of Terminal Block TB6/AC with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0)

Dimension Drawing Dimension drawing: Side elevation TB6/AC with SINEC L2 bus connector TB6/AC with Bus
Connector
(6ES5 ...)

Figure 8-13 Dimension Drawing: Side Elevation of Terminal Block TB6/AC with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21)

8.1.4 Electronics Block ET 200B-16DI (6ES7 131-0BH00-0XB0)

Characteristics The ET 200B 16DI electronics block has the following features

- 16 inputs, non-floating
- Input voltage: 24 V DC
- Suitable for switches and 2/3-wire proximity switches (BEROs).

Dimension Dimension drawing for ET 200B-16DI:
Drawing

Figure 8-14 Dimension Drawing: ET 200B-16DI (6ES7 131-0BH00-0XB0)
$\begin{array}{ll}\text { Schematic Circuit } & \begin{array}{l}\text { Simplified diagram of potential for the ET 200B-16DI and TB1/DC or } \\ \text { TB3/DC: }\end{array}\end{array}$

Figure 8-15 Schematic Circuit Diagram: ET 200B-16DI (6ES7 131-0BH00-0XB0) and TB1/DC or TB3/DC

Electronics Block ET 200B-16DI (6ES7 131-0BH00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DI and TB1-4/DC: Diagram

Figure 8-16 Schematic Circuit Diagram: ET 200B-16DI (6ES7 131-0BH00-0XB0) and TB1-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB1-4/DC terminal block.

Terminal Assignments

The ET 200B-16DI can be plugged into the TB1/DC, TB1-4/DC or TB3/DC.
Table 8-3 contains the terminal assignments of the terminal blocks for the ET 200B-16DI:

Table 8-3 Terminal Assignments of Terminal Blocks TB1/DC, TB2-4/DC and TB3/DC for the ET 200B-16DI (6ES7 131-0BH00-0XB0)

Terminal	Assignment
1 to 8	I0: Inputs .0 to .7
9 to 16	I1: Inputs .0 to .7
17 to 32	24 V (sensor supply, internally jumpered)
33 to 48	Ground (sensor supply, internally jumpered)
20 terminals $\stackrel{I}{=}$ (TB1-4/DC only)	PE (internally jumpered, but not connected to PE screw) (TB1-4/DC only)
L1+	Unassigned
L2+	Unassigned
L3+	Power supply of the internal logic and 24 V sensor supply
L3+	Power supply of the internal logic and 24 V sensor supply
M1	Unassigned
M2	Unassigned
M3	Ground connection of the internal logic and sensor supply
M3	Ground connection of the internal logic and sensor supply

Note

$\mathrm{L} 3+$ and terminals 17 to 32 are connected to each other, as are M1, M2, M3 and terminals 33 to 48 .

Electronics Block ET 200B-16DI (6ES7 131-0BH00-0XB0), Continued

Technical specifications	
Baud rates	$\begin{aligned} & 9.6 / 19.2 / 93.75 / 187.5 / 500 / \\ & 1500 / 3000 * / 6000 * / \\ & 12000 * \mathrm{kbps} \end{aligned}$
Bus protocol	DP standard
FREEZE cabability	Yes+
Galvanic isolation to SINEC L2-DP	Yes
Power losses	Typ. 2.5 W
Weight (EB and TB)	Approx. $600 \mathrm{~g}(21 \mathrm{oz}$.
Dimensions (EB and TB $\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	$\begin{aligned} & 160 \times 130 \times 60 \mathrm{~mm} \\ & (6.24 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring Bus monitoring SINEC L2-DP	Green "RUN" LED Red "BF" LED
Status of inputs	Green LEDs
Supply voltage for inputs, sensor supply and internal logic	
Supply voltage (L3+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption fro L3+ - Logic - Sensors $I^{2} t$ (for inrush current)	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \\ & \text { Typ. } 70 \mathrm{~mA} \\ & \text { Max. } 500 \mathrm{~mA} \\ & \leq 0.05 \mathrm{~A}^{2} \mathrm{~s} \end{aligned}$

Inputs	
Number of inputs	16
Galvanic isolation to internal electronic circuits	No
Input voltage - Rated value - For "0" signal - For "1" signal	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & -30 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & 13 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$
Input current for " 1 " signal	Typ. 4 mA at 24 V Min. 2 mA
Delay of inputs	2.0 to 3.5 ms
Connection of 2-wire BERO - Quiescent current	Possible $\leq 1.5 \mathrm{~mA}$
Connection of mechanical switches	Possible
Wire lengths of the sensors - Unshielded	Max. 100 m (328 ft .)

* Only relevant when operating with the IM 308-C.

8.1.5 Electronics Blocks ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0)

Characteristics
 The ET 200B-32DI and ET 200B-32DI 0.2ms electronics blocks have the following features:

Dimension
Drawing

- 32 inputs, non-floating
- Input voltage: 24 V DC
- Input delay:

6ES7 131-0BL00-0XB0 $\rightarrow 3 \mathrm{~ms}$
6ES7 131-0BL10-0XB0 $\rightarrow 0.2 \mathrm{~ms}$

- Suitable for switches and 2/3-wire proximity switches (BEROs).

Dimension drawing for ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0):

Figure 8-17 Dimension Drawing: ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0)

Electronics Blocks ET 200B-32DI (6ES7 131-0BL00-0XBO) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0)

Schematic Circuit	Simplified diagram of potential for the ET 200B-32DI or
Diagram	ET 200B-32DI 0.2 ms and TB2/DC or TB4/DC:

Figure 8-18 Schematic Circuit Diagram: ET 200B-32DI (6ES7 131-0BL00-0XB0) or ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0) and TB2/DC or TB4/DC

Schematic Circuit Simplified diagram of the potential for the ET 200B-32DI or ET 200B-32DI Diagram 0.2 ms and TB2-4/DC:

Figure 8-19 Schematic Circuit Diagram: ET 200B-32DI (6ES7 131-0BL00-0XB0) or ET 200B-32DI 0.2 ms (6ES7 131-0BL10-0XB0) and TB2-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB2-4/DC terminal block.

Electronics Blocks ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0), continued

Terminal Assignments

The ET 200B-32DI and ET 200B-32DI 0.2 ms can be plugged into the TB2/DC, TB2-4/DC or TB4/DC.

Table 8-4 contains the terminal assignments of the terminal blocks for the ET 200B-32DI and ET 200B-32DI 0.2 ms :

Table 8-4 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC8-22 for ET 200B-32DI (6ES7 131-0BL00-0XB0) and ET 200B-32DI 0.2ms (6ES7 131-0BL10-0XB0)

Terminal	Assignment
1 to 8	I0: Inputs .0 to .7
9 to 16	I1: Inputs .0 to .7
17 to 24	I2: Inputs .0 to .7
25 to 32	I3: Inputs .0 to .7
33 to 64	24 V (sensor supply, internally jumpered)
65 to 96	Ground (sensor supply, internally jumpered)
34 terminals: (TB2-4/DC only)	PE (internally jumpered, but not connected to PE screw) (TB2-4/DC only)
L5+	Power supply of the internal logic and 24 V sensor supply
L5+	Power supply of the internal logic and 24 V sensor supply
M5	Ground connection of the internal logic and sensor supply
M5	Ground connection of the internal logic and sensor supply

Note

L5+ and terminals 33 to 64 are connected to each other, as are M5 and terminals 65 to 96 .

Technical specifications	
Baud rates for	
6ES7 131-0BL10-0XB0 and	$\begin{aligned} & \text { 9.6/19.2/93.75/187.5/500/ } \\ & 1500 / 3000 * / 6000 * / \end{aligned}$
6ES7 131-0BL00-0BL0	12000* kbps
Bus protocol for	
6ES7 131-0BL10-0XB0 and	DP Standard
6ES7 131-0BL00-0XB0	
FREEZE capability for 6ES7 131-0BL10-0XB0 and 6ES7 131-0BL00-0XB0	Yes*
Galvanic isolation to SINEC L2-DP	Yes
Power losses	Typ. 4.8 W
Weight (EB and TB)	Approx. $800 \mathrm{~g}(28 \mathrm{oz}$.
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Status of inputs	Green LEDs
Supply voltage for inputs, sensor supply and internal logic	
Supply logic (L5+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L5+ - Logic - Sensors $\mathrm{I}^{2} \mathrm{t}$ (for inrush current)	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \end{aligned}$ Typ. 70 mA Max. 1 A $\leq 0.05 \mathrm{~A}^{2} \mathrm{~s}$

Inputs	
Number of inputs	32
Galvanic isolation to	No
internal electronic circuits	
Input voltage	
$\bullet \quad$ Rated value	24 V DC
- For "0" signal	-30 V to 5 V
- For "1" signal	13 V to 30 V
Input current for "1" signal	Typ. 4 mA for 24 V
Delay of inputs for 6ES7 131-0BL00-0XB0	3 ms
Delay of inputs for 6ES7 131-0BL10-0XB0	0.2 ms
Connection of 2-wire BERO $\bullet \quad$ Quiescent current	Possible
Connection of mechanical	$\leq 1.5 \mathrm{~mA}$
Pwitches	
Cable length of sensors \bullet	

* Only relevant when operating with the IM 308-C.

8.1.6 Electronics Block ET 200B-16DO (6ES7 132-0BH00-0XB0)

Characteristics The ET 200B-16DO electronics block has the following features:

- 16 outputs, non-floating
- Load voltage: 24 V DC
- Output current: $0.5 \mathrm{~A} / 2 \mathrm{~A}$
- Suitable for solenoid valves and DC contactors.

Dimension
See Figure 8-14 for the precise dimensions.
Drawing

Figure 8-20 Front Elevation: ET 200B-16DO (6ES7 132-0BH00-0XB0)
$\begin{array}{ll}\text { Schematic Circuit } & \begin{array}{l}\text { Simplified diagram of potential for the ET 200B-16DO and TB1/DC or } \\ \text { Diagram }\end{array} \\ \text { TB3/DC: }\end{array}$

Figure 8-21 Schematic Circuit Diagram: ET 200B-16DO (6ES7 132-0BH00-0XB0) and TB1/DC or TB3/DC

Electronics Block ET 200B-16DO (6ES7 132-0BH00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DO and TB1-4/DC: Diagram

Figure 8-22 Schematic Circuit Diagram: ET 200B-16DO (6ES7 132-0BH00-0XB0) and TB1-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB1-4/DC terminal block.

Terminal Assignments

The ET 200B-16DO can be plugged into the TB1/DC, TB1-4/DC or TB3/DC.

Table 8-5 contains the terminal assignments of the terminal blocks for the ET 200B-16DO:

Table 8-5 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-16DO (6ES7 132-0BH00-0XB0)

Terminal	Assignment
1 to 8	Q0: Outputs .0 to .7
9 to 16	Q1: Outputs .0 to .7
17 to 32	Unassigned
33 to 48	Ground (internally jumpered)
20 terminals.$~$ (TB1-4/DC only)	Power supply L1+ for channel group Q0: .0 to .7 (TB1-4/DC only)
L1+	Power supply L2+ for channel group Q1: .0 to .7
L2+	Power supply for the internal logic
L3+	Ground connection M1 for channel group Q0: .0 to .7
L3+	Ground connection M2 for channel group Q1: .0 to .7
M1	Ground connection of internal logic
M2	Ground connection of internal logic
M3	
M3	

Note

$\mathrm{L} 1+, \mathrm{L} 2+$ and $\mathrm{L} 3+$ are not connected to each other.
M1, M2, M3 and terminals 33 to 48 are connected to each other internally.

Electronics Block ET200B-16DO (6ES7 132-0BH00-0XB0), continued

Technical specifications	
Baud rates	$\begin{aligned} & 9.6 / 19.2 / 93.75 / 187.5 / 500 / \\ & 1500 / 3000 * / 6000 * / \\ & 12000 * \mathrm{kbps} \end{aligned}$
Bus protocol	DP standard
SYNC capability	Yes*
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Max. 5 W
Weight (EB and TB)	Approx. $600 \mathrm{~g}(21 \mathrm{oz}$.
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 160 \times 130 \times 60 \mathrm{~mm} \\ & (6.24 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics for short-circuit, load voltage failure	Red "DIA "LED
Load voltage monitoring, by group	Green "L1+", "L2+" LEDs
Status of outputs	Green LEDs
Supply voltage for outputs, load voltage supply and internal logic	
Supply voltages (L1+,L2+,L3+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L3+ - Logic $I^{2} t$ (for inrush current) Short-circuit protection in case of polarity reversal (L1+ and L2+) of load voltage	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \\ & 80 \mathrm{~mA} \\ & \leq 0.05 \mathrm{~A}^{2} \mathrm{~s} \\ & \text { No } \end{aligned}$

Outputs	
Number of outputs	16
Galvanic isolation	No
$\bullet \quad$ In groups of	8
Output voltage \bullet For "0" signal \bullet For " 1 " signal	Max. 2 V (idle)
	Min. (supply voltage
Output voltage	$-3 \mathrm{~V})$

* Only relevant when operating with the IM 308-C.

8.1.7 Electronics Block ET 200B-16DO/2A (6ES7 132-0BH10-0XB0)

Characteristics The ET 200B-16DO/2A electronics block has the following features:

- 16 outputs, floating in groups of 4
- Load voltage: 24 V DC
- Output current: 2 A

Dimension Drawing

See Figure 8-17 for the precise dimensions.

Figure 8-23 Front Elevation: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0)

Electronics Block ET 200B-16DO/2A (6ES7 132-0BH10-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DO/2A and TB2/DC Diagram or TB4/DC:

Figure 8-24 Schematic Circuit Diagram: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) and TB2/DC or TB4/DC

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DO/2A and Diagram TB2-4/DC:

Figure 8-25 Schematic Circuit Diagram: ET 200B-16DO/2A (6ES7 132-0BH10-0XB0) and TB2-4/DC

Note

The connection terminals for PE on the 4 -tier terminal block are not connected to the PE terminal of the TB2-4/DC terminal block.

Electronics Block ET 200B-16DO/2A (6ES7 132-0BH10-0XB0), continued

Terminal Assignments

The ET 200B-16DO/2A can be plugged into the TB2/DC, TB2-4/DC or TB4/DC.

Table 8-6 contains the terminal assignments of the terminal blocks for the ET 200B-16DO/2A:

Table 8-6 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-16DO/2A (6ES7 132-0BH10-0XB0)

Terminal ${ }^{1}$	Assignment
1, 3, 5 to 15	Q0: Outputs .0 to .7
17, 19, 21 to 31	Q1: Outputs . 0 to . 7
33 to 40	Power supply L1+ for channel group Q0: . 0 to .3 (internally jumpered)
41 to 48	Power supply L2+ for channel group Q0: . 4 to . 7 (internally jumpered)
49 to 56	Power supply L3+ for channel group Q1: . 0 to . 3 (internally jumpered)
57 to 64	Power supply L4+ for channel group Q1: . 4 to . 7 (internally jumpered)
65 to 72	Ground M1 for channel group Q0: . 0 to .3 (internally jumpered)
73 to 80	Ground M2 for channel group Q0: . 4 to .7 (internally jumpered)
81 to 88	Ground M3 for channel group Q1: . 0 to .3 (internally jumpered)
89 to 96	Ground M4 for channel group Q1: . 4 to .7 (internally jumpered)
$\begin{aligned} & 34 \text { terminals. }\left(\frac{1}{=}\right) \\ & \text { (TB2-4/DC only) } \end{aligned}$	PE (internally jumpered, but not connected to PE screw) (TB2-4/DC only)
L5+	Power supply of the internal logic
L5+	Power supply of the internal logic
M5	Ground connection of the internal logic
M5	Ground connection of the internal logic

1 Terminals $2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32$ are unassigned.

Note

If all actuators have 2-wire connections to TB2/DC or TB4/DC, terminate for each group the ground connection of one actuator and the incoming reference potential line via a terminal pin in accordance with DIN 46231.
$\mathrm{L} 1+$ to L5+ and M1 to M5 are not connected to each other internally

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9.6/19.2/93.75/187.5/500/ } \\ & 1500 / 3000 * / 6000 * / \\ & 12000^{*} \mathrm{kbps} \end{aligned}$
Bus protocol	DP standard
SYNC capability	Yes*
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Max. 7 W
Weight (EB and TB)	Approx. $900 \mathrm{~g}(31.5 \mathrm{oz}$.
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics for short-circuit, load voltage failure	Red "DIA" LED
Load voltage monitoring, by channel group (QO, Q1)	$\begin{aligned} & \text { Green LEDs } \\ & \text { "L1+"/"L2+" (QO: . } 0 \text { to 7) } \\ & \text { "L3+"/"L4+" (Q1: . } 0 \text { to } 7 \text {) } \end{aligned}$
Status of outputs	Green LEDs
Supply voltage for outputs, load voltage supply and internal logic	
Supply voltage (L1+,L2+,L3+,L4+,L5+) - Rated value - Permissible range - Value at $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L5+ - Logic $\mathrm{I}^{2} \mathrm{t}$ (for inrush current) Short-circuit protection in case of polarity reversal (L1+,L2+,L3+,L4+) of load vololage	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \\ & 100 \mathrm{~mA} \\ & \leq 0.05 \mathrm{~A}^{2} \mathrm{~s} \\ & \text { No } \end{aligned}$

Outputs	
Number of outputs	16
Galvanic isolation	Yes
- In groups of	4
Output voltage	
- For "0" signal	Max. 2 V (idle)
- For " 1 " signal	Min. (supply voltage -3 V)
Output	
- For "0" signal	Max. 1 mA
- For " 1 " signal	Max. 2 A
Delay of outputs	Max. 1 ms
- At max. lamp load	Max. 80 ms
Switching frequency	
- Resistive load	Max. 100 Hz
- Inductive load	Max. 0.5 Hz
- Lamp load	Max. 8 Hz
Load current per group - Total current	Max. 4 A
- In case of short-circuit	Max. 6.5 A
Lamp load	Max. 10 W
Setting a digital input	Possible
Cable length	Max. 100 m (328 ft .)

* Only relevant when operating with the IM 308-C.

8.1.8 Electronics Block ET 200B-32DO (6ES7 132-0BL00-0XB0)

Characteristics The ET 200B-32DO electronics block has the following features:

- 32 outputs, floating in groups of 8
- Load voltage: 24 V DC
- Output voltage: 0.5 A
- Suitable for solenoid valves and DC contactors

Dimension
See Figure 8-17 for the precise dimensions.
Drawing

Figure 8-26 Front Elevation: ET 200B-32DO (6ES7 132-0BL00-0XB0)
$\begin{array}{ll}\text { Schematic Circuit } & \begin{array}{l}\text { Simplified diagram of potential for the ET 200B-32DO and TB2/DC or } \\ \text { DB4/DC: }\end{array}\end{array}$

Figure 8-27 Schematic Circuit Diagram: ET 200-B-32DO (6ES7 132-0BL00-0BX0) and TB2/DC or TBA/DC

Electronics Block ET 200B-32DO (6ES7 132-0BL00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-32DO and TB2-4/DC: Diagram

Figure 8-28 Schematic Circuit Diagram: ET 200B-32DO (6ES7 132-0BL00-0XB0) and TB2-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB2-4/DC terminal block.

Terminal Assignments

The ET 200B-32DO can be plugged into the TB2/DC, TB2-4/DC or TB4/DC.

Table 8-7 contains the terminal assignments of the terminal blocks for the ET 200B-32DO:

Table 8-7 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-32DO (6ES7 132-0BL00-0XB0)

Terminal	Assignment
1 to 8	Q0: Outputs . 0 to .7
9 to 16	Q1: Outputs . 0 to . 7
17 to 24	Q2: Outputs . 0 to .7
25 to 32	Q3: Outputs . 0 to . 7
33 to 40	Power supply L1+ for channel group Q0: . 0 to .7 (internally jumpered)
41 to 48	Power supply L2+ for channel group Q1: . 0 to . 7 (internally jumpered)
49 to 56	Power supply L3+ for channel group Q2: . 0 to . 7 (internally jumpered)
57 to 64	Power supply L4+ for channel group Q3: . 0 to . 7 (internally jumpered)
65 to 72	Ground M1 for channel group Q0: . 0 to .7 (internally jumpered)
73 to 80	Ground M2 for channel group Q1: . 0 to .7 (internally jumpered)
81 to 88	Ground M3 for channel group Q2: . 0 to .7 (internally jumpered)
89 to 96	Ground M4 for channel group Q3: . 0 to .7 (internally jumpered)
$\begin{aligned} & 34 \text { terminals }\left(\frac{D}{=}\right) \\ & \text { (TB2-4/DC only) } \end{aligned}$	PE (internally jumpered, but not connected to PE screw) (TB2-4/DC only)
L5+	Power supply of the internal logic
L5+	Power supply of the internal logic
M5	Ground connection of the internal logic
M5	Ground connection of the internal logic

Note

If all actuators have 2-wire connections to TB2/DC or TB4/DC, terminate for each group the ground connection of one actuator and the incoming reference potential line via a terminal pin in accordance with DIN 46231.
$\mathrm{L} 1+$ to $\mathrm{L} 5+$ and M1 to M5 are not connected to each other internally.

Electronics Block ET 200B-32DO (6ES7 132-0BL00-0XB0), continued

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9.6/19.2/93.75/187.5/500/ } \\ & 1500 / 3000 * / 6000 * / \\ & 12000 * \mathrm{kbps} \end{aligned}$
Bus protocol	DP Standard
SYNC capability	Yes*
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Max. 7.9 W
Weight (EB and TB)	Approx. 800 g (28 oz.$)$
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN "LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics for short-circuit, load voltage failure	Red "DIA" LED
Load voltage monitoring	$\begin{aligned} & \text { Green"L1+/L2+", } \\ & \text { "L3+/L4+" LEDs } \end{aligned}$
Status of outputs	Green LEDs
Supply voltage for outputs, load voltage supply and internal logic	
Supply voltage (L1+,L2+,L3+,L4+,L5+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}^{2} \mathrm{t} \\ & \text { (for inrush current) } \end{aligned}$	$\leq 0.05 \mathrm{~A}^{2} \mathrm{~s}$
Current consumption from L5+ - Logic	Typ. 75 mA

Outputs	
Number of outputs	32
Galvanic isolation	Yes
- In groups of	8
Output voltage - For " 0 " signal - For " 1 " signal	Max. 2 V (idle) Min. (supply voltage $-3 \mathrm{~V})$
Output current - For " 0 " signal - For " 1 " signal	$\begin{aligned} & \text { Max. } 1 \mathrm{~mA} \\ & \text { Max. } 0.5 \mathrm{~A} \end{aligned}$
Delay of outputs - From " 0 " to " 1 " - From " 1 " to " 0 "	Approx. $20 \mu \mathrm{~s}$ Max. 0.5 ms
Switching frequency - Resistive load - Inductive load - Lamp load	Max. 1000 Hz Max. 0.5 Hz Max. 8 Hz
Short-circuit protection	Yes
Load current per group - Total current	Max. 2 A
Lamp load	Max. 5 W
Setting a digital input	Possible
Limitation of voltage induced on current interruption	Typ. (L5+) - 55 V
Cable length	Max. 100 m (328 ft .)

* Only relevant when operating with the IM 308-C.

8.1.9 Electronics Block ET 200B-8RO (6ES7 132-0GF00-0XB0)

Characteristics The ET 200B-8RO electronics block has the following features:

- 8 relay outputs, floating in groups of 1
- Switching voltage: 24 to 60 V DC

Dimension
Drawing

See Figure 8-14 for the precise dimensions.

Figure 8-29 Front Elevation: ET 200B-8RO (6ES7 132-0GF00-0XB0)

Electronics Block ET 200B-8RO (6ES7 132-0GF00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-8RO and TB1/DC or Diagram TB3/DC:

Figure 8-30 Schematic Circuit Diagram: ET 200B-8RO (6ES7 132-0GF00-0XB0) and TB1/DC or TB3/DC

Schematic Circuit Simplified diagram of the potential for the ET 200B-8RO and TB1-4/DC: Diagram

Figure 8-31 Schematic Circuit Diagram: ET 200B-8RO (6ES7 132-0GF00-0XB0) and TB1-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB1-4/DC terminal block.

Electronics Block ET 200B-8RO (6ES7 132-0GF00-0XB0), continued

Terminal Assignments

The ET 200B-8RO can be plugged into the TB1/DC, TB1-4/DC or TB3/DC.
Table 8-8 contains the terminal assignments of the terminal blocks for the ET 200B-8RO:

Table 8-8 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-8RO (6ES7 132-0GF00-0XB0)

Terminal	Assignment
1	Q0: Output 0/0
2	Q0: Output 0/1
3	Q0: Output 1/0
4	Q0: Output 1/1
5	Q0: Output 2/0
6	Q0: Output 2/1
7	Q0: Output 3/0
8	Q0: Output 3/1
9	Q0: Output 4/0
10	Q0: Output 4/1
11	Q0: Output 5/0
12	Q0: Output 5/1
13	Q0: Output 6/0
14	Q0: Output 6/1
15	Q0: Output 7/0
16	Q0: Output 7/1
17 to 32	Unassigned
33 to 48	Ground (internally jumpered)
20 terminals: $\xlongequal{\perp}$ (TB1-4/DC only)	PE (internally jumpered, but not connected to PE screw) (TB1-4/DC only)
L1+	Unassigned
L2+	Unassigned
L3+	Power supply of the internal logic
L3+	Power supply of the internal logic
M1	Unassigned
M2	Unassigned
M3	Ground connection of the internal logic
M3	Ground connection of the internal logic

Note

M1, M2, M3 and terminals 33 to 48 are connected to each other.

8.1.10 Electronics Block ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0)

Characteristics The ET 200B-8DI/8DO electronics block has the following features:

- 8 inputs, non-floating
- 8 outputs, non-floating
- Input voltage: 24 V DC
- Input delay: 3 ms
- Load voltage: 24 V DC

Dimension Drawing

Figure 8-32 Front Elevation: ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0)
$\begin{array}{ll}\text { Schematic Circuit } & \begin{array}{l}\text { Simplified diagram of potential for the ET 200B-8DI/8DO and TB1/DC or } \\ \text { Diagram }\end{array} \\ \text { TB3/DC: }\end{array}$

Figure 8-33 Schematic Circuit Diagram: ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0) and TB1/DC or TB3/DC

Electronics Blocks ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-8DI/8DO and Diagram TB1-4/DC:

Figure 8-34 Schematic Circuit Diagram: ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0) and TB1-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB1-4/DC terminal block.

Terminal Assignments

The ET 200B-8DI/8DO can be plugged into the TB1/DC, TB1-4/DC or TB3/DC.

Table 8-9 contains the terminal assignments of the terminal blocks for the ET 200B-8DI/8DO:

Table 8-9 Terminal Assignments of Terminal Blocks TB1/DC, TB1-4/DC and TB3/DC for ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0)

Terminal	Assignment
1 to 8	Q0: Output . 0 to .7
9 to 16	I0: Input .0 to .7
17 to 24	24 V (sensor supply) (internally jumpered)
25 to 32	24 V (sensor supply) (internally jumpered)
33 to 40	Ground (outputs) (internally jumpered)
41 to 48	Ground (sensor supply) (internally jumpered)
20 terminals: $\left(\frac{1}{\square}\right.$ (TB1-4/DC only)	PE (internally jumpered, but not connected to PE screw) (TB1-4/DC only)
L1+	Power supply L1+ for channel group Q0: . 0 to . 7
L2+	Unassigned
L3+	Power supply of the internal logic and 24 V sensor supply
L3+	Power supply of the internal logic and 24 V sensor supply
M1	Ground connection M1 for channel group Q0: . 0 to . 7
M2	Unassigned
M3	Ground connection of the internal logic and sensor supply
M3	Ground connection of the internal logic and sensor supply

Note

L1+ and L3+ are not connected to each other internally.
L3+ and terminals 25 to 32 are connected to each other, as are M1, M2, M3 and terminals 33 to 48 .

Electronics Block ET 200B-8DI/8DO (6ES7 133-0BH00-0XB0), continued

Inputs, continued	
Input current for " 1 " signal	Typ. 4 mA at 24 V Min. 2 mA
Delay of inputs for 6ES7 133-0BN00-0XB0	3 ms
Delay of inputs for 6ES7 133-0BN10-0XB0	0.2 ms
Connection of 2-wire BERO	Possible
- Quiescent current	$\leq 1.5 \mathrm{~mA}$
Connection of mechanical switches	Possible
Cable length of sensors - Unshielded	Max. 100 m (328 ft .)
Outputs	
Number of outputs	8
Galvanic isolation	No
- In groups of	8
Output voltage - For " 0 " signal - For " 1 " signal	Max. 2 V (idle) Min. (supply voltage -3 V)
Output current - For " 0 " signal - For " 1 " signal	$\begin{aligned} & \text { Max. } 1 \mathrm{~mA} \\ & \text { Мax. } 0.5 \mathrm{~A} \end{aligned}$
Delay of outputs - From " 0 " to " 1 " - From " 1 " to "0"	Approx. $20 \mu \mathrm{~s}$ Max. 0.5 ms
Switching frequency - Resistive load - Inductive load - Lamp load	Max. 100 Hz Max. 0.5 Hz Max. 8 Hz
Short-circuit protection	Yes
Load current - Total current	Max. 2 A
Lamp load	Max. 5 W
Setting a digital input	Possible
Limitation of voltage induced on current interruption	Typ. (L3+)-55 V
Cable length	Max. 100 m (328 ft .)

* Only relevant when operating with the IM 308-C.

8.1.11 Electronics Blocks ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2ms (6ES7 133-0BN10-0XB0)

Characteristics
 The ET 200B-24DI/8DO and ET 200B-24DI/8DO 0.2 ms electronics blocks have the following features:

- 24 inputs, non-floating
- 8 outputs, floating in groups of 8
- Input voltage: 24 V DC
- Input delay:

$$
\begin{aligned}
& \text { 6ES7 133-0BN00-0XB0 } \rightarrow 3 \mathrm{~ms} \\
& \text { 6ES7 133-0BN10-0XB0 } \rightarrow 0.2 \mathrm{~ms}
\end{aligned}
$$

- Load voltage: 24 V DC

Dimension
Drawing
See Figure 8-17 for the precise dimensions.

Figure 8-35 Front Elevation: ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0)

Electronics Blocks ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-24DI/8DO or ET Diagram 200B-24DI/8DO 0.2 ms and TB2/DC or TB4/DC:

Figure 8-36 Schematic Circuit Diagram: ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) or ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) and TB2/DC or TB4/DC

Schematic Circuit Simplified diagram of the potential for the ET 200B-24DI/8DO or ET Diagram 200B-24DI/8DO 0.2 ms and TB2-4/DC:

Figure 8-37 Schematic Circuit Diagram: ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) or ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0) and TB2-4/DC

Note

The connection terminals for PE on the 4-tier terminal block are not connected to the PE terminal of the TB2-4/DC terminal block.

Electronics Blocks ET 200B-24DI/8DO (6ES7 133-0BN00-0XBO) and ET 200B-24DI/8DO 0.2ms (6ES7 133-0BN10-0XB0), continued

Terminal Assignments

The ET 200B-24DI/8DO and ET 200B-24DI/8DO 0.2 ms can be plugged into the TB2/DC, TB2-4/DC or TB4/DC.

Table 8-10 contains the terminal assignments of the terminal blocks for the ET 200B-24DI/8DO and ET 200B-24DI/8DO 0.2ms:

Table 8-10 Terminal Assignments of Terminal Blocks TB2/DC, TB2-4/DC and TB4/DC for ET 200B-24DI/8DO (6ES7 133-0BN00-0XB0) and ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0)

Terminal	Assignment
1 to 8	Q0: Outputs .0 to .7
9 to 16	I0: Inputs .0 to .7
17 to 24	I1: Inputs .0 to .7
25 to 32	I2: Inputs .0 to .7
33 to 40	Power supply L1+ for channel group Q0: .0 to .7
41 to 64	24 V (sensor supply)
65 to 72	Ground M1 for channel group Q0: .0 to .7
73 to 96	Ground (sensor supply)
34 terminals.	Pernally jumpered, but not connected to PE screw)
(TB2-4/DC only)	
(TB2-4/DC only)	Power supply of the internal logic and 24 V sensor supply
L5+	Power supply of the internal logic and 24 V sensor supply
L5+	Ground connection of the internal logic and 24 V sensor supply
M5	Ground connection of the internal logic and 24 V sensor supply
M5	

Note

If all actuators have 2-wire connections to TB2/DC or TB4/DC, terminate for each group the ground connection of one actuator and the incoming reference potential line via a terminal pin in accordance with DIN 46231.

L1+/L5+ and M1/M5 are not connected to each other.

L5+ and terminals 41 to 64 are connected to each other, as are M5 and terminals 73 to 96 .

Inputs, continued	
Delay of inputs for 6ES7 133-0BN00-0XB0	3 ms
Delay of inputs for 6ES7 133-0BN10-0XB0	0.2 ms
Connection of 2-wire BERO - Quiescent current	Possible $\leq 1.5 \mathrm{~mA}$
Connection of mechanical switches	Possible
Cable length of sensors - Unshielded	Max. 100 m (328 ft .)
Outputs	
Number of outputs	8
Galvanic isolation	Yes
- In groups of	8
Output voltage - For " 0 " signal - For " 1 " signal	Max. 2 V (idle) Min. (supply voltage $-3 \mathrm{~V})$
Output current - For " 0 " signal - For " 1 " signal	Max. 1 mA Max. 0.5 A
Delay of outputs - From " 0 " to " 1 " From " 1 " to " 0 "	Approx. $20 \mu \mathrm{~s}$ Max. 0.5 ms
Switching frequency - Resistive load - Inductive load - Lamp load	Max. 1000 Hz Max. 0.5 Hz Max. 8 Hz
Short-circuit protection	Yes
Load current - Total current	Max. 2 A
Lamp load	Max. 5 W
Setting a digital input	Possible
Limitation of voltage induced on current interruption	Typ. (L5+) - 55 V
Cable length	Max. 100 m (328 ft .)

* Only relevant when operating with the IM 308-C.

8.1.12 Electronics Block ET 200B-16DI-AC (6ES7 131-0HF00-0XB0)

Characteristics The ET 200B-16DI-AC electronics block has the following features:

- 16 inputs, floating in groups of 4
- Input voltage: $120 / 230 \mathrm{~V} \mathrm{AC}$
- Suitable for switches and 2-wire proximity switches acc. to IEC 1131, type 1

Dimension
See Figure 8-17 for the precise dimensions.
Drawing

Figure 8-38 Front Elevation: ET 200B-16DI-AC (6ES7 131-0HF00-0XB0)

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DI-AC and TB6/AC: Diagram

Figure 8-39 Schematic Circuit Diagram: ET 200B-16DI-AC (6ES7 131-0HF00-0XB0) and TB6/AC

Electronics Block ET 200B-16DI-AC (6ES7 131-0HF00-0XB0), continued

Terminal Assignments

The ET 200B-16DI-AC can be plugged into the TB6/AC.
Table 8-11 contains the terminal assignments of the TB6/AC terminal block for the ET 200B-16DI-AC:

Table 8-11 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16DI-AC (6ES7 131-0HF00-0XB0)

Terminal	Assignment
$1 \ldots 4$	I0: Inputs . 0 3
$13 . . .16$	I0: Inputs . 47
$17 . .20$	I1: Inputs . 0 3
$29 . .32$	I1: Inputs . 47
$33 \ldots 39$	Sensor supply 1L1 for channel I0: . $0 . .$. . 3
$42 \ldots 48$	Sensor supply 2L1 for channel I0: . $4 . .$. . 7
$49 . .55$	Sensor supply 3L1 for channel I1: .0 3
$58 . .64$	Sensor supply 4L1 for channel I1: . $4 . . .7$
$65 \ldots 71$	Sensor supply 1N for channel I0: . 0 3
$74 \ldots 80$	Sensor supply 2N for channel I0: . $4 . .$. . 7
$81 . .87$	Sensor supply 3N for channel I1: . $0 . .$. . 3
$90 \ldots 96$	Sensor supply 4N for channel I1: . $4 . .$. . 7
L1	Power supply for the internal logic
N	Power supply for the internal logic

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9,6/19,2/93,75/187,5/500/ } \\ & 1500 / 3000 * / 6000 * / \\ & 12000 * \mathrm{kbps} \end{aligned}$
Bus protocol	DP-Standard
Galvanic isolation to SINEC L2-DP	Yes, 500 V DC to logic, 1500 V AC to connection terminals
Power losses - at 230 V - at 120 V Weight (EB and TB)	Typ. 6 W Typ. 4.5 W 811 g (29 oz.)
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring Bus monitoringSINEC L2-DP	Green "RUN" LED Red "BF" LED
Status of inputs	Green LEDs
Supply voltage for internal logic	
Supply voltage L1 - Rated value - Permissible range - Frequency - Current consumption from L1	$\begin{aligned} & 120 / 230 \mathrm{~V} \mathrm{AC} \\ & 85 \text { to } 264 \mathrm{~V} \mathrm{AC} \\ & 47 \text { to } 63 \mathrm{~Hz} \\ & \text { Typ. } 60 \mathrm{~mA} \end{aligned}$
Note: If the module is installed in a 230 V AC system, the following must each be connected to the same phase: - $1 \mathrm{~L} 1 / 1 \mathrm{~N}$ and $2 \mathrm{~L} 1 / 2 \mathrm{~N}$ (same phase) - 3L1/3N and 4L1/4N (same phase)	
Restriction: If the module is installed in a 230 V AC system with ambient temperatures higher than $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$, only 12 inputs are allowed to be used and the rated input voltage must not exceed 240 V AC.* Only relevant when operating with the IM 308-C.	

Inputs	
Number of inputs	16
Galvanic isolation	Yes (Optokoppler)
- In groups of	4
Input voltage	
- Rated value	120/230 V AC
- For "0" signal	0 to 40 V AC
- For " 1 " signal	79 to 264 V AC
Input current for " 1 " signal	3 to 16 mA
- At $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Typ. $6,5 \mathrm{~mA}$
- At $230 \mathrm{~V}, 50 \mathrm{~Hz}$	Typ. $10,5 \mathrm{~mA}$
Type of input acc. to IEC 1131	Type 1
Delay of inputs	0 to 25 ms
Connection of 2-wire BERO	No
- Permissible quiescent current	2 mA
Connection of mechanical switches	Yes
Cable length	Max. $600 \mathrm{~m}(1968 \mathrm{ft})$

8.1.13 Electronics Block ET 200B-16DO-AC (6ES7 132-0HF00-0XB0)

Characteristics The ET 200B-16DO-AC electronics block has the following features:

- 16 outputs, floating in groups of 4
- Output current: 0.5 A
- Load voltage: 120/230 V AC

Dimension Drawing

See Figure 8-17 for the precise dimensions.

Figure 8-40 Front Elevation: ET 200B-16DO-AC (6ES7 132-0HF00-0XB0)

Schematic Circuit Simplified diagram of the potential for the ET 200B-16DO-AC and TB6/AC: Diagram

Figure 8-41 Schematic Circuit Diagram: ET 200B-16DO-AC (6ES7 132-0HF00-0XB0) and TB6/AC

Electronics Block ET 200B-16DO-AC (6ES7 132-0HF00-0XB0), continued

Terminal Assignments

ET 200B-16DO-AC can be plugged into the TB6/AC.
Table 8-12 contains the terminal assignments of the TB6/AC terminal block for the ET 200B-16DO-AC:

Table 8-12 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16DO-AC (6ES7 132-0HF00-0XB0)

Terminal	Assignment
$1 . . .4$	Q0: Outputs . $0 . .$. . 3
$13 . .16$	Q0: Outputs . $4 . .$. . 7
17 ... 20	Q1: Outputs .0 3
$29 . . .32$	Q1: Outputs . $4 . .$. . 7
33 ... 39	Sensor supply 1L1 for channel Q0: .0 3
42 ... 48	Sensor supply 2L1 for channel Q0: . 4 7
49 ... 55	Sensor supply 3L1 for channel Q0: .0 3
58 ... 64	Sensor supply 4L1 for channel Q0: . 4 7
65 ... 71	Sensor supply 1N for channel Q1: .0 3
$74 . . .80$	Sensor supply 2N for channel Q1: . $4 . .$. . 7
81 ... 87	Sensor supply 3N for channel Q1: .0 3
$90 . . .96$	Sensor supply 4N for channel Q1: . $4 . . .7$
L1	Power supply for the internal logic
N1	Power supply for the internal logic

Technical specifications	
Baud rates	$\begin{aligned} & 9,6 / 19,2 / 93,75 / 187,5 / 500 / \\ & 1500 / 3000 * / 6000 * / \\ & 12000^{*} \mathrm{kbps} \end{aligned}$
Bus protocol	DP-Norm
Galvanic isolation to SINEC L2-DP bus	Yes, 500 V DC to logic, 1500 V AC to connection terminals
Power losses	Max. 11 W
Weight (EB and TB)	Approx. $805 \mathrm{~g}(29 \mathrm{oz})$
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics for short-circuit, load voltage failure	No
Load voltage monitoring	No
Status of outputs	Green LEDs

Outputs	
Number of outputs	16
Galvanic isolation	Yes (optocouplers)
- In groups of	
- Signal voltage	79 to 264 V AC
Output voltage	
- For "1" Signal ($\geq 50 \mathrm{~mA}$)	Max. L1-1,5 V
- For "1" Signal ($\leq 50 \mathrm{~mA}$)	Max. L1-8,5 V
Output current	
- For " 0 " signal	Max. 1,3 mA
Delay of outputs	Max. 20 ms
Short-circuit protection	No
Switching frequency	
- Resistive load	10 Hz
- Inductive load	$0,5 \mathrm{~Hz}$
- Lamp load	1 Hz
Load current per output in preferred mounting position	
- $\quad 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	0,5 A
- $40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $140^{\circ} \mathrm{F}$)	0,35 A
Load current per output in other mounting positions - $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$)	0,35 A
Lamp load	Max. 25 W
Size of motor starter	Max. size 3 acc. to NEMA
Parallel connection of 2 outputs	Possible (though not in order to increase power)
Setting a digital input	Possible
Cable length	Max. $600 \mathrm{~m}(1968 \mathrm{ft})$

* Only relevant when operating with the IM 308-C.

8.1.14 Electronics Block ET 200B-16RO-AC (6ES7 132-0HH00-0XBO)

Characteristics The ET 200B-16RO-AC electronics block has the following features:

- 16 relay outputs, floating in groups of 1
- Load voltage: $120 / 230 \mathrm{~V} \mathrm{AC}$

24 ... 150 V DC

- Output current: 4A for outputs $0.0,0.7,1.0$ and 1.7

12 A for outputs 0.1 to 0.6 and 1.1 to 1.6

- Suitable for AC/DC solenoid valves, switches, motor starters, smallpower motors, motors and lamps.

Dimension Drawing See Figure 8-17 for the precise dimensions.

Figure 8-42 Front Elevation: ET 200B-16RO-AC (6ES7 132-0HH00-0XB0)

Schematic Circuit Simplified diagram of the potential for the ET 200B-16RO-AC and TB6/DC: Diagram

ET 200B-16RO-AC

Figure 8-43 Schematic Circuit Diagram: ET 200B-16RO-AC (6ES7 132-0HH00-0XB0) and TB6/AC

Electronics Block ET 200B-16RO-AC (6ES7 132-0HH00-0XB0), continued

Terminal Assignments

The ET 200B-16RO-AC can be plugged into the TB6/AC.
Table 8-13 contains the terminal assignments of the TB6/AC terminal block for the ET 200B-16RO-AC:

Table 8-13 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16RO-AC (6ES7 132-0HH00-0XB0)

Terminal	Assignment
33 ... 39	Q0: Output 0/0
1	Q0: Output 0/1
2	Q0: Output 1/0
3	Q0: Output 1/1
4	Q0: Output 2/0
5	Q0: Output 2/1
6	Q0: Output 3/0
7	Q0: Output 3/1
10	Q0: Output 4/1
11	Q0: Output 4/0
12	Q0: Output 5/1
13	Q0: Output 5/0
14	Q0: Output 6/1
15	Q0: Output 6/0
16	Q0: Output 7/1
$42 . . .48$	Q0: Output 7/0
49 ... 55	Q1: Output 0/0
17	Q1: Output 0/1
18	Q1: Output 1/0
19	Q1: Output 1/1
20	Q1: Output 2/0
21	Q1: Output 2/1
22	Q1: Output 3/0
23	Q1: Output 3/1
26	Q1: Output 4/1
27	Q1: Output 4/0
28	Q1: Output 5/1
29	Q1: Output 5/0
30	Q1: Output 6/1

Table 8-13 Terminal Assignments of Terminal Block TB6/AC for ET 200B-16RO-AC (6ES7 132-0HH00-0XB0)

Terminal	Assignment
31	Q1: Output 6/0
32	Q1: Output 7/1
$58 \ldots 64$	Q1: Output 7/0
L 1	Power supply of the internal logic
N	Power supply of the internal logic

Electronics Block ET 200B-16RO-AC (6ES7 132-0HH00-0XB0), continued

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9,6/19,2/93,75/187,5/500/ } \\ & 1500 / 3000 * / 6000 * / \\ & 12000^{*} \mathrm{kbps} \end{aligned}$
Bus protocol	DP Standard
Galvanic isolation to SINEC L2-DP bus	Yes, 500 V DC to logic, 1500 V AC to connection terminals
Power losses	20 W
Weight (EB and TB)	$814 \mathrm{~g} \mathrm{(29} \mathrm{oz)}$
Dimensions (EB and TB : W x H x D)	$\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.09 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics for short-circuit, load voltage failure	No
Load voltage monitoring	No
Status of outputs	Green LEDs
Supply voltage for internal logic	
Supply voltage L1 - Rated value - Permissible range - Frequency - Current consumption from L1	$\begin{aligned} & 120 / 230 \mathrm{~V} \mathrm{AC} \\ & 85 \text { to } 264 \mathrm{~V} \mathrm{AC} \\ & 47 \text { to } 63 \mathrm{~Hz} \\ & \text { Typ. } 210 \mathrm{~mA} \end{aligned}$

Note:

Protect the module against inductive overvoltages at the relay contacts. Use an RC element or a varistor, switched either via the relay contact or via the load, as the overvoltage protection device. The size and values of the components must be chosen according to the magnitude and type of the load.
Overvoltage protection devices increase the service life of the relay contacts.

Note:

If the module is installed in a 230 V AC system, all the outputs belonging to a particular channel group (Q0, Q1) must be connected to the same phase.

* Only relevant when operating with the IM 308-C.

Relay outputs
Number of outputs

- High current
- Low current

Galvanic isolation

- In groups of

Short-circuit protection No
Relay type
Output voltage

- Rated value

24 to 150 V DC
$120 / 230$ V AC

- Permissible range

0,1 to 150 V DC
79 to 264 V AC
Continuous current I_{th}
Max. 4 A
(for high current points)
Max. 2 A
(for low current points)
Switching capacity of contacts

- High current points Resistive load 0 to $40^{\circ} \mathrm{C} \quad 60^{\circ} \mathrm{C}$ (32 to $\left.104^{\circ} \mathrm{F}\right) \quad\left(140^{\circ} \mathrm{F}\right)$
24 V DC/
120/230 V AC 4 A 2 A

120 V DC
0,2 A
0,2 A
Inductive load
24 V DC/

$120 / 230 \mathrm{~V} \mathrm{AC}$	2 A	2 A
120 V DC	$0,2 \mathrm{~A}$	$0,2 \mathrm{~A}$

- Low current points

Resistive and inductive loads

0 to $40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
$\left(32\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$\left(140^{\circ} \mathrm{F}\right)$
2 A	1 A
$0,2 \mathrm{~A}$	$0,2 \mathrm{~A}$

Switching cycles of con-
tacts acc. to VDE 0660,
Part 200

- DC-11

$$
>100 \times 10^{6}
$$

- AC-15
$>300 \times 10^{5}$
Switching frequency
- Resistive load

Max. 10 Hz

- Inductive load

Max. 2 Hz
Cable length
Мах. 600 m (1968 ft.)
Setting a digital input Possible

8.1.15 Electronics Block ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0)

Characteristics The ET 200B-8DI/8RO-AC electronics block has the following features:

- 8 inputs, floating in groups of 4 8 relay outputs, floating in groups of 1
- Input voltage: $120 / 230$ V AC
- Inputs suitable for switches and 2-wire proximity switches acc. to IEC 1131, type 1
- 8 relay outputs, floating in groups of 1
- Output load voltage: $120 / 230$ V AC

24 ... 150 V DC

- Output current: 4 A for outputs 0.0 and 0.7

2 A for outputs 0.1 to 0.6

- Outputs suitable for $\mathrm{AC} / \mathrm{DC}$ solenoid valves, switches, motor starters, small-power motors, motors and lamps.

Dimension
See Figure 8-17 for the precise dimensions.

Drawing

Figure 8-44 Front Elevation: ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0)

Electronics Block ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0), continued

Schematic Circuit Simplified diagram of the potential for the ET 200B-8DI/8RO-AC and Diagram TB6/DC:

Figure 8-45 Schematic Circuit Diagram: ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0) and TB6/AC

Terminal Assignments

The ET 200B-8DI/8RO-AC can be plugged into the TB6/AC.
Table 8-14 contains the terminal assignments of the TB6/AC terminal block for the ET 200B-8DI/8RO-AC:

Table 8-14 Terminal Assignments of Terminal Block TB6/AC for ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0)

Terminal	Assignment
1 ... 4	I0: Inputs . 0 3
$13 . .16$	I0: Inputs . 4 7
33 ... 39	Sensor supply 1L1 for channel I0: . 0 3
$42 . . .48$	Sensor supply 2L1 for channel I0: . $4 . .$. . 7
$65 . .71$	Sensor supply 1N for channel I0: . 0 3
$74 . .80$	Sensor supply 2N for channel IO: . 4 7
49 ... 55	Q0: Output 0/0
17	Q0: Output 0/1
18	Q0: Output 1/0
19	Q0: Output 1/1
20	Q0: Output 2/0
21	Q0: Output 2/1
22	Q0: Output 3/0
23	Q0: Output 3/1
26	Q0: Output 4/1
27	Q0: Output 4/0
28	Q0: Output 5/1
29	Q0: Output 5/0
30	Q0: Output 6/1
31	Q0: Output 6/0
32	Q0: Output 7/1
58 ... 64	Q0: Output 7/0
L1	Power supply of the internal logic
N	Power supply of the internal logic

Electronics Block ET 200B-8DI/8RO-AC (6ES7 133-0HH00-0XB0),

 continued| Technical specifications | |
| :---: | :---: |
| Baud rates | $\begin{aligned} & \text { 9,6/19,2/93,75/187,5/500/ } \\ & 1500 / 3000 * / 6000 * / \\ & 12000^{*} \text { kBaud } \end{aligned}$ |
| Bus protocol | DP Standard |
| Galvanic isolation to SINEC L2-DP bus | Yes, 500 V DC to logic, 1500 V AC to connection terminals |
| Power losses | 13 W |
| Weight (EB and TB) | $811 \mathrm{~g}(29 \mathrm{oz})$ |
| Dimensions (EB and TB: W x H x D) | $\begin{aligned} & 235 \times 130 \times 60 \mathrm{~mm} \\ & (9.17 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$ |
| Diagnostics functions | |
| Voltage monitoring | Green LED "RUN" |
| Bus monitoring SINEC L2-DP | Red LED "BF" |
| Group diagnostics for short-circuit, load voltage failure | No |
| Load voltage monitoring | No |
| Status of outputs | Green LEDs |
| Supply voltage for internal logic | |
| Supply voltage L1
 - Rated value
 - Permissible range
 - Frequency
 - Current consumption from L1 | $120 / 230 \mathrm{~V} \mathrm{AC}$,
 85 to 264 V AC
 47 to 63 Hz
 Typ. 165 mA |
| Restriction:
 If the module is installed in a 230 V AC system with ambient temperatures higher than $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, only 6 inputs are allowed to be used and the rated input voltage must not exceed 240 V AC. | |
| Note:
 If the module is installed in a 230 V AC system, the following must each be connected to the same phase: | |

Inputs	
Number of inputs	8
Galvanic isolation	Yes (optocouplers)
- In groups of	4
Input voltage	
- Rated value	120/230 V AC
- For " 0 " signal	0 to 40 V AC
- For "1" signal	79 to 264 V AC
Input current for " 1 " signal	3 to 16 mA
- at $120,60 \mathrm{~Hz}$	Typ. $6,5 \mathrm{~mA}$
- at $230 \mathrm{~V}, 50 \mathrm{~Hz}$	Typ. 10,5 mA
Type of input acc. to IEC 1131	Type 1
Delay of inputs	0 to 25 ms
Connection of 2-wire BERO	No
- Permissible quiescent current	2 mA
Connection of mechanical switches	Yes
Cable length of sensors	
Cable length	Max. 600 m (1968 ft.)

* Only relevant when operating with the IM 308-C.

Relay outputs		
Number of outputs		
- High current	$2(0.0,0.7)$	
- Low current	6 (0.1 to 0.6)	
Galvanic isolation	Yes (relays)	
- In groups of		
Short-circuit protection	No	
Relay type	Takamisawa NY 24W-K	
Output voltage		
- Rated value	$\begin{aligned} & 24 \text { to } 150 \mathrm{~V} \text { DC } \\ & 120 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	
- Permissible range	0,1 to 150 V DC	
Continuous current $\mathrm{I}_{\text {th }}$	Max. 4 A (for high current points) Max. 2 A (for low current points)	
Switching capacity of contacts		
- High current points		
Resistive load	$\begin{aligned} & 0 \text { to } 40^{\circ} \mathrm{C} \\ & \left(32 \text { to } 104^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right) \end{aligned}$
24 V DC/		
120/230 V AC	4 A	2 A
120 V DC	0,2 A	0,2 A
Inductive load		
24 V DC/		
120/230 V AC	2A	2A
120 V DC	0,2 A	0,2 A
- Low current points		
Resistive and inductive		
loads	$\begin{aligned} & 0 \text { to } 40^{\circ} \mathrm{C} \\ & \left(32 \text { to } 104^{\circ} \mathrm{F}\right) \end{aligned}$	$60^{\circ} \mathrm{C}$ $\left(140^{\circ} \mathrm{F}\right)$
24 V DC/		
120/230 V AC	2A	1 A
120 V DC	0.2 A	0.2 A

Analog Modules

In this Chapter
This chapter contains the technical specifications of the analog ET 200B modules.

In addition to the technical specifications, this chapter also describes the measuring principles and the measured value representation for the analog modules.

9.1 Analog Modules

Introduction

There are analog modules available for connecting analog current sensors, voltage sensors or loads.

The tables below give an overview of the ET 200B analog modules.

List of Electronics The following types of electronics blocks are available: Blocks

Table 9-1 Analog Electronics Blocks of the ET 200B

Electronics Block	Order No.	Description
ET 200B-4/8AI	6ES7 134-0KH00-0XB0	8 analog differential inputs or 4 x Pt 100 (measuring principle: inte- grating)
ET 200B-4AI	6ES7 134-0HF00-0XB0	4 analog differential inputs (mea- suring principle: successive ap- proximation)
ET 200B-4AO	6ES7 135-0HF00-0XB0	4 analog outputs

List of Terminal Blocks

A terminal block is available for all analog electronics blocks:

Table 9-2 Analog Terminal Block of the ET 200B

Terminal Block	Order No.	Description
TB8	6ES7 193-0CD40-0XA0	4/8-channel, spring-loaded termi- nal

9.1.1 Setting and Parameterizing the Analog Modules

Introduction You can set the function of the analog modules

- via the COM ET 200 parameterization software and
- via the coding plugs on the TB8 terminal block.

Where to Find a
 Description

Coding Plugs

The TB8 terminal block has a coding plug for each channel or channel group ($0,1,2,3$,) and one for setting the compensation.

You use the coding plugs to define the input or output circuit of the TB8 depending on the measured value sensor/load connected and on the desired measuring principle.

The coding plugs can be set to: "A", "B", "C" and "D".
The assignment of coding plug settings to measuring principle or measured value sensor/load can be found in the sections dealing with the individual electronics blocks (see Sections 9.1.3 to 9.1.5).

Setting and Parameterizing the Analog Modules, continued

Setting the Coding Proceed as follows if you want to change the setting of the coding plug: Plug
 1. Remove the coding plug from the TB8 via the channel group (1).

Tip:

The coding plugs can be adjusted more easily before the electronics block is hung into place.
2. Turn the coding plug to the desired setting (2) and insert it back into place (3).

Correct Setting:

The nose " Δ " next to the letter "A", "B", "C" or "D" must point in the direction of the electronics block.

Figure 9-1 Changing the Setting of the Coding Plug

9.1.2 TB8 Terminal Block (6ES7 193-0CD40-0XA0)

Dimension Dimension Drawing: TB8 terminal block (spring-loaded terminal) Drawing TB8

Figure 9-2 Dimension Drawing: TB8 Terminal Block (Spring-Loaded Terminal)

TB8 Terminal Block (6ES7 193-0CD40-0XA0), continued

Dimension Drawing TB8 with Bus Conn. (6ES7...)

Dimension drawing: Side elevation of theTB8 with SINEC L2 bus connector (6ES7 ...)

Figure 9-3 Dimension Drawing: Side Elevation of the Terminal Block TB8 with SINEC L2 Bus Connector (6ES7 972-0BA00-0XA0 and 6ES7 972-0BB00-0XA0)

Dimension Drawing TB8 with Bus Conn. (6ES5...)

Dimension drawing: Side elevation of the TB8 with SINEC L2 bus connector (6ES5...)

Figure 9-4 Dimension Drawing: Side Elevation of the Terminal Block TB8 with SINEC L2 Bus Connector (6ES5 762-2AA12 and 6ES5 762-2AA21)

9.1.3 Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0)

Characteristics The ET 200B-4/8AI electronics block has the following features:

- 8 differential inputs or $4 \times \operatorname{Pt} 100$, floating to the voltage supply of the internal logic circuits
- Measuring ranges: $\pm 80 \mathrm{mV}, \pm 250 \mathrm{mV}, \pm 500 \mathrm{mV}$, $\pm 1000 \mathrm{mV}$, Pt 100
- Measuring principle: integrating
- Integration times: $16.7 \mathrm{~ms}, 20 \mathrm{~ms}$
- Supply voltage: 24 V DC
- Connectable sensors
- Thermocouples (type J, K, L)
- Resistance thermometers (Pt 100)
- Voltage sensors (2-wire connection)
- Measuring range set via COM ET 200

Dimension Dimension drawing of the ET 200B-4/8AI:
Drawing

Figure 9-5 Dimension Drawing: ET 200B-4/8AI (6ES7 134-0KH00-0XB0)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Possible Connections

Channel Group

Measuring
 Methods

Floating-Ground
Measurement

You can connect the following to the ET 200B-4/8AI electronics block:

- Up to 8 thermocouples with compensating box
- Up to 4 resistance thermometers in 2-wire or 4-wire connection
- Up to 8 voltage sensors (2-wire connection)

Simultaneous connection of different sensors is possible.

A channel group consists of two channels parameterized with COM ET 200 and the coding plug.

The parameters of a channel group apply generally to all channels of this group (for example input voltage, diagnostics enable, measuring method, etc.)

You have the choice of two methods of measuring analog signals from thermocouples, resistance thermometers and voltage sensors:

- Floating-ground measurement
- Ground-referenced measurement

In the case of floating-ground measurement (differential measurement), each signal line has its own signal reference conductor.
Differential measurement is required in the following cases:

- If the sensors are connected to different potentials and
- If the different signal sources are physically apart.

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ of the differential inputs to analog ground $\left(\mathrm{M}_{\mathrm{A}}\right)$ is $\pm 1 \mathrm{~V}$.

The maximum permissible voltage difference between M_{A} and PE must not exceed 75 V DC/60 V AC.

Avoid ground loops!

GroundReferenced Measurement

In the case of ground-referenced measurement, all signal reference conductors in the TB8 are connected to a common reference point (analog ground M_{A}).

To avoid ground loops, galvanically isolated and ungrounded signal sources (thermocouples, Pt 100, voltage sources) are required.

Note

Connect M_{A} to PE ($\stackrel{\infty}{=}$) to enhance noise immunity in the case of groundreferenced measurement.

The following pages contain a connection example for every connection possibility and measuring principle. Please note the following rules.

Please note the following rules when connecting measured-value sensors to the ET 200B-4/8AI:

- The permissible potential difference at the differential input (x. $1 \leftrightarrow x .2$ or $\mathrm{x} .3 \leftrightarrow \mathrm{x} .4, \mathrm{x}=0$ to 3) must not exceed $\pm 1 \mathrm{~V}$.
- The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ between the differential inputs ($\mathrm{x} .1 \leftrightarrow \mathrm{x} .2, \mathrm{x} .3 \leftrightarrow \mathrm{x} .4, \mathrm{x}=0$ to 3) and analog ground M_{A} is $\pm 1 \mathrm{~V}$.
- The maximum permissible isolation voltage between analog ground $\left(\mathrm{M}_{\mathrm{A}}\right)$ and PE ($\stackrel{\wedge}{=}$) or between the reference potential of the supply voltage (M) is $75 \mathrm{~V} \mathrm{DC/60} \mathrm{~V} \mathrm{AC}$.
- You must short-circuit the connection terminals of unused voltage inputs and connect them to M_{A}.
If the coding plug is in the C position, the connection to M_{A} is not required (already jumpered internally).
- If you connect only one voltage sensor (2-wire connection) to one channel, you must also short-circuit the remaining free differential input of the channel group and connect it to M_{A}.

If the coding plug is in the C position, the connection to M_{A} is not required (already jumpered internally).

- If you connect a compensating box, you must short-circuit terminals "K+" and "K-". For this purpose, set the coding plug to the "C" position.

Note

Please note the explanation of shielding of analog lines in Sections 3.1 and 3.5.

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Connecting Thermocouples with Compensating Boxes

The ET 200B-4/8AI does not have an internal compensating box. The influence of temperature on the reference junction can be countered with a compensating box.

Please note the following rules when connecting a compensating box:

- The compensating box must be connected to terminals $\mathrm{K}+$ and $\mathrm{K}-$.
- The compensating box must have a floating power supply. The power supply unit of the compensating box must have a grounded shielding winding.
- In the case of external compensation with one compensating box per channel, the same thermocouple type must be used for each channel group.
- External compensation where the compensating box is connected to the COMP connections of the module can only be implemented for one thermocouple type. This means you must use the same type for all channels working with this compensating box.

Figures 9-6 and 9-7 show both methods of connecting thermocouples. Up to 8 thermocouples can be connected.

We recommend the following compensating boxes for connection to the ET 200B-4/8AI:

- Compensating box type U with current stabilizer.
- Reference junction with built-in power supply unit.

The order numbers of the compensating boxes and the associated components can be found in the tables below.

Table 9-3 Compensating Box Type U with Current Stabilizer.

Accessories	Weight	Order Number
Type \mathbf{U} compensating box Reference temp. $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$ $0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$	$\begin{aligned} & 0.22 \mathrm{~kg}(7.7 \mathrm{oz} .) \\ & 0.22 \mathrm{~kg}(7.7 \mathrm{oz} .) \end{aligned}$	$\begin{aligned} & \text { C70153-A502-A1 } \\ & \text { C70153-A502-A5 } \end{aligned}$
Insert for type \mathbf{U} compensating box (as spare part and for installation in distribution boxes or similar) Reference temp. $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$ $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$	$\begin{aligned} & 0.09 \mathrm{~kg}(3.15 \mathrm{oz} .) \\ & 0.09 \mathrm{~kg}(3.15 \mathrm{oz} .) \end{aligned}$	$\begin{aligned} & \text { C70153-A502-B7 } \\ & \text { C70153-A502-B9 } \end{aligned}$
Current stabilizer for feeding a compensating box for thermocouple $\mathrm{Fe} / \mathrm{Cu} \mathrm{Ni}$, $\mathrm{Ni} \mathrm{Cr} / \mathrm{Ni}$ Reference temp. $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$ $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right) \rightarrow 0 \mathrm{mV}$	$\begin{aligned} & 0.25 \mathrm{~kg}(8.75 \mathrm{oz} .) \\ & 0.25 \mathrm{~kg}(8.75 \mathrm{oz} .) \end{aligned}$	$\begin{aligned} & \text { M55232-A1 } \\ & \text { M55232-A2 } \end{aligned}$

Table 9-4 Reference Junction with Built-In Power Supply Unit

Accessories	Order Number
Reference junction with built-in power supply unit, for installation on a mounting rail	M72166-■ $\square \square \square$
	4444
Auxiliary power 220 V AC	B1
110 V AC	B2
24 V AC	B3
24 V DC	B4
Connection of thermocouple $\mathrm{Fe}-\mathrm{CuNi}$ type L	1
$\mathrm{Fe} / \mathrm{Cu} \mathrm{Ni}$ type J	2
$\mathrm{Ni} \mathrm{Cr} / \mathrm{Ni}$ type K	3
Reference temperature $\quad 0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right)$	00
$20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$	20

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Floating-Ground Measurement

Connection of thermocouples with a compensating box (floating-ground measurement) is shown below:

Figure 9-6 Connection of Thermocouples with a Compensating Box (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}\right)$ must not be exceeded at any of the

GroundReferenced (ground-referenced measurement) is shown below: Measurement

Figure 9-7 Connection of Thermocouples with a Compen (Ground-Referenced Measurement)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Connection of Resistance Thermometers (2-Wire Connection)

Floating-Ground Measurement
$\stackrel{\Delta}{B}$

The resistance of the resistance thermometer (Pt 100) is measured via a 2 -wire connection.

A constant current is fed to the resistance thermometer via terminals x. 1 and x.2. Voltage drops on the measuring lines can corrupt the result of the measurement. This type of measurement is appropriate where the measuring lines are short and thick or where accuracy requirements are not stringent.

Figures 9-8 and $9-9$ show both methods of connecting resistance thermometers with 2-wire connections. Up to four Pt 100s can be connected.

The connection of resistance thermometers (Pt 100) with 2-wire connections (floating-ground measurement) is shown below:

Figure 9-8 Connection of Resistance Thermometers (Pt 100) with 2-Wire Connections (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}\right)$ must not be exceeded at any of the differential inputs with reference to M_{A}.

GroundReferenced Measurement

In the case of ground-referenced measurement, you must connect terminal x. 4 externally with analog ground (M_{A}).

The connection of resistance thermometers (Pt 100) with 2-wire connections (ground-referenced measurement) is shown below:

Figure 9-9 Connection of Resistance Thermometers (Pt 100) with 2-Wire Connections (Ground-Referenced Measurement)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Connection of
Resistance Thermometers
(4-Wire
Connection)

Floating-Ground Measurement

The resistance of the resistance thermometer (Pt 100) is measured via a 4 -wire connection.

A constant current Ic is fed to the resistance thermometer via terminals $x .1$ and $x .2$. The voltage generated at the resistance thermometer is measured via $x .3 / x .4$. This means that voltage drops on the "constant current lines" do not corrupt the result of the measurement. The measurement inputs have a high resistance so that only a negligible voltage drop occurs on the measuring lines.

Figures 9-10 and 9-11 show both methods of connecting resistance thermometers with 4 -wire connections.

The connection of resistance thermometers (Pt 100) with 4-wire connections (floating-ground measurement) is shown below:

Figure 9-10 Connection of Resistance Thermometers (Pt 100) with 4-Wire Connections (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}\right)$ must not be exceeded at any of the differential inputs with reference to M_{A}.

GroundReferenced Measurement

The connection of resistance thermometers (Pt 100) with 4-wire connections (ground-referenced measurement) is shown below:

Figure 9-11 Connection of Resistance Thermometers (Pt 100) with 4-Wire Connections (Ground-Referenced Measurement)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Connecting Voltage Sensors

Floating-Ground Measurement

Free channels can be used for connecting voltage sensors ($\pm 80 \mathrm{mV}$, $\pm 250 \mathrm{mV}, \pm 500 \mathrm{mV}, \pm 1000 \mathrm{mV}$).

Two voltage sensors per channel group can be connected.
Figures 9-12 and 9-13 show both methods of connecting voltage sensors.

Two-wire connection of voltage sensors (floating-ground measurement) is shown below:

Figure 9-12 Two-Wire Connection of Voltage Sensors to 6ES7 134-0KH00-0XB0 (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}\right)$ must not be exceeded at any of the differential inputs with reference to M_{A}.

Ground-
Referenced
Measurement

Two-wire connection of voltage sensors (ground-referenced measurement) is shown below:

Figure 9-13 Two-Wire Connection of Voltage Sensors to 6ES7 134-0KH00-0XB0 (Ground-Referenced Measurement)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Parameterization

You define the functional principle of the ET 200B-4/8AI with COM ET 200 parameterization software.
Table 9-5 shows all the parameters for the ET 200B-4/8AI:

Table 9-5 Parameters for ET 200B-4/8AI

Byte ${ }^{1}$	Parameter	Explanation	Value Range
$\begin{gathered} 3 \\ (\text { Bit } 0) \end{gathered}$	Diagnostics enable for channel group 0 (channels 0,1) (terminals 0.1/0.2, 0.3/0.4)	Diagnostics messages enabled separately for each channel	Disable Enable
$\begin{gathered} 3 \\ \text { (Bit 1) } \end{gathered}$	Diagnostics enable for channel group 1 (kanal 2, 3) (terminals 1.1/1.2, 1.3/1.4)		
$\begin{gathered} 3 \\ \text { (Bit 2) } \end{gathered}$	Diagnostics enable for channel group 2 (channels 4, 5) (terminals 2.1/2.2, 2.3/2.4)		
$\begin{gathered} 3 \\ \text { (Bit 3) } \end{gathered}$	Diagnostics enable for channel group 3 (channels 6, 7) (terminals 3.1/3.2, 3.3/3.4)		
$\begin{gathered} 4 \\ (\text { Bit } 0) \end{gathered}$	Wire break monitoring enable for channel group 0 (channels $0,1)$ (terminals $0.1 / 0.2,0.3 / 0.4$)	Wire break monitoring enabled separately for each channel	$\begin{aligned} & \text { Disable } \\ & \hline \text { Enable } \\ & \hline \end{aligned}$
$\begin{gathered} 4 \\ (\text { Bit 1) } \end{gathered}$	Wire break monitoring enable for channel group 1 (channels 2, 3) (terminals 1.1/1.2, 1.3/1.4)		
$\begin{gathered} 4 \\ (\text { Bit } 2) \end{gathered}$	Wire break monitoring enable for channel group 1 (channels 4, 5) (terminals 2.1/2.2, 2.3/2.4)		
$\begin{gathered} 4 \\ \text { (Bit 3) } \end{gathered}$	Wire break monitoring enable for channel group 1 (channels 6,7) (terminals 3.1/3.2, 3.3/3.4)		
6	Integration time	Specifying the optimum integration time for the A / D converter helps suppress noise voltages	$\begin{gathered} 20 \mathrm{~ms} \\ 16,7 \mathrm{~ms} \end{gathered}$
7	Measurement method and range for channel group 0 (channels $0,1)$ (terminals $0.1 / 0.2,0.3 / 0.4)$	You can set the measurement method and range separately for each channel group	
8	Measurement method and range for channel group 1 (channels 2, 3) (terminals 1.1/1.2, 1.3/1.4)	For voltage measurement:	$\begin{gathered} \pm 1 \mathrm{~V} \\ \pm 0,5 \mathrm{~V} \\ \pm 0,25 \mathrm{~V} \\ \pm 80 \mathrm{mV} \end{gathered}$

Table 9-5 Parameters for ET 200B-4/8AI

Byte $^{\mathbf{1}}$	Parameter	Explanation	Value Range
9	Measurement method and range for channel group 2 (channels 4, 5) (terminals 2.1/2.2, 2.3/2.4)	For resistance thermometer with linearization:	Pt 100 standard range
10	Measurement method and range for channel group 3 (channels $6,7)$ (terminals 3.1/3.2, 3.3/3.4)	For thermocouple with external reference junction:	Type J with linearization Type K with linearization Type L with linearization
23	Representation of measured values		Two's complement Amount with sign

: Default setting in parameterization frame
${ }^{1}$ Byte address in parameterization frame of slave

Where to Find a Description

Parameterization of the ET 200B-4/8 with COM ET 200 V4.x is described in detail in Section

COM ET 200 WINDOWS also provides extensive support for parameterizing the ET 200B-4/8AI with COM ET 200 WINDOWS through its integrated help system.
Please refer to the ET 200 Distributed I/O System manual
(Order No. 6ES5 998-3ES12) for further information about how to use COM ET 200 WINDOWS.

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Analog Value Representation

Analog values can be represented in two data formats with the ET 200B-4/8AI:

- 12-bit two's complement representation (range: -2048 to +2047 units)
- 11-bit amount and 1-bit sign (range: -2048 to +2047 units)

Table 9-6 shows the analog value representation of the ET 200B-4/8AI:

Table 9-6 Representing an Analog Input Value as a Bit Pattern (6ES7 134-0KH00-0XB0)

	High Byte						Low Byte									
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Analog value representa- tion	SI	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	X	F	OV

Supplementary Bits

Bits 0 to 2 and bit 15 have no significance for the amount of the measured value. See Table 9-7 for a detailed description of these bits.

Bits 0 to 2 and bit 15 have the following meaning in the bit pattern of the analog input value:

Table 9-7 Description of the Bits (6ES7 134-0KH00-0XB0)

Bit	Meaning	Signal Status	Meaning of the Signal Status
OV	Overflow bit	1	Overrange 1
F	Fault bit	1	Wire break; the measured value read in is not valid
SI	Sign	0	"+" sign
		1	"-" sign
X	Irrelevant	-	

1 In the event of overflow at one measuring point, the overflow bits of the other channels remain unaffected; this means the values of the other channels are correct and can be evaluated.

Note

When the ET 200B-4/8AI signals a wire break (fault bit $\mathrm{F}=1$), the overflow bit OV is also set.

Measured Value Table

Tables 9-8 to 9-10 show the assignments of analog to digitized measured values for the measuring ranges: $\pm 80 \mathrm{mV}, \pm 250 \mathrm{mV}, \pm 500 \mathrm{mV}$ and \pm 1000 mV .

Table 9-8 Representation of Digitized Measured Values of the ET 200B-4/8AI (6ES7 134-0KH00-0XB0; Measuring Ranges: $\pm 80 \mathrm{mV}, \pm 250 \mathrm{mV}, \pm 500 \mathrm{mV}$ and $\pm 1000 \mathrm{mV}$; Two's Complement)

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Table 9-9 Representation of Digitized Measured Values of the ET 200B-4/8AI (6ES7 134-0KH00-0XB0; Measuring Ranges: $\pm 80 \mathrm{mV}, \pm 250 \mathrm{mV}, \pm 500 \mathrm{mV}$ and $\pm 1000 \mathrm{mV}$; Amount and Sign)

Note

Bit 15 of the digitized measured value indicates the sign.
The following applies: $\mathrm{SI}=0 \rightarrow$ positive value; $\mathrm{SI}=1 \rightarrow$ negative value.

Measured Value Table

Table 9-10 shows the assignment of analog to digitized measured value for the resistance thermometer (Pt 100):

Table 9-10 Representation of Digitized Measured Values of the ET 200B-4/8AI in the Case of Resistance Thermometers (Two's Complement)

1 In the overrange, any rise in the characteristic curve is retained when the linearized nominal range is exited.

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Measured Value Table

Tables 9-11 to 9-13 show the assignment of analog to digitized measured values for thermocouples of types J, K and L .

Table 9-11 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type K (Nickel-Chromium/Nickel-Aluminum, to IEC 584) (Two's Complement)

For a reference temperature of $0{ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$
In the overrange, any rise in the characteristic curve is retained when the linearized nominal range is exited.

Table 9-12 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type J (Iron/Copper-Nickel (Constantan), to IEC 584) (Two's Complement)

Units	Thermal e. m. f. in $\mathbf{m V}^{1}$	Temperature in ${ }^{\circ} \mathbf{C}$	Digitized Measured Value											F	$\begin{array}{\|c} \mathrm{OV} \\ \hline 0 \end{array}$	Range
			151413121110988													
1485				$0 \quad 0 \quad 1$	0	111	0	0	1	1	01	0		0	1	Overflow
1201		1201		0 0 01	0	10	1	1	0	0	$0 \quad 1$	0		0	1	Overrange ${ }^{2}$
1200	69.536	1200		0 0 1	0	010	1	1	0	0	00	0		0	0	
1000	57.942	1000		$0 \quad 00$	1	111	1	0	1	0	$0 \quad 0$	0		0	0	
500	27.388	500		000	0	1111	1	1	0	1	00	0		0	0	
100	5.268	100		000	0	$0 \quad 0 \quad 1$	1	0	0	1	$0 \quad 0$	0		0	0	
1	0.05	1		0 0 0	0	000	0	0	0	0	01	0		0	0	Nominal range
0	0	0		$0 \quad 0 \quad 0$	0	000	0	0	0	0	$0 \quad 0$	0		0	0	
-1	-0.05	-1		$\begin{array}{lll}1 & 1 & 1\end{array}$	1	111	1	1	1	1	11	0		0	0	
-100	-4.632	-100		$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1	110	0	1	1	1	00	0		0	0	
-150	-6.499	-150		$1 \begin{array}{lll}1 & 1 & 1\end{array}$,	$1 \begin{array}{lll}1 & 1\end{array}$	1	0	1	0	10	0		0	0	
-199	-7.868	-199		$\begin{array}{lll}1 & 1 & 1\end{array}$	1	100	1	1	1	0	011	0		0	0	
-200	-7.890	-200		$\begin{array}{lll}1 & 1 & 1\end{array}$	1	100	1	1	1	0	$0 \quad 0$			0	0	
-201		-201		111	1	00	1	1	0	1	11	0		0	1	Overrange ${ }^{2}$
-273				111	1) 11	1	0	1	1	11	0		0	1	Overflow
X		X		X X X	X	X X X	X	X	X	X	X X			1	0	Wire break

For a reference temperature of $0{ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$
2 In the overrange, any rise in the characteristic curve is retained when the linearized nominal range is exited.

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Table 9-13 Representation of Digitized Measured Values of the ET 200B-4/8AI with Linearization: Thermocouple Type L (Iron/Copper-Nickel (Constantan), to DIN 43710) (Two's Complement)

For a reference temperature of $0{ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$
2 In the overrange, any rise in the characteristic curve is retained when the linearized nominal range is exited.

Schematic Circuit Simplified representation of potential for the ET 200B-4/8AI and TB8:
Diagram

Figure 9-14 Schematic Circuit Diagram: ET 200B-4/8AI (6ES7 134-0KH00-0XB0) and TB8

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Terminal Assignments

The ET 200B-4/8AI is plugged into the TB8.
Table 9-14 contains the terminal assignments of the TB8 for the ET 200B-4/8AI depending on the sensor connected.

Table 9-14 Terminal Assignments of the TB8 for ET 200B-4/8AI (6ES7 134-0KH00-0XB0)

Ter- minal	Assignment When the Following are Connected			
	Thermocouple	Resistance Thermometer	Voltage Sensor	
K+	Compensating box	Unassigned	Unassigned	
K-	Compensating box	Unassigned	Unassigned	
x.1	Measuring line (+)	Constant current line $\mathrm{I}_{\mathrm{C}^{+}}$	Measuring line (+)	
x.2	Measuring line (-)	Constant current line $\mathrm{I}_{\mathrm{C}^{-}}$	Measuring line (-)	
x.3	Measuring line (+)	Measuring line (+)	Measuring line (+)	
x.4	Measuring line (-)	Measuring line (-)	Measuring line (-)	
M_{A}	Analog ground (M M_{A})			
L+	Voltage supply for internal logic			
M	Voltage supply for internal logic			

$\mathrm{x}=0,1,2,3$

Note

You must make additional settings for the input circuits of the TB8 via coding plugs. See Figures 9-12 and 9-13 for the necessary settings of the coding plugs.

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9.6/19.2/93.75/187.5/500/ } \\ & 1500 \mathrm{kbps} \end{aligned}$
Bus protocol	DP Standard
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Typ. 2 W
Weight (EB and TB)	Approx. 550 g (19.25 oz.)
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 160 \times 130 \times 60 \mathrm{~mm} \\ & (6.24 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics	Red "DIA" LED, parameterizable
Supply voltage for inputs and internal logic	
Supply voltage (L+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L+ - Logic	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \\ & 80 \mathrm{~mA} \end{aligned}$
Inputs	
Number of inputs	8 voltage inputs or 4 inputs for Pt 100 or 8 inputs for thermocouple types K, J, L
Galvanic isolation to internal electronic circuits	No
Galvanic isolation to voltage supply of internal electronic logic	Yes
Measured value ranges - Voltage sensors - Resistance-type sensors	$\begin{aligned} & \pm 80 \mathrm{mV}, \pm 250 \mathrm{mV} \\ & \pm 500 \mathrm{mV}, \pm 1000 \mathrm{mV} \\ & 0 \text { to } 400 \Omega \end{aligned}$
Permissible input voltage for voltage input (destruction limit)	32 V

Inputs, continued	
Characteristic curve	
linearization for	
following thermocouples	
- Nickel-chromium/ nickel-aluminum (type K)	To IEC 584
- Iron/copper-nickel (type J)	To IEC 584
- Iron/copper-nickel (type L)	To DIN 43710
Linearization accuracy in nominal range (for types K, J, L)	$\pm 1^{\circ} \mathrm{C}\left(33.8{ }^{\circ} \mathrm{F}\right)$
Method of connecting signal sensors	2-wire connection; 4-wire connection for Pt 100
Input resistance	$\geq 10 \mathrm{M} \Omega$
Measured value representation	Can be switched between following data formats: 12-bit two's complement, 11-bit amount with sign
Overrange	Approx. 17.5 \%
Measuring method	Integrating
Integration/conversion time/resolution (per channel)	
- Parameterizable	Yes
- Integration time in ms	$16^{2 / 3} 20$
- Basic conversion time incl. integration time and offset measuring time in ms or	$34 \quad 44$
additional conversion time for wire break monitoring in ms	$10 \quad 10$
- Noise suppression for interference frequency f1 in Hz	6050
Permissible potential difference	
- Inputs to each other	Max. $\pm 1 \mathrm{~V}$
- Inputs to $\mathrm{M}_{\mathrm{A}}\left(\mathrm{V}_{\mathrm{CM}}\right)$	Max. $\pm 1 \mathrm{~V}$
- M_{A} to PE or M	Max. 75 V DC/60 V AC

Electronics Block ET 200B-4/8AI (6ES7 134-0KH00-0XB0), continued

Inputs, continued	
Fault message in event of - Overrange - Wire break of signal sensor lines	Yes Yes for Pt $100, \pm 80 \mathrm{mV}$, thermocouple types K, J, L (can be set with COM ET 200)
Noise suppression for $\mathrm{f}=\mathrm{nx}(\mathrm{f} 1 \pm 1 \%)$ (f1 $=$ interference frequency)	
- Common mode noise $\left(\mathrm{V}_{\mathrm{PP}}<3 \mathrm{~V}\right)$	$>70 \mathrm{~dB}$
- Series-mode noise (peak value of interference < rated value of input range)	$>40 \mathrm{~dB}$
Crosstalk between the inputs	
- At 50 Hz	50 dB
- At 60 Hz	50 dB
Working error limit (over entire temperature range in relation to input range)	
- 80 mV	$\pm 1 \%$
- From 250 to 1000 mV	$\pm 0.6 \%$
- Thermocouples	$\pm 10 \mathrm{~K}$
- Resistance	$\pm 5 \mathrm{~K}$

Inputs, continued
Basic error limit (working
error limit at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{C}\right)$
in relation to input range

- $80 \mathrm{mV} \quad \pm 0.6 \%$
- From 250 to $1000 \mathrm{mV} \pm 0.4 \%$
- Thermocouples $\pm 7 \mathrm{~K}$
- Resistance $\pm 3 \mathrm{~K}$

Temperature error (in $\pm 0.005 \% / \mathrm{K}$
relation to input range)
Linearity error (in relation $\pm 0.05 \%$
to input range)
Repeatability (in $\pm 0.05 \%$
steady-state condition at
$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$, in relation to
input range)
Cable length

- Shielded

Max. 100 m (328 ft.)

9.1.4 Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0)

Characteristics The ET 200B-4AI electronics block has the following features:

- 4 inputs, floating to the supply voltage of the internal logic
- Measuring ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0$ to 20 mA , 4 to $20 \mathrm{~mA}, \pm 20 \mathrm{~mA}$
- Measuring principle: successive approximation
- Supply voltage: 24 V DC
- Connectable sensors
- Voltage sensors (2-wire connection)
- Current sensors (2-wire connection)
- Measuring range set using COM ET 200

Dimension Drawing

See Figure 9-5 for the precise dimensions.

Figure 9-15 Front Elevation: ET 200B-4AI (6ES7 134-0HF00-0XB0)

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Ground-
Referenced
Measurement

Possible Connections

Measuring Methods
 You have the choice of two methods of measuring analog signals from current/voltage sensors:

Floating-Ground Measurement

You can connect the following to the ET 200B-4AI:

- Up to 4 voltage sensors (2-wire connection)
- Up to 4 current sensors (2-wire connection)

Mixed connection of current and voltage sensors is possible.

- Floating-ground measurement
- Ground-referenced measurement

In the case of floating-ground measurement (differential measurement), each signal line has its own signal reference conductor.

Differential measurement is required in the following cases:

- If the sensors are connected to different potentials and
- If the different signal sources are physically apart.

Note

The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ of the differential inputs to analog ground $\left(\mathrm{M}_{\mathrm{A}}\right)$ is $\pm 1 \mathrm{~V}$.

The maximum permissible voltage difference between M_{A} and PE must not exceed 75 V DC/60 V AC.
Avoid ground loops!

In the case of ground-referenced measurement, all signal reference conductors in the TB8 are connected to a common reference point (analog ground M_{A}).
To avoid ground loops, galvanically isolated and ungrounded signal sources (thermocouples, Pt 100, voltage sources) are required.

Note

Connect M_{A} to $\mathrm{PE}(\stackrel{\rho}{\boldsymbol{\sigma}}$) to enhance noise immunity in the case of ground-referenced measurement.

On the Following Pages

The following pages contain a connection example for every connection possibility and measuring principle. Please note the following rules.

Please note the following rules when connecting measured-value sensors to the ET 200B-4AI:

- The permissible potential difference at the differential input ($\mathrm{x} .1<->\mathrm{x} .2, \mathrm{x}=0$ to 3) must not exceed $\pm 10 \mathrm{~V}$.
- The maximum permissible common mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ between the differential inputs ($\mathrm{x} .1<->\mathrm{x} .2, \mathrm{x}=0$ to 3) and analog ground M_{A} is $\pm 1 \mathrm{~V}$.
- The maximum permissible isolation voltage between analog ground $\left(\mathrm{M}_{\mathrm{A}}\right)$ and PE ($\boldsymbol{\sigma}$) or between the reference potential of the supply voltage (M) is 75 V DC/60 V AC .
- You must short-circuit the connection terminals of unused voltage inputs and connect them to M_{A} (coding plug at position " D " for voltage sensors; position " C " implements the connection to M_{A} for current sensors).
- You must short-circuit terminals "K+" and "K-". For this purpose, set the coding plug to the "C" position.

Note

Please note the explanation of shielding of analog lines in Sections 3.1 and 3.5 .

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Connecting Voltage Sensors

Floating-Ground Measurement

Voltage sensors for the following measured value ranges can be connected: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
Figures 9-16 and 9-17 show the two methods of connecting voltage sensors.

Figure 9-16 shows the 2-wire connection of voltage sensors (floating-ground measurement):

Figure 9-16 Two-Wire Connection of Voltage Sensors to 6ES7 134-0HF00-0XB0 (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage ($\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}$) must not be exceeded at any of the differential inputs with reference to M_{A}.

GroundReferenced Measurement

The 2-wire connection of voltage sensors (ground-referenced measurement) is shown below:

Figure 9-17 Two-Wire Connection of Voltage Sensors 6ES7 134-0HF00-0XB0 (Ground-Referenced Measurement)

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Connecting Current Sensors

Floating-Ground Measurement

Current sensors for the following measured value ranges can be connected: 0 to $20 \mathrm{~mA}, 4$ to $20 \mathrm{~mA}, \pm 20 \mathrm{~mA}$

Figures 9-18 and 9-19 show the two methods of connecting current sensors.

The 2-wire connection of current sensors (floating-ground measurement) is shown below:

Figure 9-18 Two-Wire Connection of Current Sensors (Floating-Ground Measurement)

Note

The maximum permissible common mode voltage ($\mathrm{V}_{\mathrm{CM}} \leq \pm 1 \mathrm{~V}$) must not be exceeded at any of the differential inputs with reference to M_{A}.

GroundReferenced Measurement

The 2-wire connection of current sensors (ground-referenced measurement) is shown below:

Figure 9-19 Two-Wire Connection of Current Sensors (Ground-Referenced Measurement)

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Parameterization
 You can define the functional principle of the ET 200B-4AI with the COM ET 200 parameterization software.

Table 9-15 shows all the parameters for the ET 200B-4AI:

Table 9-15 Parameter für ET 200B-4AI

[^3]
Where to Find a Description

Parameterization of the ET 200B-4AI with COM ET 200 V 4.x is described in detail in Section 4.2.

COM ET 200 WINDOWS also provides extensive support for parameterizing the ET 200B-4AI with COM ET 200 WINDOWS through its integrated help system.
Please refer to the ET 200 Distributed I/O System manual
(Order No. 6ES5 998-3ES12) for further information about how to use COM ET 200 WINDOWS.

Analog Value Representation

Analog values can be represented in three data formats with the ET 200B-4AI:

- 12-bit two's complement representation (range: -2048 to +2047 units)
- 11-bit amount and 1-bit sign (range: -2048 to +2047 units)
- 12-bit binary number (range: 0 to 4095 units)

Table 9-16 shows the analog value representation of the ET 200B-4AI:

Table 9-16 Representing an Analog Input Value as a Bit Pattern (6ES7 134-0HF00-0XB0)

	High Byte						Low Byte									
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Analog value representation	SI	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	X	X	OV

Bits 0 to 2 and bit 15 have no significance for the amount of the measured value. See Table 9-17 for a detailed description of these bits.

Supplementary Bits

Bits 0 to 2 and bit 15 have the following meaning in the bit pattern of the analog input value:

Table 9-17 Description of the Bits (6ES7 134-0HF00-0XB0)

Bit	Meaning	Signal Status	Meaning of the Signal Status
OV	Overflow bit	1	Overrange 1
SI	Sign	0	$"+"$ sign
		1	$"-"$ sign
X	Irrelevant	-	

1 In the event of overflow at one measuring point, the overflow bits of the other channels remain unaffected; this means the values of the other channels are correct and can be evaluated.

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Measured Value Table

Tables 9-18 to 9-20 show the assignments of analog to digitized measured values for the measuring ranges:

$$
\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}
$$

The ET 200B-4AI module (6ES7 134-0HF00-0XB0) has no overrange.

Table 9-18 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$; Two's Complement)

Table 9-19 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$; Amount and Sign)

Table 9-20 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Ranges: $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$; Binary)

Units	Measured Value in V				Digitized Measured Value												X	X		OV	Range
	$\pm 1.25 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	151413121110988766543												2	1		0	
4095	1.2494	2.4988	4.9976	9.9951		01	11	11	1	1	1	1	1	1	1		0	0		1	
4094	1.2488	2.4975	4.9951	9.9902		01	11	11	1	1	1	1	1	1	0		0	0		0	
:	.	:	.	:																	
2049	0.0006	0.0012	0.0024	0.0049		01	00	00	0	0	0	0	0	0	1		0	0		0	Nomi-
2048	0.0000	0.0000	0.0000	0.0000		01	00	00	0	0	0	0	0		0		0	0		0	
2047	-0.0006	-0.0012	-0.0024	-0.0049		00	11	11	1	1	1	1	1		1		0	0		0	
:		:		:																	
1	-1.2494	-2.4988	-4.9976	-9.9951		$0 \quad 0$	00	00	0	0	0	0	0	0	1		0	0		0	
0	-1.2500	-2.5000	-5.0000	-10.000		$0 \quad 0$	$0 \quad 0$	$0 \quad 0$	0	0	0	0	0	0	0		0	0		1	

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Measured Value Table

Tables 9-21 to 9-25 show the assignments of analog to digitized measured values for the measuring ranges:
0 to $20 \mathrm{~mA}, 4$ to $20 \mathrm{~mA}, \pm 20 \mathrm{~mA}$.
The ET 200B-4AI module (6ES7 134-0HF00-0XB0) has no overrange.

Table 9-21 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$;
Two's Complement)

Table 9-22 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$;
Amount and Sign)

Table 9-23 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: $\pm 20 \mathrm{~mA}$; Binary)

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Table 9-24 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: 0 to 20 mA)

1 Same representation for two's complement, amount and sign, and binary

Table 9-25 Representation of Digitized Measured Values of the ET 200B-4AI (6ES7 134-0HF00-0XB0; Measuring Range: 4 to 20 mA)

1 Same representation for two's complement, amount and sign, and binary

Note
The measuring range 4 to 20 mA is resolved to 2048 units in the interval 512 to 2560 . For a representation in the range 0 to 2048 units, 512 units must be subtracted per software.

Schematic Circuit Simplified representation of potential for the ET 200B-4AI and TB8: Diagram

Figure 9-20 Schematic Circuit Diagram: ET 200B-4AI (6ES7 134-0HF00-0XB0) and TB8

Electronics Block ET 200B-4AI (6ES7 134-0HF00-0XB0), continued

Terminal Assignments

The ET 200B-4AI is plugged into the TB8.
Table 9-26 contains the terminal assignments of the TB8 for the ET 200B-4AI.

Table 9-26 Terminal Assignments of the TB8 for ET 200B-4AI (6ES7 134-0HF00-0XB0)

Terminal	Assignment
$\mathrm{K}+$	Unassigned
$\mathrm{K}-$	Unassigned
x .1	Measuring line (+)
x .2	Measuring line (-)
x .3	Unassigned
x .4	Connection of current resistance
M_{A}	Analog ground (M A)
$\mathrm{L}+$	Voltage supply for internal logic
M	Voltage supply for internal logic
$\mathrm{x}=0,1,2,3$	

Note

You must make additional settings for the input circuits of the TB8 via coding plugs. See Figures 9-16 to 9-19 for the necessary settings of the coding plugs.

Technical specifications	
Baud rates	$\begin{aligned} & \text { 9.6/19.2/93.75/187.5/500/ } \\ & 1500 \mathrm{kbps} \end{aligned}$
Bus protocol	DP Standard
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Typ. 1.8 W
Weight (EB and TB)	Approx. 550 g (19.25 oz.)
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 160 \times 130 \times 60 \mathrm{~mm} \\ & (6.24 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics	Red "DIA" LED, parameterizable
Supply voltage for inputs and internal logic	
Supply voltage (L+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L+ - Logic	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \\ & 70 \mathrm{~mA} \end{aligned}$
Inputs	
Number of inputs	4
Galvanic isolation to internal electronic circuits	No
Galvanic isolation to voltage supply of internal logic	Yes
Measured value ranges - Voltage sensors - Current sensors	$\begin{aligned} & \pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \\ & \pm 10 \mathrm{~V} \\ & 0 \text { to } 20 \mathrm{~mA}, 4 \text { to } 20 \mathrm{~mA} \\ & \pm 20 \mathrm{~mA} \end{aligned}$
Method of connecting signal sensors	2-wire connection
Input resistance - Voltage measurement - Current measurement	$\begin{aligned} & \geq 100 \mathrm{k} \Omega \\ & 125 \Omega \end{aligned}$

Inputs, continued	
Measured value representation	Can be switched between following data formats: 12-bit two's complement, 11-bit amount with sign, 12-bit binary
Measuring principle	Successive approximation
Conversion time	Max. 100 ¢s
Module cycle time	Approx. 2 ms
Permissible potential difference	
- Inputs to each other	Max. $\pm 10 \mathrm{~V}$
- Inputs to $\mathrm{M}_{\mathrm{A}}\left(\mathrm{V}_{\mathrm{CM}}\right)$	Max. $\pm 1 \mathrm{~V}$
- M_{A} to PE or M	Max. 75 V DC/60 V AC
Fault message in event of - Overrange - Wire break of signal sensor lines	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$
Noise suppression for $\begin{aligned} & \mathrm{f}=\mathrm{n} \times(50 / 60 \mathrm{~Hz} \pm 1 \%) \\ & \mathrm{n}=1,2, \ldots \end{aligned}$ - Common mode noise ($\mathrm{V}_{\mathrm{PP}}<1 \mathrm{~V}$)	Min. 70 dB
Basic error limit - Voltage ranges - Current range	$\begin{aligned} & 0.15 \% \\ & 0.20 \% \end{aligned}$
Working error limit (0 to $60^{\circ} \mathrm{C}$) (32 to $140{ }^{\circ} \mathrm{F}$)	
- Voltage ranges	0.32 \%
- Current range	0.41 \%
Permissible input voltage (destruction limit)	Max. $\pm 30 \mathrm{~V}$ (static) or $\pm 75 \mathrm{~V}$ (pulse for max. 1 ms and mark-space ratio $1: 20$)
Permissible input current (destruction limit)	Max. 40 mA
Cable length - Shielded	Max. 100 m (328 ft)

9.1.5 Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0)

Characteristics

Dimension
Drawing

The ET 200B-4AO electronics block has the following features:

- 4 inputs, floating to the supply voltage of the internal logic
- Output ranges: $\pm 10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 20 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA
- Supply voltage: 24 V DC
- Loads connectable in
- 4-wire connection
- 2-wire connection
- Measuring range set via COM ET 200

See Figure 9-5 for the precise dimensions.

Figure 9-21 Front Elevation: ET 200B-4AO (6ES7 135-0HF00-0XB0)

Possible Connections

There are two methods of connecting loads to the ET 200B-4AO:

- 4-wire connection of loads
- 2-wire connection of loads

The following pages contain a connection example for every connection possibility. Please note the following rules.

Please note the following rules when connecting loads to the ET 200B-4AO:

- The output terminals $\mathrm{x} .2(\mathrm{x}=0$ to 3$)$ have a fixed connection to analog ground (M_{A}).
If non-floating loads are connected to a common reference potential, please ensure minimum potential differences. Failure to do so can lead to undesired transient currents across the output module.
- You are recommended to connect floating-ground loads which are floating with reference to each other. In such cases, connect analog ground $\left(\mathrm{M}_{\mathrm{A}}\right)$ with PE ($\stackrel{\sim}{\mathrm{\sigma}}$) to enhance noise immunity.
- The connection terminals of unused outputs are left open.
- You must short-circuit terminals " $K+$ " and " $K-$ ". For this purpose, set the coding plug to the "C" position.

Caution

If the supply voltage is below the lower tolerance limit, the output analog values can deviate from the specified values.

Note

Please note the explanation of shielding of analog lines in Sections 3.1 and 3.5 .

Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0), continued

4-Wire Connection of Loads (Voltage Output)

The voltage on the load is re-adjusted via two high-resistance sensor lines per channel ($\mathrm{S}+, \mathrm{S}-$ at terminals x. 3 and x.4). In this way, voltage drops of up to 3 V per line can be re-adjusted.

Please ensure that the sensor lines are connected directly to the load.
4-wire connection of loads in the case of voltage output is shown below:

Figure 9-22 4-Wire Connection of Loads in the Case of Voltage Output

2-Wire Connection of Loads (Voltage Output)

The sensor lines are not required for 2-wire connection. Two-wire connection is possible for voltage output if the line resistance of the signal lines is negligible compared to the load resistance.

2-wire connection of loads in the case of voltage output is shown below:

Figure 9-23 2-Wire Connection of Loads in the Case of Voltage Output

Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0), continued

Two-Wire Connection of Loads (Current Output)

Two-wire connection of loads in the case of current output is shown below:

Figure 9-24 2-Wire Connection of Loads in the Case of Current Output

Parameterization
You can define the functional principle of theET 200B-4AO with the COM ET 200 parameterization software.

Table 9-27 shows all the parameters for the ET 200B-4AO:

Table 9-27 Parameters for the ET 200B-4AO

[^4]
Where to Find a Description

Parameterization of the ET 200B-4AO with COM ET 200 V 4.xis described in detail in Section 4.2.

COM ET 200 WINDOWS also provides extensive support for parameterizing the ET 200B-4AO with COM ET 200 WINDOWS through its integrated help system.

Please refer to the ET 200 Distributed I/O System manual (Order No. 6ES5 998-3ES12) for further information about how to use COM ET 200 WINDOWS.

Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0), continued

Analog Value Representation

Analog values can be represented in two's complement with the ET 200B-4AO.

Table 9-28 shows the analog value representation of the ET 200B-4AO:

Table 9-28 Representing an Analog Input Value as a Bit Pattern (6ES7 135-0HF00-0XB0)

	High Byte						Low Byte									
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Analog value representa- tion	SI	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	X	X	X	X

Bits 0 to 3 and bit 15 have no significance for the amount of the measured value. See Table 9-29 for a detailed description of these bits.

Supplementary Bits

Bits 0 to 3 and bit 15 have the following meaning in the bit pattern of the analog input value:

Table 9-29 Description of the Bits (6ES7 135-0HF00-0XB0)

Bit	Meaning	Signal Status	Meaning of the Signal Status
SI	Sign	0	$"+"$ sign
		1	$"-"$ sign
X	Irrelevant	-	

Measured Value Table

Table 9-30 shows the assignments of analog to digitized output signals for the value ranges: $\pm 10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 20 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA .

Table 9-30 Analog Output Signals of the ET 200B-4AO (Value Ranges: $\pm 10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 20 \mathrm{~mA}, 0$ to 20 mA , 4 to 20 mA ; Two's Complement)

Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0), continued

Schematic Circuit Simplified representation of potential for the ET 200B-4AO and TB8: Diagram

Figure 9-25 Schematic Circuit Diagram: ET 200B-4AO (6ES7 135-0HF00-0XB0) and TB8

Terminal Assignments

The ET 200B-4AO is plugged into the TB8.
Table 9-31 contains the terminal assignments of the TB8 for the ET 200B-4AO depending on the connection method.

Table 9-31 Terminal Assignments of the TB8 for ET 200B-4AO (6ES7 135-0HF00-0XB0)

Terminal	4-Wire Connection	2-Wire Connection
$\mathrm{K}+$	Unassigned	
K-	Unassigned	
x.1	Analog output "voltage" (+)	Analog output "current or voltage" (+)
x.2	Analog output "voltage" (-)	Analog output "current or voltage" (-)
x.3	Sensor line (S+)	Unassigned
x.4	Sensor line (S-)	Unassigned
M_{A}	Analog ground (M M_{A})	
L+	Voltage supply for internal logic	
M	Voltage supply for internal logic	

$$
x=0,1,2,3
$$

Note

You must make additional settings for the input circuits of the TB8 via coding plugs. See Figures 9-22 and 9-24 for the necessary settings of the coding plugs.

Electronics Block ET 200B-4AO (6ES7 135-0HF00-0XB0), continued

Technical specifications	
Baud rates	$\begin{aligned} & 9.6 / 19.2 / 93.75 / 187.5 / 500 / \\ & 1500 \mathrm{kbps} \end{aligned}$
Bus protocol	DP Standard
Galvanic isolation to SINEC L2-DP bus	Yes
Power losses	Typ. 2.4 W
Weight (EB and TB)	Approx. 550 g (19.25 oz.)
Dimensions (EB and TB: W x H x D)	$\begin{aligned} & 160 \times 130 \times 60 \mathrm{~mm} \\ & (6.24 \times 5.07 \times 2.34 \mathrm{in} .) \end{aligned}$
Diagnostics functions	
Voltage monitoring	Green "RUN" LED
Bus monitoring SINEC L2-DP	Red "BF" LED
Group diagnostics	Red "DIA" LED, parameterizable
Supply voltage for outputs and internal logic	
Supply voltage (L+) - Rated value - Permissible range - Value for $\mathrm{t}<0.5 \mathrm{~s}$ Current consumption from L+ - Logic	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 18.5 \text { to } 30.2 \mathrm{~V} \\ & 35 \mathrm{~V} \\ & \text { Max. } 200 \mathrm{~mA} \end{aligned}$
Outputs	
Number of outputs	4
Galvanic isolation to internal electronic circuits	No
Galvanic isolation to voltage supply of internal logic	Yes
Output ranges - Voltage range - Current range	$\begin{aligned} & \pm 10 \mathrm{~V}, 0 \text { to } 10 \mathrm{~V} \\ & \pm 20 \mathrm{~mA}, 0 \text { to } 20 \mathrm{~mA} \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$
Method of connecting signal sensors	2-wire or 4-wire connection
Load resistance - Voltage output - Load impedance in case of current output - Capacitive load - Inductive load	Min. $3.3 \mathrm{k} \Omega$ Max. 300Ω Max. $1 \mu \mathrm{~F}$ Max. 1 mH

Outputs, continued
Data input format
Overrange
Conversion time
Settling time

- For resistive load
- For capacitive load

3 ms

Permissible potential
difference

- M_{A} to PE or M Max. 75 V DC/60 V AC

Crosstalk between outputs 40 dB
Working error limit (over entire temperature range in relation to output range)

- Voltage
$\pm 0.5 \%$
- Current
$\pm 1 \%$
Basic error limit (working error limit at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ in relation to output range)
- Voltage $\pm 0.2 \%$
- Current $\pm 0.3 \%$

Temperature error (in $\quad \pm 0.02 \% / \mathrm{K}$ relation to output range)
Linearity error (in relation $\pm 0.05 \%$ to output range)
Repeatability (in $\pm 0.05 \%$
steady-state condition at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$, in relation to output range)
Output ripple (in relation $\pm 0.05 \%$ to output range)
Voltage output

- Short-circuit Yes, max. 1 output protection
- Short-circuit current simultaneously
Max. 25 mA
Current output
- Idle voltage Max. 18 V

Cable length

- Shielded

Max. 100 m (. 328 ft .)

Type Files

Installing the Type

 FilesInstalling the GSD Files

All the type files required for starting up the ET 200B with COM ET 200 V4.x and COM ET 200 WINDOWS are made available centrally in the Interface Center, from where you can pick them up by modem under the following mailbox number:
Tel.: (Germany) 0911/73-7972

You need a device master data file (GSD file) in accordance with DIN E 19245, Part 3, to connect ET 200B modules to DP masters which are not able to process the type files (e.g. DP masters not manufactured by Siemens). All the device master data for the ET 200U/B/C is available on floppy disk and can be ordered under the following number:

Device master data disk: 6ES7 190-1AA00-0AA0
You can also pick up all device master data from the Interface Center by modem under the following mailbox number:

Tel.: (Germany) 0911/73-7972

The contents of all the type files needed to start up the system with COM ET 200 V4.x are reproduced in this chapter. If any of the files for this version of COM ET 200 are missing, you can thus create them yourself if necessary using an ASCII editor.

Please refer to Section 4.1 for further information about installing the type files for COM ET 200 V4.x.
All the type files necessary to start up the ET 200B with COM ET 200 WINDOWS are component parts of COM ET 200 WINDOWS; you thus do not need to install them separately.

A. 1 Contents of the type file for the COM ET 200 V4.x

Introduction

The contents of the type files for all the ET 200B station types are reproduced in this chapter.

Please pay careful attention to the blanks and line breaks if you edit the type files. If you edit a type file incorrectly, COM ET 200 V4.x will output the following message:
"File format incorrect"
Please use the file names specified next to the station types for the type files (e.g. SI0001TD. 200 for the ET 200B-16DI) and copy the files to the COM ET 200 directory.

Type Files for COM ET 200 V4.x (continued)

SI0004TD. 200 Contents of the type file for the ET 200B-32DI (6ES7 131-0BL00-0XB0):

SIO00CTD. 200 Contents of the type file for the ET 200B-32DI 0.2 ms (6ES7 131-0BL10-0XB0):

Type Files for COM ET 200 V4.x (continued)

SI0002TD. 200 Contents of the type file for the ET 200B-16DO (6ES7 132-0BH00-0XB0):

Type file for ET 200B-16DO:	SI0002TD. 200	[No. of char]
ET200B-16DO 0,5A, MLFB<6ES7	132-0BH00-0XB0>, Siemens slave	[80 characters]
V4.0;		[4 characters]
B-16DO 0,5A DP;		[17 characters]
SIEMENS ;		[10 characters]
SIMATIC ;		[10 characters]
ET 200 ;		[10 characters]
ET200B/24V/DP ;		[15 characters]
00002;		[5 characters]
J;		[1 character]
J;		[1 character]
N;		[1 character]
J;		[1 character]
J;		[1 character]
J;		[1 character]
N;		[1 character]
00000;		[5 characters]
1111011111;		[10 characters]
032;		[3 characters]
032;		[3 characters]
032;		[3 characters]
016;		[3 characters]
012;		[3 characters]
PV005;		[5 characters]
00;		[2 characters]
PSL000;		[6 characters]
KV000;		[5 characters]
SY;		[2 characters]
DKMOOO;		[6 characters]

SIO005TD. $200 \quad \begin{aligned} & \text { Contents of the type file for the ET 200B-16DO/2A } \\ & \text { (6ES7 132-0BH10-0XBO): }\end{aligned}$ (6ES7 132-0BH10-0XB0):

Type Files for COM ET 200 V4.x (continued)

SIO00DTD. 200 Contents of the type file for the ET 200B-32DO (6ES7 132-0BL00-0XB0):

Type Files for COM ET 200 V4.x (continued)

SIOOOBTD. 200 Contents of the type file for the ET 200B-8DI/8DO
(6ES7 133-0BH00-0XB0):

SIO00FTD. $200 \quad \begin{aligned} & \text { Contents of the type file for the ET 200B-24DI/8DO } \\ & \text { (6ES7 133-0BN00-0XB0): }\end{aligned}$

Type Files for COM ET 200 V4.x (continued)

SIO00ETD. 200 Contents of the type file for the ET 200B-24DI/8DO 0.2 ms (6ES7 133-0BN10-0XB0):

SI0019TD. $200 \quad \begin{aligned} & \text { Contents of the type file for the ET 200B-16DI-AC } \\ & \text { (6ES7 131-0HF00-0XBO): }\end{aligned}$ (6ES7 131-0HF00-0XB0):

Type file for Et 200b-16DI-AC: SI0019TD. 200	[No. of char.]
ET200B-16DI-AC, MLFB<6ES7 131-0HFO0-0XB0>, Siemens slave	[80 characters]
V4.0;	[4 characters]
B-16DI-AC DP;	[17 characters]
SIEMENS ;	[10 characters]
SIMATIC ;	[10 characters]
ET 200 ;	[10 characters]
ET200b/AC ;	[15 characters]
00025;	[5 characters]
J;	[1 character]
J;	[1 character]
N;	[1 character]
J;	[1 character]
J;	[1 character]
Ј;	[1 character]
N;	[1 character]
00000;	[5 characters]
1111011111;	[10 characters]
032;	[3 characters]
032;	[3 characters]
032;	[3 characters]
016;	[3 characters]
012;	[3 characters]
PV005;	[5 characters]
00;	[2 characters]
PSL000;	[6 characters]
KV000;	[5 characters]
SY;	[2 characters]
DKMOOO;	[6 characters]

Type Files for COM ET 200 V4.x (continued)

SI001ATD. 200 Contents of the type file for the ET 200B-16DO-AC
(6ES7 132-0HF00-0XB0):

SIO01CTD. 200 Contents of the type file for the ET 200B-16RO-AC (6ES7 132-0HH00-0XB0):

Type Files for COM ET 200 V4.x (continued)

SI001DTD. 200 Contents of the type file for the ET 200B-8DI/8DO-AC
(6ES7 133-0HH00-0XB0):

Type file fo	ET 200B-4/8AI: SI801ATD. 200	[No. of char.]
ET200B-4/8AI	MLFB<6ES7 134-0KH00-0XB0>, Siemens slave	[80 characters]
V4.0;		[4 characters]
B-4/8AI	DP;	[17 characters]
SIEMENS ;		[10 characters]
SIMATIC ;		[10 characters]
ET200		[10 characters]
ET200B/ANALO	;	[15 characters]
32794;		[5 characters]
J;		[1 character]
J;		[1 character]
N;		[1 character]
N;		[1 character]
N;		[1 character]
J;		[1 character]
N;		[1 characters]
N;		[1 character]
00020;		[5 characters]
0001011111;		[10 characters]
032;		[3 characters]
032;		[3 characters]
032;		[3 characters]
016;		[3 characters]
032;		[3 characters]
PV025;		[5 characters]
13;		[2 characters]
00;		[2 characters]
AA;		[2 characters]
14;		[2 characters]
00;		[2 characters]
06;		[2 characters]
FF;		[2 characters]
00;		[2 characters]

Type Files for COM ET 200 V4.x (continued)

(Type file SI801ATD.200, continued)

```
00;
00;
00;
PSLOOO;
KV000;
SY;
DKMOOO;
[2 characters]
[2 characters]
[2 characters]
[6 characters]
[5 characters]
[2 characters]
[6 characters]
```


Type Files for COM ET 200 V4.x (continued)

(Type file SI8019TD.200, continued)

```
00;
00;
00;
PSL000;
KV000;
SY;
DKMOOO;
[2 characters]
[2 characters]
[2 characters]
[6 characters]
[5 characters]
[2 characters]
[6 characters]
```


Type Files for COM ET 200 V4.x (continued)

(Type file SI8018TD.200, continued)

```
00;
00;
00;
PSLOOO;
KV000;
SY;
DKMOOO;
[2 characters]
[2 characters]
[2 characters]
[6 characters]
[5 characters]
[2 characters]
[6 characters]
```


Safety-Related Guidelines

B

In this Chapter The following guidelines are designed to help you avoid injury to personnel and damage either to the product described or to connected devices.

B. 1 Active and Passive Faults in Automation Equipment

Active and Passive Faults

Procedures for Maintenance and Repair

Depending on the particular task for which the electronic automation equipment is used, both active as well as passive faults can result in a dangerous situation. For example, in drive control, an active fault is generally dangerous because it can result in an unauthorized startup of the drive. On the other hand, a passive fault in a signalling function can result in a dangerous operating state not being reported to the operator.

This differentiation of the possible faults and their classification into dangerous and non-dangerous faults, depending on the particular task, is important for all safety considerations with respect to the product supplied.

Warning

In all cases where a fault in automation equipment can result in severe personal injury or substantial damage to property. i.e. where a dangerous fault can occur, additional external measures must be taken or equipment provided to ensure or enforce safe operating conditions, even in the event of a fault (e.g. by means of independent limit monitors, mechanical interlocks, etc.).

If measurement or testing work is to be carried out on the ET 200B distributed I/O station, the rules and regulations contained in the "VBG 4.0 Accident Prevention Regulations" of the German employers liability assurance association (Berufsgenossenschaft) must be observed. Particular attention is drawn to paragraph 8 "Permissible deviations when working on live parts".

Repairs to an item of automation equipment may only be carried out by SIEMENS service personnel or repair shops authorized by SIEMENS to carry out such repairs.

B. 2 Guidelines for the Planning and Installation of the Product

Warnings
The product generally forms a part of larger systems or plants. These guidelines are intended to help integrate the product into its environment without it constituting a source of danger.

Warning

- Follow strictly the safety and accident prevention rules that apply in each particular case.
- In the case of equipment with a permanent power connection (stanionary equipment/systems) which is not provided with an isolating switch and/or fuses which disconnect all poles, a suitable isolating switch or fuses must be provided in the building wiring system (distribution board). Furthermore, the equipment must be connected to a protective ground (PE) conductor.
- Before switching on the equipment which is operated with power system voltage, make sure that the voltage range setting on the equipment corresponds to the local power system voltage.
- In the case of equipment operating on 24 V DC, make sure that proper electrical isolation is provided between the mains supply and the 24 V supply. Only use power supply units to IEC 364-4-41 or HD 384.04.41 (VDE 0100 Part 410).
- Fluctuations or deviations of the power supply voltage from the rated value must not exceed the tolerances specified in the technical specifications. Otherwise, functional failures or dangerous conditions can occur in the electronic modules/equipment.
- Suitable measures must be taken to make sure that programs that are interrupted by a voltage dip or power supply failure resume proper operation when the power supply is restored. Care must be taken to ensure that dangerous operating conditions do not occur even momentarily. If necessary, the equipment must be forced into the "emergency stop" state.
- Emergency stop devices in accordance with EN 60204/IEC 204 (VDE 0113) must be effective in all operating modes of the automation equipment. Resetting the emergency stop device must not result in any uncontrolled or undefined restart of the equipment.
- Install the power supply and signal cables in such a manner as to prevent inductive and capacitive interference voltages from affecting the automation functions.
- Automation equipment and its operating elements must be installed in such a manner as to prevent unintentional operation.
- Automation equipment can assume an undefined state in the event of a wire break in the signal lines. To prevent this, suitable hardware and software measures must be taken when interfacing the inputs and outputs of the automation equipment.

Glossary

A

Active nodes Active nodes may send data to other nodes, when authorized to send, and request data from other nodes (= master station).

The IM 308-C master interface module, for example, is an active node.

B

Baud rate

Bus Common transmission path connecting all nodes; possesses two defined ends.

Bus connector Physical connection between bus nodes and bus cable.

Bus node
Data transmission speed; specifies the number of bits transferred per second (baud rate $=$ bit rate).

Bus segment $\quad \rightarrow$ Segment

C

Chassis	Chassis defines the entire range of interconnected inactive parts of a device that are not subject to any dangerous touch voltages, even in the case of a fault.
Coding plug	You determine the input/output circuits of the analog modules via coding plugs.
Coding slide	The setting of the coding slide switch on the \rightarrow terminal block determines the \rightarrow electronics block that can be attached.
switch	Configuring refers to address assignment for inputs/outputs of a slave station.

Control command

CP 5410

S5-DOS/ST

Cyclic processing
In cyclic processing the master regularly accesses the slave station.
The master (e.g. the IM 308-C) reads the input data of the slaves and passes on output data to the slaves.

D

Device-related diagnostics

Diagnostics

Top level of slave-specific diagnostics. Device-related diagnostics refer to the entire slave.

Detection, location, classification, display and further evaluation of errors, faults and signals.
Diagnostics offer monitoring functions which execute automatically during system operation.

Application: enhancement of plant availability by reducing startup times and down times.

DP Master

DP Siemens

DP Slave \rightarrow DP Standard slave

DP Standard

DP Standard slave
\rightarrow Active node which communicates with the slave stations according to a fixed algorithm and provides data for the user.

Bus protocol developed by Siemens AG.

Abbreviation for Draft Standard DIN 19245; Part 3.
\rightarrow Passive node which behaves in accordance with Draft Standard DIN 19245; Part 3.

E

Electronics block

ET 200

Upper section of the ET 200B distributed I/O station. The electronics block contains the logic and is plugged into the \rightarrow terminal block.

Distributed I/O system for connecting distributed I/O to the S5-115U to S5-155U programmable controllers or an adequate master. ET 200 is characterized by high-speed response times since only a small amount of data (bytes) is transferred.

ET 200 is based on the PROFIBUS Standard (DIN 19245/Part 1) and the PROFIBUS-DP Draft Standard (DIN 19245/Part 3).
ET 200 works according to the \rightarrow master-slave access method. The master can be an IM 308-C master interface module or a host containing the CP 5480-DP.

Slaves can be the ET 200B distributed I/O station, the ET 200C, the ET 200U or non-Siemens devices.

F

Floating In the case of floating I/O modules, the reference potentials of control and load circuits are galvanically isolated by, for example, optocouplers, relay contacts or line transformers. Input and output circuits can be grouped.

Floating-ground configuration

Floating-ground measurement

FREEZE

G
 G

A control command from the master to the slave.
Using this control command, the master can freeze the statuses of the inputs at any given instant. The input data is then updated again only when the master sends the control command UNFREEZE.
With floating-ground measurement, each signal line has its own signal reference line.

Floating-ground measurement is required in the following cases:

- If the sensors are connected to different potentials and
- If different signal sources are physically apart.

Configuration without galvanic connection to ground. In most cases, an RC element is used to divert interference currents. (manual entitled "Guidelines for Interference - Free Installation of Stored-Program Controllers").

Ground

Ground-referenced

 measurementGSD file

Ground (v.) To connect an electrically conducting part via a ground system to ground.
Conducting ground whose potential at every point can be set to zero.

With ground-referenced measurement, all signal reference lines are run to a common \rightarrow reference potential.

Device master data file; file in which the slave-specific characteristics such as the number of inputs or outputs, number of diagnostics bytes, SYNC capability, etc. are defined. There is a GSD file for every Siemens DP standard slave.

You only require this file if you want to connect a DP standard slave to a non-Siemens DP master. If you are using a Siemens DP master, you do not need a GSD file. The device master data for Siemens DP masters is defined in the \rightarrow type file (COM ET-specific format).

IP 20

M

Master interface module

Master-slave access method

N

Non-floating

0

Overview

 diagnostics
P

Parameterization master

Passive nodes

Degree of protection to DIN 40050: protection against touch and the ingress of foreign bodies with a diameter of over $12 \mathrm{~mm} \varnothing$.

Module for distributed configuration. The distributed I/O is "connected" to the PLC using the IM 308-C master interface module.

Bus access method according to which only one node is \rightarrow active at any time and all others are \rightarrow passive.

The reference potentials of control and load circuits are electrically connected in the case of non-floating I/O modules.

Overview diagnostics show which slave station has a diagnostics message.

The master authorized to parameterize a slave station.

Passive nodes can only exchange data with an active node after a request to do so from the active node.

Examples of passive nodes are all slaves such as ET 200B, ET 200C, etc.

PROFIBUS

PROFIBUS-DP Draft standard PROFIBUS-DP (DIN 19245, Part 3) on which the ET 200 distributed I/O system is based.

A conductor required as a protection measure against electric shock currents. The symbol for the protective ground conductor is PE.
PROcess FIeld BUS, German process and field bus standard defined by the PROFIBUS standard (DIN 19245).
It specifies functional, electrical and mechanical characteristics for a bit-serial field bus system.

Protective ground conductor

R

Reference potential

Response time

S

Segment

Short circuit

SINEC L2

SINEC L2-DP

The bus cable between two terminating resistances forms a segment. A segment contains 0 to $32 \rightarrow$ bus nodes. Segments can be linked via \rightarrow repeaters.

A short circuit is a fault causing a connection between conductors that are energized in normal operation if no resistance is inserted in the faulty circuit.

Bus system; networks PROFIBUS-compatible automation systems and field devices at the cell and field levels.

SINEC L2 bus system with the DP protocol. DP stands for distributed I/O. ET 200 corresponds to SINEC L2-DP.

Standard sectional rail

Station number

STOP

SYNC

T

Terminal block

Terminating resistance

Threshold monitoring time

Standard metal section to DIN EN 50022.
The standard sectional rail is used for fixing devices in the SIMATIC family such as the S5-95U I/O modules, the ET 200B, etc.

Each ET 200 bus node must receive a station number. The programming device is accessed with the station number " 0 ".

The master and slave have a station number in the range 3 to 125. Exception: the ET 200B has a station number in the range 3 to 99 .

STOP is a master operating mode. Data exchange between the master and slaves does not take place.

SYNC is a \rightarrow control command issued by the master to a slave.
Using this control command, the master can freeze the outputs at an instantaneous value. The output data for subsequent frames is stored, but the statuses of the outputs remain unchanged. The outputs are not updated again until the master sends the UNSYNC command.

The terminal block carries the permanent wiring. The \rightarrow electronics block is plugged into the terminal block.

Resistance for matching the impedance of bus cables; terminating resistances are always required on cable ends or segment ends.

This is a slave parameter in COM ET 200. If a slave station is not accessed within the threshold monitoring time, it changes to the safe state, that is, all outputs are set to " 0 ".

File required by COM ET 200 for configuring a slave station. The slave-specific characteristics such as the number of inputs/outputs, number of diagnostics bytes, SYNC capability, etc., are defined in the type file.

For every ET 200B station type there is a type file which is generated by Siemens, forms a component part of COM ET 200 (from Version 4.1) or is supplied with the manual.

\mathbf{U}

UNFREEZE

\rightarrow FREEZE

UNSYNC
\rightarrow SYNC

W

Wire break
This means there is a break in the lines to the sensor or a fault in the sensor itself.

Index

A

Active node, Glossary-1
Address Area, 4-6
Address ID, 4-9
Addressing, 4-8

B

Baud rate, Glossary-1
Bus, Glossary-1
Bus connector, Glossary-1
Bus node, Glossary-1
Bus segment, Glossary-1

C

Changing the Fuse, 3-8
Chassis, Glossary-2
Code Slide Switch, 3-7
Coding Connector, 3-7
Coding plug, Glossary-2
Setting, 9-4
Coding slideswitch, Glossary-2
Configuration
Flaoting-ground, Glossary-4
Grounded, 3-13
Ungrounded, 3-16
Configuring, Glossary-2
Control command, Glossary-2
CP 5410 S5-DOS/ST, Glossary-2
Cyclic processing, Glossary-2

D

Device-related diagnostics, Glossary-2
Diagnostics, Glossary-2
Device-related (analog ET 200B), 6-19, 6-33
Device-related (digital ET 200B), 6-17, 6-31
Manufacturer idenfication, 6-29
Manufacturer identification, 6-15
Station Status, 6-12-6-14, 6-26-6-28
Diagnostics word, 6-6
Dismantling, 3-11

DP Master, Glossary-3
DP Siemens, Glossary-3
DP Slave, Glossary-3
DP Standard, Glossary-3
DP Standard slave, Glossary-3

E

Electronics Block, Installing, 3-9
Electronics block, 1-3, 1-6, Glossary-3
Design, 2-4
ET 200, Glossary-3

F

Fault Diagnostics
through LEDs, 6-2
with COM ET 200, 6-3
with STEP 5, 6-5
Floating, Glossary-4
Floating-ground measurement, Glossary-4
FREEZE, Glossary-4

G

Ground, Glossary-4
Ground (v), Glossary-4
Grounded configuration, 3-13
Ground-referenced measurement, Glossary-4
GSD file, A-1, Glossary-4

H

Header, 6-17, 6-19, 6-31, 6-34

I

Individual Diagnostics, 6-17, 6-19
Installing
Electronics Block, 3-9
Terminal block, 3-2
IP 20, Glossary-5

L

LEDs, 2-4, 6-2, 6-2

M

Manufacturer identification, 6-15, 6-29
Master interface module, Glossary-5
Master-Slave access method, Glossary-5
Mounting
on a standard section rail, 3-4
with Shield Attachment, 3-5

N

Nodes, passive, Glossary-5
Non-floating, Glossary-5

0

Overview diagnostics, Glossary-5

P

Parameterization, 4-13
Parameterization master, Glossary-5
Parameterizing
ET 200B-4AI, 4-17
ET 200B-4AO, 4-19
ET 200B-4/8AI, 4-14
Passive nodes, Glossary-5
PROFIBUS, Glossary-6
PROFIBUS-DP, Glossary-6
Protective ground connector, Glossary-6

R

Reference potential, Glossary-6
Response time, Glossary-6

S

Screen Form, CONFIGURING (3), 4-8
Screen form
CONFIGURING (1), 4-4, 4-5
CONFIGURING (2), 4-6, 4-7
CONFIGURING (3), 4-10
DIAGNOSTICS, 6-3
DIAGNOSTICS: OVERVIEW, 6-3
Segment, Glossary-6

Shield Connecting Element, 3-2, 3-21
Shielding, 3-21
Short circuit, Glossary-6
SINEC L2, Glossary-6
SINEC L2-DP, 1-2, Glossary-6
Standard sectional rail, Glossary-7
Station Diagnostics, 6-6, 6-24
Station number, 1-5, 4-4, Glossary-7
Station Status, 6-12-6-14, 6-26-6-28
Station Type, 4-6
STOP, Glossary-7
SYNC, Glossary-7

T

Technical specifications
ET 200B-16DI, 8-18
ET 200B-24DI/8DO, ET 200B-24DI/8DO $0.2 \mathrm{~ms}, 8-53$
ET 200B-32DI, ET 200B-32DI $0.2 \mathrm{~ms}, 8-23$
ET 200B-32DO, 8-38
ET 200B-4/8AI, 9-31
ET 200B-4AI, 9-49
ET 200B-4AO, 9-60
ET 200B-8DI/8DO, 8-48
ET 200B-16DI-AC, 8-57
ET 200B-16DO, 8-28
ET 200B-16DO/2A, 8-33
ET 200B-16DO-AC, 8-61
ET 200B-16RO-AC, 8-66
ET 200B-8DI/8RO-AC, 8-70
ET 200B-8RO, 8-43
General, 7-2
Terminal block, 1-3, 1-5, Glossary-7
Design, 2-2
Installing, 3-2
TB1-4/DC, 8-4
TB1/DC, 8-4
TB2-4/DC, 8-12
TB2/DC, 8-12
TB3/DC, 8-4
TB4/DC, 8-12
TB6/AC, 8-12
TB8-analog, 9-5
Wiring, 3-18
Terminating resistance, Glossary-7
Threshold monitoring time, Glossary-7
Type file, 4-2, A-1, Glossary-7

U

UNFREEZE, Glossary-8
Ungrounded configuratiion, 3-16
UNSYNC, Glossary-8

W

Wire break, Glossary-8
Wiring, 3-18

Siemens AG
AUT 125 Doku
Postfach 1963
D-92209 Amberg
Federal Republic of Germany

From:
Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:
\square Automotive
\square Pharmaceutical
\square Chemical
\square Plastic
\square Electrical Machinery
\square Pulp and Paper
\square Food
\square Textiles
\square Instrument and Control

- Transportation
\square Nonelectrical Machinery
\square Other
\square Petrochemical

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please do not forget to state the title, order number, and release of your manual.

Title of Your Manual:
Order No. of Your Manual:
Release:

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Please rate the quality of the graphics/tables:

Additional comments:
\qquad

[^0]: In this Chapter This chapter contains overviews showing the arrangement of the following:

 - Operator controls
 - Display elements
 - Elements for assembling/dismantling.

[^1]: —: Defaults in the parameterization frame

[^2]: In this Chapter This chapter contains the technical specifications of the ET 200B digital modules. The chapter is broken down into sections for

 - 24 V DC digital modules
 - $120 / 230$ V AC V digital modules

[^3]: : Default setting in parameterization frame
 1 Byte address in parameterization frame of slave

[^4]: : Default setting in parameterization frame
 1 Byte address in parameterization frame of slave

