
Cat. No. W206-E1-04

BASIC Units

SYSMAC
CV500-BSC11/21/31/41/51/61

CV500-BSC11/21/31/41/51/61
BASIC Units

Operation Manual

Revised August 2003

iv

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1992
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

vi

TABLE OF CONTENTS

vii

PRECAUTIONS xi.
1 Intended Audience xii.
2 General Precautions xii.
3 Safety Precautions xii.
4 Operating Environment Precautions xiii.
5 Application Precautions xiii.

SECTION 1
Introduction 1.

1-1 Features 2.
1-2 System Configuration 3.
1-3 Nomenclature and Functions 6.
1-4 Precautions 12.

SECTION 2
Getting Started 15.

2-1 Installation 16.
2-2 Switch Settings 18.
2-3 Getting the Terminal Ready 19.
2-4 Connecting the Terminal 20.
2-5 Terminal Preparation 20.
2-6 Memory Switches 21.
2-7 Starting/Stopping Programs 21.

SECTION 3
Memory Areas and Operations 23.

3-1 Memory Areas 24.
3-2 Data Transfer with the CPU Unit 30.
3-3 Memory Switches 33.
3-4 Setting Memory Switches 42.

SECTION 4
Programming Overview 45.

4-1 BASIC Syntax and Operations 46.
4-2 Writing and Entering Programs 62.
4-3 Program Execution and Debugging 67.
4-4 Saving and Loading Programs 71.

SECTION 5
Data and Files 75.

5-1 Data Operations 76.
5-2 File Operations 84.

SECTION 6
Advanced Programming 91.

6-1 Interrupts 92.
6-2 Multitasking 97.
6-3 Machine Language 107.
6-4 PC Communications 120.

SECTION 7
Peripherals 125.

7-1 Peripheral Devices 126.
7-2 GP-IB Programming 130.

TABLE OF CONTENTS

viii

SECTION 8
Troubleshooting and Maintenance 141.

8-1 Troubleshooting 142.
8-2 Maintenance 147.

Appendices
A Standard Models 151.
B Specifications 153.
C Hardware Interfaces 157.
D Program Examples and Reserved Words 173.
E BASIC Instructions 187.
F Machine Language Commands 195.
G Reserved Words 205.
H Controlling RS-232C Communications Lines 207.
I Programming with Windows 95 HyperTerminal 209.
J Setting Memory Switches 213.

Glossary 215.
Index 235.

Revision History 241.

ix

About this Manual:

This manual describes the installation and operation of the BASIC Unit and includes the sections de-
scribed below. The BASIC Unit is a CPU Bus Unit that connects to the CPU bus of a SYSMAC CV-series
Programmable Controllers. This Unit can be mounted to the CV500, CV1000, CV2000, or CVM1.

Note that this manual is not meant to be a substitute for a manual on BASIC programming. We suggest
that you read a manual on BASIC programming before attempting to operate the BASIC Unit.

Please read this manual completely and be sure you understand the information provide before attempt-
ing to install and operate the BASIC Unit.

Section 1 provides an introduction to the BASIC Units and describes the general features of the Units.
The system, hardware, and memory configurations are also provided.

Section 2 provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also
explains the methods that can be used to start and stop program execution in the BASIC Unit.

Section 3 provides information relating to the memory areas of the BASIC Unit. The memory switch set-
tings and specifications are also provided for the proper operation of the Unit.

Section 4 provides an overview of BASIC programming and is not meant to provide a comprehensive
explanation of BASIC programming.

Section 5 provides information on data management and operations for the BASIC Units.

Section 6 advances further into BASIC programming and provides information on interrupts, multitask-
ing, and machine language for the purposes of advanced programming.

Section 7 information relating to the use and programming for the peripheral devices. The GB-IB Inter-
face programming is also provided for use with the peripherals.

Section 8 provides the error messages and indications required for troubleshooting as well as general
maintenance procedures for the BASIC Unit.

Appendix A provides the standard models of the BASIC Unit and its supporting options/peripherals.

Appendix B provides the specifications of the Unit.

Appendix C provides information on hardware interface connection and assembly.

Appendix D provides various programming examples for the BASIC Unit.

Appendix E provides a list of BASIC instructions.

Appendix F provides a description of machine language commands.

Appendix G provides a list of reserved words.

Appendix H provides information on controlling RS-232C communication lines.

Appendix I provides information on programming with Windows 95 HyperTerminal.

Appendix J provides information on setting memory switches.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

xi

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and the BASIC Units.

The information contained in this section is important for the safe and reliable application of the PC and the BASIC
Units. You must read this section and understand the information contained before attempting to set up or operate a
PC system.

1 Intended Audience xii.
2 General Precautions xii.
3 Safety Precautions xii.
4 Operating Environment Precautions xiii.
5 Application Precautions xiii.

!

!

!

!

!

3Safety Precautions

xii

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the BASIC
Units. Be sure to read this manual before attempting to use the software and
keep this manual close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above mentioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PC or another external factor
affecting the PC operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The PC will turn OFF all outputs when its self-diagnosis function detects any
error or when a severe failure alarm (FALS) instruction is executed. As a coun-
termeasure for such errors, external safety measures must be provided to en-
sure safety in the system.

!

!

!

!

5Application Precautions

xiii

• The PC outputs may remain ON or OFF due to deposition or burning of the
output relays or destruction of the output transistors. As a countermeasure for
such problems, external safety measures must be provided to ensure safety in
the system.

• When the 24-V DC output (service power supply to the PC) is overloaded or
short–circuited, the voltage may drop and result in the outputs being turned
OFF. As a countermeasure for such problems, external safety measures must
be provided to ensure safety in the system.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.
• Locations subject to temperatures or humidity outside the range specified in

the specifications.
• Locations subject to condensation as the result of severe changes in tempera-

ture.
• Locations subject to corrosive or flammable gases.
• Locations subject to dust (especially iron dust) or salts.
• Locations subject to exposure to water, oil, or chemicals.
• Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

• Locations subject to static electricity or other forms of noise.
• Locations subject to strong electromagnetic fields.
• Locations subject to possible exposure to radioactivity.
• Locations close to power supplies.

Caution The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC system.

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always ground the system to 100 Ω or less when installing the Units. Not con-
necting to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

• Mounting or dismounting Power Supply Units, I/O Units, CPU Units,
Memory Units, or any other Units.

• Assembling the Units.
• Setting DIP switches or rotary switches.
• Connecting cables or wiring the system.
• Connecting or disconnecting the connectors.

!

5Application Precautions

xiv

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

• Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

• Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

• Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

• Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

• Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

• Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

• Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

• Wire correctly. Incorrect wiring may result in burning.
• Mount Units only after checking terminal blocks and connectors completely.
• Be sure that the terminal blocks, Memory Units, expansion cables, and other

items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.
• Force-setting/force-resetting any bit in memory.
• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

• Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

5Application Precautions

xv

• When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

1

SECTION 1
Introduction

This section provides an introduction to the BASIC Units and describes the general features of the Units. The system, hard-
ware, and memory configurations are also provided.

1-1 Features 2.
1-2 System Configuration 3.
1-3 Nomenclature and Functions 6.

1-3-1 Switch Settings 8.
1-3-2 Hardware Configuration 10.
1-3-3 Memory Configuration 11.

1-4 Precautions 12.

2

1-1 Features
Interfaces Choose from three different sets of interfaces to connect to the peripheral de-

vices required by your system.

RS-232C (two) and RS-422 Interfaces

CV500-BSC11 (without EEPROM) or CV500-BSC21 (with EEPROM)

RS-232C (two) and Centronics Interfaces

CV500-BSC31 (without EEPROM) or CV500-BSC41 (with EEPROM)

RS-232C (one) and GP-IB Interfaces

CV500-BSC51 (without EEPROM) or CV500-BSC61 (with EEPROM)

BASIC Programming The BASIC Units employ a high-speed intermediate executable, interpret-
er-type BASIC, eliminating the need of compiling operations, so that program-
ming can be carried out easily and quickly. The Program area is divided into
three sections, each which can be programmed independently. The program
can be developed or edited from a commercially available terminal or computer
and then saved to memory cards in the CPU Unit.

Debugging Program execution can be traced by TRON instruction. Program execution can
be paused or resumed by STOP or CONT instructions. Program execution can be
stopped at or resumed from a specified line by BREAK or CONT instructions.

Storage of Variables Data used in the program (variables) can be stored in memory and protected by
battery backup.

Machine Language Program can be developed and executed in V25 machine language.

Multitasking Up to 16 tasks can be processed in parallel by executing separate tasks to per-
form various arithmetic operations, data input/output from/to peripheral devices,
and data transfer with the CPU Unit.

Program Control Program can be started through key input from a terminal or by the snap switch
on the front panel. Also, a program can be automatically started on power appli-
cation or reset.

Data Transfer Data can be easily transferred back and forth between the BASIC Unit and the
PC’s CPU Unit. High-speed data transfer is possible from the BASIC program
without any programming in the CPU Unit. You can access data not only in the
local CPU Unit, but also in other BASIC Units or in Units located on local or re-
mote networks.

Data transfer can be controlled using one or more of the following methods.

Cyclic: A total of 384 input/output words of data can be transferred
when the I/O of the PC is refreshed.

CPU Bus Link: Data can be transferred with the CPU Unit or other CPU Bus
Units.

Event: The data in the CPU Unit can be read or data can be written to
the CPU Unit by using the instructions of the BASIC Unit even
when the program of the CPU Unit is not being executed.

Clock The BASIC Unit uses the same clock the CPU Unit by transferring the time in the
CPU Bus Link Area. The time can be set from the BASIC Unit.

EEPROM With BASIC Units equipped with EEPROM, the program can be saved to the EE-
PROM so that the Unit can be operated without a battery (however, variables still
require battery backup to be maintained during power interruptions).

16 BASIC Units per PC Up to 16 BASIC Units can be mounted to the CPU Rack or Expansion CPU
Rack. The limit of 16 Units, however, includes all CPU Bus Units mounted to the
PC, so fewer BASIC Units will be available if any other CPU Bus Units are used.

Features Section 1-1

!

3

The other CPU Bus Units are the SYSMAC LINK Unit, SYSMAC NET Link Unit,
and SYSMAC BUS/2 Remote I/O Master Unit.

Network Communications PC READ and PC WRITE can be used to transfer data to/from other PCs on the
same or interconnected networks; PRINT and INPUT, to transfer data to/from
BASIC Units on other PCs on the same or interconnected networks. The BASIC
Unit also supports automatic processing for certain FINS commands trans-
mitted via PC networks.

Caution The BASIC Unit is equipped with a hardware test program that is used for in-
spection and maintenance. When this program is executed, the entire program
area will be initialized. This program is not intended for customer use. Do not set
the unit number to 99, turn ON pin 2 of the front-panel DIP switch, and restart the
BASIC Unit or turn power on.

1-2 System Configuration
Models Models with three different sets of interfaces are available, each of which is

available with or without EEPROM, making a total of six models of BASIC Units.
The appearance of these is shown below.

CV500-BSC11
(without EEPROM)

CV500-BSC21
(with EEPROM)

CV500-BSC31
(without EEPROM)

CV500-BSC41
(with EEPROM)

CV500-BSC51
(without EEPROM)

CV500-BSC61
(with EEPROM)

RS-232C (two) and
RS-422 Interfaces

RS-232C (two) and
Centronics Interfaces

RS-232C (one) and
GP-IB Interfaces

Peripheral Devices The following peripheral devices can be connected to the BASIC Unit. Note that
the peripheral device model that can be connected to the BASIC Unit depends
on the BASIC Unit Model.

System Configuration Section 1-2

4

Interface BSC11/BSC21 BSC31/BSC41 BSC51/BSC61

Port 1
(RS-232C)

Computer (with terminal mode),
display terminal, printer, display

Computer (with terminal mode),
display terminal, printer, display

Computer (with terminal mode),
display terminal, printer, display

Port 2
(RS-232C)

NA

Port 3
(RS-422)

Host Link Unit (C500-LK203,
C500-LK201-V1, C200H-LK202, and
C120-LK202-V1)
E5AX-A� Temperature Controller

NA

Centronics NA Printer, display

GP-IB NA Intelligent Signal Processor

Following is an example of a simple system configuration where only one BASIC
Unit is mounted to the CPU Rack.

CPU Unit

Power supply

BASIC Unit
RS-232C

The personal computer is directly connected to the BASIC
Unit with RS-232C.

CPU Rack

Computer with
terminal mode.

The system can be expanded by using Link Units to create a network, thus allow-
ing the BASIC Unit to communicate not only with local BASIC Units and the local
PC, but also with remote BASIC Units and PCs. The following is an example of
such an expanded system. In this system, the computer can be connected to

Simple System
Configuration

Expanded System
Configuration

System Configuration Section 1-2

5

either CPU Unit to access any of the BASIC Units via the optical link between the
Link Units and/or the CPU Bus connection to the Expansion CPU Rack.

Power
supply

BASIC Unit Link Unit CPU
Unit

Power
supplyLink Unit

BASIC
Unit CPU

Unit

Optical fiber
cable

CPU
Rack

BASIC Unit

Power
supply

Expansion CPU
Rack

RS-422

I/O Control
Unit

I/O Interface Unit

CPU Rack

Connect to either CPU Unit.

Computer with
terminal mode.

System Configuration Section 1-2

6

1-3 Nomenclature and Functions
Front

Indicators

Unit No. switch

RUN/STOP
switch

RS-232C
connector (Port 1)

Battery com-
partment where
C500-BAT08 is
stored. To re-
move the cover,
slide it down.

DIP switch
(inside the cover) Centronics

connector
GP-IB
connector

CV500-BSC11
CV500-BSC21

CV500-BSC31
CV500-BSC41

CV500-BSC51
CV500-BSC61

RS-232C
connector (Port 2)

RS-422
connector (Port 3)

Ports RS-232C
Connects a terminal for programming or a display, printer, and bar code reader.
The line length is 15 m max.
RS-422
Connects a terminal or peripheral device at a greater distance than for the
RS-232C. The total line length is 500 m max.
Centronics
Connects a printer or display.
GP-IB
Connects a GP-IB device, such as an Intelligent Signal Processor.

Nomenclature and Functions Section 1-3

7

Indicators
Indicator Meaning

Name Color State
UNIT RUN Green ON Lit after the Unit has been initialized.

OFF Lit when the Unit has been reset by the PC during a power interruption, or when an
error has occurred in the Unit (when the watchdog timer operates).

BASIC RUN Green ON Lit while the program is executed.

Flashing Flashes slowly while the program is stopped and can be edited; flashes quickly while
the program is executed or while the Unit is waiting for input from a port.

OFF Goes off when the program is stopped.

ERROR Red ON Lit if a significant error (such as user memory check error, area overflow, or
executable intermediate code generation error) has occurred while the program is
developed or executed.

OFF Not lit when no error has occurred.

BAT LOW Red ON Lit if the supply voltage of the battery has dropped below a specific level.

OFF Not lit when the battery voltage is at the normal level.

MEM PROT Orange ON Lit when the user program area is write-protected.g

OFF Not lit when the user program area is not write-protected.

T/R 1
T/R 2
T/R 3

Orange Flashing Flashes while the corresponding port
(port 1 to 3) transfers or receives data.

T/R 3 indicator of the BSC31 and BSC41
does not flash.

T/R 3 OFF Not lit when the corresponding port is not
exchanging or receiving data.

T/R 2 and T/R 3 of the BSC51 and
BSC61 do not flash.

0 to 7 Orange --- These indicators are turned ON/OFF by the user with system calls.

UNIT No. Setting Switch Sets the unit number of the BASIC Unit. Refer to 1-3-1 Switch Settings for de-
tails.

RUN/STOP Switch Executes or stops the user program. This switch is used in combination with a
memory switch set for the BASIC Unit. Refer to 1-3-1 Switch Settings for details.

DIP Switch This switch specifies whether the user program memory is write-protected,
whether the memory switches are enabled, and whether the termination resis-
tance for RS-422 communications is connected. Refer to 1-3-1 Switch Settings
for details.

Nomenclature and Functions Section 1-3

8

Rear View

Mounting screw
Fixes the BASIC Unit
to the Backplane.

BASIC Unit connector
Connects the BASIC
Unit to the Backplane.

Mounting screw
Fixes the BASIC Unit
to the Backplane.

1-3-1 Switch Settings

The BASIC Unit is provided with three switches: unit number, run/stop, and DIP
switches.

Unit Number Switch This switch specifies the unit number of the BASIC Unit. Set this switch to any-
where between 00 and 15 using a small flat-blade screwdriver. Do not specify a
unit number that has already been set for another CPU Bus Unit, i.e., other BA-
SIC Units, SYSMAC LINK Units, SYSMAC NET Link Units, and SYSMAC
BUS/2 Remote I/O Master Units.

Nomenclature and Functions Section 1-3

!

9

Run/Stop Switch Starts or stops the program of the BASIC Unit. This switch is used in combination
with a memory switch shown below. The memory switches are contained in the
PC and are used to set operating parameters for the BASIC Unit. Refer to 2-2
Memory Switches for details.

State Function
RUN/STOP switch Memory switch
RUN Manual start In this state, the BASIC Unit waits for input of a command after power

application or a restart. To start the program, enter RUN from the terminal.

Automatic start In this state, the program execution is automatically started when power is
turned on or the Unit is restarted.

STOP Manual start In this state, the program is not executed even when RUN has been input
from the terminal. To execute the program, set the switch to the RUN position,
and then input RUN from the terminal.

Automatic start The program is not executed in this state. To execute the program, set the
switch to the RUN position.

DIP Switch The DIP switch is used as follows:

Pin Function State Operation
1 Memory protect OFF Enables the user program area to be written. Set this state when developing,

editing, and loading the program.

ON Disables writing to the user program area.

2 Memory switch
bl

OFF Enables the current memory switch settings.y
enable ON Uses the default memory switch settings regardless of the current memory switch

settings. The state of the memory switches, however, can still be changed.* Used
when a terminal cannot be connected because of incorrect memory switch
settings.

3 --- --- Not used

4 Termination
i

OFF Disconnects the termination resistance of RS-422.
resistance ON Connects the termination resistance of RS-422. Turn this pin ON when the BASIC

Unit is connected as the last devices in a RS-422 communications line.

Caution *Pin 2 of the DIP switch is also used to start the hardware test program, which is
used for inspection before shipment. When setting this pin to the ON position,
make sure that a correct Unit No. (00 to 15) has been set on the unit umber
switches. If the hardware test program is executed, the user program may be
erased.

Nomenclature and Functions Section 1-3

10

1-3-2 Hardware Configuration

Block Diagram

EEPROM

SYSMAC

CV-series

PC

System
program
PROM

PC
interface

Unit no.
switch

LED

RUN/STOP
switch

DIP
switch

MPU
(V25)

User program
(source code

area)

Variable area/
non-volatile

variable area

User program
(execution
code area)

Built-in OS

RS-232C
interface

RS-422
interface

Centronics
interface

GP-IB
interface

Interface

BASIC Unit

RS-232C

(Port 1)

RS-232C

(Port 2)

RS-422

(Port 3)

Centronics

(Printer)

GP-IB

Battery

RS-232C
interface

Note Sections in dotted boxes depend on the model of the BASIC Unit as shown in the
following table.

Model EEPROM Port 1 Port 2 Port 3 Centronics GP-IB

CV500-BSC11 --- Yes Yes Yes --- ---

CV500-BSC21 Yes Yes Yes Yes --- ---

CV500-BSC31 --- Yes Yes --- Yes ---

CV500-BSC41 Yes Yes Yes --- Yes ---

CV500-BSC51 --- Yes --- --- --- Yes

CV500-BSC61 Yes Yes --- --- --- Yes

Nomenclature and Functions Section 1-3

11

1-3-3 Memory Configuration
The user memory area of the BASIC Unit consists of the following areas:

This area stores the source code of the user program. The machine language
program is also stored in this area.
The user program source code area can be divided into three areas in each of
which can be stored an independent program. It is not possible to move between
these areas during program execution; if moving between programs is neces-
sary, you must write them all in one program area as a single program.
Each program area is given a program number to control which area is active. A
memory switch controls which program number is active when power is turned
on. The active area can be displayed or changed using the PGEN command.
ROMSAVE, ROMLOAD, ROMVERIFY, W, and R commands are preformed for all pro-
gram areas. LOAD, SAVE, and MERGE are performed only for the current program
area.

These areas store the variables used in the user program. The variable area and
the executable code area are approximately 110K bytes in total. The non-volatile
variable area must be within 32K bytes.
Non-volatile variable are preserved when the BASIC Unit is turned on or pro-
gram execution is restarted. They can be cleared using OPTION ERASE or by
starting execution with RUN, ERASE.

When the user program is executed, executable codes are created in this area
from the source code and executed.
The memory map of the BASIC Unit is shown below.

RAM (w/battery)

(Vacant)

RAM (w/battery)

RAM (w/battery)

(Vacant)

RAM

EEPROM

(Vacant)

I/O H

(Vacant)

ROM

Program 1

Program 2

Program 3

$00000

$10000

$18000

$20000

$30000

$40000

$50000

$60000

$70000

$80000

$78000

$84000

$90000

$A0000

$FFFFF

$00500

$0FFFF

$18000

$20000

$3FFFF

System
work area

User program
source code save
area

I/O area
I/O interface area
MPU internal RAM register

System program area

User program
source code area
(S code)

Non-volatile vari-
able area (32K
bytes max.)

User program execution
code area (E code)

Volatile
variable
area

System work area
(Approx. 50K bytes)

Approx.
110K
bytes
total

User Program Source Code
Area

Non-volatile Variable and
Variable Areas

User Program Executable
Code Area

Nomenclature and Functions Section 1-3

12

1-4 Precautions
Terminals A terminal or personal computer can be connected to the BASIC Unit and run

either in terminal mode (TERM) or via communications software. Terminals
must be VT-52, VT-100, or equivalents.

Programming
• Both insert and overwrite programming are available. The writing mode can be

set in the memory switches; the default is overwrite.

• Memory cards mounted in the PC’s CPU Unit can be treated as files to save
BASIC programs and data.

• Programs can be created and edited on any MS-DOS platform and then read
into the BASIC Unit. Program files must have a .BAS extension.

• The MERGE command can be used to join multiple programs into one, but line
numbers must be unique.

Program Areas
• Up to three independent programs can be stored in the program areas (S-code

areas), but only one of these programs can be executed at a time. You cannot
jump between the program areas.

• The current program number is designated in the memory switches and effec-
tive when program execution is begun. The PGEN command can be used to
change the current program number, and the PINF command can be used to
display it at the left of the monitor screen.

• All three programs areas are saved to, read from, or compared to EEPROM
when ROMSAVE, ROMLOAD, or ROMVERIFY is executed. Reads/writes can also
be performed to all three program areas regardless of the current program
designation.

• Only the current program area is loaded, saved, or merged when LOAD, SAVE,
or MERGE are executed for memory cards.

Memory Switches
• Memory switch settings are saved in the PC’s CPU Unit in an area separate

from the normal PC memory map. The BASIC Unit reads these settings from
the PC when started and stores them in a work area for operation. All memory
switches are set to all-zeros when the Unit is shipped and must be changed
unless the default settings are desired.

• Memory switch settings can be changed in the BASIC Unit’s work area in ma-
chine language (MON). Memory switch settings can be changed in the PC via
the ESW-W command, or they can be changed via a Programming Device (e.g.,
CV-series GPC or CVSS) connected to the PC.

• Memory cards can be used to copy memory switch settings from one PC to
another.

• The DIP switch on the front of the PC’s CPU Unit can be used to return memory
switches to their default settings. This can be used if the memory switch set-
tings are unknown to enable connecting a terminal using the default commu-
nications parameters.

PC Interface
• PC memory can be accessed from the BASIC Unit even if the PC itself is not

programmed.

• Event, cyclic, and CPU bus link processing are available to interface with the
PC. Of these, event processing is the most commonly used.

• Event processing allows specific memory areas in the PC to be read or written
when necessary.

Precautions Section 1-4

13

• Cyclic processing allows specific portions of PC memory to be automatically
transferred between the PC and the BASIC Unit. A memory switch is also
available to disable cyclic processing to minimize time spent servicing CPU
Bus Units.

• CPU bus link processing provides data links between the PC and CPU Bus
Units in the CPU Bus Link Area. These links can be used to synchronize pro-
cessing between CPU Bus Units and the PC. Data link processing does, how-
ever, place a load on the PC and is not the only way to synchronize processing.
Unless data links are specifically desired, they should be disabled in the PC
Setup of the PC.

• The PC READ and PC WRITE commands can be used to transfer consecutive
words to and from the PC. Processing time can be used more effectively by
transferring more words with each command rather than splitting the same
number of words over multiple commands.

• Only one CPU Bus Unit is serviced each cycle by the PC even if more than one
Unit has sent a write request. This can produce delays in executing PC
WRITE.

• Data can be transferred to and from PCs and BASIC Units on local or remote
networks. Transfers to PCs are performed with PC READ and PC WRITE.
Transfers to other BASIC Units are performed with OPEN followed by PRINT
and INPUT.

Programming
• Programs are manipulated in S-code (source code) when editing at the termi-

nal or when saving to or loading from EEPROM or memory cards. S-code must
be compiled into E-code (execution code) via RUN to be executed. Code is
compiled automatically when RUN is executed and can produce a delay for
large programs. If the program is not changed, however, code is complied only
once, i.e., the first time RUN is executed, increasing execution speed for subse-
quent RUNs.

• Actual execution starts when RUN is input, when the RUN/STOP switch is set to
RUN, or automatically when the BASIC Unit is turned on and the memory
switches are set for automatic program execution. Refer to page 21 for details.

• Memory switches can be set to automatically load, compile, and run a program
from a memory card or EEPROM when the BASIC Unit is turned on. Be sure to
allow for compiling time when using this method, which also eliminates the
need for a backup battery.

Execution
• Character variable length is fixed to 18 characters by default. Garbage collec-

tion is not performed. Any changes to variable length must be declared before
PARACT 0 using OPTION LENGTH. Errors are not generated when substitut-
ing to character variables even if the fixed length is exceeded.

• Non-volatile variables are supported and are backed up by a battery. Data is
such variables is maintained during power interruptions and between program
executions. Non-volatile variables are cleared when OPTION ERASE is
executed or when the program is started with RUN, ERASE.

• TRON and TROFF by default display only the status of the current task. Use
TRON ALL to display the status of all tasks.

• The communications error flags in word n+2 of the cyclic area will be turned ON
if a parity, overrun, or framing error occurs during serial data reception. De-
pending on the type of error, all data up to the character when the error oc-
curred will be lost.

Precautions Section 1-4

14

• Interrupts from input commands that are awaiting completion will not return to
the input command, but to the line following the input command, i.e., the input
command will not be completed. Input command variable substitution will not
be performed and data may be left in the input buffer. To see if an input com-
mand has not been completed, check INTRL (a variable containing the line
number of the interrupted command) on the line following the input instruction
to see if it contains the line number of the input instruction.

• The send and receive buffers at the RS-232/422 port are 512 bytes respective-
ly.

Multitasking
• Tasks are switched after each command, even for compound lines. Tasks are

switched in order of task number to the next task that is ready. Tasks that are
busy (e.g., awaiting I/O) are skipped.

• PARACT N and END PARACT are required to separate tasks. Use PARACT 0
and END PARACT for a single-task program.

Other
• The BASIC Unit does not support a clock, but the clock (RTC) in the PC can be

accessed or set from the BASIC Unit.

• The BASIC Unit contains a hardware test program that is used for inspection
and maintenance. Executing this program will clear the entire memory area.
The hardware test program is executed by setting the unit number to 99, turn-
ing ON pin 2 of the front-panel DIP switch, and turning on the power or reset-
ting. This program is not designed for user execution; never executed this pro-
gram without consulting with qualified service personnel.

Precautions Section 1-4

15

SECTION 2
Getting Started

This section provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also explains the meth-
ods that can be used to start and stop program execution in the BASIC Unit.

2-1 Installation 16.
2-1-1 Mounting BASIC Units 16.
2-1-2 Mounting Dimensions 17.

2-2 Switch Settings 18.
2-3 Getting the Terminal Ready 19.
2-4 Connecting the Terminal 20.
2-5 Terminal Preparation 20.
2-6 Memory Switches 21.
2-7 Starting/Stopping Programs 21.

16

2-1 Installation
This section describes the minimal preparations necessary to set up a BASIC
Unit for programming. Refer to Appendix C Hardware Interfaces for information
on connecting other types of computers or peripheral devices. Refer to the CV-
series PC Installation Guide for details on general PC installation.

2-1-1 Mounting BASIC Units
A BASIC Unit can be mounted to a CV-series CPU Rack or Expansion CPU
Rack. It cannot be mounted to an Expansion I/O Rack.

Up to 16 BASIC Units can be mounted to the CPU Rack and CPU Expansion
Rack as long as no other CPU Bus Units are mounted.

The Unit must be mounted to any of the rightmost 6 slots if the CVM1-BC103
CPU Backplane is used; the rightmost 3 slots if the CVM1-BC053 is used.

Be sure to securely tighten the mounting screws of the BASIC Unit.

CPU Rack

Expansion CPU Rack

I/O Control Unit

I/O Interface Unit

BASIC Unit
CPU Unit

Power supply

Mounting screw

BASIC Unit

Power supply

Installation Section 2-1

17

2-1-2 Mounting Dimensions
When installing the BASIC Unit in a control box, determine the depth of the con-
trol box giving consideration to the connectors to be connected and the height of
the cables.

ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ

ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ

ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ

A

B

A

B

A

B

C

CV500-BSC11/BSC21 CV500-BSC31/BSC41 CV500-BSC51/BSC61

Height (mm) BSC11/BSC21 BSC31/BSC41 BSC51/BSC61

A: Height from surface of connector to base 103

B: Connector cover + cable 160 to 180

C: GP-IB connector cover --- 125

Installation Section 2-1

18

2-2 Switch Settings
Set the following switches on the BASIC Unit as described below. Details on
switch setting are provided in Section 1 Introduction.

1, 2, 3... 1. Set a Unit number in the range of 0 to 15. Do not set
the same Unit Number as those of the other CPU
Bus Units.

2. Set the RUN/STOP switch to the STOP position.

3. Open the battery compartment and set all the
switch pins of the DIP switch to the OFF position to
get the following settings:

Pin no. DIP switch setting

1 Memory write-protected (OFF)

2 Memory switches disabled (OFF)

3 Not used (OFF)

4 Termination resistance (OFF)

Switch Settings Section 2-2

19

2-3 Getting the Terminal Ready
To use the BASIC Unit, the CPU Rack and a terminal for developing programs
are necessary. The terminal can be any of those illustrated below. A cable that
connects the BASIC Unit and the terminal is also necessary. Use CV500-CN228
as the cable connecting the computer (with terminal mode) and BASIC Unit.

BASIC Unit

Connection Cable

Laptop computer Terminal

Computer with
terminal mode.

Getting the Terminal Ready Section 2-3

20

2-4 Connecting the Terminal
Connect the terminal connecting cable to port 1 on the BASIC Unit, and securely
tighten the screws of the cable.

The selection of communication ports 1 through 3 used to connect the terminal is
specified by the memory switches in the CPU Unit. The default setting is port 1.
The terminal is therefore usually connected to port 1. To change the port, refer to
3-3 Memory Switches.

Mounting screws

RS-232C

Computer with
terminal mode.

2-5 Terminal Preparation
First, turn on the power to the terminal. If the power to the PC is turned ON first,
the terminal may malfunction.

The defaults of ports 1 through 3 of the BASIC Unit are as follows. Set the com-
munications parameters of the terminal to match these.

Baud rate 9,600 bps

Data length 8 bits

Parity None

Stop bit 1 bit (or 2 bits)

Others Full duplex, no echo, XON/XOFF control, no automatic
carriage return

Terminal Preparation Section 2-5

21

2-6 Memory Switches
After setting the terminal, turn ON the power to the PC and start the BASIC Unit.
If necessary, change the settings of the memory switches. The memory
switches are described in 3-2 Memory Switches.

Default Settings
If the default values are suited to the application, the memory switch settings do
not need to be changed. The default values are as follows:

System Parameters
Manual start Starts when RUN is entered from the terminal

Automatic program transfer Program is not automatically read from EEPROM or memory card

Program selection 1 Executes program 1

English error messages Displays error messages in English

Printer selection Does not print Kanji characters

Communications control using RTS/DTR signals is not possible for the ports set
as the terminal and printer ports. To perform communications control using RTS/
DTR signals, change the ports set as the terminal and printer ports to ports other
than the ones for which RTS/DTR control is to be used. This is done using
memory switch 3.

Terminal and Printer Ports The terminal and printer can be connected to the following ports:

BASIC Unit Terminal Printer

BSC11/BSC21 Port 1 Port 2

BSC31/BSC41 Port 1 PRT (Centronics)

BSC51/BSC61 Port 1 ---

Baud rate 9,600 bps

Number of lines on
terminal screen

24 lines

Terminal type Display Terminal or commercially available terminals
with terminal mode

Editing mode Overwrite mode

Changing Memory Switch Settings
The memory switches can be changed if necessary. After changing the memory
switches, power to the PC must be turned OFF once and then back ON again to
enable the new settings.

The memory switches can be set from a terminal connected to the BASIC Unit or
from a Peripheral Device connected to the CPU Unit. Refer to 3-3 Setting
Memory Switches for details.

2-7 Starting/Stopping Programs
Once a program has been written to the BASIC Unit, it can be started/stopped in
any of the following three ways:

• From Terminal

This method is mainly used while the program is being debugged, and the pro-
gram is started or stopped by the key input from the terminal connected to the
BASIC Unit.

• RUN/STOP Switch

This switch is used to debug the program in a system configuration where the
terminal is not connected.

Terminal Specifications

Starting/Stopping Programs Section 2-7

22

• Automatic Starting

This is to automatically start the program on power application or restarting, and
is used to start the program after debugging has been completed.

Method Preparation Start Stop

From terminal Connect terminal.
Set RUN/STOP switch to RUN.
Set manual start mode in memory switches.

Input RUN and
carriage return
from terminal.

Input CTRL+X or CTRL+C from
terminal.

RUN/STOP
switch

Set RUN/STOP switch to STOP.
Set automatic start mode in memory
switches, and supply power or restart.

Set RUN/STOP
switch to RUN.

Set RUN/STOP switch to STOP.
Input CTRL+X or CTRL+C if
terminal is connected.

Automatic
starting

Set RUN/STOP switch to RUN.
Set automatic start mode in memory
switches and supply power or restart.

Use terminal
mode.

Set RUN/STOP switch to STOP.
Input CTRL+X or CTRL+C if
terminal is connected.

Note Execution can be stopped from the keyboard by inputting CTRL-X or CTRL-C.
When CTRL-X is input, all execution, including I/O processing, will be aborted
immediately and “Quit in ...” will be displayed. STEP and CONT cannot be used
after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and
CONT cannot be used.

Starting/Stopping Programs Section 2-7

23

SECTION 3
Memory Areas and Operations

This section provides information relating to the memory areas of the BASIC Unit. The memory switch settings and specifica-
tions are also provided for the proper operation of the Unit.

3-1 Memory Areas 24.
3-1-1 Cyclic Transfer Areas 24.
3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE 25.
3-1-3 CPU Bus Link Area 28.
3-1-4 Restart Bits 30.

3-2 Data Transfer with the CPU Unit 30.
3-3 Memory Switches 33.

3-3-1 System Parameters 35.
3-3-2 Automatic Transfer File Name 36.
3-3-3 Terminal and Printer Ports 37.
3-3-4 Baud Rates 38.
3-3-5 Terminal Specifications 39.
3-3-6 Cyclic Area Settings 39.
3-3-7 GP-IB Setting 42.

3-4 Setting Memory Switches 42.

24

3-1 Memory Areas

3-1-1 Cyclic Transfer Areas

Cyclic transfers allow data transfers between the PC’s CPU Unit and BASIC Unit
to be synchronized with the cyclic servicing of the CPU Unit. The memory words
in the CPU Unit that can be allocated for cyclic transfer include those in I/O
Memory, the DM Area, and the EM Area.

Up to six output areas (CPU Unit to BASIC Unit) and up to six input areas (BASIC
Unit to CPU Unit) can be designated. The combined total number of I/O words
must be 384 or less in all 12 areas.

Cyclic transfers are set either by default or by using the software switches in the
memory of the CPU Unit. For details, refer to 3-3-6 Cyclic Area Settings. Any
words in the I/O Memory (words without prefixes), the DM Area, and EM Area
can be set for cyclic transfer. (The EM Area is an option and is available only for
the CV1000 and CV2000.)

Data transferred by cyclic transfers to and from the CPU Unit are read and writ-
ten in the BASIC program using the PC READ and PC WRITE commands.

The first word of the first output area contains status output from the CPU Unit to
the BASIC Unit. This word is designated as word “n.” The first 3 words of the first
input area contain status input from the BASIC Unit to the CPU Unit. The first of
these three words is designated as word “m.” The remainder of the first I/O areas
and the remaining areas are for user applications.

Example

Output area 1

Output area 2

Output area 3

Output area 4

Output area 5

Output area 6

Input area 1

Input area 2

Input area 3

Input area 4

Input area 5

Input area 6

BASIC Unit

Output
status:
Wd n

Input
status:
Wd m to
Wd m+2

CPU Unit

I/O Memory

DM Area

EM Area

• When the memory switch is not used to set a specific cyclic area, the following
type of allocations are used to receive cyclic data.
N = 1500 + unit number x 25

Memory Areas Section 3-1

25

Direction Word Bit Name Remarks

CPU Unit to BASIC
Unit

N System Setup Data written from the
CPU Unit to these
words can be read to

N+1 to N+14 User area
words can be read to
the BASIC Unit using
PC READ ”@SQ....”

BASIC Unit to CPU
U i

N+15 00 to 15 Task status display
Unit N+16 00 Memory overflow

01 Compilation error
(error code 000 to
255)

02 Compilation error
(error code 256 or
higher)

03 E code error

15 Battery error

N+17 00 to 07 Error code

08 Execution error

09 Port 1 error

10 Port 2 error

11 Port 3 error

15 BASIC RUN

N+18 to N+24 User area Data written using PC
WRITE ”SI...” from
the BASIC Unit is
output here.

The memory switch can be used to change the cyclic area allocations.

3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE

The method for reading from or writing to the cyclic area in the CPU Unit using
the PC READ and PC WRITE instructions in the BASIC program of the BASIC
Unit is described here.
Input the following codes as the subcommands to specify the cyclic area using
the PC READ and PC WRITE instructions in the BASIC program. (Refer to the
SYSMAC BASIC Units Reference Manual (W207–E1–2) for information on the
format of the PC READ and PC WRITE instructions.)

Instruction Subcommand Area First transfer word Number of transfer
words

PC READ @SQ Cyclic output area
(Direction: CPU Unit
to BASIC Unit)

0 to (maximum
number of words –1)

1 to maximum
number of words

PC WRITE @SI Cyclic input area
(Direction: BASIC Unit
to CPU Unit)

3 to (maximum
number of words –1)

1 to maximum
number of words

Example
This example is for a cyclic area as follows:
Output area (CPU Unit to BASIC Unit): DM 12000 to DM 12009
Input area (CPU Unit to BASIC Unit): DM 12010 to DM 12019

Memory Areas Section 3-1

26

• The memory switch setting to make the above areas cyclic areas is as follows:

ESW6-1 = 0082–2000–0001–0010
ESW6-7 = 0082–2010–0001–0010

No. of words
Upper address

Lower address

Area type (0082: DM Area)

Note All the values are set in decimal.

• The first transfer word for the cyclic area is specified as follows:

First transfer word
using the PC READ

instruction

Address in CPU Unit First transfer word
using the PC WRITE

instruction

Address in CPU Unit

0 DM12000 0 DM12010
1 DM12001 1 DM12011

2 DM12002 2 DM12012

3 DM12003 3 DM12013

4 DM12004 4 DM12014

5 DM12005 5 DM12015

6 DM12006 6 DM12016

7 DM12007 7 DM12017

8 DM12008 8 DM12018

9 DM12009 9 DM12019

The shaded areas indicate addresses that are used to display status informa-
tion, thus not allowing them to be used for user data.

Example
This example shows reading the contents of 10 words from DM 12001 to DM
12009 in the CPU Unit to the BASIC Unit and storing in the variables H, I, J, K, L,
M, N, O and P.

PC READ ”@SQ,1,9,9H4“;H,I,J,K,L,M,N,O,P

9 words
First word (DM 12001) onwards

Example
This example shows writing values from the variables A, B, C, D, E, F, and G in
the BASIC Unit to 7 words from DM 12013 to DM 12019 in the CPU Unit.

PC WRITE ”@SI,3,7,7H4“;A,B,C,D,E,F,G

7 words
Third word (DM 12013) onwards

Memory Areas Section 3-1

27

Output Status Word (CPU Unit to BASIC Unit)
Word n is the first word of the first output area allocated to the BASIC Unit.

m = 1500 + unit number x 25

Word Bit Name Function

n 00 to 14 --- The contents of the first memory switch word set in the CPU
Unit.

15 System reserved bit Cannot be used by user

The words from word m+1 onwards are for the user.

Input Status Words (BASIC Unit to CPU Unit)
Word m is the first word of the first input area allocated to the BASIC Unit.

n = 1515 + unit number x 25

Word Bit Name Function
m 00 Task 0 Status Flag Each flag of this area is turned ON when the corresponding

k i d Wh h k i h fl OFF01 Task 1 Status Flag

g p g
task is executed. When the task is over, the flag turns OFF.
To check whether the BASIC Unit is operating check these

02 Task 2 Status Flag
To check whether the BASIC Unit is operating, check these
flags.

03 Task 3 Status Flag
flags.

04 Task 4 Status Flag

05 Task 5 Status Flag

06 Task 6 Status Flag

07 Task 7 Status Flag

08 Task 8 Status Flag

09 Task 9 Status Flag

10 Task 10 Status Flag

11 Task 11 Status Flag

12 Task 12 Status Flag

13 Task 13 Status Flag

14 Task 14 Status Flag

15 Task 15 Status Flag

m + 1 00 Memory Overflow Flag This flag turns ON when the user program executable code
area or variable area is exceeded. (See Note 2.)

01 Compile Error Flag This flag turns ON when an error whose error code is 255 or
lower has occurred. (See Note 2.)

02 Compile Error Flag This flag turns ON when an error whose error code is 256 or
higher has occurred. (See Note 2.)

03 E Code Error Flag This flag turns ON when execution is specified from the E
code, or if the E code is abnormal.

04 to 14 --- Vacant (These bits are undefined.)

15 Battery Error Flag This flag turns ON when the supply voltage of the battery has
dropped below a specific level. This flag turns OFF when the
program is edited and executed after the battery voltage
returns to normal.

Memory Areas Section 3-1

28

Word FunctionNameBit
m + 2 00 to 07 Error Code These bits indicate the contents of the system variable ERR

in hexadecimal between 00 and FF. The Error Code is reset
to 00 when the program is executed again.

08 Fatal Error Flag This flag turns ON when an error that causes the BASIC Unit
to stop has occurred while the program is executed. This flag
is turned OFF when the program is executed again.

09 Port 1 Error Flag These flags turn ON when an error has occurred in the
corresponding ports The possible causes that turn ON these

10 Port 2 Error Flag
corresponding ports. The possible causes that turn ON these
flags are incorrect usage of the port, parity errors, overrun
errors and framing errors These flags turn OFF when the

11 Port 3 Error Flag
errors, and framing errors. These flags turn OFF when the
program is executed again.

12 to 14 --- Vacant (These bits are undefined.)

15 BASIC Unit Execution Flag This flag is turned ON when the BASIC Unit is executing a
program. It is also turned ON when executable codes are
being created or while a command is executed.

Words from word n+3 onwards are for the user.

Note 1. The error contents are the same as those displayed on the terminal con-
nected to the BASIC Unit. For details on error codes, refer to 8-1 Trouble-
shooting.

2. The Memory Overflow and Compiler Error Flags indicate the cause of errors
when commands are input or when program execution is not possible.
These flags can be turned OFF from the terminal with TROFF.

3-1-3 CPU Bus Link Area
The CPU Bus Link Area in the CPU Unit is used to automatically pass data back
and forth between the BASIC Unit and the CPU Unit or between the BASIC Unit
and another CPU Bus Unit. The default setting is for no CPU bus links. To use
CPU bus links, specify them using the computer with terminal mode.

• The CPU Bus Link Area is refreshed in the CPU Unit at 10-ms intervals.

• Words in the CPU Bus Link Area are allocated by the CPU Unit according to the
unit numbers of the CPU Bus Units.

• Data can be read from or written to this area by using the PC READ or PC
WRITE commands.

Memory Areas Section 3-1

29

System information

Not
allocated

Unit 0

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

Unit 7

Unit 8

Unit 9

Unit 10

Unit 11

Unit 12

Unit 13

Unit 14

Unit 15

G000 to G004

G008 to G127

G128 to G135

G136 to G143

G144 to G151

G152 to G159

G160 to G167

G168 to G175

G176 to G183

G183 to G191

G192 to G199

G200 to G207

G208 to G215

G216 to G223

G224 to G231

G232 to G239

G240 to G247

G248 to G255

G000

G001

G002

G003

G004

CPU Unit status

Minute

Date

Year

Second

Hour

Month

Day

G005 to G007 are not used.

All numbers are expressed in BCD:

Minute/second: 00 to 59

Date: 01 to 31, Hour: 00 to 23

Year: 00 to 99, Month: 01 to12

Day: 00 to 06 (00 is Sunday.)

CPU Unit Status
Bits indicate the following when ON:
b0: CPU Unit mode, PROGRAM

b1: CPU Unit mode, DEBUG

b2: CPU Unit mode, MONITOR

b3: CPU Unit mode, RUN

b4: User program executing (RUN output status)

b5: Not used.

b6: Non-fatal error

b7: Fatal error

b8 to b10: Not used.

b11: UM read/write-protected

b12: Memory card write-protect switch ON

b13: Not used.

b14: Not used.

b15: System protected via key switch

G216

G217

G218

G219

G220

G221

G222

G223

b15

b15 0: Unit operating. . .
1: Unit stopped

Note 1. All Units can read any CPU bus link words.

2. The words that are not allocated (G008 to G127) can be used for any pur-
pose by the CPU Unit program.

3. Words and bits specified as “Not used.” cannot be used for any purpose.

4. Bit 15 of the first word allocated to Units 0 through 15 is the Stop Flag for that
Unit and indicates whether the Unit is operating or not. All other bits and
words allocated to each Unit can be used as required by the user.

5. The system information (G000 to G004) can be read at any time.

Memory Areas Section 3-1

!

30

3-1-4 Restart Bits
A Restart Bit is turned ON to restart a BASIC Unit. A001 contains Restart Bits for
the CPU Bus Units. To restart a BASIC Unit, turn the corresponding bit of this
area ON, and then back OFF again. These bits can be manipulated using the
SET(016) ladder-diagram instruction or from a Programming Device. The bit
number within this word corresponds to the unit number as shown below.

A001

Bit 15 Bit 0

Unit no. 0 Restart Bit

Unit no. 1 Restart Bit

Unit no. 2 Restart Bit

Unit no. 3 Restart Bit

Unit no. 4 Restart Bit

Unit no. 5 Restart Bit

Unit no. 6 Restart Bit

Unit no. 7 Restart Bit

Unit no. 8 Restart Bit

Unit no. 9 Restart Bit

Unit no. 10 Restart Bit

Unit no. 11 Restart Bit

Unit no. 12 Restart Bit

Unit no. 13 Restart Bit

Unit no. 14 Restart Bit

Unit no. 15 Restart Bit

Note Unit numbers or memory switch setting cannot be changed by restarting a BA-
SIC Unit using its Restart Bit. To change the unit number of memory switches,
restart the Unit by resetting the CPU Unit.

Caution When routing tables are transferred to the CPU Unit, the corresponding Restart
Bit will turn ON and the BASIC Unit will stop.

3-2 Data Transfer with the CPU Unit
To transfer data between the BASIC Unit and CPU Unit, the following three
methods are available. With each method, data is read and written using the PC
READ and PC WRITE commands from the BASIC Unit. Programming the CPU
Unit is not necessary. When desired, programming is also possible from the
CPU Unit.

Data transfer Application

Cyclic Specified words in the CPU Unit, set in advance using the
software switches in the CPU Unit, are read or written during
cyclic servicing. Since different areas can be simultaneously read
and written, this method is used to transfer data when the same
data needs to be transferred repeatedly. The output status from
the CPU Unit to the BASIC Unit and the input status from the
BASIC Unit to the CPU Unit is transferred or received using cyclic
transfer. Software switches can be set to disable cyclic transfers.

Event Specified data is read from or written to the CPU Unit when
required. This method is most frequently used to transfer data.

CPU bus links CPU bus links can be used to transfer small quantities of data
with another BASIC Unit or the CPU Unit at high speeds. This
method is used to operate the BASIC Unit in synchronization with
another BASIC Unit or the CPU Unit, or to broadcast data to all
other Units and the CPU Unit. CPU bus links are disabled in the
default settings, but time information in the CPU Bus Link Area
can be accessed. To specify CPU bus links, use the computer
with terminal mode.

Data Transfer with the PC Section 3-2

31

Data Flow
The following figure illustrates the areas to/from which data can be written/read
by the three data transfer methods described previously, and examples of the
BASIC commands used for the transfer. The data transfer method is determined
by the suboperand of the PC READ or PC WRITE command.

Link Area

Holding Area

CPU Bus Unit
Area

DM Area

EM Area

Transition Area

Step Area

Timer Area

Counter Area

CPU Bus Link
Area

CPU Unit

PC READ ”@SQ,0,3,3H4”;A,B,C

PC WRITE ”@SI,4,1,H4”;D

PC WRITE ”@D,30,20,S20,H4”;
Y(0)

PC READ ”@R,100,50,S50,H4”;
X(0)

TIME$ = ”12:34:56”

PC READ ”@SG,128,3,3H4”;
L,M,N

PRINT TIME$

PC WRITE ”@SG,137,2,2H4”;
P,Q

R

R

R

R

W

W

W

R: Read area
W: Write area

Memory Areas Programing Example

BASIC Unit

I/O Area

Work Areas

SYSMAC BUS
and SYSMAC
BUS/2 Areas

Cyclic Transfers

Event Transfers

CPU Bus Links

Data Transfer with the PC Section 3-2

32

Data Transfer/Reception Timing
Data is transferred/received during the CPU Bus Unit service interval of the CPU
Unit for both the cyclic and event transfer methods. The cycle at which this serv-
icing is executed differs depending on whether the CPU Unit is operating syn-
chronously or asynchronously. For details, refer to the CV-series PC Operation
Manual: Ladder Diagrams.

CPU Unit Operation

Operation cycle

Host link
servicing

Basic
processing

CPU Bus Unit
servicing

Device servic-
ing

Host link
servicing

Basic
processing

CPU Bus Unit
servicing

Unit No. cyclic
processing

Unit No. 0 event
processing

Unit No. cyclic
processing

Unit No. 0 event
processing

Unit No. 0 event
processing

CPU bus links are refreshed via interrupts every 10 ms.

Cyclic Transfers

(4)
Completion

ÉÉ
ÉÉ

ÉÉ
ÉÉ

Pass

Cyclic processing period

(1)
PC READ

(5)
(3)

PC WRITE

Pass

(2)
Completion

CPU Unit

BASIC Unit

Timing (1) and (2)
If the BASIC Unit has executed the PC READ instruction when the cyclic pro-
cessing period arrives, the CPU Unit will process data transfer/reception.
Timing (3), (4), and (5)
The PC WRITE instruction writes data to the internal area of the BASIC Unit and
then ends immediately. Data transfer to the CPU Unit is executed during the next
cyclic processing period.

Note If neither the PC READ nor the PC WRITE instruction is executed, output status
from the CPU Unit to the BASIC Unit and input status from the BASIC Unit to the
CPU Unit will be transferred every 100 ms.

Event Transfers

É
É

É
É

É
É

ÉÉ
ÉÉ

(1)
PC READ or
PC WRITE

(3)
PC READ

or PC
WRITE (6)

PC READ or
PC WRITE

(5)
PC READ or
PC WRITE

(2)
Completion

CPU Unit

BASIC

Pass Pass Pass Pass Pass

Event processing

(8)
Completion
of (6)

(7)
Completion
of (5)

(4)
Completion

Event processing

Data Transfer with the PC Section 3-2

33

Timing (1) to (2) and (3) to (4)
If the PC READ or PC WRITE instruction is executed by the BASIC Unit immedi-
ately before the event processing period, the CPU Unit transfers/receives the
data immediately.

Timing (5) to (7) and (6) to (8)
If more than one PC READ or PC WRITE instruction is executed before the pro-
cessing of one event, any subsequent instructions are kept pending until the
next event processing.

CPU Bus Link Transfers For CPU bus links, the CPU Unit reads data from each CPU Bus Unit each 10
ms, and then writes the entire CPU Bus Link Area to all the Units.

ÉÉ
ÉÉ

ÉÉ
ÉÉ

É
É

10 ms 10 ms

(3)
PC WRITE

(1)
PC READ

CPU Unit

BASIC

(4)
Completion

(2)
Completion

Timing (1) to (2) and (3) to (4)
When PC READ is executed, data written from the CPU Unit is read when the
next CPU bus link servicing is performed. When PC WRITE is executed, data is
read into the CPU Unit and other CPU Bus Units (such as other BASIC Units)
when the next CPU bus link servicing is performed.

3-3 Memory Switches
Memory switches are software switches containing operating parameters that
control BASIC Unit operation. These parameters are kept in the CPU Unit and
are transferred to the BASIC Unit whenever the system is turned ON or re-
started. Each BASIC Unit has its own memory switches. (The memory switches
are collectively called the CPU Bus Unit System Setup.)

The memory switches for each BASIC Unit consist of a pointer to the memory
switches for the Unit and the settings of the memory switches. The default set-
ting can be changed to alter BASIC Unit operating parameters. To write data to
the memory switches, use a terminal connected to the BASIC Unit or a Graphic
Programming Console with a CV-series Memory Cassette connected to the
CPU Unit.

The memory switch settings can be momentarily returned to their default set-
tings without changing the actual settings by turning ON pin 2 on the DIP switch
on the front of the BASIC Unit. This is useful if a terminal cannot be connected
because of unknown memory switch settings.

Memory Switches Section 3-3

34

The memory switches consist of the following parameters. The area for each
BASIC Unit occupies 60 words. Each parameter is described in detail in the fol-
lowing sections.

Note The Extended PC Setup in the CPU Unit, which includes BASIC Unit memory
switch settings, can be transferred to and from Memory Cards. Refer to memory
card operations in the CVSS: Online Operation Manual for details.

Edit mode Model Number of digits on
screen

Port 1 Port 2 Port 3

Terminal Printer

Master/Slave Address

+0

+1

+7

+8

+9

+10

+34

+58

+59

File name

Output area
(CPU Unit to BASIC
Unit, 24 words)

Input area
(BASIC Unit to CPU
Unit, 24 words)

Automatic transfer file name
Terminal/printer port selection

System parameters
Start method
Automatic transfer setting
Program No. setting
Error message selection
Kanji printer setting

Memory Switch Parameters

MSB LSB

Baud rate for each port

Terminal specifications

Cyclic area settings

GP-IB settings

Not
used.

Pointers

Unit 0

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

Unit 7

Unit 8

Unit 9

Unit 10

Unit 11

Unit 12

Unit 13

Unit 14

Unit 15

Byte
address

Memory Switches Section 3-3

35

3-3-1 System Parameters
The system parameters of the memory switch set the basic items related to the
operation of the BASIC Unit. The following figure illustrates the bit configuration
of the system parameters. Set the bits shaded in this figure to 0.

��

+0
��

+1

Memory Switch: ESW1

ESW1= (when set from terminal)

Byte address

+1

b7 b0

b6 b5 b4

Automatic Transfer

Starting Mode

This system parameters are initially set to 0000, i.e., manual start, manual
transfer, program 1, English, and no Kanji printer.

b0: Starting Mode
Setting Function

0 Manual start The user program is started when RUN is input from the terminal after the
version has been displayed by inputting CTRL-X. The RUN/STOP switch
must be set to RUN to manually start program execution.

1 Automatic start The user program is automatically started on power application or
restarted with the RUN/STOP switch set to the RUN position. If the
RUN/STOP switch is set to the STOP position, the program is started
when the RUN/STOP switch is set to the RUN position.

b6, b5, b4: Automatic Transfer
Setting Function

000 Manual transfer Automatic transfer is not executed.

100 EEPROM automatic transfer The user program is automatically transferred from the EEPROM to the
source code area on power application or restarting (only models with
EEPROM). Write the necessary program to the EEPROM in advance by
using ROMSAVE.

101 File automatic transfer 1 The user program is automatically transferred from the memory card in the
CPU Unit to the source code area on power application or restarting. The
file name is specified by the following words in the memory switches. A
memory card must be mounted to the CPU Unit.

Memory Switches Section 3-3

36

Byte address

+0

b7 b0

b5 b4

Kanji Printer

Program No.

b1 b0

Error Message Language

b1, b0: Program No.

Setting Function

00 Program 1 Sets program 1 as the user program to be edited on power application or
i01

g p g p g p pp
resetting.

10 Program 2 Sets program 2.

11 Program 3 Sets program 3.

b4: Error Message Language

Setting Function

0 English Error messages are displayed in English.

1 Japanese Error messages are displayed in Japanese.

b5: Kanji Printer

Setting Function

0 Not used Not compatible with Kanji printer.

1 Used Specifies KI/KO processing. (K1 = 1B4B, K0 = 1B48)

3-3-2 Automatic Transfer File Name
When automatic program transfer is specified in the automatic transfer setting of
the system parameters, the name of the file to be transferred must be specified.
If the file is specified to be manually transferred, the file name does not need to
be specified.

The file name may consist of up to 8 characters of ASCII followed by a file type
(extension) delimited by a period from the file name. The file name must consist
of alphanumeric characters starting with an alphabetic character. The file exten-
sion is BAS.

Name

Extension

Memory Switch: ESW2

ESW2=� � � � � � � � � � � � (when set from terminal)
0 1 2 3 4 5 6 7 8 9 10 11

+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14

Byte address b7 b0

Memory Switches Section 3-3

37

Example: File Name ABC1234.BAS

File name is followed by a period
(2E in hexadecimal)

Period is followed by file type

Excess area is 00.
Inputting 00 is unnecessary when this
area is set via the machine language de-
bug command ESW2, because 00 is auto-
matically set.

A (41)

B (42)

C (43)

1 (31)

2 (32)

3 (33)

4 (34)

(2E)

B (42)

A (41)

S (53)

(00)

File name is set starting from
first bit

Note Any file can be read and used as a user program by using the automatic file
transfer function. However, if automatic transfer is specified, a certain amount of
time is required to read the program from the file and create executable codes
before the program is actually started.

3-3-3 Terminal and Printer Ports
This area of the memory switch specifies the ports to which the terminal and
printer are connected. Set a BCD number from 01 to 04 in this area, by referring
to the following illustration:

��

+14
��

+15

Memory Switch: ESW3

ESW3= (when set from terminal)

Byte address

+15

b7 b0
Selecting Printer Port

Selecting Printer Port
Setting Function

01 RS-232C 1 Selects top RS-232C (port 1) port as printer port.

02 RS-232C 2 Selects bottom RS-232C (port 2) port as printer port.

04 Centronics Selects Centronics port as printer port. With the BSC11/21, this sets the
Unit as having no printer port.

FF None No printer port set.

Note: This setting is only possible with system ROM versions 1.23 or
higher.

Byte address

+14

b7 b0
Selecting Terminal Port

Selecting Terminal Port
Setting Function

01 RS-232C 1 Selects top RS-232C (port 1) port as terminal port

02 RS-232C 2 Selects bottom RS-232C (port 2) port as terminal port

03 RS-422 Selects RS-422 (port 3) port as terminal port

FF None No terminal port set. If it becomes necessary to use a terminal, disable the
memory switch settings using pin 2 of the DIP switch.

Note: This setting is only possible with system ROM versions 1.23 or
higher.

Memory Switches Section 3-3

38

Note The default is 0000. Consequently, the following printer and terminal ports are
selected:

BSC11/BSC21: 0102 (port 1 as terminal port and port 2 as printer port)
BSC31/BSC41: 0104 (port 1 as terminal port and Centronics as printer port)
BSC51/BSC61: 0100 (port 1 as terminal port and no printer port)

• The system ROM version is displayed on the BASIC initial screen on the termi-
nal.

• Communications control using RTS/DTR signals is not possible for the ports
set as the terminal and printer ports. To perform communications control using
RTS/DTR signals, change the ports set as the terminal and printer ports to
ports other than the ones for which RTS/DTR control is to be used. This is done
using memory switch 3. Also, if the system ROM version is 1.23 or higher, it is
possible to not set a printer port and terminal port by setting the relevant bytes
to FF.

3-3-4 Baud Rates

This area sets the baud rates of RS-232C ports (ports 1 and 2) and RS-422 port
(port 3). Set a BCD number from 0 to 7 to the area corresponding to each port by
referring to the following illustration:

Memory Switch: ESW4

ESW4= (when set from terminal)��

+16
��

+17

Byte address

+17

b7 b0

Transfer Rate Setting

Port 2 Port 1

+16

b7 b0

Port 3

Transfer Rate Setting

Setting Function

0 Sets the baud rate to 9,600 bps (default).

1 Sets the baud rate to 300 bps.

2 Sets the baud rate to 600 bps.

3 Sets the baud rate to 1,200 bps.

4 Sets the baud rate to 2,400 bps.

5 Sets the baud rate to 4,800 bps.

6 Sets the baud rate to 9,600 bps.

7 Sets the baud rate to 19,200 bps.

Note 1. The default is 0000, i.e., the transfer rate of all the ports is 9,600 bps.

2. Be sure to clear the bits shaded in the previous figure to 0.

3. The RUN echoback will overlap with the port initialization display if program
execution is started from a terminal connected to a port set to 300 bps. Al-
ways set the port connected to the terminal to 600 bps or greater if you are
going to use the terminal to start program execution.

Memory Switches Section 3-3

!

39

3-3-5 Terminal Specifications
This memory switch sets the model of the terminal and the number of display
digits for the terminal connected to the BASIC Unit.

��

+18
��

+19

Memory Switch: ESW5

ESW5= (when set from terminal)

Byte address

+19

b7 b0
Number of Display Digits

Number of Display Digits

This byte sets the number of display digits of the terminal in 2 BCD digits. When
this byte is set to 00, 24 digits, which is the default value, is assumed.

Byte address

+18

b7 b0

Model

Editing Mode

Model

Setting Function

0 Terminal mode Specifies terminal mode.

1 VT-52 (VT-52 mode) Specifies VT-52 or equivalent.

2 VT-100 (ANSI mode) Specifies VT-100 or equivalent.

Editing Mode

Setting Function

0 Overwrite Sets overwrite mode for program editing

1 Insert Sets insert mode for program editing

Note The default value is 0000. Consequently, terminal mode is selected with the
number of display digits set to 24 and the overwrite mode already set.

3-3-6 Cyclic Area Settings
This area of the memory switches sets the area of the CPU Unit with which the
BASIC Unit will cyclically (periodically) transfer data. Up to six output areas
(CPU Unit to BASIC Unit) and up to six input areas (BASIC Unit to CPU Unit) can
be set. Up to 384 words can be set for all areas combined.

If this area is not set, the following defaults are used. These are in the CPU Bus
Unit Area.

Area: I/O memory area
Address: Output: 15 (first 15 words)

Input: 10 (last 10 words)
Number of areas: 1 for both output and input

Caution Keep the first word address and number of words to within the range of each
area. If an improper word address is set, all the settings of the input and output
areas following the improper word address will be invalid. A range check is not
performed for this setting. Check your settings and input values carefully.

Each setting area consists of 4 words. For unused areas, set 0000 as the area
setting. If 0000 is set as the area type setting for all the areas, cyclic data transfer
is not executed.

Memory Switches Section 3-3

40

A minimum of 3 words is required in the input area to refresh BASIC Unit in-
formation.

Area Setting

Setting Function

0080 I/O Memory Area

0082 Data Memory Area

0090 Expansion Data Memory Area, bank 0

0091 Expansion Data Memory Area, bank 1

0092 Expansion Data Memory Area, bank 2

0093 Expansion Data Memory Area, bank 3

0094 Expansion Data Memory Area, bank 4

0095 Expansion Data Memory Area, bank 5

0096 Expansion Data Memory Area, bank 6

0097 Expansion Data Memory Area, bank 7

0000 None

First Word Address

Function

Specifies the first word address of the specified area in 8 digits BCD.

(leftmost byte) (rightmost byte)

First word address (8 digits, BCD)

Note: The order of the byte address when setting in 8 digits, BCD is
4,3→2,1→8,7→6,5 (where the numbers indicate the number
of the digit).

8 7

+24

6 5

+25

4 3

+22

2 1

+23

Number of Words

Function

Specifies the number of words in the specified area in 4 digits BCD.

(leftmost byte) (rightmost byte)

Number of words (4 digits, BCD)

+26 +27

Memory Switches Section 3-3

Memory Switch: ESW6

ESW6–1= (when set from terminal)��

+20
��

+21
��

+22
��

+23
–

��

+24
��

+25
–

��

+26
��

+27
–

Byte address

Output area 1+20

b7 b0

Output area 2+28

Output area 3+36

Output area 4+44

Output area 5+52

Output area 6+60

Input area 1+68

Input area 2+76

Input area 3+84

Input area 4+92

Input area 5+100

Input area 6+108

8 words

Byte address
b7 b0

+20
+21
+22
+23
+24
+25
+26
+27

0 0
Area setting (See the following table.)

First word address
(See the following table)

Number of words
(See the following table)

41

Example 2 Output Areas: 3 words from CIO 0120 of I/O Memory.
12 words from D24000 of DM Area.

1 Input Area: 2 words from CIO 0032 of I/O Memory.

Output area 1

Output area 2

Output area
3 to 6

Input area
2 to 6

I/O Memory

b7

0 0+20

b0

8 0+21

0 1+22

2 0+23

0 0+24

0 0+25

0 0+26

0 3+27

0 0+28

8 2+29

4 0+30

0 0+31

0 0+32

0 2+33

0 0+34

1 2

0 0

All 0

From CIO 0120

3 words

I/O Memory

From D24000

12 words
+35

0 0

0 0

0 0

0 0+68

8 0+69

0 0+70

+71 3 2

0 0

0 0

0 0

0 2

0 0

All 0

0 0

0 0

0 0

+72

+73

+74

+75

Not set

I/O Memory

From CIO 0032

2 words

Not set

Memory Switches Section 3-3

42

3-3-7 GP-IB Setting
This parameter sets the operation of the GP-IB interface. The parameter is nec-
essary only for the CV500-BSC51 and CV500-BSC61.

��

+116
��

+117

Memory Switch: ESW7

ESW7= (when set from terminal)

Byte address

+117

b7 b0
Address of Talker and Listener

Sets addresses of talker and listener in BCD (00 to 30).

+116

b7 b0
Master/Slave Setting

Master/Slave Setting

Setting Function

00 Master Sets BASIC Unit as master.

01 Slave Sets BASIC Unit as slave.

3-4 Setting Memory Switches
The memory switches can be set from a Graphic Programming Console with a
CV-series Memory Cassette connected to the CPU Unit or by a terminal con-
nected to the BASIC Unit. The CVSS is not currently equipped with this feature.
Memory switch settings can be transferred from one CPU Unit to another using
the CVSS and copying the Extended PC Setup onto a Memory Card. Refer to
the Memory Card operations in the CV Support Software: Online Operation
Manual for details.
The following procedures will explain how to set the memory switch using a ter-
minal connected to the BASIC Unit. When the following procedure is completed,
new software memory settings will exist in both the BASIC Unit and the CPU
Unit.
Refer to Appendix J for details on setting methods using Support Software.

1, 2, 3... 1. First, set the BASIC Unit in the machine language monitor mode. When the
message OK is displayed, or while the terminal is in the command input wait
status, input MON followed by a carriage return.

2. A prompt (∗) will be displayed and the BASIC Unit will be set in the machine
language mode. Input as follows to set each memory switch. Input up-
per-case characters.
ESW1=0300

Here, 1 is the memory switch and 0300 is the setting (hexadecimal).
For the settings, refer to 3-3 Memory Switches. The memory switch areas
are as follows:
1: System parameters (ESW1)
2: Automatic transfer file name (ESW2)
3: Terminal/printer ports (ESW3)
4: Baud rates (ESW4)
5: Terminal specifications (ESW5)
6: Cyclic area setting area (ESW6)
7: GP-IB setting (ESW7)

3. Set the cyclic areas as follows:
ESW6–1=0080–0100–0000–0008

Here, 1 is the output/input area no., 0080 is the area type no., 0100 are the
rightmost bytes of the first word address (BCD), 0000 are the rightmost by-

Setting Memory Switches Section 3-4

43

tes of the first word address (BCD), and 0008 is the number of words (BCD).
This setting sets 8 words beginning from word 100 in the I/O memory area as
output area 1.

Output/Input Area Numbers

Output area 1 to 6 1 to 6

Input area 1 to 6 7 to 12

Area Specifications

I/O Memory Area 0080

Data Memory Area 0082

Expansion Data Memory Area,
bank 0 through bank 7

0090 to 0097

4. After setting all the memory switches, input ESW-W followed by a carriage
return to write the data to the CPU Unit.

Setting Memory Switches Section 3-4

45

SECTION 4
Programming Overview

This section provides an overview of BASIC programming and is not meant to provide a comprehensive explanation of BA-
SIC programming.

4-1 BASIC Syntax and Operations 46.
4-1-1 Syntax 46.
4-1-2 BASIC Operations 51.

4-2 Writing and Entering Programs 62.
4-2-1 Preparations 62.
4-2-2 Program Storage Locations 62.
4-2-3 Allocating a Program Area 62.
4-2-4 Clearing Program Area 62.
4-2-5 Generating Line Numbers 63.
4-2-6 Writing a Program 63.
4-2-7 Editing Programs 64.
4-2-8 Deleting in Programs 65.
4-2-9 Copying in Programs 65.
4-2-10 Merging Programs 66.
4-2-11 Changing Line Numbers 66.
4-2-12 Naming Programs 66.
4-2-13 Keys Operations in Editing 67.

4-3 Program Execution and Debugging 67.
4-3-1 Preparations 67.
4-3-2 Execution 68.
4-3-3 Stopping and Resuming Execution 69.
4-3-4 Step Execution 70.
4-3-5 Tracing Program Execution 70.

4-4 Saving and Loading Programs 71.
4-4-1 EEPROM 71.
4-4-2 Memory Cards 71.
4-4-3 Saving and Loading via Personal Computers 72.

46

4-1 BASIC Syntax and Operations

4-1-1 Syntax
To develop a program in BASIC, an understanding of the syntax and description
of BASIC is essential. This section describes some fundamentals of the BASIC
syntax and programming techniques. For the details of the BASIC syntax, refer
to the BASIC Unit Reference Manual (W207-E1).

Line Numbers and Labels
Line Numbers A program consists of lines. Each line consists of a line number, executable

statement, a comment statement, and/or a non-executable statement.

10 PRINT ”BASIC UNIT” Executable statement.
20 REM *** BASIC UNIT*** Comment statement.
30 DIM A(10) Non-executable statement.

60 IF A$ = ” ” THEN GOTO 40 Executable statement.

90 END Executable statement.

Line number

Line numbers are integers from 1 to 65529 and are arranged in ascending order.
The program is executed in the order of the line numbers. The line numbers are
sometimes used to specify the destination to where the program execution is
branched with the GOTO and GOSUB commands.

Labels A label is a name assigned to a line number to specify the branch destination of
such commands as GOTO and GOSUB. With the BASIC Unit, a label must start
with an asterisk (*) and followed by an alphabetic character.
50 GOSUB *LABEL Calling by label.
60 GOSUB 80 Calling by line number.
70 END
80 *LABEL Label.
90 RETURN
If a line number is specified as a branch destination, and if the line number
changes when the program is modified, an error will occur. However, if a label is
used, the label will remain the same even when the program is modified.

Variables and Constants
Variables A computer handles various types of data such as characters and numeric val-

ues. In a computer language such as BASIC, areas called variables in which
data is temporarily stored are used so that a program can be easily developed. A
variable is given a variable name and is assigned a value after substitution or
after an operation has been executed.

BASIC Syntax and Operations Section 4-1

47

Data is classified into character data and numeric data. This also applies to vari-
ables, which can be classified into character variables in which character data is
stored and numeric variables in which numeric data is stored. Numeric variables
are further classified into integer variables and real-number variables.
Real-number variables are then further classified into single-precision variables
and double-precision variables. These relationships are shown as follows.

Variable

Character variable

Numeric variable

Fixed character length variables
(system variables)

Real-number variable

Integer variable

Single-precision variable

Double-precision variable

Variable character length variables

In addition to the above classifications, variables are also classified into simple
variables which handle only one piece of data, and array variables which handle
more than one piece of data.

Variable

Simple variables (handle only one value)

Array variables (handle more than one value)

The variable name given to a variable is specified by using alphanumeric char-
acters, a period (.), and a declarator. The length of a variable can be up to 40
characters including the declarator. The declarator specifies the type of the vari-
able, as follows:

$... Character

% ... Integer

! ... Single-precision real number (this type is assumed if no type declarator is
specified)

... Double-precision real number

For example, A%, A!, A#, and A$ all indicate different variables. If the type decla-
rator is omitted, a single-precision real-number type is assumed, and conse-
quently, A and A! indicate the same variable.

Note The default length for character variables is fixed at 18 characters. Because of
this, garbage collection is not performed. If character variable length needs to be
changed, use the OPTION LENGTH instruction before PARACT 0. Length
checks are not performed for substitution into character variables.

BASIC Syntax and Operations Section 4-1

48

Constants The contents (data) of a variable are changed by a substitution or operation. In
contrast, a constant, which indicates a value by itself, is used where data does
not need to be changed. Like variables, constants are classified into character
constants and numeric constants, which are further classified into integer con-
stants and real-number constants. The real-number constants are further di-
vided into single-precision constants and double-precision constants. These re-
lationships are shown below.

Constant

Numeric constant

Real-number constant

Integer constant

Single-precision constant

Double-precision constant

Character constant

A character constant usually consists of a character string of 255 characters or
less enclosed by a pair of double quotation marks. These characters can be in
alphanumeric characters and/or symbols.

Examples ”12345”
”BASIC UNIT”

Numeric constants are expressed as a positive or negative value, or as 0, and
are specified in decimal, octal, hexadecimal, or exponential format.

Decimal (–32768 to 32767):

9200 .
123%

Octal (&0 to &77777):

&123 .
&O200

Hexadecimal (&H0 to &HFFFF):

&H123 .
&H2B3F

Exponential (single precision) (–3.4E + 38 to 3.4E + 38):

–1.23E + 4
345.2!

Exponential (double precision) (–1.701411834604692D + 307 to
1.701411834604692D + 307):

–1.23D – 12
345.2#

Types of Expressions
Expressions are classified into numeric, character, relative, and logical expres-
sions depending on the type of the value handled in the expressions.

Expression

Numeric expression A + B.

Character expression ”BASIC” + ”UNIT”.

Relative expression A > B.

Logical expression A AND B.

BASIC Syntax and Operations Section 4-1

49

Numeric Expressions A numeric expression returns a numeric value and consists of numeric variables
and numeric constants coupled with arithmetic operators. The arithmetic opera-
tors shown in the following table can be used.

Arithmetic operator Operation Example

+ Addition A + B

– Subtraction A – B

* Multiplication A * B

/ Real-number division A / B

¥ or \ Integer division A¥B, A \ B

^ Exponent calculation A ^ B

MOD Remainder calculation A MOD B

Note ¥ or \ depend on the terminal used.

Character Expressions A character expression returns a character string and consists of character vari-
ables and character constants coupled with an arithmetic operator (+).

Example
”OMRON” + ”Corporation”

Relative Expressions A relative expression consists of numeric expressions coupled with a relative
operator. The relative operators shown in the following table can be used.

Relative operator Operation Example

= Equal A = B

<>, >< Not equal A <> B, A >< B

< Less than A < B

> Greater than A > B

<=, =< Less than or equal to A <= B, A =< B

>=, => Greater than or equal to A >= B, A => B

Logic Expressions A logic expression is used to execute logic operations, manipulate bits, or check
conditions of IF statements. A logic operator is used to form a logic expression.
The logic operators shown in the following table can be used.

Logic operator Operation Example

NOT Negation NOT A

AND Logical product A AND B

OR Logical sum A OR B

XOR Logical exclusive sum A XOR B

IMP Implication A IMP B

EQV Equivalence A EQV B

Result of Operations by Logic Operator

NOT
A NOT A

0
1

1
0

AND
A B A AND B

0
0
1
1

0
1
0
1

0
0
0
1

BASIC Syntax and Operations Section 4-1

50

OR
A B A OR B

0
0
1
1

0
1
0
1

0
1
1
1

XOR (Exclusive OR)
A B A XOR B

0
0
1
1

0
1
0
1

0
1
1
0

IMP (Implication)
A B A IMP B

0
0
1
1

0
1
0
1

1
1
0
1

EQV (Equivalence)
A B A EQV B

0
0
1
1

0
1
0
1

1
0
0
1

BASIC Functions
The BASIC Unit supports many functions in addition to ordinary BASIC func-
tions. A function is used to perform a predetermined operation on a given argu-
ment. Some functions return numeric values, while others return character
strings. These are explained in more detail later in this manual and in the BASIC
Unit Reference manual.

Functions Returning Numeric Values
Function Operation

ABS Gives absolute value

ACOS Gives arc cosine

ASC Gives character code

ASIN Gives arc sine

ATN Gives arc tangent

CDBL Converts integer value or single-precision value into double-precision value

CINT Converts real-number value into integer value

COS Gives cosine

CSNG Converts integer value or double-precision value into single-precision value

CVI/CVS/CVD Converts character string into numeric value

EOF Gives end code of file

ERL/ERR Gives line in which error occurs and error code

EXP Gives value of exponential function

FIX Gives integer

FRE Gives size of unused memory area

INSTR Searches characters string and gives position of character

INT Gives integer value truncated at decimal point

INTRB/INTRL/INTRR Gives destination line, generation line, and type of interrupt

LEN Gives total number of characters of character string

LOC Gives present value in FILE

BASIC Syntax and Operations Section 4-1

51

Function Operation

LOF Gives size of FILE

LOG Gives natural logarithm

PEEK Returns contents of specified address

RND Gives random number

SEARCH Searches element of array variable and gives position of character

SGN Checks sign

SIN Gives sine

SPC Outputs blank

SQR Gives square root

TAB Sets column position of screen or printer

TAN Gives tangent

USR Calls machine language function on memory

VAL Converts character string into numeric value

VARPTR Gives storage address of variable

Functions Returning Character String
Function Operation

CHR$ Gives character having specified character code

DATE$ Gives date

HEX$ Converts into hexadecimal number

INKEY$ Inputs only one character

INPUT$ Inputs only specified number of characters

LEFT$ Gets character string (from leftmost position)

MID$ Gets character string

MKI$/MKS$/MKD$ Converts numeric code into character code

OCT$ Converts into octal number

RIGHT$ Gets character string (from rightmost position)

SPACE$ Gives blank character string

STR$ Converts numeric value into character string

STRING$ Creates character string of specified characters

TIME$ Gives time

4-1-2 BASIC Operations
This section introduces examples of programming for fundamental operations
of the BASIC Unit.

Displaying Data
To display data, program as follows by using the PRINT and PRINT USING
commands:

10 PARACT 0
20 X = 10
30 PRINT ”BASIC UNIT”
40 PRINT ”X = ”;X
50 PRINT ”X = ”,X
60 END
70 END PARACT

Result of execution

BASIC UNIT
X = 10
X = 10

To Display “BASIC UNIT”
and Contents of Variable X

BASIC Syntax and Operations Section 4-1

52

If a character (in this example, X) is delimited by “;”, it is displayed immediately
after the character displayed immediately before. If it is delimited by “,”, the
character is displayed from the beginning of the next area (one area consists of
14 characters). In addition, TAB specification that displays the current position of
the cursor as character X coordinate = 0 can also be made.

The WRITE command has a similar function to the PRINT command. The WRITE
command is also used to output data to the screen. With the WRITE command,
the variables and expressions to be displayed are delimited by only commas
when they are specified. They are also delimited by commas when they are dis-
played. To display a character string, it automatically encloses a pair of double
quotation (”) marks. To display a numeric value, unlike the PRINT command, no
blank is placed before and after the numeric value.

Consequently, if the sample program shown previously is written by using the
WRITE command instead of the PRINT command, the display will be as follows:

10 PARACT 0
20 X = 10
30 WRITE ”BASIC UNIT”
40 WRITE ”X = ”;X
50 WRITE X, 20
60 END
70 END PARACT

Result of execution

”BASIC UNIT”
”X = ”, 10
10, 20

To Specify Display Format Sometimes, the data displayed by the PRINT command is hard to see. The
PRINT USING command is used to specify the format in which the data are dis-
played, so that the data is easy to see.

10 PARACT 0
20 X = 1234.56
30 PRINT USING ”#####.###”;X
40 PRINT USING ”+#####.###”;X
50 PRINT USING ”X = #####.##”;X
60 PRINT USING ”###.#”;1234.5
70 END
80 END PARACT

Result of execution

 1234.560
 + 1234.560
X = 1234.56
%1234.5

The number of digits of a numeral, including that of the sign, is specified by the
number of “#” marks. If the number of digits of the data is less than the specified
number of “#” marks, the data is right-justified for display. If the number of digits
is greater, “%” is prefixed to the extra digits of the data.

Difference Between PRINT
and WRITE Commands

BASIC Syntax and Operations Section 4-1

53

To Output Data to Printer To output data to the printer, use the LPRINT or LPRINT USING command.
10 PARACT 0
20 LPRINT ”BASIC UNIT”
30 END
40 END PARACT

Result of execution

BASIC UNIT

Write the END command at the end of the program. This command closes all
open files and terminates the execution of the program. However, sometimes it
is necessary to stop the program under execution. For example, if a wrong key
has been pressed, or if a certain condition is satisfied, it may be necessary to
stop the program. In this case, the STOP command is used. When this command
is executed, a message is displayed and the program execution is stopped.
10 PARACT 0
20 FOR I = 1 TO 100
30 IF 5 – I = 0 THEN STOP
40 PRINT I
50 NEXT I
60 END
70 END PARACT

Result of execution

 1
 2
 3
 4
Stop in 30

Inputting Data From Keyboard
To input data to the variables in the program from the keyboard, program as fol-
lows by using the INPUT or LINE INPUT command:

To Input Numeric Data

10 PARACT 0
20 INPUT A
30 INPUT B
40 PRINT A, B
50 END PARACT

Numeric data input

Result of execution

? 100
? 200
 100 200
When the INPUT command is executed, ? is displayed, indicating that the pro-
gram is waiting for the input of data. The program is stopped until data has been
input. Then input a desired numeric value from the keyboard and press the car-
riage return.

END and STOP Commands
Ending Program

BASIC Syntax and Operations Section 4-1

54

To Input Character Data If an attempt is made to input character data in the above example, an error oc-
curs. To input a character, $ must be suffixed to a variable name. This means that
for the variable name specified by the INPUT command, the data type of the vari-
able must be specified by $, depending on the type of the data to be input.

10 PARACT 0
20 INPUT A$
30 INPUT B$
40 PRINT A$; B$
50 END PARACT

Character data input

Result of execution

? BASIC
? UNIT
BASIC UNIT

For example, to input integer type numeric value in the above program, % must
be suffixed to the numeric value, like A% and B%. To input a numeric value of
double-precision real-number type, # must be suffixed.

The INPUT command is used to input data to a variable while the program is
executed. However, it may be unclear which data is to be input if only “?” is dis-
played when the INPUT command has been executed. To clarify which data
should be input, therefore, a message can be displayed before “?”.

10 PARACT 0
20 INPUT ”NAME”;A$
30 INPUT ”TEL ”;B$
40 PRINT ”NAME ”;A$,”TEL ”;B$
50 END PARACT

Result of execution

NAME? OMRON
TEL ? 123–4567
NAME OMRON TEL 123–4567

As shown above, if a character string specified is enclosed in a pair of double
quotation marks (”) before a variable name, the specified character string can
be displayed when data is input. Note that the character string must be delimited
by a semicolon (;) from the variable name.

As described earlier, any name can be given to a variable. However, the names
used for commands and functions must not be used as the names of variables.
For example, PRINT$ and INPUT% must not be used as variable names be-
cause these names are command names. The names that must not be used by
the user are generically called reserved words or keywords. A list of reserved
words are presented in Appendix G.

To Display Message While
Data is Input

Variable Name and
Reserved Word

BASIC Syntax and Operations Section 4-1

55

Operations
To process data through operations, program as follows by using operators and
arithmetic functions:

To perform an operation, use arithmetic, relative, and logic operators described
earlier.
10 PARACT 0
20 PRINT 10/3
30 PRINT 10%¥3%
40 PRINT 10%/3#
50 END PARACT

Result of execution

3.33333
3
3.333333333333333
The above program is to execute a division and display the result. The result dif-
fers depending on the data type (such as integer, single-precision real-number,
and double-precision real-number).

On line 20, the operation is performed with single-precision real-numbers, and
the result is rounded at the sixth digit. Therefore, five or less digits are displayed
as the result.

On line 30, the operation is performed with integer values. Therefore, the data is
truncated at the decimal point.

On line 40, a single-precision real-number variable and double-precision
real-number variable are processed. If the precision of a variables differ, the
higher precision takes precedence. In this case, therefore, the double precision
takes precedence. Consequently, the data is rounded at the 16th digit, and dis-
played in 15 digits or less.

To Perform Arithmetic
Operation

BASIC Syntax and Operations Section 4-1

56

Priority of Operators Each operator is assigned priority as shown in the following table. Relative oper-
ators are not assigned priority in respect to each other, and are executed in se-
quence starting from the left.

Priority Operator Operation Classification

1 () Gives priority to () Expression in ()

2 Numeric function Returns numeric value Function

Character function Returns character string

3 ^ Exponential operation Arithmetic operator

4 – Negative sign

p

5 *, / Multiplication, division of real number

6 ¥ or \ Division of integer

7 MOD Remainder

8 +, – Addition, subtraction

9 = Equal to Relative operator

<>, >< Not equal to

p

<, > Less than, greater than

<=, =< Less than or equal to

>=, => Greater than or equal to

10 NOT Negation Logic operator

11 AND Logical product

g p

12 OR Logical sum

13 XOR Logical exclusive sum

14 IMP Implication

15 EQV Equivalence

16 = Substitutes right member into left member Substitution

Character Operations The only operation available for character variables and character constants is
adding (coupling).
10 PARACT 0
20 A$ = ”BASIC”
30 B$ = ”UNIT”
40 PRINT A$ + B$
50 END PARACT

Result of execution

BASIC UNIT

Changing Program Flow
It may be necessary to change the flow of the program execution according to
the result of an operation or conditions. The BASIC Unit can change the flow of
program execution by using the following program control commands:

Instruction Operation

FOR TO STEP NEXT Repeatedly executes program enclosed by FOR and NEXT commands the specified number
of times

GOSUB RETURN Calls subroutine and returns from subroutine

GOTO Unconditionally jumps to specified line number

IF THEN ELSE/
IF GOTO ELSE

Selects line to be execution in accordance with result of relative or logic expression

ON GOSUB/ON GOTO Branches to specified line

WHILE WEND Repeatedly executes a series of commands until condition is satisfied

BASIC Syntax and Operations Section 4-1

57

Repeating the same processing is called a loop. Loop processing can be im-
plemented by using the FOR TO STEP NEXT command. This command re-
peatedly executes the processing enclosed between FOR and NEXT.

FOR variable name = initial value
TO end value STEP increment

NEXT variable name

Processing to be repeated

Loop processing can also be performed by using the GOTO command. However,
if the number of times the processing to be repeated is fixed, the FOR TO STEP
NEXT command is used. A sample program using this command is shown be-
low.
90 ’Calculate even sum and odd sum from 0 through 100.
100 PARACT 0
110 A% = 0
120 B% = 0
130 FOR I%=0 TO 100 Sum of even numbers and odd numbers.

from 0 to 100
140 J%=I% MOD 2
150 IF J%=0 THEN A%=A% + I% ELSE B%=B% + I%
160 NEXT I%
170 PRINT ”The even number sum 0 through 100?”;A%
180 PRINT ”The odd number sum 0 through 100?”;B%
190 PRINT
200 END
210 END PARACT

Result of execution

The even number sum 0 through 100? 2550
The odd number sum 0 through 100? 2500
The FOR TO STEP NEXT command can also nest loops as follows:

Loop 1 Loop 2

FOR I = 1 TO 10

NEXT I

FOR J = 1 TO 15

NEXT J

Loop 2 is set as a nest of box.

The variable name of NEXT can be omitted.

Instead of specifying the number of times for the FOR TO STEP NEXT com-
mand, it may be necessary to specify a condition under which repetition should
be executed, for example, when the number of times the execution is to be re-
peated is not known such as when the processing is to be executed until X = 0.
In this case, the WHILE WEND command is used as follows:

WHILE relative expression

WEND

Processing to be repeated

To Repeat the Same
Process

To Specify Conditions for
Repetition

BASIC Syntax and Operations Section 4-1

58

Indefinite loop where relative expression is 1

Example:

WHILE 1 to WEND

The WHILE WEND command executes the processing enclosed between
WHILE and WEND until the condition specified by the relative expression is not
satisfied (i.e., becomes false (0)).

The FOR TO STEP NEXT command is used to repeat the same processing at
the same location. However, it may be necessary to repeat the same processing
at different locations, depending on the program. For example, if the same pro-
cessing should be executed to various measured data, and if the same program
is described for each measured data, the program becomes redundant. In this
case, a subroutine is created and called as required by using the GOSUB and
RETURN commands.

RETURN

GOSUB label name of subroutine (xxx)

�

GOSUB label name of subroutine (xxx)

�

Calls subroutine

Calls subroutine

Subroutine

xxx to

The following is a sample program using the GOSUB RETURN command.
Calling and returning from subroutine
100 PARACT 0
110 *START
120 PRINT ”Program calculating area of circle”
130 INPUT ”Input radius (to end, radius = 0)”;R%
140 IF R%=0 THEN END
150 GOSUB *CAL
160 PRINT ”Area of radius ”;R%;” is ”;S!;”.”
170 GOTO *START
180 ‘
190 *CAL Subroutine calculating area of circle.
200 S! = 3.14*R%*R%
210 RETURN End of subroutine by RETURN.
220 END
230 END PARACT

Result of execution

Program calculating area of circle
Input radius (to end, radius = 0)?5
Area of radius 5 is 78.5
Program calculating area of circle
Input radius (to end, radius = 0)0
Ok

To Execute the Same
Processing at Different
Locations

BASIC Syntax and Operations Section 4-1

59

As shown above, by using subroutines the program can be divided into several
modules so that it can be easy to see and develop and so that the same process
can be executed from different locations.

Program Program

Task 1

Task 2

Task 3

Task 1

Task 2

Task 3

Operation
processing

Operation
processing

Operation
processing

Operation
processing

When a subroutine is called, a return address is stored in a memory area so that
the program execution can be returned to the main routine after the subroutine
has been executed. This memory area is called a stack. To return the execution
from a subroutine to the main routine, the return address is restored from the
stack by the RETURN command.

Calling Subroutines

Return address

Main program

Subroutine

Return address

Stack

RETURN

GOSUB

Only one level can be restored by the RETURN command. This means that to call
another subroutine (2) from one subroutine (1) as shown below, the RETURN
command is necessary for each subroutine.

Main program

Subroutine 2

RETURN
RETURN

Subroutine 1

GOSUB

GOSUB

RETURN Command Ending
Subroutine

BASIC Syntax and Operations Section 4-1

60

To select and execute processing according to the result of a relative expres-
sion, the IF THEN ELSE or IF GOTO ELSE command is used.

Example

IF relative expression THEN line no. ELSE line no.
string
label

string
label

The following is a sample program using the IF THEN ELSE and IF GOTO
commands.
Conditional branch operation
100 PARACT 0
110 *START
120 PRINT ”0: End 1: Sum 2: Difference 3: Product”
130 INPUT ”Select from menu”;I%
140 IF I%=0 THEN END When the input value is 0.
150 IF I%>3 OR I%<0 THEN GOTO *EPROCESS
160 INPUT ”A”;A#
170 INPUT ”B”;B#
180 IF I%=1 THEN PRINT A#;”+”;B#;”=”;A#+B# ELSE *NEXT1

When the input value is 1.
190 GOTO *START
200 *NEXT1
210 IF I%=2 THEN PRINT A#;”–”;B#;”=”;A#–B# ELSE *NEXT2

When the input value is 2.
220 GOTO *START
230 *NEXT2
240 IF I%=3 THEN PRINT A#;”*”;B#;”=”;A#*B#

When the input value is 3
250 GOTO *START
260 *EPROCESS When the input value is other than.

above
270 PRINT” ***INPUT ERROR***”
280 GOTO *START
290 END
300 END PARACT

Result of execution

0: End 1: Sum 2: Difference 3: Product
Select from menu? 1
A ? 42
B ? 39
42 + 39 = 81
0: End 1: Sum 2: Difference 3: Product
Select from menu? 3
A ? 81
B ? 27
81 * 27 = 2187
0: End 1: Sum 2: Difference 3: Product
Select from menu? 0

To select a line number to which the execution is to branch according to the value
of an expression, the ON GOSUB or ON GOTO command is used.

ON expression GOSUB line no. line no. line no....
label labellabelGOTO

Example
ON ABC GOSUB 1000, 2000, 3000, *SUB3, 5000
ON X1% GOTO *LAB1, 1500, *LAB3, *LAB4

Changing Processing
According to Conditions

Changing Processing
According to Value of an
Expression

BASIC Syntax and Operations Section 4-1

61

If the value specified by the numeric expression is 1, the execution branches to a
line number specified first. If the value is 2, the execution branches to a line num-
ber specified second. If the value is 3, the execution branches to a line number
specified third. A sample program using the ON GOSUB and ON GOTO com-
mands is shown below.
Expression value branch
100 PARACT 0
110 *PRCS
120 PRINT ”(1: Sum 2: Difference 3: Product 4: End) ”;
130 INPUT ”Select number”;A%
140 IF A%<1 OR A%>4 THEN PRINT ”INPUT ERROR!!”: GOTO
*PRCS
150 IF A%=4 GOTO *E
160 PRINT ”Input 2 integers”
170 INPUT S1%
180 INPUT S2%
190 ON A% GOSUB *PLUS, *MINUS, *MULT
200 GOTO *PRCS
210 *E When A% is 4.
220 END
230 ’
240 *PLUS When A% is 1.
250 PRINT S1%;”+”;S2%”=”;S1%+S2%
260 RETURN
270 ’
280 *MINUS When A% is 2.
290 PRINT S1%;”–”;S2%”=”;S1%–S2%
300 RETURN
310 ’
320 *MULT When A% is 3.
330 PRINT S1%;”*”;S2%”=”;S1%*S2%
340 RETURN
350 END PARACT

Result of execution

(1: Sum 2: Difference 3: Product 4: End) Select number?
1

Input 2 integers
? 12
? 23
12 + 23 = 35
(1: Sum 2: Difference 3: Product 4: End) Select number?

3
Input 2 integers
? 31
? 23
12 * 23 = 713
(1: Sum 2: Difference 3: Product 4: End) Select number?

4
ON GOSUB and ON GOTO functions are similar to each other. When ON GOTO is
used, the destination will not be the same subroutine as ON GOSUB.

BASIC Syntax and Operations Section 4-1

62

4-2 Writing and Entering Programs

4-2-1 Preparations
When developing or editing program, the uppercase and lowercase characters
are not distinguished.

The uppercase and lowercase characters are also not distinguished in describ-
ing variable names, constant names, and array names. However, they are dis-
tinguished in character strings and comments.

When the program is displayed by the LIST command, it is displayed in upper-
case characters.

Enable writing with the memory protect switch.

4-2-2 Program Storage Locations
When programs are input from a terminal, they are created in the user program
source program area. Commands that read the program to the terminal, such as
LIST, handle the program as source code.

When programs are executed they are automatically compiled into execution
code and moved into the program execution area, requiring a certain amount of
processing time. If the same program is executed a second time without alter-
ation, this processing time is eliminated.

When programs are written to or read from EEPROM, the entire program area is
copied as source code. Because the entire area is always copied, the size of the
program does not affect the processing time.

When programs are written to or read from a Memory Card, only the program
with the designated program number is transferred.

If the Memory Switches are set to specify automatic program transfer or auto-
matic starting, the source code is loaded and recompiled each time the BASIC
Unit is started. The Memory Switches can be set to transfer the program from a
Memory Card or from EEPROM.

4-2-3 Allocating a Program Area
1, 2, 3... 1. Allocate areas to develop and store the program. Three areas are available,

each of which separate programs can be developed and stored.
PGEN_2� 2 is the program no. (1 to 3).

2. Confirm that the program area has been allocated.
PINF �

3. The following information is displayed:

No. PNAME S–CODE E–CODE GLOBAL LOCAL
1 TEST 41
*2 4
3 4

FREE 64207 112276

* on the left of No. indicates the area currently used.

4-2-4 Clearing Program Area
If a program previously developed or used remains in the allocated program
area, clear the area. If the program is given a name, first delete the name by us-
ing the PNAME command, and clear the program area with the NEW command.
PNAME�””� Deletes program name.
NEW� Clears program area.
If the program is not given a name, the program can be cleared only with the NEW
command.

Writing and Entering Programs Section 4-2

63

4-2-5 Generating Line Numbers
Generate line numbers automatically by using the AUTO command.
AUTO�100,5� 100 is the start line no. and 5 is the in-.

crement.
In this case, the program starts from line 100, and the line number is increm-
ented by 5.

The specification of increment can be omitted, in which case, the program line
number is incremented by 10.
AUTO�100� 100 is the start line no..
Both the start line number and increment can be omitted, in which case, the pro-
gram with line number 10 is incremented by 10.
AUTO�
In this case, the following messages are displayed. Input the program below
these messages.
AUTO
Ok
10
To end generation of the line numbers, input CTRL+X, CTRL+C, or press carriage
return after the line numbers have been displayed.

Line numbers can also be manually input one at a time without using the AUTO
command.

4-2-6 Writing a Program
Input and write the program along with line numbers. Each line must end with a
carriage return. A new line number will automatically be displayed. Continue in-
putting the program.

As an example, input the following program:

Key Input
PARACT�0�
A=3:B=4�
FOR�I=1�TO�3�
A=A+B�
PRINT�A�
NEXT�I�
END�
END�PARACT�
Program
10 PARACT 0
20 A = 3 : B = 4
30 FOR I = 1 TO 3
40 A = A + B
50 PRINT A
60 NEXT I
70 END
80 END PARACT
Input CTRL+X, CTRL+C, or press carriage return to end generation of the line
numbers.

Note The BASIC Unit is provided with a multitasking function by which more than one
task (program) can be processed in parallel. The programs in the BASIC Unit
should be written in units of tasks. PARACT 0 on line 10 in the above example
program is a command indicating the beginning of a task. A task can be num-
bered 0 to 15. END PARACT on line 80 indicates the end of a task. For further
information, refer to 6-2 Multitasking.

Writing and Entering Programs Section 4-2

64

4-2-7 Editing Programs
To edit a program, use the EDIT command. With this command, read and edit
one line of the developed program at a time.

To edit programs, it is necessary to write characters over existing characters
(overwrite mode), or insert new characters between existing characters (insert
mode).

With BASIC, the mode is changed between the overwrite and insert modes with
the memory switch (refer to 3-3-5 Memory Switch/Terminal Specification Setting
Area).

To change the mode, read the program with the EDIT command, and then input
CTRL+R or INS Key. The mode is alternately changed each time CTRL+R or INS
Key has been input. However, after one line has been edited, the setting of the
memory switch is assumed.

Power application

Default is set to the insert mode

Type in as EDIT�10�

Press CTRL+R or INS Key

Mode is set to overwrite

Press CTRL+R or INS Key

Mode is set to Insert

1, 2, 3... 1. Turn the Power ON.

2. Insert mode by memory switch.

3. Type as EDIT�10�

4. Press CTRL+R or INS Key to change the mode to overwrite mode.
or
Press CTRL+R or INS Key again to change the mode to insert mode.

The following procedure changes I=1 on line 30 into I=2.

1, 2, 3... 1. Read the program.
EDIT�30� 30 is line no. to edit.

Changing Overwrite/Insert
Mode

Editing Program in
Overwrite Mode

Writing and Entering Programs Section 4-2

65

2. The program of line 30 is displayed as follows. Move the cursor to the posi-
tion of 1 by using the Left Key.
EDIT 30
Ok
30 FOR I = 1 TO 3

3. Input 2 followed by carriage return. This has edited the program.
EDIT 30
Ok
30 FOR I = 2 TO 3

Inserting Characters The following procedure inserts I before PRINT A on line 50.

1, 2, 3... 1. Type EDIT�50�
2. The line to be edit is displayed as follows, then move the cursor to the posi-

tion A with the Left Key.
EDIT 50
Ok
50 PRINT A

3. Change the mode from the overwrite to the insert mode by pressing CTRL +
R or INS Key.

4. Insert I followed by carriage return.
EDIT 50
Ok
50 PRINT I,A
This has inserted I and edited the program.

4-2-8 Deleting in Programs
Deleting Characters The following procedure deletes A+ of A=A+B on line 40 of the following pro-

gram.

1, 2, 3... 1. Type EDIT�40�
2. The line to be deleted is displayed as follows, then move the cursor to the

position B with the Left Key.
EDIT 40
Ok
40 A = A + B
[BS][BS][] or [DEL][DEL][]

Note The BS Key of the CVSS has the same function as the DEL Key. How-
ever, depending on the terminal, the character at the cursor position
is deleted by the DEL Key.

EDIT 40
Ok
40 A = B

3. The program is edited when the carriage return is pressed.

Deleting Line The following procedure deletes line 40 in the above sample program.
To do this, only input the line number or use the DELETE command.
40� or DELETE�40�
More than one line can also be specified at a time by specifying a range as fol-
lows:
DELETE�120–150� 120 is the beginning line no. which re-.

quires editing and 150 is the end line
no. which requires editing

4-2-9 Copying in Programs
The following procedure copies program line 50 of the sample program below to
line 55.

1, 2, 3... 1. Type EDIT_50�

Writing and Entering Programs Section 4-2

66

2. The line to be copied is displayed as follows, then move the cursor to the
position 0 with the Left Key.

EDIT 50
Ok
50 PRINT I,A

3. Input the number of the line to which line 55 is to be copied.

Type 5�

4. This has copied the contents of line 50 to line 55.

EDIT 50
Ok
55 PRINT I,A

5. Next, A of line 50 is changed to B.

6. Move the cursor to the position of A. Input B and then carriage return.

EDIT 50
Ok
55 PRINT I,B

Any part of the program can be copied and edited. In addition to the above meth-
od, the line to be copied can be displayed by inputting, say EDIT 50, and a new
line can be created by changing the program and line number at the same time
and then pressing carriage return.

4-2-10 Merging Programs

The MERGE command can be used to add another program to the existing pro-
gram. Be sure that the line numbers in the two programs do not overlap.

4-2-11 Changing Line Numbers

To put line numbers in order and assign new line numbers, the RENUM command
is used.

RENUM�

In the following example, the program is changed so that the first program line
starts with 100 and the program lines are incremented by 10:

RENUM�100,10,10� 100 is the new first line, left 10 is the old.
first line, and the right 10 is the incre-
ment

In the above example, the line numbers of the existing program are changed, so
that the program starts with line 100, instead of 10, and the line numbers are
incremented by 10. The program lines less than 10 are left untouched.

The line numbers specified for GOTO and GOSUB commands are automatically
changed by the RENUM command. Therefore, it takes some time to complete the
processing. Wait until the message OK is displayed.

4-2-12 Naming Programs

To identify the contents of a program, a program name is given to each program
area by the PNAME command. When a program name has been given, the pro-
gram cannot be erased by the NEW command.

PNAME�”SAMPLE”� SAMPLE is the program name.

When the PNAME command is executed without specifying a program name, the
existing program name is deleted.

PNAME�””�

After this, a new program name can be given by another PNAME command.

Writing and Entering Programs Section 4-2

67

4-2-13 Keys Operations in Editing

The following tables shows the keys that can be used in editing operations.

Key Operation

Left Key Moves the cursor to the left. This key is invalid while the cursor is at the beginning of a line.

Right Key Moves the cursor to the right. This key is invalid while the cursor is at the end position of a
line + 1 column.

Up Key Moves the cursor up. If this key is pressed while the cursor is at the top line, the cursor
moves to the leftmost position. If the cursor is at the leftmost position of the top line, this key
is invalid.

Down Key Moves the cursor down. If this key is pressed while the cursor is at the bottom line, the
cursor moves to the bottom position of the + 1 column. With the cursor at this position,
further pressing of this key is invalid.

Return Executes editing functions and rewrites the program. After that, line feed and carriage return
are performed.

SHIFT+HOME/CLR Moves the cursor to the first position of a line. If the cursor is at the top line, this key is
invalid. This function is not provided to the CVSS.

CTRL+H or BS Deletes the character at the left of the cursor. This key is invalid with the cursor at the
leftmost position of a line.

DEL Deletes the character at the cursor position. This key is invalid while the cursor is at the
rightmost position + 1.

CLR or CTRL+L Clears the entire screen and moves the cursor to the home position (upper left). The
processing under execution is canceled.

CTRL+E Deletes the characters starting from the cursor position to the end of the line.

CTRL+R or INS Switches between the overwrite mode and insert mode. Either the overwrite or insert mode
is assumed according to the setting of the memory switch when editing is started by the
EDIT command.

CTRL+X or CTRL+C Terminates the execution of the AUTO or EDIT command.

Note 1. SHIFT+HOME CLR represents the pressing of the HOME CLR Key while
holding down the SHIFT Key.

2. CTRL+L represents the pressing of the L Key while holding down the CTRL
Key.

3. The edit function is executed when the carriage return has been pressed,
and the program in the BASIC Unit will be rewritten accordingly.

4. The DEL Key and BS Key of CVSS are the same. In addition, HOME CLR
and SHIFT+HOME CLR Keys are invalid.

4-3 Program Execution and Debugging

4-3-1 Preparations

The BASIC Unit is provided with commands that execute or debug the program.

To start or stop the program, the following commands are used:

RUN, STOP, BREAK

To resume program execution, or execute the program on a step-by-step basis,
these commands are used:

CONT, STEP

To display the execution status of the program, these commands are used:

TRON, TROFF

Program Execution and Debugging Section 4-3

68

By using the above commands, the program is debugged. As an example, the
following sample program is debugged.
10 PARACT 0
20 A = 3 : B = 4
30 FOR I = 1 TO 3
40 A = A + B
50 PRINT A
60 NEXT I
70 END
80 END PARACT
Execution can also be stopped from the keyboard by inputting CTRL-X or
CTRL-C. When CTRL-X is input, all execution, including I/O processing, will be
aborted immediately and “Quit in ...” will be displayed. STEP and CONT cannot be
used after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and
CONT cannot be used.

Note Data received while program execution is stopped may not be retrievable after
CONT is executed. To avoid this problem, make sure that data has been received
and jump to the address defined with ON PC before setting the BREAK point.

4-3-2 Execution
1, 2, 3... 1. To execute the program, use the RUN command.

RUN,ERASE�
2. Specify ERASE to clear the non-volatile variables.
3. Display and confirm the sample program. (LIST�)
4. Execute the program. ERASE can be omitted.
5. Type RUN and press ENTER to execute the program.
LIST
10 PARACT 0
20 A = 3 : B = 4
30 FOR I = 1 TO 3
40 A = A + B
50 PRINT A
60 NEXT I
70 END
80 END PARACT
Ok
RUN
 7
 11
 15
Ok

6. If an error is found on a line of the program while the program is executed,
the execution is stopped at that point, and the line number and an error mes-
sage identifying the nature of the error are displayed. To correct the error,
display the line by using the EDIT command, input the correct command,
and press the carriage return. Then input again and execute the program by
the RUN command. If another error message is displayed, correct the pro-
gram in the same manner and execute it again.

Displaying Execution Result Commands can be input or directly executed from the terminal without assigning
line numbers. The values of variables immediately after the program has been
executed can be displayed and checked by the PRINT command.
Type PRINT�A,I�
PRINT A, I
 15 4
Ok

Program Execution and Debugging Section 4-3

69

4-3-3 Stopping and Resuming Execution

STOP Command The STOP command is inserted in the program in advance. When the program is
executed and the STOP command is reached, the program is stopped. In the fol-
lowing example, the STOP command is placed at line 55.
55�STOP� 55 is the line number into which STOP.

command is inserted.

1, 2, 3... 1. Execute the program.
RUN�

2. The program is stopped at line 55 by the STOP command and the line num-
ber (55) is displayed.
55 STOP
RUN
 7
Stop in 55

CONT Command To resume the program stopped by the STOP command, the CONT command is
used.
CONT�
Erase line 55. (55�)
CONT
 11
Stop in 55
CONT
 15
Stop in 55
CONT
Ok
55

BREAK Command The program execution can also be stopped by the BREAK command. With this
command, the line where execution is to be stopped is specified. This method
stops the execution without modifying the program. Up to 10 lines, where the
execution is to be stopped, can be specified.
BREAK�20,70� 20 and 70 are the line nos. where the.

program is required to break

1, 2, 3... 1. First specify a break line execute the program. (RUN�)

2. Displays a message and stops the program before executing line 20. Then
resumes execution. (CONT�)

3. Displays a message and stops the program before executing line 70. Then
resumes execution. (CONT�)
BREAK 20, 70
Ok
RUN
Break in 20
CONT
 7
 11
 15
Break in 70
CONT
Ok

To cancel the effect of the BREAK command, use the BREAK DELETE com-
mand.
BREAK�DELETE�20� 20 is the break line no.
BREAK�DELETE�ALL� ALL means all break lines are deleted.
BREAK� BREAK means the set break line is dis-.

played

Program Execution and Debugging Section 4-3

70

4-3-4 Step Execution
After stopping the execution of the program, the program can be executed one
line at a time by the STEP command.
STEP�

1, 2, 3... 1. First, specify a break point and execute the program.
BREAK 20
RUN

2. The program execution is stopped at line 20. Then four steps of the program
are executed on a step-by-step basis. (STEP�)

3. 7 is displayed.

4. Display the contents of A and B by the PRINT command.
PRINT�A,B�

5. Resume execution by the CONT command.
CONT�

6. Clear the break point. (BREAK�DELETE�ALL�)
BREAK 20
Ok
RUN
Break in 20
STEP
STEP
STEP
STEP
STEP
 7
PRINT A, B
 7 4
CONT
 11
 15
Ok
BREAK DELETE ALL
Ok

Note Since line 20 is a multi-statement, the STEP command must be executed two
times to execute this line. Also, because the execution code (E code) is an inter-
mediate code, sometimes one STEP command will execute two consecutive
lines and sometimes two STEP commands will be required to execute one line.

4-3-5 Tracing Program Execution
The line numbers of the program under execution can be displayed in the order
of execution by the TRON command. This function is canceled by the TROFF
command.
TRON�1� 1 is the task no..
TROFF�ALL� ALL is the task no..
If ALL is specified instead of the task number, the line numbers of all the tasks
are traced (or tracing is canceled). If neither a task number nor ALL is specified,
the current task is traced.

1, 2, 3... 1. Starts tracing. (TRON�)

2. Run the program (RUN�). Then displays line number under execution.

3. Cancels tracing (TROFF�). Then starts tracing task 1.
TRON
Ok
RUN
[10][20][30][40][50] 7
[60][40][50] 11

Program Execution and Debugging Section 4-3

71

[60][40][50] 15
[60][70] Ok
TROFF
Ok
TRON 1
Ok
RUN
 7
 11
 15
Ok

When @ is input, the number of the task under execution can be checked.

4-4 Saving and Loading Programs
The program can be saved to/loaded from the following three devices:

EEPROM If the BASIC Unit is provided with EEPROM, all the three programs in the source
code area can be saved to or loaded from the EEPROM.

Floppy Disk Each program can be saved to or loaded from a floppy disk by the save/load
function of the computer with terminal mode connected to the BASIC Unit.

Memory Cards If the CPU Unit is equipped with a memory card, the program can be saved to or
loaded from the memory card.

Note To load the program, set the memory protect pin of the DIP switch to the OFF
position. Otherwise, an error will occur.

Pin no. DIP switch setting

1 Terminal resistor (OFF)

2 Not used (OFF)

3 Memory switch (invalid) (OFF)

4 Memory protect (OFF)

4-4-1 EEPROM
With the BASIC Unit with EEPROM (CV500-BSC21/41/61), the program can be
saved to or loaded from the EEPROM. In addition, the program in the EEPROM
can be verified.
To save the program, use the ROMSAVE command.
When this command is executed, the contents of all the user program areas are
written to the EEPROM.
ROMSAVE�
To read (load) the program written to the EEPROM to the user program areas,
use the ROMLOAD command.
ROMLOAD�
All the contents of the EEPROM are read to all the user program areas. Conse-
quently, the current contents of the user program areas are erased.
To compare the contents of EEPROM and those of the user program areas, use
the ROMVERIFY command.
ROMVERIFY�
This command verifies the contents of the user program areas with those of EE-
PROM. If a discrepancy is found, the message “VERIFY ERROR” is displayed.

Note If the above three commands are executed with the BASIC Unit not equipped
with EEPROM, an error occurs.

4-4-2 Memory Cards
The program of the BASIC Unit can be saved to or loaded from the memory card
of the CPU Unit. The memory card must be formatted in advance by a Memory
Card Writer.

Saving and Loading Programs Section 4-4

72

To save the program to the memory card, use the SAVE command.
SAVE�”0:SAMPLE”� 0 is the device name (0: memory card),.

and SAMPLE is the file name
The contents of the program area currently used are saved to the memory card
under a specified file name in text format (in displayed image). If the specified file
name already exists in the memory card, the contents of the existing file are
changed.
To load the contents of the memory card to the program area of the BASIC Unit,
use the LOAD or MERGE command.
To Load New Program:
LOAD�”0:SAMPLE”� 0 is the device name (0: memory card),.

and SAMPLE is the file name
The LOAD command clears the currently used area and loads the program to
that area.
To Load Additional Program:
MERGE�”0:SAMPLE”� 0 is the device name (0: memory card),.

and SAMPLE is the file name
The MERGE command loads an additional portion of a program to the area cur-
rently used.
Only files of text format can be loaded. If a file of specified file name does not
exist on the memory card, an error message is displayed. If the line numbers of
the program loaded by the MERGE command overlap the line numbers of the ex-
isting program, the line numbers of the newly loaded program take precedence.

4-4-3 Saving and Loading via Personal Computers
Personal computer editing operations can be used to create source programs in
the BASIC Unit or transferred programs between the personal computer and the
BASIC Unit. Connect the personal computer to the terminal port of the BASIC
Unit as proceed as described next.
Use the following program to load programs from the personal computer to the
BASIC Unit.

1, 2, 3... 1. Use an editor in the personal computer to create a source program consist-
ing of BASIC Unit commands as a file in memory or on a disk.

2. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.

3. Create a program in the personal computer to do the following.
a) Send the LOAD command to the BASIC Unit to initialize reception.
b) Send the program created in step 1. one line at a time to the BASIC Unit.
c) Send the file end code after the last line of the source program has been

sent.
Use the following program to save programs from the BASIC Unit to the personal
computer.

1, 2, 3... 1. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.

2. Create a program in the personal computer to do the following.
a) Send the LIST command to the BASIC Unit to have the BASIC Unit out-

put one line at a time of a source program.
b) Store each line of the program being read into the personal computer

into a file in memory or on a disk.
c) Detect “OK” in the transmission from the BASIC Unit to determine the end

of the transmission.
The following sample program can be used as reference in program develop-
ment. If there are problems with loading using this program, increase the time on
line 340.

Saving and Loading Programs Section 4-4

73

100 ******** ********.
110 ******** CPU Unit–BASIC UNIT UPLOAD/DOWNLOAD ********.
120 ******** ********.
130 >>This program uploads/downloads programs created on the CPU Unit from/to.
140 the BASIC Unit..
150 *SELECT.
160 INPUT ”SELECT L(LOAD(Computer–>BSC))/S(SAVE(BSC–>Computer)) –––”;k$.
170 IF K$=”L” GOTO *PCBSC.
180 IF K$=”K” GOTO *BSCPC.
190 GOTO *SELECT.
200 . .
210 –––– DOWNLOAD (Computer to Basic Unit) ––––.
220 <<<Caution>>>.
230 If a program name is registered, use PNAME ”” to delete it in advance..
240 *PCBSC.
250 ON ERROR GOTO *EEE Breaks at file end..
260 OPEN ”COM:N83XN” AS #1 8 bits, no parity, 2 stop bits.
270 OPEN ”BSCTEMP.BAS” FOR INPUT AS #2 Opens source file..
280 B$=”LOAD #1,”+CHR$(&H22)+”COMU:”+CHR$(&H22) Preparing for LOAD.
290 *CMND.
300 PRINT #1,BS Sends =.
310 LINE INPUT #1,A$ Reads command echoback.
320 IF A$<>B$ GO TO *CMND Checks =.
330 *LOOP.
340 FOR TT=1 TO 100 : NEXT Waits for BASIC load processing.
350 LINE INPUT #2,A$ Reads one line of source program.
360 PRINT #1,A$+CHR$(13);.
370 GO TO *LOOP Loops until end of file is reached.
380 *EEE.
390 PRINT #1,CHR$(&H1A) Sends file end code.
400 LINE INPUT #1,A$ Reads “OK” echoback.
410 CLOSE #1 : CLOSE #2.
420 END.
430 .
440 –––– UPLOAD (Basic Unit to Computer) –––.
450 *BSCPC.
460 OPEN ”COM:N83XN” AS #1 8 bits, no parity, 2 stop bits.
470 OPEN ”BSCTEMP.BAS” FOR OUTPUT AS #2 Opens file to save in.
480 B$=”LIST” Preparing for LIST.
490 PRINT #1,B$ Sends =.
500 LINE INPUT #1,A$ Reads command echoback.
510 *LOOPS.
520 LINE INPUT #1,A$ Reads one line from file.
530 IF A$=”OK” THEN *FINAL Checks for end.
540 PRINT #2,A$ Sends one line.
550 GOTO *LOOPS Loops until end of file is reached.
560 *FINAL.
570 CLOSE #1 : CLOSE #2 CLOSE.
580 END.

Saving and Loading Programs Section 4-4

75

SECTION 5
Data and Files

This section provides information on data management and operations for the BASIC Units.

5-1 Data Operations 76.
5-1-1 Handling Numeric Data 76.
5-1-2 Handling Character Data 79.
5-1-3 Handling Large Quantities of Data 81.
5-1-4 Handling Time Data 82.
5-1-5 Data Input/Output in Program 83.

5-2 File Operations 84.
5-2-1 Files 84.
5-2-2 Manipulating Data Files 85.

76

5-1 Data Operations

5-1-1 Handling Numeric Data

Types of Numeric Data
The numeric data the BASIC Unit handles is classified into integers and real
numbers, as shown below, and can be expressed in various formats.

Numeric data

Integers

Real numbers

Octal

Decimal

Hexadecimal

Single-precision
real number

Double-precision
real number

Octal Format In this format, the numeric data is expressed in numerals 0 through 7 with &O or &
prefixed. With the BASIC Unit, up to 5 digits of octal numbers can be expressed
(from 0 to 77777).

Examples:
&O123
&256

Decimal Format The BASIC Unit can handle decimal integers from –32768 to +32767.

Examples:
–256
 123%

Hexadecimal Format In this format, the numeric data is expressed in numerals 0 through 9 and alpha-
betic characters A through F with &H prefixed. The BASIC Unit can represent
hexadecimal numbers from 0 to FFFF.

Examples:
&H123
&H2E4F

The numeric data of this type is expressed using up to 5 digits with the sixth digit
rounded. The range of the numeric data is from –3.4E+38 to 3.4E+38 for vari-
ables and –3.40282E+38 to 3.40282E+38 for arithmetic results. The represen-
tation format of single-precision real number can be any of the following:

• Number of six digits or less

• Exponential format with E

• With ! suffixed to numeral

Examples:
 3.21
–1.23E + 4
345.2!

The numeric data of this type is expressed with up to 15 digits with the 16th
digit rounded. The range of the numeric data is therefore from
–1.701411834604692D+307 to 1.701411834604692D+307. The representa-
tion format of double-precision real numbers can be any of the following:

• Number of seven digits or less

• Exponential format with D

• With # suffixed to numeral

Single-precision Real
Numbers

Double-precision Real
Numbers

Data Operations Section 5-1

77

Examples:
9876543210
 –1.2345D – 12
 345.21 #
 12345.6789098

Exponential Format When a number with many digits is handled, writing many 0s is cumbersome
and can cause errors in the program. Therefore, the BASIC Unit employs an ex-
ponential format to handle a number having many 0s. For example, to express
number 12300000, it is simpler and easier to read by expressing it using an ex-
ponent, as follows:

= 1.23 x 10000000
= 1.23 x 107

With the BASIC Unit, this exponent is represented as follows:

= 1.23E+7 ... (single-precision real numbers)
or,
= 1.23D+7 ... (double-precision real numbers)

Here, 1.23 is called the mantissa, while E+7 and D+7 are called the exponents.
This representation method is called exponential format. The relationship
among the numbers and units of the exponent are as follows:

Indication Number Name Symbol

E–3 0.0001 milli m

E–6 0.0000001 micro µ
E–9 0.0000000001 nano n

E–12 0.0000000000001 pico p

E+3 1000 kilo K

E+6 1000000 mega M

E+9 1000000000 giga G

E+12 1000000000000 tera T

Number Precision and Type Conversion
Usually, the same type of numbers are operated (for example, an integer is oper-
ated with an integer, and a single-precision number is operated with a
single-precision number). On some occasions, however, various types such as
integer, single-precision real numbers, and double-precision real numbers must
be mixed when executing an operation. On these occasions, the type having the
highest precision takes precedence and the other types are converted into that
type.
10 PARACT 0
20 PRINT 10%¥3% Integers.
30 PRINT 10%/3! Integer and single-precision real num-.

bers
40 PRINT 10!/3# Single-precision real-numbers and.

double-precision real-numbers
50 END PARACT

Result of execution

3
3.33333
3.333333333333333
To determine the types of variables at the beginning of a program, the DEFINT,
SNG, DBL, or STR command is used.

Data Operations Section 5-1

78

Examples:
DEFINT A Specifies variable name starting with A.

as integers
DEFSNG B Specifies variable name starting with B.

as single-precision number
DEFDBL C Specifies variable name starting with C.

as double-precision number
DEFSTR D Specifies variable name starting with D.

as character
To perform batch conversion of variable types from A to D, the range of type must
be specified as follows, by using a hyphen:

Example:
DEFSNG B – E Converts all types of variables with.

names starting with B, C, D, or E into
single-precision number.

Numeric Operation Functions
The BASIC Unit supports the following functions to execute arithmetic opera-
tions based on numeric data.

Function Meaning

ABS Gives absolute value

ACOS Gives arc cosine

ASIN Gives arc sine

ATN Gives arc tangent

CDBL Converts into double-precision real number

CINT Converts into integer

COS Gives cosine

CSNG Converts single-precision real number

CVI/CVS/CVD Converts character string into numeric value

EXP Gives value of exponential function

FIX Gives integer

INT Truncates at decimal point

LOG Gives natural logarithm

RND Gives random number

SGN Gives sign

SIN Gives sine

SQR Gives square root

TAN Gives tangent

List of Functions Executing
Arithmetic Operations

Data Operations Section 5-1

79

5-1-2 Handling Character Data
The BASIC Unit also handles character data in addition to numeric data. When
characters are handled as data, various commands and functions that manipu-
late character strings in various manners are necessary. The BASIC Unit there-
fore supports the following character string manipulation commands and func-
tions.

The length of a character variable is fixed, and the default length is 18 characters
unless otherwise specified. If more than 19 characters are specified as a charac-
ter variable, the excess characters are ignored, but no error occurs. To handle
more than 19 characters, the necessary length (i.e., number of characters) must
be declared by the DIM or OPTION LENGTH command. The maximum number
of characters in a string is 538.

Functions Retrieving Part of Character String
For functions that retrieve the specified number of characters from a specified
location of a character string, or that check the number of characters of a charac-
ter string, LEFT$, RIGHT$, MID$, and LEN are used.

The LEN function checks the number of characters of a character string.

Example:
L = LEN(A$) Stores the number of characters of.

string A$ in L

The LEFT$ and RIGHT$ functions retrieve n characters from the left and right
ends of a character string, respectively.

Examples:
A$ = LEFT$(”BASIC UNIT”,2) Stores the left two characters “BA” from

“BASIC UNIT” in A$
A$ = RIGHT$(”BASIC UNIT”,5)

Stores the right five characters “�UNIT”
from “BASIC UNIT” in A$

The MID$ function retrieves the specified number of characters from the speci-
fied position of a character string.

Example:
A$ = MID$(”BASIC UNIT”,7,3)

Stores three characters “UNI” from “BA-
SIC UNIT” starting from the seventh
character position from the left in A$

Functions Searching a Character String
The INSTR function searches a specified character string from a character
string and returns its position.

Example:
X = INSTR(”ABCDEFGH”,”E”)

Checks the position of “E” in “ABC-
DEFGH” and stores the result, 5, into X

If the specified character string is not found, 0 is returned. In the above example,
even if more than one “E” exists, only “E” at the leftmost position in the character
string can be found because the character string is searched starting from the
left. To search a character string at a specified position, therefore, a position from
which the search is to be started must be specified.

Example:
X = INSTR(6,”ABCDEFGHE”,”E”)

Searches for “E” after the 6th character
position in “ABCDEFGHE”. If “E” is found,
its position (in this case, 9th position) is
stored into variable X

To Check Character String
Length

To Retrieve n Characters
from Ends of Character
String

To Retrieve Characters
from Character String

To Search and Return from
Character String

Data Operations Section 5-1

80

Functions Creating Character String Consisting of Identical Characters
The STRING$ or SPACE$ function is used to arrange identical characters or
spaces.

The STRING$ function is used to arrange as many of the identical characters as
required.

Example:
A$ = STRING$ (10,”*”) Stores character string consisting of 10.

*,“**********”, into A$
The maximum number of characters that can be arranged by this function is 538.
If two or more different characters are specified, only the one specified first is
assumed.

The SPACE$ function arranges as many spaces as required.

Example:
A$ = SPACE$(10) Stores 10 spaces into A$.

Commands Rewriting Part of Character String
To change only part of a character string, the MID$ command is used. Note that
the MID$ command is different from the MID$ function in use.
MID$(A$,X,Y)=B$ A$ is the character string rewritten, X is.

the position of character to or rewritten,
Y is the number of characters rewritten,
and B$ is the contents to be replaced
(character string)

Y characters from Xth position of A$ are replaced by Y characters of B$.

The number of characters to be rewritten can be omitted. In this case, the num-
ber of characters specified in the left member is assumed. As an example, the
following program replaces character string “ABCDE” with “OMRON”.
10 PARACT 0
20 A$ = ”ABCDE”
30 PRINT A$
40 B$ = ”OMRON”
50 MID$ (A$,1) = B$
60 PRINT A$
70 END PARACT

Result of execution

ABCDE
OMRON

Functions Converting Numeric Value and Character String
On some occasions, programming is easier if numeric values are handled as
characters. For example, numeric values are easier to see if each three digits
are delimited by a comma (,) as 123,000, or if 0s are prefixed to unify the number
of digits, as 0012, 0123, and 0001. To perform processing of this kind, it is neces-
sary to convert numeric values into character strings. The STR$ function is used
for this purpose.

Example:
A$ = STR$(1234) Stores the character string “1234” in A$.

To convert a character string into a numeric value, the VAL function is used.

Example:
A = VAL(1234) Stores character data “1234” in A as nu-.

meric value 1234

To Arrange Identical
Characters

To Arrange More Than One
Space

To Change Only Part of
Character String

To Convert Numeric Value
into Character String

To Convert Character String
into Numeric Value

Data Operations Section 5-1

81

5-1-3 Handling Large Quantities of Data
When handling a large quantity of data in a program, programming is extremely
difficult if separate variable is used for each data item. To facilitate programming,
therefore, variables called array variables are used. Array variables can specify
more than one data item under one variable name, and are classified into one-di-
mensional array variables and multi-dimensional (two-dimensional, three-di-
mensional, and so on) variables.

One-dimensional Array and Multi-dimensional Array
An array variable consists of a variable name followed by a numeric value en-
closed in (). This numeric value is called a subscript. An array variable having
only one subscript is called a one-dimensional array. An array having two sub-
scripts is called a two-dimensional array, and the one having three subscripts is
called a three-dimensional array. Generally, an array variable having two or
more subscripts is called a multi-dimensional array.
Examples:
X = A(5) Stores A(5) of one-dimensional array.

into X
Y = B(3,3) Stores B(3,3) of two-dimensional array.

into Y
For example, (12, 54, 33, 95, 28) can be represented by one array variable A as
A(0), A(1), A(2), A(3), and A(4).

Subscript 0 1 2 3 4

Data 12 54 33 95 28

The two-dimensional array is used to represent the data that can be represented
by rows and columns. For example, suppose that three parameters, voltage,
current, and temperature, are each measured three times. The first measured
data set of voltage, current, and temperature, (3, 5, 20), the second data set (2,
4, 21), and third data set (4, 6, 25) can be represented by a two-dimensional
array as follows:

Subscript 0 (voltage) 1 (current) 2 (temperature)

0 (first time) 3 5 20

1 (second time) 2 4 21

2 (third time) 4 6 25

Assuming the array variable name to be A, the second measured data of voltage
is specified as A(1,0), and the third measured data of temperature is specified
as A(2,2).

Use of Array Variables
Declaring Array Variables When using an array variable with the BASIC Unit, first declare the array variable

by using the DIM command. The number of array elements that can be specified
by one array variable is not restricted, but limited by the memory capacity of the
variable area.
Example:
DIM A(1,3) Allocates 2 x 4 = 8 array elements as.

array variable A (two-dimensional array)
of numeric data.

Result of execution

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

The above array elements are allocated in memory.

Data Operations Section 5-1

82

Usually, the subscript of an array starts from 0. However, it can be specified to
start from 1 by using the OPTION BASE command.

Example:
OPTION BASE 1
DIM A (2,3)

Result of execution

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

2 x 3 = 6 array elements are allocated in memory. The declaration made by the
OPTION BASE command cannot be changed once it has been made.

Array of Character Variables A character array of up to 538 characters can be handled by using a character
variable name.
DIM A$(50) 538 Defines one-dimensional character array.

variable having maximum character
storage area of 538 characters

Here, A$(50) is the character variable array name, and 538 is the maximum
number of characters.

5-1-4 Handling Time Data
The BASIC Unit also supports functions that handle time data such as dates and
hours.

To Check Current Time To check the current time, the TIME$ function is used.
10 PARACT 0
20 T$ = TIME$
30 HH$ = LEFT$ (T$, 2)
40 MM$ = MID$ (T$, 4, 2)
50 SS$ = RIGHT$ (T$, 2)
60 PRINT”Current time is ”;HH$;”:”;MM$;”:”;SS$;”.”
70 END
80 END PARACT

Result of execution

Current time is 23:07:26.

DATE$ Function This function is used to check the current date.
10 PARACT 0
20 D$ = DATE$
30 YY$ = RIGHT$ (D$, 2)
40 DD$ = MID$ (D$, 4, 2)
50 MM$ = LEFT$ (D$, 2)
60 PRINT”Today is ”;MM$;”–”;DD$;”–”;YY$;”.”
70 END
80 END PARACT

Result of execution

Today is 07–26–91.

Setting Lower-limit Value of
Subscript

Data Operations Section 5-1

83

5-1-5 Data Input/Output in Program
To read data by a program, the INPUT command or substitution statement such
as A = B is used. However, if a large quantity of data is to be handled or if the
input data is known in advance, describing the INPUT command or substitution
statement is inefficient and not necessary. To simplify data input/output in the
program, the READ and DATA commands are used.

The DATA command reads data (constants) continuously to the program. These
data items are automatically read to specified variables by the READ command.
A sample program using the DATA and READ commands is shown below.
10 PARACT 0
20 READ A$; B$ Reads character data from data state-.

ment on line 70
30 READ C, D, E Reads numeric data from data state-.

ment on line 80
40 PRINT A$; B$
50 PRINT C; D; E
60 END
70 DATA ”BASIC”,”UNIT” Character data known in advance. . . .
80 DATA 10, 16, 1990 Numeric data known in advance.
90 END PARACT

Result of execution

BASIC UNIT
10 16 1990
The READ and DATA commands are always used in pairs. The DATA command
can be described anywhere in the program because it is a non-executable state-
ment. As many DATA commands as required can be used in one program.

An error occurs if

• The number of character constants of the DATA command is read by the nu-
meric variable of the READ command (the numeric constant of the DATA com-
mand can be read as a character string by the character variable of the READ
command),

• The data of the DATA command has run out while the READ command is ex-
ecuted, or

• DATA of another task has been read.

If more than one READ and DATA command exists, data is read in the execution
sequence of the program. However, it may be necessary for the READ command
to read the DATA command on specified line. In this case, the RESTORE com-
mand is used. Note, however, that the DATA command of another task must not
be specified. A sample program using the RESTORE command is shown below.
10 PARACT 0
20 RESTORE 100
30 READ A$, B$ Reads character data from date state-.

ment on line 100
40 RESTORE 90
50 READ C, D, E Reads numeric data from data state-.

ment on line 90
60 PRINT A$; B$
70 PRINT C; D; E
80 END
90 DATA 10, 16, 1990 Numeric data known in advance.
100 DATA ”BASIC”, UNIT Character data known in advance. . . .
110 END PARACT

To Simplify Data
Input/Output in Program

To Read DATA Command
Using READ Command

Data Operations Section 5-1

84

Result of execution

BASIC UNIT
10 16 1990

5-2 File Operations

5-2-1 Files
A BASIC Unit file manages a cluster of program information and data. Files are
classified by the contents or access mode as seen in the following:

Data File and Program File
Files can be classified by contents into program files and data files.

Program File A program file is a BASIC source program file created by using the editing com-
mands of the BASIC Unit. This file can be read from or written to the memory
card of the CPU Unit by the SAVE, LOAD, or VERIFY commands.
10 OPEN...
20 PRINT...
30 IF...THEN...

Data File A data file is a file recording the data used by a program file. This file is opened by
the OPEN command, and read or written by the PRINT, WRITE, INPUT, PUT, or
GET commands. It is closed by the CLOSE command.
100 30 70
 60 11 23
 74 49 86

Note The BASIC unit reads or writes the memory card of the CPU Unit as program and
data files.

Sequential/Random Access File
Files can be classified by data access mode into two types: sequential file and
random access file.

Sequential File Access A sequential access file is sequentially read or written starting from the begin-
ning of the file and is also known as a consecutive file.

Data 1 Data 2 Data 3 Data n

Random Access File A random access file is read or written in units called records (one record is fixed
to 256 bytes with the BASIC Unit). This file can be accessed more quickly than
the sequential file.

Record 1 Record 2 Record 3 Record n

Data.....
(256 bytes)

File Operations Section 5-2

!

85

The sequential access file and random access file each have their own features,
seen as follows:

Feature Sequential access file Random access file

Data access Can only be read from beginning Can be read/written starting from any location (in record units)

Data length Can be changed freely Fixed

Changing data Entire file must be updated Can be changed in record units

Adding data Data is written at the end of file Can be written to any position

Data type Numeric data, character data Numeric data must be converted into character data

5-2-2 Manipulating Data Files
To input/output a file, a memory area called a buffer is used to temporarily store
data. The number assigned to this buffer is called a file number. One buffer cor-
responds to one file, and therefore, one buffer cannot be used by more than one
file. The file numbers that can be used are from #1 through #15. This means that
the maximum number of data files that can be simultaneously used is 15.

Data Buffer File

Memory card

#1 - #15

File Names
With the BASIC Unit, the data file can be read only by the memory card. In this
case, a file name must be given to the file. A file name must consist of eight char-
acters or less and start with an alphabetic character. A device name 0: is pre-
fixed to the file name to access the memory card. In addition, an extension con-
sisting of up to three characters can also be suffixed.
”0:MFILE.DAT” 0 is the device (0: memory card),.

MFILE is the file name, and DAT (pre-
ceded by “.”) is the extension

If the file name consist of 9 or more characters, or if the extension consists of 4 or
more characters, the excess characters are ignored and thus not recognized. A
period (.) must proceed the extension. A file name can also be specified in char-
acter string.

Caution Although file names in the BASIC Unit can consists of any characters except:, .,
and blanks, lowercase letters and the ¥ symbol can cause problems on DOS
machines and should be avoided.

Opening/Closing Files
Opening A file is opened by the OPEN command. Once a file has been opened, the file

number assigned to that file must not be used by any other files until closed by
the CLOSE command. The OPEN command specifies a file name, mode, and file
number. The mode does not need to be specified for a random access file.
Opening Sequential Access File
OPEN ”0:DATA2” FOR OUTPUT AS #1

0:DATA2 is the device and file name,
OUTPUT is the mode setting, and #1 is
the file number.

Three modes can be specified: INPUT (to read data from a file), OUTPUT (to write
data to the file), and APPEND (to add data to the file).
Opening Random Access File
OPEN ”0:SAMPLE” AS #1 0:SAMPLE is the directory and file.

name, and #1 is the file number.
If the mode is omitted, the random access file is assumed.

File Operations Section 5-2

86

Closing To end inputting/outputting of a file, the file number allocated by the OPEN com-
mand must be released by using the CLOSE command to close the file. When the
CLOSE command is executed, the data remaining in the buffer is written to the
file, so that the file number assigned to that file can be used by other files. There-
fore, the CLOSE command must be used in conjunction with the OPEN command.
When the END or STOP command is executed, the open files are automatically
closed.
CLOSE #1,#2 #1 and #2 are the file numbers (several.

files can be closed simultaneously) and
if omitted, all files are closed

Operation of Sequential Access File
Data is sequentially written to a sequential access file starting from the begin-
ning of the file. Any part of data cannot be rewritten, and only new data can be
added to the end of the file.

OPEN ”0:DATA2” FOR OUTPUT AS #1
0:DATA2 is the directory and file name,
OUTPUT is the mode setting, and #1 is
the file number

OUTPUT: write

INPUT: read

APPEND: additional write

In the above example, sequential file DATA2 is opened under file name of #1 to
output data to the file.

WRITE #1,A$,B$
READ #1,A$,B$
#1 is the file no., and A$ and B$ are the variables

Character data given by character variables A$ and B$ are written file #1 in the
order of A$ and B$.

In INPUT Mode
INPUT #1,A$,B$ #1 is the file no., and A$ and B$ are the.

variables
Sequential data is read from file #1 and stored into A$ and B$.

CLOSE #1 #1 is the file no..
When a file opened for output is closed, all the data remaining in the buffer is
written to the file and then the file is closed.

The following sample program illustrates the above process:
10 PARACT 0
20 OPEN ”0: DATA2” FOR OUTPUT AS #1
30 A$ = ”BASIC”: B$ = ”UNIT”
40 WRITE #1, A$, B$
50 CLOSE #1
60 OPEN ”0: DATA2” FOR INPUT AS #1
70 INPUT #1, A$, B$
80 PRINT A$, B$
90 CLOSE #1
100 END
110 END PARACT

Result of execution

BASIC UNIT

Opening File With OPEN
Command

In OUTPUT and APPEND
Modes

Closing Using the CLOSE
or END Command.

File Operations Section 5-2

87

Here is an example of operating a sequential access file.

’Sequential file
90 PARACT 0
100 DIM F$30
110 OPEN ”0: DATA2” FOR OUTPUT AS #1

Opened to output new sequential file
120 A$=” OMRON ”
130 B$=” BASIC ”
140 C$=”UNIT”
150 D$=”BASIC UNIT”
160 WRITE #1,A$,B$ Data output to sequential file (data com-. . . .

pression)
170 PRINT #1, USING ” & & & &”;C$,D$

Data output to sequential file with format
180 GOSUB *WRT
190 CLOSE Closes opened file.
200 OPEN ”0: DATA2” FOR INPUT AS #1

Opens sequential file for input
210 PRINT ”Contents of data file are as follows”
220 LINE INPUT #1, F$ Reads one entire line to character vari-

able (F$)
230 PRINT F$
240 LINE INPUT #1, F$
250 PRINT F$
260 GOSUB *RD
270 CLOSE
280 END
290 ’
300 *WRT Processing to output data to sequential.

file
310 INPUT ”Input data (999 to end writing)”;E$
320 IF E$=”999” THEN RETURN
330 PRINT #1, E$ Data output to sequential file.
340 GOTO *WRT
350 ’
360 *RD Processing to input data from sequential.

file
370 IF EOF(1) THEN RETURN Branches if data runs out
380 INPUT #1, G$ Reads data.
390 PRINT G$
400 GOTO *RD
410 END PARACT

Result of execution

Input data (999 to end writing)?1
Input data (999 to end writing)?2
Input data (999 to end writing)?3
Input data (999 to end writing)?999
Contents of data file are as follows
UNIT BASIC UNIT
” OMRON ”, ” BASIC ”
 UNIT BASIC UNIT
1
2
3

Program Example of
Sequential Access File

File Operations Section 5-2

88

Operating Random Access File
The data length of a sequential access file can be set freely. Data of a random
access file is read or written in record units, and the data length is fixed in record
units. However, the random access file can be accessed more quickly than the
sequential access file since data (record) can be read or written in any se-
quence. Only character data can be used with the random access file. To write
numeric data, it must be converted into character data by the MKI$, MKS$, or
MKD$ functions when it is written. When reading data, it is converted back to nu-
meric data by the CVI, CVS, or CVD functions.

Numeric data for random access files is converted into character data as seen in
the following diagram.

Numeral
data

Character string data

Buffer

LSET
RSET

Random access file

GET
PUT

OPEN
CLOSE
FIELD

MKI$
MKS$
MKD$

CVI
CVS
CVD

Programming Sequence

1, 2, 3... 1. Open a file using the OPEN command.
OPEN ”0:DATA3” AS #10 DATA3 is the directory and file name,.

and #1 is the file number
To read/write data from/to random access file DATA3, the file is opened un-
der file number 1.

2. Assign variable areas to the buffer in record units by using the FIELD com-
mand.
FIELD #1, 5 AS A$, 18 AS B$

#1 is the file number, 5 is the field
width, and A$ is the character variable

A 5-byte variable area is assigned under variable name A$ and an 18-byte
area is assigned under variable name B$ to the I/O buffer of the random ac-
cess file opened under file name #1. To assign an area of more than 19 by-
tes to a character variable, allocate a variable area at the beginning of the
program by using the OPTION LENGTH command. More than one charac-
ter variable can be specified, but keep the total field width to within 256 by-
tes.

3. To write data to a file, set the data in the buffer by the LSET or RSET com-
mand, and write the data to a record of the file from the buffer by using the
PUT # command.
LSET A$ = ”BASIC” A$ is the variable name, BASIC is the.

character sting.
To write, left-justified, character string BASIC to variable area (buffer) of
variable name A$.
RSET B$ = ”UNIT” B$ is the variable name, UNIT is the.

character string

File Operations Section 5-2

89

To write, right-justified, character string UNIT to variable area (buffer) of
variable name B$.
PUT #1,8 #1 is the file number, 8 is the record.

number (1 through 32767)
The data in the buffer is written to the eighth record of the random access file
opened under file number #1.

4. Use the GET # command to read data from the file.
GET #1,8 #1 is the file number, 8 is the record.

number (1 through 32767).
The data is read to the buffer from the eighth record of the random access
file opened under file number #1. This data is stored into a variable defined
by the FIELD command, and therefore, can be displayed by the PRINT
command.

5. Close the file by using the CLOSE command.
CLOSE #1 #1 is the file number..
The file opened under file number #1 is closed.

The following sample program illustrates the above procedure.

10 OPTION LENGTH 20
20 PARACT 0
30 OPEN ”0: DATA3” AS #1
40 FIELD #1, 15 AS A$, 20 AS B$
50 LSET A$ = ”BASIC”
60 RSET B$ = ”UNIT”
70 PUT #1, 8
80 GET #1,8
90 PRINT A$; B$
100 CLOSE #1
110 END
120 END PARACT

Result of execution

BASIC UNIT

Program Example of Random Access File
10 ’Random file

90 PARACT 0
100 DIM A$50
110 ON ERROR GOTO *ERPRCS Setting of error processing routine
120 OPEN ”0:DATA3” AS #1 Opens random file.
130 FIELD #1, 50 AS A$ Assigns variable area
140 PRINT ”Input [W] to write file.”
150 PRINT ”Input [R] to read file.”
160 PRINT ”Input [E] to end.”
170 B$=INPUT$(1) Conditional input from buffer to charac-.

ter string
180 IF B$=”w” OR B$=”W” THEN GOSUB *WRT
190 IF B$=”r” OR B$=”R” THEN GOSUB *RD
200 IF B$=”e” OR B$=”E” THEN GOSTO *E
210 GOTO 140
220 *E
230 PRINT ”Data file size is” ;LOF(1);”.

Size of file by record number
240 CLOSE #1 Closes file.
250 END
260 ’

File Operations Section 5-2

90

270 *WRT Write subroutine.
280 INPUT ”Record no. (1–999):”;REC%
290 IF REC%>999 THEN ERROR 1

Sets error generation number (ERR =
1)

300 IF REC%<1 THEN ERROR 2 Sets error generation number (ERR =
2)

310 LINE INPUT ”DATA:”;C$
320 PRINT ”Writes data (Y/[ELSE])”
330 D$=INKEY$ Inputs 1 character from keyboard.
340 IF D$=”” THEN GOTO 330
350 IF D$=< >”Y” AND D$< >”y” THEN RETURN
360 LSET A$=C$ Sets data in buffer.
370 PUT #1, REC% Writes buffer data.
380 RETURN End of write subroutine.
390 ’
400 *RD Read subroutine.
410 INPUT ”Record no. (1–999):”;REC%
420 IF REC%>999 THEN ERROR 1
430 IF REC%<1 THEN ERROR 2
440 GET #1, REC% Reads data to buffer.
450 PRINT A$
460 RETURN End of read subroutine.
470 ’
480 *ERPTCS Error processing routine.
490 IF ERR=1 THEN PRINT ”Record no. is too large.”
500 IF ERR=2 THEN PRINT ”Record no. is too small.”
510 IF ERL=440 THEN PRINT ”The record no. has NO data.”

When reading data fails
520 ’
530 RESUME 140
540 END PARACT

Result of execution

Input [W] to write file.
Input [R] to read file.
Input [E] to end.
Record No. (1–999):? 3
Data: 3
Writes data (Y/[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.
Record No. (1–999):? 4
Data: 4
Writes data (Y/[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.
Record No. (1–999):? 3
3
Input [W] to write file.
Input [R] to read file.
Input [E] to end.
Data file size is 4.

File Operations Section 5-2

91

SECTION 6
Advanced Programming

This section advances further into BASIC programming and provides information on interrupts, multitasking, and machine
language for the purposes of advanced programming.

6-1 Interrupts 92.
6-1-1 Defining an Interrupt Service Routine 92.
6-1-2 Interrupt-related Instructions 93.
6-1-3 Interrupt Programming 93.
6-1-4 Interrupt Types 94.
6-1-5 Interrupt Processing Details 96.

6-2 Multitasking 97.
6-2-1 Tasks 97.
6-2-2 Declaration of Start & End of Task Program 98.
6-2-3 Starting, Aborting, and Waiting for a Task 99.
6-2-4 BASIC Unit Status and Transitions 103.
6-2-5 Inter-task Communication 104.

6-3 Machine Language 107.
6-3-1 Segments and Offsets 108.
6-3-2 Developing a Machine Language Program 108.
6-3-3 Examining and Altering Memory with BASIC 111.
6-3-4 Calling a Machine Language Subroutine 112.
6-3-5 Storage Formats 114.
6-3-6 Machine Language Programming Summary 118.
6-3-7 Machine Language Monitor Commands 119.

6-4 PC Communications 120.
6-4-1 SEND(192) and RECV(193) 120.
6-4-2 CV-series (FINS) Commands 123.

92

6-1 Interrupts
An interrupt is one means by which a device connected to the BASIC Unit can
inform the program that some event has occurred and that some action on the
part of the program is required immediately. For example, when a character is
received by a communications port, the program must stop whatever it is doing
and read the character as soon as possible so that the input buffer does not over-
flow. When an interrupt occurs, the BASIC Unit may stop executing the current
task and run an interrupt service routine instead. When the service routine is fin-
ished, control is returned to the task that was executing before the interrupt.

Interrupts can also be used to restart a task which has been stopped by the
PAUSE statement.

Interrupt Processing

Main program

Interrupt occurs

Interrupt service routine

The BASIC Unit supports several different interrupts which indicate various con-
ditions. The table below lists the interrupt types and related BASIC instructions.

Interrupt Type Meaning BASIC Instructions

TIME$ Time ON TIME$ GOSUB TIME$ ON/OFF/STOP

ALARM Elapsed time ON ALARM GOSUB ALARM ON/OFF/STOP

TIMER Time interval ON TIMER GOSUB TIMER ON/OFF/STOP

KEY(key-number) Numeric key pressed ON KEY GOSUB KEY ON/OFF/STOP

COM Input from communication port ON COM GOSUB COM ON/OFF/STOP

PC Interrupt from CPU Unit ON PC GOSUB PC ON/OFF/STOP

FINS Interrupt from network ON FINS GOSUB FINS ON/OFF/STOP

SIGNAL signal-number Signal received from another task ON SIGNAL GOSUB SIGNAL ON/OFF/STOP

ERROR Error occurred ON ERROR GOSUB ERROR ON/OFF/STOP

6-1-1 Defining an Interrupt Service Routine
Before interrupts of a certain type can be processed, the program must define an
interrupt service routine to be called when that type of interrupt occurs. The ON
interrupt-type GOSUB { line-number | label } instruction is used for this purpose.
The line-number or label indicates the start of the service routine. Interrupt ser-
vice routines must end with a RETURN statement.

Interrupts Section 6-1

93

6-1-2 Interrupt-related Instructions
Interrupts usually occur asynchronously; that is, the program cannot know when
an interrupt will occur. However, there may be sections of the program which
should not be interrupted. For example, if an interrupt occurs while the program
is performing a time-critical calculation, the result of the calculation will be
delayed and the program may miss its deadline.

Therefore, the BASIC Unit provides the interrupt-type ON, OFF, and STOP in-
structions, which may be used to enable, disable, or temporarily delay interrupts
of the specified type.

The interrupt-type ON instruction enables interrupts of the specified type; after
this instruction is executed, the interrupt service routine will be called each time
an interrupt is received.

The interrupt-type OFF instruction disables interrupts of the specified type; after
this instruction is executed, the BASIC Unit will ignore those interrupts. Inter-
rupts during OFF execution for COM, PC, and FINS, however, are handled the
same as those during STOP execution, as described next.

The interrupt-type STOP instruction disables interrupts of the specified type, but
any interrupts received while the interrupt is STOPped will be recorded, and the
interrupt service routine will be called if the interrupt is later enabled.

Note Interrupts from a source are disabled (turned OFF) immediately after an interrupt
service routine for that type of interrupt is defined (or re-defined) with ON inter-
rupt-type GOSUB. Furthermore, interrupts are STOPped while the interrupt
service routine is being executed.

An interrupt can be accepted while an input instruction is being executed. When
an interrupt-type ON instruction occurs while an input instruction is being
executed, the input instruction will be interrupted and the interrupt service rou-
tine as defined by the interrupt will be executed. If all I/O data has not been pro-
cessed when the interrupt occurs, the data will be discarded and the instruction
ended.

An interrupt will be STOPped if the another interrupt from the same source oc-
curs before interrupt processing is completed. To produce effective interrupts,
write multitasking programs so that each interrupt is executed independently
(for example: ON COM2 combined with INPUT or ON PC combined with PC
READ). If interrupts are combined during single task execution, PC STOP must
be executed during INPUT.

There is no priority ranking for the interrupts listed above. If an interrupt is
received during the execution of any interrupt subroutine, the later one interrupts
the earlier one and is executed.

6-1-3 Interrupt Programming
To write a program that makes use of interrupts:

1, 2, 3... 1. Select the type of interrupt to be used and develop an interrupt routine. Be
sure to use a RETURN statement at the end of the routine.

2. Define the interrupt routine in the main routine using the ON interrupt-type
GOSUB statement.

3. Use the interrupt-type ON instruction to enable interrupts.

4. If an interrupt occurs, the interrupt routine will be executed. Execution con-
tinues at the point where the interrupt occurred when the interrupt routine’s
RETURN statement is executed.

5. Use interrupt-type STOP if necessary to protect sections of the program from
interruption. Use interrupt-type OFF when you are no longer interested in in-
terrupts.

Interrupts Section 6-1

94

Interrupt Programming Example

100 PARACT 0
110 ON KEY(1) GOSUB 700 Define interrupt service routine. .

Interrupts from numeric
key 3 are ignored.

200 KEY(1) ON Enable interrupts.

If numeric key 3 is pressed
here, the interrupt service
routine will be called.

300 KEY(1) OFF Disable interrupts.

Interrupts from numeric
key 3 are ignored.

600 END End of main routine.
700 ’Start of KEY 1 interrupt routine

800 RETURN End of interrupt service routine.

6-1-4 Interrupt Types

Timer Interrupts
The BASIC Unit supports three types of timer interrupts. These interrupts occur
at a specified time (TIME$), at specified time intervals (TIMER), or when a spe-
cified time has elapsed (ALARM).

Interrupt at Specified Time The ON TIME$ GOSUB statement defines an interrupt routine to be executed at
a specified time. For example:
100 ON TIME$ = ”02:30:10” GOSUB 1000
110 TIME$ ON
The interrupt service routine starting at line 1000 will be called at 2:30:10. The
time at which the interrupt occurs is specified as a character string containing
hours, minutes, and seconds.

Interval Interrupt The ON TIMER GOSUB statement defines an interrupt service routine to be ex-
ecuted repeatedly at a certain interval. For example:
100 ON TIMER 3600 GOSUB 1000
110 TIMER ON
The interrupt service routine starting at line 1000 will be executed once every six
minutes until TIMER STOP or TIMER OFF is executed. The time interval is spe-
cified in units of 0.1 second, in the range 1 to 864000 (0.1 second to 24 hours).

Elapsed Time Interrupt The ON ALARM GOSUB statement defines an interrupt service routine to be ex-
ecuted once after the specified time has elapsed. For example:
100 ON ALARM 10 GOSUB 1000
110 ALARM ON
The interrupt service routine starting at line 1000 will be called 1 second later.
The time is specified in units of 0.1 second.

Numeric Key Interrupts
The ON KEY GOSUB statement defines an interrupt routine to be executed
when a certain numeric keypad key is pressed. For example:
100 ON KEY(1) GOSUB 1000
110 KEY(1) ON
When numeric key 1 is pressed, the interrupt service routine starting at line 1000
will be executed.

Interrupts Section 6-1

95

The key pressed is read during the interrupt processing and does not remain in
the input buffer.

Communications Port Interrupts

The ON COM GOSUB statement defines an interrupt routine to be executed
when a character is received by a communications port. For example:
100 ON COM(2) GOSUB 1000
110 COM(2) ON
When a character is received by communications port 2, the interrupt service
routine starting at line 1000 will be executed. If the port number is omitted, port 1
is assumed.

Interrupts for communications ports are enabled and disabled using COM ON
and COM OFF. COM STOP will operate the same as COM OFF.

This table shows the correspondence between port numbers and port types.

Port no. Port type

1 RS-232C

2 RS-232C

3 RS-422

Network Interrupts

The ON FINS GOSUB statement defines an interrupt routine to be executed
when data is received from another BASIC Unit on the PC or connected with a
network, or an FA computer. For example:
100 ON FINS GOSUB 1000
110 FINS ON
The interrupt service routine starting at line 1000 will be called when network
data is received. (For information about establishing communication between
BASIC Units, see 7-1 Peripheral Device Operation.)

Interrupts from networks are enabled and disabled using FINS ON and FINS
OFF. FINS STOP will operate the same as FINS OFF.

Signal Interrupts

The ON SIGNAL GOSUB statement defines an interrupt routine to be executed
when a specified signal is received from another task. For example:
100 ON SIGNAL 5 GOSUB 1000
110 SIGNAL 5 ON
When signal 5 is received from another task, the interrupt routine starting at line
1000 will be executed. (For more information about signals, see 6-2-5 Inter-task
Communication.)

PC Interrupts

The ON PC GOSUB statement defines an interrupt routine to be executed when
an interrupt from a PC is received. For example:
100 ON PC(2) GOSUB 1000
110 PC(2) ON
When interrupt 2 is received from a PC (the user program in the CPU Unit ex-
ecutes a SEND(192) or RECV(193) instruction), the interrupt routine starting at
line 1000 will be executed. (For more information about PC communications,
see 6-4 PC Communications.)

Interrupts from the CPU Unit are enabled and disabled using PC ON and PC
OFF. PC STOP will operate the same as PC OFF.

Interrupts Section 6-1

96

Error Processing

Error processing is slightly different than other interrupt processing. If the BASIC
Unit encounters an error (for example, if the program attempts to divide by zero),
execution is normally terminated and an error message is printed. If an er-
ror-handling “interrupt” routine is defined with the ON ERROR GOTO statement,
the BASIC Unit will instead execute that routine. The routine can take whatever
action is necessary to correct the error and continue.

The ON ERROR GOTO statement defines an interrupt routine to be executed if
the BASIC Unit encounters an error. For example:

100 ON ERROR GOTO 1000

If the BASIC Unit encounters an error, the interrupt routine starting at line 1000
will be executed. To restore the default error action, specify line 0.

The line number on which the error occurred and a number indicating the error
type can be obtained with the ERL and ERR functions. (For a list of error codes
and corresponding error conditions, see Section 8-1-1 Error Messages.)

To exit from the error processing routine, use the RESUME statement instead of
the RETURN statement. RESUME can take one argument, which can be a line
number where execution should continue, 0 to indicate that the error line should
be re-executed, or NEXT, to resume execution at the line after the error. If no ar-
gument is supplied to RESUME, the BASIC Unit attempts to execute the error line
again.

Note There is no ERROR ON, ERROR OFF, or ERROR STOP statement. Error process-
ing is always enabled.

6-1-5 Interrupt Processing Details

The BASIC Unit maintains three system variables, INTRB, INTRL, and INTRR,
which can be examined in an interrupt service routine to find information about
the current interrupt. INTRR contains a number indicating the interrupt source:

Interrupt source INTRR

User-defined signal (1 to 5)

Communication port COM (1 to 3)

1 to 5

6 to 8

Signal (STOP)

Signal (PC watchdog timer error)

Signal (cyclic error)

Signal (battery error)

10

11

12

13

Alarm

Timer

Time

14

15

16

SRQ (service request from GP-IB)

FINS (network)

Numeric key input (0 to 9)

PC (1 to 15)

17

18

20 to 29

31 to 45

INTRB contains the number of the line to be executed next when the interrupt
occurred; when the service routine returns, execution will continue at that line.

Interrupts Section 6-1

97

INTRL contains the line number of the statement that was aborted by the inter-
rupt, or 0 if no statement was aborted. Some BASIC Unit instructions take an
indefinite amount of time to complete. For example, the INPUT statement
causes the Unit to wait until the user has entered a value at the terminal. If an
interrupt occurs while the Unit is waiting for such a statement to complete, the
statement will be aborted and INTRL will contain the statement’s line number.
The instructions below may be aborted by an interrupt, and will cause a line num-
ber to be stored in INTRL if they are:

GET #
INPUT
INPUT WAIT
INPUT$
INPUT #
INPUT@
LINE INPUT
LINE INPUT #

LINE INPUT WAIT
LPRINT
LPRINT USING
PRINT
PRINT@
PRINT #
PRINT # USING
PUT #

RECEIVE
SEND
TWAIT
WRITE
WRITE #
PC READ
PC WRITE

Note INTRR and INTRB are saved before an interrupt routine is called and restored
after the routine returns, so they always contain the correct values for the current
interrupt, even if execution is not completed or a second interrupt occurs while
the Unit is executing a different interrupt service routine.

This example shows one way to re-start a statement if it is aborted by an inter-
rupt. If this type of programming is not implemented, the program line 100 may
be aborted before completion.

 10 ON TIMER 100 GOSUB *SUB
 20 TIMER ON

100 INPUT A$.
110 IF WAS_ABORTED = 100 THEN WAS_ABORTED = 0 : GOTO 100

480 *SUB
500 WAS_ABORTED = INTRL Subroutine

600 RETURN

6-2 Multitasking

6-2-1 Tasks

• A task is a series of instructions necessary for a computer to complete one pro-
cess and is one unit of a program.

• Tasks are classified by the function they perform; for example, a print task
prints data with a printer, a text display task displays characters on a CRT
screen, and a CPU Unit communications task communicates with the CPU
Unit.

• Multitasking is the ability to execute two or more tasks simultaneously on one
computer. The BASIC Unit can execute up to 16 tasks simultaneously.

Multitasking Section 6-2

98

• The following example shows tasks that transmit and print data, and print re-
ceived data.

Main Task

Prepare data
to transmit

Start transmit/receive
and print tasks

Wait for end of
reception

Edit received data

Start print task

Transmit/
Receive

Task

Print task

Note Execution of tasks switches after each instruction, even for compound lines.
Task execution begins with the task with the smallest task number and moves in
order to all tasks in the READY status. If execution for a task is not possible when
it is switched to (e.g., the task is waiting for input), the next task will be switched to
immediately.

6-2-2 Declaration of Start & End of Task Program
The PARACT statement must be used to declare the beginning of each task pro-
gram. The task program must end with the END PARACT command.

Declaring the Start of a Task Program
PARACT task-no. [WORK no.-of-bytes]
Here, task-no. is an integer from 0 to 15, and no.-of-bytes is the size of the
task work area (default: 1024 bytes).
Statements between the PARACT and END PARACT statements constitute a
task.
Task number 0 is the main task and will be executed first. If a program contains
no task 0, an error will occur and the program will not be executed.

Multitasking Section 6-2

99

The number of WORK bytes is the number of bytes of work area used by the task.
The default value is 1024 bytes.

The PARACT statement must appear on alone on a line; it cannot be used in a
multi-statement line.

Declaring the End of Task Program

END PARACT

The END PARACT statement is used on the last line of the task program to de-
clare end the task program.

The END PARACT statement must appear alone on a line; it cannot be used in a
multi-statement line.

Examples of Programming Tasks

Single Task If there is only one task, it must be task number 0.
10 RDIM Declaration of non-volatile variables.
20 DIM Declaration of global volatile variables.
30 PARACT 0 Beginning of task.

1000 END PARACT End of task.

Multiple Tasks Task 0 is will be executed first when the program is started. Other tasks may be
started by the first task.
10 RDIM Declaration of non-volatile variables.
20 DIM Declaration of global volatile variables.
30 PARACT 8 Beginning of task 8.

Note that tasks
can be declared
in any order.

100 END PARACT End of task 8.
110 PARACT 0 Beginning of task 0.

300 END PARACT End of task 0.
310 PARACT 1 Beginning of task 1.

660 END PARACT End of task 1.

6-2-3 Starting, Aborting, and Waiting for a Task
A task can be started with the TASK statement and aborted by the EXIT state-
ment. In addition, one task can wait for the end of another task that has been
started by using the TWAIT statement.

If an attempt is made to start, stop, or wait for a task number that has not been
declared by a PARACT statement, an error occurs.

Starting a Task

100 TASK 1 Execution of task 1 is started from the.
task’s PARACT statement. If task 1 has
already been started, an error message
is displayed.

Aborting a Task

200 EXIT 1 The EXIT command aborts a specified.
task. If the is not running, an error mes-
sage is displayed.

Multitasking Section 6-2

100

Waiting for End of Task
300 TWAIT 1 The task that executed this TWAIT state-.

ment will wait for task 1 to exit before
continuing. If an interrupt occurs while
the task is waiting, the Unit will execute
the task’s interrupt routine and then re-
sume waiting. If the specified task has
already ended, an error message is dis-
played.

END PARACT

Main Task
(Task 0)

Task 1

Start

End
Wait for task
1 to end.

PARACT 1

PARACT 0

TWAIT 1

END PARACT

TASK 1

Multitasking Section 6-2

101

Example of Program Starting/Ending Task

When the RUN command is entered from the terminal or when the BASIC Unit is
started by the RUN/STOP switch or by the setting of the automatic start setting
area of the memory switch, task 0 is started. Task 0 can then start other tasks
with the TASK command.

100 PARACT 0

Task 0

200 TASK 15

250 TASK 1

290 END PARACT

300 PARACT 15

Task 15

360 TASK 8

480 END
490 END PARACT

500 PARACT 1

Task 1

690 END PARACT

700 PARACT 8

Task 8

850 EXIT 1

900 TASK 15

990 END PARACT

Starts task 0 by RUN.

Command in task 0.
starts task 15

Starts task 8.

Task 15 ends.

Command in task.
0 starts task 1

Command in task 15.
starts task 8

Ends task 1.

Starts task 15 again.

Note 1. Task 0 is started when the program is started.

2. Tasks 15 and 1 are started by the TASK commands in task 0.

3. Task 8 is started by the TASK command in task 15.

4. Task 15 ends when it executes line 480.

5. Task 1 is terminated by the EXIT command in task 8.

6. Task 15 can be started again by the TASK command in task 8 even after it
has exited once.

Multitasking Section 6-2

102

Switching Tasks When two or more tasks have been started, the BASIC Unit switches between
active tasks in round-robin fashion, executing a single statement from each task
in turn. In each execution cycle, the next statement from each active task is ex-
ecuted in order of its task number. If a task uses an input or output statement
such as PRINT or INPUT, or some other statement which involves waiting time,
that task is excluded from the round-robin until the input/output processing or
waiting is completed.

In the previous example, statements are executed from the active tasks in the
following order:

Task 15 starts

Task 1 starts Task 8 starts Task 15 ends Task 8 terminates task 1

Task 0

Task 1

Task 8

Task 15

Task 0
runs

Tasks 0
and 15 run

Tasks 0, 1,
and 15 run

Tasks 0, 1,
and 8 run

Tasks 0
and 8 run

Tasks 0, 1, 8,
and 15 run

Multitasking Section 6-2

103

6-2-4 BASIC Unit Status and Transitions
After the BASIC Unit has been started, the internal status of program execution
and termination changes as illustrated below.

No
Automatic

start

EditDebug

READY (wait for dispatch)

Run

[] indicates command or instruction

Stop

END (end) WAIT (waits for event)

Source correction
Debug mode Edit mode

All tasks in END
status

Yes

Task STOP status

Abort input

Abort input

Cancels waiting event

Waits for event

Execution mode

Run (2)Run, cont (1)

Task

Exit

End
End paract

Stop (3)
Abort input

Exit

Dispatch

Power ON/restart

Note 1. CONT is valid only after STOP is executed.
2. Can also be started by the RUN/STOP switch.
3. Can also be stopped by the RUN/STOP switch or a BREAK point setting.

BASIC Unit Modes

Edit All the tasks are in the END state and the source program is being created or
edited. The program can be edited on the terminal.

Debug All the tasks are stopped and the source program is not being edited. The pro-
gram can be debugged through operations on the terminal.

Execute One or more tasks are running. The debug mode can be set when an abort oper-
ation is performed on the terminal, when the RUN/STOP switch is operated, or
when a STOP statement is executed.

Task Status

RUN A statement from the task is being executed. Only one task can have this status
at a time.

READY The task is waiting for its turn in the round-robin.

WAIT The task is waiting for the end of an input/output operation or for an interrupt.

END The task is not running.

STOP The task is temporarily stopped, but can be resumed by a CONT or STEP com-
mand.

Multitasking Section 6-2

104

6-2-5 Inter-task Communication

When a multitasking program is executed, it may be necessary to transfer data
between tasks or to synchronize execution of tasks. Transfer of information
among tasks is generically called inter-task communication.

For example, consider an application which requires the BASIC Unit to receive
some information, perform a calculation on the data, and send the result back. A
multitasking version of such a program could consist of three tasks: task 1 per-
forming data reception, task 2 performing data processing, and task 3 perform-
ing data transmission. Each task in this program must be synchronized with the
others to exchange data properly. For example, task 2 must wait for task 1 to
receive some data before it can begin calculations, and task 3 must wait for task
2 to finish its processing before the results can be sent.

Data

Task 1 (reception) Task 2 (data processing)

Data

Task 3 (transmission)

Synchronization Synchronization

In the multitasked approach, the variables used by each task are local to the
task; that is, the variables of one task cannot be directly referenced by the other
tasks. To perform inter-task communication, messages to transfer data between
tasks and global variables that can be accessed by each task are used to trans-
fer data between tasks. In addition, a signal may be used to inform a task of the
occurrence of an event in another task.

The BASIC Unit supports three different methods of inter-task communications.
The simplest method is the signal, which one task can use to inform another task
that some event has taken place. The second method is the message, which a
task can use to send information to another task. The third method is the use of
global variables, which can be accessed by any task.

Signals

Signals can be used to inform a task of the occurrence of an event in another
task, and are useful when it is necessary to establish synchronization between
tasks. A task in which an event has occurred sends a signal to another task with
the SENDSIG statement. The other task must define a processing routine with
the ON SIGNAL GOSUB statement. Then, when the second task wishes to re-
ceive signals from the first task, it executes the SIGNAL ON statement. Signal
processing works the same as interrupt processing; see Section 6-1 Interrupt
Operation for details.

Sending a Signal A task sends a signal by executing the SENDSIG statement:

SENDSIG signal-no., task-no.

Types of Inter-task
Communication

Multitasking Section 6-2

105

Signal-no. must be an integer from 1 to 5 or 10 to 13. Signals 10 through 13 have
pre-defined meanings; signals 1 through 5 are available for user definition. The
meanings of the pre-defined signals are:

Signal Meaning

10 STOP

11 PC watchdog timer error

12 Cyclic error

13 Battery error

A task that wishes to receive a signal must first define an interrupt processing
routine to be executed when the signal is received. The routine is defined with
the ON SIGNAL GOSUB statement:

ON SIGNAL (signal-no.) GOSUB {line-no. | label}

After the ON SIGNAL GOSUB statement has been executed, the task must ex-
ecute SIGNAL ON when it is ready to receive signals. When the task is no longer
interested in the signal, it should execute SIGNAL OFF. To temporarily disable
processing of a signal, execute SIGNAL STOP. The difference between
SIGNAL OFF and STOP is that STOP records any signals received while the sig-
nal is STOPped, and interrupt processing is executed if the interrupt is later
enabled by SIGNAL ON. Signals received while SIGNAL OFF is in effect are
ignored.

Signal Program Example

10 PARACT 0 Beginning of task 0.
20 TASK 1 Start execution of task 1.

80 PRINT ”Task 0 –> Task 1”
90 PRINT ”Send signal 3”
100 SENDSIG 3, 1 Send signal 3 to task 1.

190 END PARACT End of task 1.
200 PARACT 1 Beginning of task 1.
210 ON SIGNAL 3 GOSUB 300 Define signal processing routine
220 SIGNAL 3 ON Enable interrupts for signal 3.
230 PAUSE Wait for a signal.

290 END
300 REM Signal 3 processing routine
310 PRINT ”Received signal 3”

390 RETURN
400 END PARACT End of task 1.

Result of execution:

Task 0 –> Task 1
Send signal 3
Received signal 3

Note 1. If the signal receiving task has no processing to do until the interrupt occurs,
it can execute the PAUSE statement to wait for an interrupt to occur.

2. In the example, if task 0 sends the signal to task 1 immediately after starting
task 1, the signal may not be received because task 1 may not have finished
defining the signal processing routine and enabling interrupts.

If it is important that task 1 receive every signal, the program could be
re-written so that task 1 signalled task 0 when it was ready to receive signals.

Defining a Signal
Processing Routine

Enabling / Disabling /
Stopping Signal Interrupts

Multitasking Section 6-2

106

Messages
Tasks can use messages to communicate when the information to be sent is
more complicated than the simple on/off that a signal can indicate.
To communicate with messages, the two tasks must first acquire a message
number. Then, the transmitting task sends the message with the SEND state-
ment, and the receiving task gets the message with the RECEIVE statement.
When the tasks are done communicating, they should release the message
number.
Each instruction is explained in more detail below.

Allocating Message Number To use a message, both tasks must allocate the message number with the
MESSAGE statement:
MESSAGE function, message-no.
Function is 0 (allocate message number), and message-no. is an integer from 1
to 32767. Each task can acquire up to four message numbers, and a total of
eight message numbers can be acquired for the entire program.

Transmitting Message Next, the transmitting task prepares the message and sends it with the SEND
statement:
SEND message-no., character-expression
Message-no. is the message number acquired in the first step, and charac-
ter-expression contains the information the task wishes to send. Character-ex-
pression can be up to 538 characters long.

Receiving Message The receiving task gets the message with the RECEIVE statement:
RECEIVE message-no., character-variable
Message-no is the message number acquired in the first step, and charac-
ter-variable is the name of a variable into which the message will be stored. If the
receiver executes RECEIVE before the transmitter executes SEND, the receiving
task will wait until a message is transmitted.

Releasing Message Number When the tasks are done communicating, they should release the message
number with the MESSAGE instruction:
MESSAGE function, message-no.
Function is 1 (release message number), and message-no. is the number ac-
quired in the first step.

Message Program Example
10 PARACT 0 Beginning of task 0.
20 TASK 1 Start task 1.
30 MESSAGE 0, 1 Acquire message number 1.
40 A$ = ”START!” Prepare data to send to task 1.
50 SEND 1, A$ Send the message.

80 MESSAGE 1, 1 Release message number 1.
90 END PARACT End of task 0.
100 PARACT 1 Beginning of task 1.
110 MESSAGE 0, 1 Acquire message number 1.
120 RECEIVE 1, B$ Receive a message.
130 PRINT ”Message from task 0...”; B$

180 MESSAGE 1, 1 Release message number 1.
190 END PARACT End of task 1.

Global Variables
All the variables declared between the beginning of the program and the first
PARACT statement can be accessed by every task.
These variables are called global variables. Global variables can be used to
transfer data between tasks and to hold data common to two or more tasks.

Multitasking Section 6-2

107

An example in which task 0 stores data in global variables A and B and task 1
performs a calculation using the data is shown below.

Global Variable Program Example

10 RDIM A Declare non-volatile global variable A.
20 DIM B Declare (volatile) global variable B.
30 PARACT 0 Beginning of task 0.
40 A = 15 Store 15 in global variable A.
50 B = 3 Store 3 in global variable B.
60 TASK 1 Start task 1.

90 END PARACT End of task 0.
100 PARACT 1 Beginning of task 1.
110 C = A Copy global variable A to local variable.

C
120 D = B Copy global variable B to local variable.

D
130 E = C + D Add the local copies of A and B and.

store the result in local variable E
140 PRINT E

190 END PARACT End of task 1.

Variables declared with the RDIM statement retain data even after the power has
been turned off. These variables are called non-volatile variables, and are
stored in battery-backed memory. Non-volatile variables can be declared only in
the global definition block, i.e., from the beginning of the program to the first
PARACT statement.

Variables declared with RDIM must appear before those declared with DIM.

Non-volatile variables are not cleared even when the power has been turned off.
To clear these variables, execute the OPTION ERASE or RUN ERASE com-
mand. Non-volatile variables can be saved to or loaded from a file with the
VSAVE or VLOAD commands.

6-3 Machine Language
The BASIC Unit provides support for machine language programming. Machine
language subroutines can be called from BASIC programs, access BASIC vari-
ables, and return results to the program.

Machine language programs can be entered, modified, and debugged when the
Unit is in the machine language monitor mode. Use the MON command to enter
this mode.

The BASIC Unit’s CPU is a V25 (NEC µPD70322), and the monitor assembler
accepts most (but not all) V25 mnemonics and notations. See Appendix E for
more information.

The machine language program can be entered in these ways:

1, 2, 3... 1. Enter one instruction at a time with the machine language monitor’s mne-
monic assembler.

2. Store the subroutine object code as data in the BASIC program and use
POKE to place the code in memory.

3. Load the subroutine object code from a file with the LOAD instruction.

Inter-task Communication
with Non-volatile Variables

Machine Language Section 6-3

108

6-3-1 Segments and Offsets
Memory addresses used by the BASIC Unit consist of two parts: the segment
and the offset. Both are 16-bit integers. The actual memory address used by an
instruction is calculated by multiplying the segment number by 16 and adding
the offset. For example, segment &H0050 and offset &H1234 give the actual
memory address &H01784:

0 0 5 0

0 5 0 00

1 2 3 4

0 1 7 8 4

+

Segment address

Multiply by 16

Offset address

Actual address

The segment address is specified by the DEF SEG statement in the BASIC pro-
gram, and is contained in DS0 in the machine language monitor mode. The G, T,
and B commands, however, use PS (program segment).

6-3-2 Developing a Machine Language Program
This section describes how to develop a machine language program. Only the
major commands are described. For details, refer to Appendix E Machine Lan-
guage Monitor Reference.

Allocate Memory First, allocate an area in memory to hold the machine language subroutine.

The machine language program area is located before (at lower addresses
than) the user program area. The BASIC program area capacity is reduced by
the amount allocated for the machine language program.

To allocate the area, use the MSET command:

MSET &H4000 The machine language program area is.
from address &H500 to &H3FFF. Ad-
dresses &H4000 and those that follow
contain the BASIC program and vari-
ables.

If MSET is entered without an argument, the current set value is displayed. The
value set with MSET is stored in battery-backed memory, so it is not necessary to
execute MSET each time power is turned on.

Note When the BASIC Unit is started for the first time, the beginning of the BASIC pro-
gram area is set to &H500, and no machine language program area is allocated.
Be sure to allocate the machine language program area with MSET before devel-
oping a machine language program.

To enter a machine language program from the terminal, first set the BASIC
Unit’s machine language monitor mode with the MON command. The Unit’s RUN
indicator will light, and the * prompt will be displayed. All subsequent input must
use upper case letters only.

Use the A (Assemble) command to start assembling the program. When this
command has been entered, the prompt will change to an exclamation point (!).
Next, enter the program start address (in hexadecimal, followed by a colon) and
the first machine language instruction. When you type return (�), the BASIC Unit
will reply with the address, object code, and corresponding mnemonic.
MON�
*A�
!3000:MOV�AW,PS�
3000 8CC8 MOV AW,PS

Enter the Machine
Language Program

Machine Language Section 6-3

109

No address is necessary if you wish to continue entering the program; the BA-
SIC Unit automatically increments the location counter appropriately. When you
have finished entering the program, type X� to return to the * prompt.

Corrections can be made by deleting with the Backspace Key until the carriage
return key is input.

As an example, here is a simple program that adds 7 to the contents of location
&H1000 and stores the result at &H1000.
∗A Begin assembling.
!3000:MOV AW,PS See note.
3000 8CC8 MOV AW,PS
!MOV DSO,AW
3002 8ED8 MOV DS0,AW
!MOV AL,7 Load 7 into AL.
3004 B007 MOV AL,07
!MOV BL,[1000] Load the contents of &H1000 into BL.
3006 8AIE0010 MOV BL,[1000]
!ADD AL,BL Add BL to AL (result stored in AL).
300A 00D8 ADD AL,BL
!MOV [1000],AL Store the result in &H1000.
300C A20010 MOV [1000],AL
!BR 300F
300F E9FDFF BR 300F
!X
*

Note The first two instructions, MOV AW,PS and MOV DS0,AW are used to make the
data segment equal to the program segment.

Check the Program To verify the program just entered, display it with the I (Inverse Assemble) com-
mand. This command displays the object code and mnemonics of the program.
∗I3000.300F Disassemble from &H3000 to &H300F.
3000 8CC8 MOV AW,PS
3002 8ED8 MOV DS0,AW
3004 B007 MOV AL,07
3006 8AIE0010 MOV BL,[1000]
300A 00D8 ADD AL,BL
300C A20010 MOV [1000],AL
300F E9FDFF BR 300F
∗
If the display end address is omitted, 20 lines of the program are displayed from
the specified start address. If the start address is omitted, the display starts at the
next address after the end of the previous display. If both the start and end ad-
dresses are omitted, 20 lines are displayed, starting at the address after the end
of the previous display.

Run the Program To execute the program, use the G (Go) command. Breakpoints can be set with
the B command and cleared with the N command. The T (Trace) command can
be used to execute the program one instruction at a time. These commands
used PS for segments.
*B3006� Set a break point at &H3006..
*B300F� Set another break point at &H300F..
*B� The B command with no arguments dis-.

plays the current break point(s).
B=3006 300F
*G3000� Begin execution at &H3000. If the CPU.

encounters a break point, execution is
stopped and the current contents of the
flags and registers are displayed.

*T� Execute the next instruction..
*T3000� Execute the instruction at &H3000..

Machine Language Section 6-3

110

The contents of memory can be displayed with the D (Dump) command. For ex-
ample:
*D4000.4008� Display the contents of memory from.

&H4000 to &H4008.
4000 – 00 07 00 00 12 34 FB C2
4008 – 5A
If the end address is omitted, only one byte is displayed. If the start address is
omitted, the contents of memory from the address after the end of the previous
display to the end address are displayed.If both the start and end addresses are
omitted, 8 bytes are displayed starting at the address after the end of the pre-
vious display.

The contents of the registers and flags can be displayed with the R (Register)
command.
*R�
R2 R1 R0 V D I B S Z F1 A F0 P IB C
–– –– –– * –– –– –– * –– –– –– –– –– –– ––
AW–FFFF BW–0000 CW–0000 DW –0000 SP–0000 BP –0000
IX–0000 IY–0000 PS–0000 DS0–0000 SS–0000 DS1–0000 PC–3006
*
The contents of a register or flag can also be changed:
*RAW=0005� AW is the register or flag name and 0005.

is the data.
The register names are: AW, BW, CW, DW, SP, BP, IX, IY, PS, DS0, SS, DS1, and PC.

The flag names are: R2, R1, R0, V, D, I, B, S, Z, F1, A, F0, P, IB, and C.

Data must be 4 characters or less of hexadecimal numbers; leading zeros may
be omitted.

The contents of the machine language area may be saved to the memory card or
the connected terminal with the S (Save) command. The syntax of the command
is:

S device [format] start-address.end-address.file-name

Device F is the memory card; R is the terminal.

Format H is hexadecimal; format S is Motorola S-records. (If format is omitted,
the default is S-records.) Format H must be used for Memory Cards.

For example,
*SFH4000.400F.FILE3� Save the contents of memory locations.

&H4000 to &H400F in hexadecimal for-
mat on the memory card in a file named
FILE3.

Note When the CVSS is used and the program is to be saved to the terminal, the S
command does not have to be entered by the user because the save operation is
performed through the menu screen of the Terminal Pack.

To load a file from the memory card or terminal, use the L (Load) command. The
syntax of the command is:

L device [format] offset.file-name

Device and format are the same as in the S command. Offset can be used to
force the contents of the file to be stored in a different location in memory. (The
contents of the file are placed at saved-address + segment-address (DS0) + off-
set.)

For example,
*LFH0.FILE3� The contents of hexadecimal FILE3 on.

the memory card are loaded into
memory.

When saving to or loading from EEPROM, use the ROMSAVE/ROMLOAD com-
mands for the entire source code (S code) area and the BASIC program.

Displaying Memory and
Register Contents

Saving and Loading
Programs

Machine Language Section 6-3

111

To check whether the program has been correctly saved or loaded, use the X
command immediately after the S or L command.

If an error has occurred, an error message (SAVE ERROR or LOAD ERROR) is
displayed.

Keep the following points in mind when developing a machine language subrou-
tine:

• Don’t forget to allocate memory for the machine language program with the
MSET command.

• Remember that the storage address for the machine language program is the
sum of the segment address (DS0) and the offset (the specified address).

• Be careful not to erase or damage the system and BASIC program areas by
assembling or loading to the wrong section of memory.

• Before calling the machine language routine, use DEF SEG to define the ma-
chine language routine’s segment address.

• To return from the machine language routine to the BASIC program, use the
RETF instruction. Make sure that the value of the stack pointer is the same as
when the machine language routine was called. Other registers and flags are
restored by the system.

• Do not disable interrupts in the machine language program.

• To use some of the memory allocated by the MSET command as a work area,
turn OFF the memory protect switch (write enable status).

• Instructions that are used for transferring data to or from the CPU Unit, or for
port operation such as PC READ and PC WRITE or PRINT and INPUT cannot
be programmed using the machine language.

6-3-3 Examining and Altering Memory with BASIC
To write data to the machine language program area from a BASIC program, use
the POKE statement. To read data, use PEEK.

Note The memory protect switch must be turned OFF for POKE to work.

Reading & Writing Memory Before reading or writing data in the machine language program area, define a
segment address with DEF SEG.
10 DEF�SEG = &H400 Use segment &H400.
To write data, use the POKE statement. (The memory protect switch must be
turned OFF.)

30 POKE &H100, &H41 Store &H41 at location &H4100 (seg-.
ment &H400 + offset &H100).

To read the contents of memory, use the PEEK statement.

40 N = PEEK(&H100) Read the contents of location &H4100.
and store in N.

Here is a simple program that stores a value in memory, then reads it back and
displays it:

10 PARACT 0
20 DEF SEG = &H400
30 POKE &H100, &H41
40 N = PEEK(&H100)
50 PRINT CHR$(N)
60 END
70 END PARACT

In this program, addresses and data are specified as hexadecimal numbers.
However, they can also be specified in other formats or as variables.

Common Programming
Mistakes

Machine Language Section 6-3

112

Note that the data read or written by the PEEK and POKE instructions in byte
units.

6-3-4 Calling a Machine Language Subroutine
To call the machine language subroutine from the BASIC program, use the CALL
statement or the USR function. Machine language subroutines that return a val-
ue to the BASIC program must be called by the USR function.

USR Ten USR functions, USR0 through USR9, can be defined and used. Before using
any USR function, the machine language subroutine segment must be defined
with DEF SEG. Then, the start address for each subroutine must be defined with
DEF USR.

For example:
100 DEF SEG = &H400
110 DEF USR1 = &H100 USR1 starts at offset &H100 in segment.

&H400 (absolute address &H04100).
120 N = USR1(5) Call the subroutine, passing it the argu-.

ment 5. The result is stored in N.
When the machine language subroutine is called, information about the argu-
ment is passed as follows:

Segment

Offset

Type

DSO:

BW:

AL:

Argument value

The argument type in AL will be one of these values:

0 : Integer

1 : Single-precision floating point

2 : Double-precision floating point

3 : Character variable

The beginning of the argument value is specified by the address in DS0 and BW.
For information about the argument value’s storage format in memory, refer to
6-3-5 Storage Formats.

The machine language subroutine must return its result in the same type and
using the same area in memory.

Sample Program This program uses a machine language subroutine which squares an integer to
print a list of squares from 1 to 10. However, the program does not use the USR
argument to pass the number to square; rather, it stores the number in a fixed
location (with POKE). The machine language routine gets it from that location
and places the result at another fixed location.

10 PARACT 0
20 DEF SEG=&H400 Define segment address (&H400).
30 DEF USR1 = &H100 Define subroutine start address (&H100).
40 FOR I = 1 TO 10
50 POKE &H200, I Save the value to square at offset.

&H200 (absolute location &H4200)
60 N = USR1(0) Call the subroutine.
70 A = PEEK(&H202) Get the squared value which the subrou-.

tine has stored at offset &H202
80 PRINT I; A Print the number and its square.
90 NEXT I
100 END
110 END PARACT

Machine Language Section 6-3

113

Here is the machine language portion of the program. It must be loaded in
memory at segment &H400, offset &H100 (absolute location &H4100).
MOV AW,PS Make data segment equal to program.

segment
MOV DS0,AW
MOV AL,[200] Get the value to square from &H200.
MUL AL Square the value.
MOV [202],AL Save result at &H202.
RETF Return to BASIC program.

Note When writing machine language programs, allocate space with the MSET
instructions and remember that the storage address is the segment address
(DS0) plus the offset (the specified address). DS0 will be 0050 when the ma-
chine language monitor mode is entered. If a program is input immediately, the
first offset address will be 4100 – 0500, or 3C00.

CALL The CALL statement executes a machine language subroutine from the BASIC
program. Before using CALL, the machine language subroutine’s segment must
be specified with the DEF SEG statement. Then, the subroutine’s offset address
must be stored in an integer variable which will be used in the CALL.

Several argument values may be passed to the subroutine when it is CALLed.
The BASIC Unit passes information about the arguments in type tables and
address tables; the table addresses are passed in DS0, BW and DS1, CW as
follows:

DS1 contains the argument type table segment.

CW contains the argument type table offset.

DS0 contains the argument address table segment.

BW contains the argument address table offset.

Number of arguments

Argument 1 type

Argument 2 type

Argument n type

Argument 1 offset

Argument 1 segment

Argument 2 offset

Argument 2 segment

Argument n offset

Argument n segment

Argument type table

Argument address table Argument 1 value

Argument 2 value

Argument n value

DS0

BW

DS1

CW
+0

+1

+2

+0

+2

+4

+6

+4(n–1)

+4(n–1)+2

Argument types
0: Integer
1: Single-precision real variable
2: Double-precision real variable
3: Character variable

The argument value address in the address table indicates the beginning of the
argument value. For information about the argument value storage formats, re-
fer to 6-3-5 Storage Formats.

Machine Language Section 6-3

114

The area of the argument to which the execution result of the machine language
program has been given is returned to the BASIC program as the value of the
same type.

Sample Program The following program inputs two numbers (A% and B%) and calls a machine lan-
guage subroutine which stores the larger of the two numbers in C%.

10 PARACT 0
20 DEF SEG = &H300
30 OFADR% = &H200
40 A% = 0
50 INPUT B%,C%
60 CALL OFADR%(A%,B%,C%)
70 PRINT A%
80 END
90 END PARACT

Here is the machine language subroutine. It must be loaded at segment &H300,
offset &H200 (absolute address &H3200).
MOV CW,A[BW] Get C% argument segment.
MOV DS1,CW
MOV IX,8[BW] Get C%argument offset.
DS1:
MOV AW,[IX] Get C% argument value.
MOV CW,6[BW] Get B% argument segment.
MOV DS1,CW
MOV IX,4[BW] Get B% argument offset.
DS1:
CMP AW,[IX] Compare values (C% to B%).
BGE 321B Jump if C% >= B%.
DS1:
MOV AW,[IX] Move B% value to AW.
MOV CW,2[BW] Get A% argument segment.
MOV DS1,CW
MOV IX,0[BW] Get A% argument offset.
DS1:
MOV [IX],AW Move AW to A% area.
RETF

Note 1. To return from the machine language subroutine to the BASIC program, be
sure to use the RETF instruction (op code &HCB). This is because the ma-
chine language program segment is different from the BASIC program seg-
ment, so the RET instruction (op code &H3C) will not work. If a subroutine is
used within the machine language program, near CALL and RET instruc-
tions may be used.

2. Remember that the storage address for the machine language program is
the sum of the segment address (DS0) and the offset (the specified ad-
dress).

6-3-5 Storage Formats
Variables are stored in memory as follows depending on their types:

Integers Integers are stored as two-byte (16-bit) 2’s complement numbers. The low-order
byte is stored in the lower-addressed of the two bytes occupied.

7 0

Address + 0

Address + 1

Lower byte

Upper byteS

Machine Language Section 6-3

115

Single-precision floating point values are stored in four consecutive bytes (32
bits), in IEEE 32-bit floating point format.

7 0

Address + 0

Address + 1
Lower byte

Upper byte
Address + 2

Address + 3

E

S

M

M

M

E

S: sign bit (0: positive, 1: negative)

E: exponent (8 bits, offset 127)

M: mantissa (23 bits)

31 0

1 bit 8 bits 23 bits

S E MM

Actual value = (–1)S2E–127(1.M)

Note: Binary value

Double-precision floating point values are stored in eight consecutive bytes (64
bits), in IEEE 64-bit floating point format.

7 0

Address + 0

Address + 1
Lower byte

Upper byte

Address + 2

Address + 3

M

M

M

M

E

S

M

M

M

E

Address + 4

Address + 5

Address + 6

Address + 7

S: sign bit (0: positive, 1: negative)

E: exponent (11 bits, offset 1023)

M: mantissa (52 bits)

S E

63 0

1 bit 11 bits

M

52 bits

M

Actual value = (–1)S2E–1023(1.M)

Note: Binary value

Single-precision Floating
Point Values

Double-precision Floating
Point Values

Machine Language Section 6-3

116

Character Strings Character strings are stored with 4 bytes of header information (2 bytes for maxi-
mum length and 2 bytes for current length), followed by the characters in the
string. A pad byte is appended if necessary so that the number of bytes used is
even. The pad byte’s value is undefined.

7 0

Address + 0

Address + 1

Address + 2

Address + 3

Address + 4

Address + n

Max. length, lower byte

Max. length, higher byte

Current length, lower byte

Current length, higher byte

First character

Last character

Array Values Arrays are stored contiguously in memory; each element of the array occupies
the same number of bytes. (The size of each element is the same as the size for
a simple value of the same type.)

0

n

A (0)

A (1)

A (2)

A (x)

Machine Language Section 6-3

117

Multi-dimensional Array Multi-dimensional arrays are stored in row-major form; that is, all the elements of
one row are stored before the first element of the next row. The diagram below
shows the layout of an X×Y array.

0

n

B(0,0)

B(0,1)

B(0,2)

B(0,y)

B(1,0)

B(1,1)

B(x,y)

Machine Language Section 6-3

118

6-3-6 Machine Language Programming Summary
To call a machine language program from the BASIC program, use the CALL
statement or USR function.

Return to BASIC
program

MSET command defines
beginning of BASIC
program area

Defines start address of
machine language function

Declares segment address

Calls machine language
program (any address)

Reads variable storage address

Calls machine language
function

DEF USR

DEF SEG

CALL

USR

VARPTR

Beginning

RETF

Machine Lan-
guage program

BASIC program

VariableVariable area

User program
source code area

ABCD

Machine Language Section 6-3

119

This diagram shows the commands that are used to move between the machine
language monitor mode and BASIC mode.

R U N

M O N A

XQ G

TCTRL X

or
End

Machine language
program debug

BASIC pro-
gram

“RUN”

BASIC mode Machine language mode Line assemble

etc.

+

etc.

When MON� is typed in the OK display status or command input status in BASIC
mode, the Unit enters machine language mode. At this time, the BASIC RUN
indicator goes off.

To return to BASIC mode, type Q� at the * prompt.

6-3-7 Machine Language Monitor Commands

This table lists the machine language monitor commands and gives a brief de-
scription of each command’s function. Detailed descriptions of each command
may be found in Appendix E Machine Language Monitor Reference.

Command Function

D Displays memory contents at specified address

W Changes memory contents at specified address

M Transfers memory contents

C Compares memory contents

A Assembles one line

I Disassembles

S Saves machine language program

L Loads machine language program

V Verifies machine language program

X Checks result of saving, loading, or verifying machine
language program

B Sets or displays break point

N Cancels break point

G Executes machine language program

T Executes one step of machine language program

R Displays or changes register contents

K Addition or subtraction in hexadecimal number

ESW Sets or displays memory switch

Machine Language Monitor
Mode and BASIC Mode

Machine Language Section 6-3

120

6-4 PC Communications
To transfer data between the CPU Unit and BASIC Unit, the PC READ or PC
WRITE command is usually used from the BASIC Unit. However, the CPU Unit
can also interrupt the BASIC Unit by executing the SEND(192) or RECV(193)
instruction or by using FINS commands.

6-4-1 SEND(192) and RECV(193)
The NETWORK SEND (SEND(192)) and NETWORK RECEIVE (RECV(193))
instructions can be used in the ladder-diagram program of the CPU Unit to send
data to or receive data from a BASIC Unit. Communications with the CPU Unit
using these instructions are handled as interrupts by the BASIC Unit.

Note 1. No signal is generated to indicate the end of the SEND(192) or RECV(193)
instruction. If it is necessary to confirm completion of PC READ or PC
WRITE in the CPU Unit program, confirmations data can be written to specif-
ic area in the CPU Unit and checked by the CPU Unit program.

2. To prevent communications problems when executing more than one
SEND(192) or RECV(193) instruction, use a different port for each instruc-
tion or write the CPU Unit program to ensure that only one instruction is
executed at a time.

3. It is more efficient to combine data transfer operations to reduce the number
of PC READ and PC WRITE commands.

4. Only one write request (PC WRITE) is executed by the CPU Unit during
each CPU Unit cycle. If more than one request is received, the other write
requests must wait until the next cycle. This includes requests from other
BASIC Units, other CPU Bus Units, and Link Units (SYSMAC LINK, SYS-
MAC NET, etc.)5

CPU Unit Interrupt Processing Program
The ON PC GOSUB statement is used to define a service routine for PC inter-
rupts.
ON PC(2) GOSUB 1000 2 is the interrupt number and 1000 is.

the first line number of the interrupt rou-
tine.

Interrupts 1 to 15 can be specified.
To generate an interrupt from the CPU Unit, the SEND(192) or RECV(193) in-
struction is executed by the user program in the CPU Unit.
When the CPU Unit generates an interrupt, the PC READ command is used to
read the data from the CPU Unit:
PC READ ”S10H4”; A(0) S10H4 is the format and A(0) is the.

variable which will receive the data.
When an interrupt has been generated from the CPU Unit, use the PC WRITE
command to write data to the CPU Unit:
PC WRITE ”S10H4”; B(0) S10H4 is the format and B(0) contains. . . .

the data to send.
The format is specified as shown in this table. For details, refer to the BASIC Unit
Reference Manual (W207-E1).

Name Format Meaning

I mIn n-digit decimal data of m words (n: 1 to 4)

H mHn n-digit hexadecimal data of m words (n: 1 to 4)

O mOn n-digit octal data of m words (n: 1 to 4)

B mBn nth bit data of m words (n: 0 to 15)

A mAn ASCII character data specified by n of m words (n: 1 to 3)

S SmXn nth (nth bit) data specified by X of m words (Type S is of array type of type I, H, O, or B, and
X indicates I, H, O, or B.)

PC Communications Section 6-4

121

• If m is omitted, 1 is assumed.

• Make sure that 1 word of types I, H, O, and B corresponds to 1 variable.

• Type A must correspond to 1 variable in format units.

• Type S correspond to 1 array variable in word units, but must correspond to 1
array variable in format units for description. Use one-dimensional array as the
array variable.

Transferring Data from the CPU Unit

To transfer data from the CPU Unit, the CPU Unit interrupts the BASIC Unit with
the SEND(192) instruction.

 (192)
SEND S D C

D: 1st destination word

C: 1st control word

S: 1st source word

Word Bits 00 to 07 Bits 08 to 15

C Number of words (1 to 0990 in 4-digit hexadecimal, i.e., $0001 to $03DE)

C+1 Destination network address
(0 to 127, i.e., $00 to $7F)

Bits 08 to 11: Interrupt number
($1 to $F)

Bits 12 to 15: Set to 0.

C+2 Destination unit Destination node address

C+3 Bits 00 to 03:
No. of retries (0 to 15 in
hexadecimal,
i.e., $0 to $F)

Bits 04 to 07:
Set to 0.

Bits 08 to 11:
Transmission port number
($0 to $7)

Bit 12 to 14:
Set to 0.

Bit 15: ON: No response.
OFF: Response returned.

C+4 Response monitoring time ($0001 to $FFFF = 0.1 to 6553.5 seconds)

• The interrupt number must be the same as that used in the ON PC GOSUB and
PC ON, OFF, and STOP statements in the BASIC program. The interrupt num-
ber must be a hexadecimal number from 1 to F.

• The destination Unit specification is the BASIC Unit’s unit number plus 16 (a
hexadecimal number from 10 to 1F).

• Set D to 0000; the BASIC Unit ignores this parameter.

• Refer to the CV-series PC Operation Manual: Ladder Diagrams for further de-
tails.

Here is the procedure for interrupt-driven data transfer from the CPU Unit to the
BASIC Unit:

1, 2, 3... 1. Transfer data from the CPU Unit by executing the SEND(192) instruction
with interrupt number set in C+1.

2. The BASIC Unit will be interrupted when the data arrives, and the PC inter-
rupt service routine defined by the ON PC GOSUB statement will be called.

3. Data of a predetermined length is read with the PC READ instruction and is
stored in the variable(s). The length set for the PC READ instruction must be
the same as that set for the SEND(192) instruction.

PC Communications Section 6-4

122

4. The PC READ command returns a response (1) to the CPU Unit.

100 ON PC (2) GOSUB 500
110 PC (2) ON

500 PC READ ”S10H4” ; A(0)

600 RETURN

(2)

(3)

(1)

(4)

CPU Unit Program Application Program

CPU Unit BASIC Unit

System
processing

 (192)
SEND S D C

Transferring Data to CPU Unit

To receive data from the BASIC Unit, the CPU Unit interrupts the BASIC Unit with
the RECV(193) instruction.

 (193)
RECV S D C

D: 1st destination word

C: 1st control word

S: 1st source word

Word Bits 00 to 07 Bits 08 to 15

C Number of words (1 to 0990 in 4-digit hexadecimal, i.e., $0001 to $03DE)

C+1 Source network address
(0 to 127, i.e., $00 to $7F)

Bits 08 to 11: Interrupt number
($1 to $F)

Bits 12 to 15: Set to 0.

C+2 Source unit Source node address

C+3 Bits 00 to 03:
No. of retries (0 to 15 in
hexadecimal,
i.e., $0 to $F)

Bits 04 to 07:
Set to 0.

Bits 08 to 11:
Transmission port number
($0 to $7)

Bit 12 to 14:
Set to 0.

Bit 15: ON: No response.
OFF: Response returned.

C+4 Response monitoring time ($0001 to $FFFF = 0.1 to 6553.5 seconds)

• The interrupt number must be the same as that used in the ON PC GOSUB and
PC ON, OFF, and STOP statements in the BASIC program. The interrupt num-
ber must be a hexadecimal number from 1 to F.

• The source unit specification is the BASIC Unit’s unit number plus 16 (a hexa-
decimal number from 10 to 1F).

• Set S to 0000; the BASIC Unit ignores this parameter.

Here is the procedure for interrupt-driven data transfer from the BASIC Unit to
the CPU Unit:

1, 2, 3... 1. Execute the RECV(193) instruction from the CPU Unit with the interrupt
number in C+1.

2. The PC interrupt service routine defined with ON PC GOSUB will be called
when the RECV(193) instruction has been executed.

PC Communications Section 6-4

123

3. Data of the predetermined length is sent from the BASIC Unit with the PC
WRITE instruction. The length set for the PC WRITE instruction must be the
same as that set for the RECV(193) instruction.

4. The PC WRITE instruction returns a response to (1) to the CPU Unit.

100 ON PC (3) GOSUB 700
110 PC (3) ON

700 PC WRITE ”S10H4” ; A(0)

800 RETURN

(2)

(3)

(1)

(4)

CPU Unit Program Application Program

CPU Unit BASIC Unit

System
processing

 (193)
RECV S D C

6-4-2 CV-series (FINS) Commands
The BASIC Unit supports automatic processing for certain FINS commands
transmitted via PC networks. Refer to the FINS Command Reference Manual for
details.

PC Communications Section 6-4

125

SECTION 7
Peripherals

This section information relating to the use and programming for the peripheral devices. The GB-IB Interface programming is
also provided for use with the peripherals.

7-1 Peripheral Devices 126.
7-1-1 Using Devices 126.
7-1-2 User Indicators 128.

7-2 GP-IB Programming 130.
7-2-1 GP-IB System Configuration 131.
7-2-2 Signal Lines of GP-IB 132.
7-2-3 Transferring/Receiving Commands and Data 133.
7-2-4 Service Requests 135.
7-2-5 Developing a GP-IB Program 136.
7-2-6 GP-IB Program Example 138.

126

7-1 Peripheral Devices
Various devices such as a terminal, printer, communication port, and network
can be connected to the BASIC Unit. These devices can be opened, and data
can be read and written, in the same way as a regular file.

Data A

01234...

Data B $

ABCD to

Data

1980:7:26

File buffer Device

INPUT, PRINT

File #3

File #2

File #1

Printer

Terminal

Transmitting port

Network

OPEN

CLOSE

As shown in this figure, the devices can be associated with a file buffer from 1 to
15 by the OPEN statement.
After that, when data is read from or written to the file buffer with commands such
as INPUT and PRINT, the data is automatically sent to or received from the de-
vice. When the device is no longer necessary, it can be dissociated from the file
buffer by the CLOSE statement.
To open a device, use one of the following names in the OPEN command:

Name Device

COM1: Communication port 1

COM2: Communication port 2

COM3: Communication port 3

KYBD: Terminal keyboard

SCRN: Terminal screen

LPRT: Printer

FINS: Network

The name used for the communications port can also include information speci-
fying the communications parameters to use on the port.

7-1-1 Using Devices
This section describes how to use the devices.

Opening a Device Before using a device, open it with the OPEN statement.
For example, open a communications port as follows:
OPEN ”COM2:” AS #4 ”LPRT:” is the device name, and #4 is.

the file number.
When the device has been opened, it is associated with the file buffer of the spe-
cified file number. Therefore, the same file number cannot be used by any other
file or device until the first device is closed.
File numbers must be integers between 1 and 15.

Peripheral Devices Section 7-1

127

Note To establish communication between BASIC Units, specify FIN as the device
name in an OPEN command, a network address, node address, and Unit ad-
dress, and send or receive data using the PRINT or INPUT statements.

Communication Ports The communication ports can be opened by the OPEN statement using device
name COM1:, COM2:, or COM3:. For example,
OPEN ”COM1:9600,E,8,2,XN” AS #4

COM1: is the device name,
9600,E,8,2,XN is the communications
setting (described below), and #4 is the
file number.

A character string can be specified after the device name to set various commu-
nications parameters such as the baud rate, bit length, and parity.
If these parameters are not specified, the value set by the memory switch is used
for the baud rate; the character length is 8 bits, 2 stop bits are used, and flow
control is disabled.
Specify communications parameters as follows:
9600,E,8,1,N,RS,CS10,DS0,LF
Here 9600 is the baud rate, E is for even parity, 8 is the data length, 1 is the num-
ber of stop bits, N controls XON/XOFF flow control, RS controls the RTS signal,
CS10 monitors transmissions, DS0 controls the handling of the DSR signal, and
LF enables the LF-after-CR function.
The details of the communication control parameters are as follows:

Parameter Setting Remarks Default

Baud rate 300, 600, 1200,
2400, 4800,
9600, 19200

Sets transfer rate (bits/second (bps)) Setting of memory
switch. 9600 if memory
switch is not set

Parity E
O
N

Even parity
Odd parity
No parity

N

Data length 7
8

7 bits per character
8 bits per character

8

Stop bit 1
2

1 stop bit
2 stop bits

1

XON/XOFF X
XN

Performs XON/XOFF flow control
Does not perform XON/XOFF flow control

X

RTS control RS

None

Turns ON RTS (request to send) signal on execution of
I/O command. RTS is OFF for all other commands.
Always turns ON RTS signal. If a communication port is
set as the printer port or terminal port, control using RTS
is not possible. In this case, therefore, do not set RTS
control.

None

Transmission
monitor

CSn

None

If CTS (clear to send) signal is ON, transmits and waits
nms for the end of the send, where n is 0 to 30000 (in
units of 100). When 0 is specified, wait time is indefinite
If CTS signal is ON, transmits and waits indefinitely.

CS0

DSR control DS0
None

Does not check DSR (data set ready) signal
Checks DSR signal

None

LF LF
None

Sends line feed character after carriage return
Does not send line feed

None

• Communications control using RTS/DTR signals is not possible for the ports
set as the terminal and printer ports. To perform communications control using
RTS/DTR signals, change the ports set as the terminal and printer ports to
ports other than the ones for which RTS/DTR control is to be used. This is done
using memory switch 3.

• With the COM3 (RS-422) port, after send processing is completed, approxi-
mately 60 ms is required until receive processing is possible. Be sure to allow
for this time.

Peripheral Devices Section 7-1

128

The timing of the communications control parameters is shown in the following
diagram.

DTR (Out)

DSR (In)

RST (Out)

CTS (In)

TXD (Out)

RXD (In)

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

OPEN
without
RS

PRINT INPUT CLOSE OPEN
with
RS

PRINT INPUT CLOSE

Completed

Signal not check if
DS0 is specified1

Signal not check if
DS0 is specified1

Unlimited wait if CS0 or
nothing is specified.2

Unlimited wait if CS0 or
nothing is specified.2

Note: 1. The signal is check if nothing is specified and an “RS-232C not ready” error occurs if the sign is
not ON.

2. If CS100 to CS30000 is specified, the system will wait for from 100 ms to 30 s for PRINT to finish.
If time expires or the signal goes OFF before PRINT finishes, an “I/O timeout” error will occur.

To send data, use the WRITE or PRINT instructions:
WRITE #4, A$, B$ #4 is the file number, and A$ and B$.

contain the data to send.
PRINT #4, A$, B$ #4 is the file number, and A$ and B$.

contain the data to send.
Character data stored in character variables A$ and B$ are output through file
buffer 4 in the order of A$ and B$.

To receive data, use the INPUT instruction:
INPUT #4, A$, B$ #4 is the file number, and A$ and B$ are.

the variables in which the data is stored.
Data is read from the device through file buffer 4 and stored in A$ and B$.

The device is dissociated from the file buffer by the CLOSE or END statements:
CLOSE #4 #4 is the file number..

7-1-2 User Indicators
The eight user indicators (0 through 7) on the front panel of the BASIC Unit can
be lit or extinguished by the BASIC program.

The system provides a subroutine that controls the indicators. This subroutine is
called by setting the segment and address of the subroutine and passing argu-
ments that turn on, off, or blink the indicators.
100 ’***INDICATOR CONTROL PROGRAM***
110 PARACT 0
120 ’DEFINITION OF FUNCTION
130 DEF FNINT (X) =– (X<32768)*X– (X>32767) * (X–65536)
140 DEF FNCNV (H%, L%) =FNINT (H%*256+L%)
150 DEF FNWORD (A%) =FNCNV (PEEK (A%+1), PEEK (A%))
160 DEF ENOFF (V%) =FNWORD (V%*4)
170 DEF FNSEG (V%) =FNWORD (V%*4+2)
180 ’LED VECTOR READ
190 DEF SEG=&H0
200 LED%=FNOFF (64)

Peripheral Devices Section 7-1

129

210 LEDSEG%=FNSEG (64)
220

500 ’LED ON/OFF/BLINK EXECUTION
510 DEF SEG=LEDSEG%: LO%=0
520 CALL LED% (LO%, LOFF%, LON%, LBLINK%)
530 RETURN

560 END PARACT

Note 1. Enter lines 120 through 210 shown above as is (the comment line can be
omitted).

2. Set the arguments LON%, LOFF%, and LBLINK% to these values according
to the number of the indicator to be controlled:

Indicator No. 0 1 2 3 4 5 6 7

Set value &H01 &H02 &H04 &H08 &H10 &H20 &H40 &H80

• To control more than one indicator, the values of the indicators are ORed.
For example: indicators 1, 3, and 6 can all be turned on by LON% = &H4A

• If the same values are set for the arguments in duplicate, each of the argu-
ments is assigned priority as follows:
LBLINK% > LON% > LOFF%

3. Call the indicator subroutine including the segment definition statement
(GOSUB 510).

Example:
100 ’***INDICATOR CONTROL PROGRAM***
110 PARACT 0
120 ’DEFINITION OF FUNCTION
130 DEF FNINT (X) =– (X<32768) *X– (X>32767) * (X–65536)
140 DEF FNCNV (H%, L%) =FNINT (H%*256+L%)
150 DEF FNWORD (A%) =FNCNV (PEEK (A%+1), PEEK (A%))
160 DEF ENOFF (V%) =FNWORD (V%*4)
170 DEF FNSEG (V%) =FNWORD (V%*4+2)
180 ’LED VECTOR READ
190 DEF SEG=&H0
200 LED%=FNOFF (64)
210 LEDSEG%=FNSEG (64)
220 ’
230 ’
240 ’
250 LOFF%=&HFF: LON%=0: LBLINK%=0
260 GOSUB *LEDSUB
270 FOR I=0 TO 5000
280 NEXT I
290 LOFF%=0: LON%=&H4A: LBLINK%=0
300 GOSUB *LEDSUB
310 FOR I=0 TO 5000
320 NEXT I
330 LOFF%=&H8: LON%=&H10: LBLINK%=&H82
340 GOSUB *LEDSUB
350 FOR I=0 TO 5000
360 NEXT I
370 GOTO 230
380 ’
390 ’
400 *LEDSUB ’LED ON/OFF/BLINK EXECUTION
410 DEF SEG=LEDSEG%: LO%=0
420 CALL LED% (LO%, LOFF%, LON%, LBLINK%)
430 RETURN

Peripheral Devices Section 7-1

130

440 ’
450 ’
460 END PARACT

Remarks:

• Lines 120 through 210 and 400 through 430 are as shown on the preceding
page.

• Lines 250 and 260 extinguish all indicators 0 through 7.

• Lines 290 and 300 light indicators 1, 3, and 6.

• Lines 330 and 340 extinguish indicator 3, light indicator 4, and blink indicators
1 and 7. At this time, indicator 6 lighted by lines 290 and 300 remains lit.

• The sequence is repeated.

7-2 GP-IB Programming

GP-IB stands for General-Purpose Interface Bus and is an interface used for
connecting various kinds of measuring instruments with a computer. This inter-
face is standardized by IEEE-488 and IEC-625. GP-IB has functions called talk-
er, listener, and controller. Talker transfers data, listener receives data, and con-
troller controls the system. Each function has a my-address of 0 to 30, and the
controller manages the devices in the system using this address.

Each device can have only talker and/or listener functions, or all three functions.

BASIC Unit

Controller
Talker, Listener

Printer

Listener

Digital multi-meter

Talker

Logic analyzer

Talker, Listener

Data lines (8)

Hand shake line (3)

Interface control line (5)

Data are transferred with eight data lines, five interface control lines, and three
handshake lines.

Each device can request the controller for a service by using the SRQ line.

The BASIC Unit has 16 BASIC instructions and 2 functions to control the GP-IB,
so that data can be transferred with each GP-IB device without having to be con-
cerned with the details of the GP-IB transfer procedures.

GP-IB Programming Section 7-2

131

7-2-1 GP-IB System Configuration

In a GP-IB system, all devices are connected in parallel as shown below.

Up to 15 interfaces (devices) can be connected to one system.

The total length of the connecting cables is 20m or the number of devices con-
nected to the same bus ×2m, whichever smaller.

The maximum cable length between two devices is 4m.

DI08
to

DI01

DAV
NRFD
NDAC

IFC
ATN
SRQ
REN
EOI

Device A
(with Controller,
Talker, and
Listener)

Device B
(with Talker and
Listener)

Device C
(with Talker only)

Device D
(with Listener only)

e.g. BASIC Unit e.g. Digital voltmeter e.g. Tape reader e.g. Signal generator

Interface
Bus

The functions (roles) of the devices connected in a GP-IB system can be divided
into controller, talker, and listener. These three functions are outlined below.

Controller This function is to control the entire GP-IB system and is effected by a computer.
The controller specifies the destination of data and commands (listener) and the
transfer source of data (talker) to control the overall system.

Usually, only one controller is permitted for one system. If more than one device
with the controller function is connected to the same bus, only one of the devices
can serve as a controller at a time.

The controller that actually operates as a controller is called the active controller.
If there are several controllers, one has the special function of system controller.

The system controller is always active when the system is started, and can spec-
ify another controller to serve as the active controller if necessary.

Note The BASIC Unit is designed to serve as a system controller and active controller
when set in the master mode.

Talker A talker transfers data under the control of the controller. For example, a talker
can be a digital voltmeter that outputs measured values. Only one talker can op-
erate in a system at a time.

Listener A listener receives data under the control of the controller. For example, a listen-
er can be a printer. Unlike the talker, more than one listener can operate simulta-
neously in one system.

GP-IB Programming Section 7-2

132

7-2-2 Signal Lines of GP-IB
The GP-IB consists of 16 signal lines and 8 ground lines. The signal lines are
divided into the following three groups based on their functions.

Data Lines (DIO1-DIO8) These 8 lines are the bi-directional data bus.

Handshake Lines (DAV, NRFD, NDAC)
Signal name Function

DAV Data Valid When low, indicates that data on DIO1 through DIO8 sent from controller are
valid

NRFD Not Ready For Data When low, indicates that listener is busy

NDAC Not Data Accepted When low, indicates that listener has not yet completed reception

Interface Control Lines (IFC, ATN, SRQ, REN, EOI)
Signal name Function

IFC Interface Clear Initialize interface when low

ATN Attention Indicates command mode when low

SRQ Service Request Indicates that device is requesting controller for service when low

REN Remote Enable Enables each device to be remotely controlled when low

EOI End Or Identify Used as a delimiter when more than 1 byte is transferred. Also used for parallel
polling (in combination with ATN)

Three-line Handshaking To synchronize data transfer through GP-IB, a three-line handshaking tech-
nique is employed. This handshaking is automatically performed by the GP-IB
interface LSI in the BASIC Unit. Therefore, you need not be concerned with it
when programming the Unit. However, this section briefly explains the tech-
nique for those interested.

A typical timing chart of three-line handshaking between the talker and a listener
is shown below as an example.

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

H

L

H

L

H

L

(3)

(1)

(4)
(6)

(7)

(8) (9) (13) (18) (19) (22)
(23)

(23)

(23)

(21)(11)

(10) (12) (16) (20)

(2)

(2)

(5) (14) (15) (17)

1st data byte 1st data byte

DIO 1 to 8

DAV

NRFD

NDAC

Data valid
status

Data valid
status

All listen-
ers are in
data re-
ception
ready sta-
tus

All listeners are in
data reception
ready status

Data in-
valid sta-
tus

Data in-
valid
status

All listeners are in
data reception
ready status

All listeners are
in data reception
ready status

Talker

Listener

H ≥ +2.0 V
L ≤ +0.8 V

Operation of Three-line Handshaking
1, 2, 3... 1. The talker makes the DAV line high, indicating that the data is not valid.

2. The listener makes the NRFD line low, indicating that the listener is not yet
ready to receive data.
The listener may also makes the NDAC line low, indicating that reception of
data has not been completed.
At first, the DAV line is high, and NRFD and NDAC are low.

3. The talker sets data on the DIO lines.

4. The talker waits until the DIO lines stabilize.

5. The listener makes the NRFD line high when it is ready to receive.

GP-IB Programming Section 7-2

133

6. After confirming that the NRFD line is high, the talker makes the DAV line
low, indicating that the data on the DIO lines is valid.

7. After confirming that the DAV line is low, the listener makes the NRFD line
low, indicating that it has started receiving the data.
While the data is being transferred, the DAV line is low, NRFD is low, and
NDAC is low.

8. Each listener allows its NDAC line to go high when it has finished receiving
the data. When all the listeners are finished, the talker will see the NDAC line
go high.

9. After confirming that the NDAC line has gone high, the talker makes the DAV
line high.

10. through 22.
The next byte is transferred by means of handshaking in the same manner.

7-2-3 Transferring/Receiving Commands and Data

Command and Data Transfer Procedure
To operate a GP-IB device, the controller first makes the ATN line low to transfer
a command to all the devices connected to the bus.

When the ATN line is low, the bus enters the command mode, and each device
receives the data on the data bus as a command, and performs the operation
specified by the command.

UNL TA LA (1) (2) (n) (D)

Command mode Data mode

DI01
to

DI08

DAV

ATN

UNL: Unlisten command
TA: Talker address
LA: Listener address

(1) to (n): Data
(D): Delimiter (CR + LF, CR, LF or EOI)

1, 2, 3... 1. The controller makes ATN low and transfers the UNL command. This re-
leases all the devices from the current status.

2. The controller transfers TA (talker address) and LAs (listener addresses).
This selects a new talker and listeners, which enter the standby status.

3. The controller makes ATN high to set the data mode, in which data is trans-
ferred between the talker and listeners.

My Address Each device in a GP-IB system has an address called my-address.

My-address is an integer from 0 to 30, and is used to identify each device.

The controller uses my-address to select a talker or listener. The BASIC Unit’s
my-address is set by the memory switch.

Interface Message Interface messages are called bus commands or interface commands and are
messages to control a GP-IB system. These messages can be transferred only
by the controller.

GP-IB Programming Section 7-2

134

The interface messages are divided into two types: uni-line messages and mul-
ti-line messages.

The BASIC Unit automatically transfers an interface message each time it ex-
ecutes a statement. The interface message is information necessary for per-
forming complicated operations.

Uni-line Message A uni-line message is given a meaning by only one signal line and is transferred
using the control bus (ATN, IFC, SRQ, REN, and EOI).

Multi-line Message A multi-line message is transferred by using the data bus (DIO1 through DIO8)
and by means of handshaking. DIO1 through DIO7 of the data bus are used to
transfer a multi-line message and DIO8 is ignored. In a narrow sense, a mul-
ti-line message is called an interface message.
A multi-line message is a common command of the GP-IB interface, unlike the
commands (program codes), which are peculiar to each type of device.

Multi-line messages can be classified into the following five types:

a) Universal command
This command is for all the devices connected to the bus.

b) Address command
This command is for a specified device and is transferred with a listener
address specified.

c) Listener address
This is a command to specify a listener.

d) Talker address
This is a command to specify a talker.

e) Secondary command
This command is suffixed to a listener address or talker address to speci-
fy the secondary address of an extra listener or talker.

A list of multi-line messages is shown on here.

Codes in Command Mode
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

b7 b6 b5 b4 b3 b2 b1
ROW

COLUMN 0 1 2 3 4 5 6 7

0 0 0 0 0 a) a) b) b)

0 0 0 1 1 GTL LLO

))))

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4 SDC DCL

0 1 0 1 5 PPC PPU

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8 GET SPE

1 0 0 1 9 TCT SPD

1 0 1 0 10 (A)

1 0 1 1 11 (B)

1 1 0 0 12 (C)

1 1 0 1 13 (D)

1 1 1 0 14 (E)

1 1 1 1 15 (F) UNL UNT

a) MLA listener address

b) MLA talker address

GP-IB Programming Section 7-2

135

Column 0: Address Command Group (ACG)

Column 1: Universal Command Group (UCG)

Column 2 and 3: Listener Address Group (LAG)

Column 4 and 5: Talker Address Group (TAG)

Column 6 and 7: Secondary Command Group (SCG)

Column 1 through 5: Primary Command Group (PCG)

Group Name Function

Address command
group

GTL

SDC

PPC

GET

TCT

Go To Local

Selected Device Clear

Parallel Poll Configure

Group Execute Trigger

Take Control

Localizes
Initialize
Sets acknowledge bit of parallel polling function
Triggers
Selects active controller

Universal command
group

LLO

DCL

PPU

SPE

SPD

Local Lock-out

Device Clear

Parallel Poll Unconfigure

Serial Poll Enable

Serial Poll Disable

Disables local function
Initialize
Cancels acknowledge bit of parallel polling function
Sets serial polling mode
Release serial polling mode

Listener address group UNL Unlisten Cancels listener specification

Talker address group UNT Untalk Cancels talker specification

Codes in Data Mode (ASCII Codes)

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

b7 b6 b5 b4 b3 b2 b1
ROW

COLUMN 0 1 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SPACE 0 @ P p

0 0 0 1 1 SOH DC1 ! 1 A Q a q

0 0 1 0 2 STX DC2 ” 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETB ’ 7 G W g w

1 0 0 0 8 BS CAN (8 H X h x

1 0 0 1 9 HT EM) 9 I Y i y

1 0 1 0 10 (A) LF SUB * : J Z j z

1 0 1 1 11 (B) VT ESC + ; K [k {

1 1 0 0 12 (C) FF FS , < L \ l |

1 1 0 1 13 (D) CR GS – = M] m }

1 1 1 0 14 (E) SO RS . > N ^ n ~

1 1 1 1 15 (F) SI US / ? O _ o

7-2-4 Service Requests

A device connected to the GP-IB can interrupt the controller by making the SRQ
line low to request a service.

When the SRQ line has gone low, the controller executes serial polling to find the
device that generates the interrupt.

Service Request and Serial
Polling

GP-IB Programming Section 7-2

136

The serial polling is performed with the controller requesting each device to se-
quentially transfer a status byte, as follows:

SPE
TA
(1)

STB
(1)

TA
(2)

STB
(2) SPD

DI01
to

DI08

SPE: Serial poll enable
TA: Talker address
STB: Status byte

SPD: Serial poll disable
UNT: Untalk

UNT

ATN

UNL

Parallel Polling Parallel polling is a method by which the controller checks the presence or ab-
sence of requests from more than one device (up to eight devices) at a time. One
of the DIO through DI8 lines and an acknowledge line is assigned to each de-
vice, and the controller checks whether each device is making a request by mak-
ing ATN and EOI low simultaneously.

7-2-5 Developing a GP-IB Program
The BASIC Unit has 16 commands and 2 functions which control the GP-IB in-
terface.

INPUT@, LINE INPUT@, PRINT@, RBYTE, WBYTE

Interface Control Commands IRESET REN, ISET IFC, ISET SRQ, ISET REN, POLL, PPOLL,
CMD DELIM, CMD PPR, CMD TIMEOUT

SRQ Interrupt Commands ON SRQ GOSUB, SRQ ON/OFF/STOP

Functions IEEE(0) through IEEE(7), STATUS

To develop a GP-IB program, the operations of the measuring instrument to be
connected must be understood.
For example, if a digital voltmeter is to be connected, the measurement modes
such as DC voltage and AC voltage, and measurement range of voltage are se-
lected by pressing appropriate buttons of the voltmeter. With a BASIC program,
however, the control codes of the measuring instrument called program codes
are transferred by the PRINT@ command.
The measured voltage is received by the INPUT@ command.
In this manner, a human operator could be replaced by a BASIC program.
A procedure to develop a GP-IB program is briefly explained on the following
pages. For details, refer to the BASIC Unit Reference Manual (W207-E1).

Program Codes Program codes are used to control each operation of the measuring instrument.
These program codes are different for each instrument. Refer to the instru-
ment’s manual for details.
The program codes are entered in the BASIC program in the sequence ex-
pected by the measuring instrument and executed by the measuring instrument.
Each program code is specified by a character code with the operation of each
measuring instrument enclosed by literal (”). In addition, a program code can
also be specified by a variable when, for example, an output frequency is contin-
uously changed.

Example: Digital Multimeter 3478A

PRINT@24; ”F1RAN5T4” 24 is the listener address, F1 is the.
measuring function (DC voltage), RA is
the auto range, N5 is the 5 1/2 digit dis-
play, and T4 is the trigger (hold).

Data Transfer/Reception
Commands

GP-IB Programming Section 7-2

137

Initializing GP-IB
Before transmitting data with the GP-IB, it is necessary to initialize the interface
bus and measuring instruments.

1, 2, 3... 1. Initialize the GP-IB by making IFC (interface clear) of the interface control
bus low:
ISET IFC

2. Enable the GP-IB to be remotely controlled by making REN (remote enable)
low.
ISET REN

3. Transfer the DCL (device clear) command in the command mode to initialize
the measuring instrument.
WBYTE &H14;

4. This completes initialization. Some measuring instruments takes a long
time to be initialized. Be sure to wait for the time specified by the instrument’s
manual before issuing the next command.

Transfer/Reception with GP-IB
To transfer commands or data to the GP-IB, the PRINT@ or WBYTE statements
are used. To receive data, the INPUT@, LINE INPUT@, or RBYTE instructions
are used.
For example, suppose a 3478A digital multi-meter is connected.
Transfer the program code determined for each measuring device.
PRINT@24; ”F1RAN5T4” 24 is the listener address, F1 is the.

measuring function (DC voltage), RA is
the range (auto range), N5 is the 5 1/2
digit display, and T4 is the trigger mode
(hold).

Next, trigger the measuring instrument.
PRINT@24;”T3” 24 is the listener address, and T3 is the.

trigger mode (Single trigger).
Receive and store the data in a variable.
INPUT@24;I 24 is the talker address and I is the.

name of data storage variable.
As you can see, data can be transferred to and from a GP-IB device with a simple
BASIC program.

Service Request Interrupt Processing
If a service request is generated by a GP-IB measuring instrument, the interrupt
service routine defined with ON SRQ GOSUB will be called.
ON SRQ GOSUB *LABEL *LABEL is the label or first line number.

of the SRQ interrupt routine.
After the routine has been defined, the interrupt must be enabled when the pro-
gram is ready to accept interrupts.
SRQ ON
To disable the interrupt, use SRQ OFF. To stop it temporarily, use the SRQ STOP
statement.
When the SRQ interrupt service routine has been called, execute serial polling
with the POLL statement.
The device status will be stored in a variable.
POLL 24, S 24 is the talker address, and S is the de-.

vice status storage variable.
If bit 6 of the device status is 1, the SRQ interrupt was generated by the specified
talker.
This statement can be used to check bit 6 of the status:
IF S AND 64 THEN *LABEL1

GP-IB Programming Section 7-2

138

When the interrupting device has been found, read the data it is trying to send:
INPUT@24:R 24 is the talker address and R is the.

data storage variable.
When the data has been received, the interrupt service routine can return (with
the RETURN statement).

7-2-6 GP-IB Program Example

Preparations The BASIC Unit controls GP-IB devices by sending “program codes” to them in-
stead of pressing the panel buttons.

For example, to select the DC voltage mode as the measurement mode of Hew-
lett-Packard’s digital multi-meter 3478A, program code “F1” is sent instead of
pressing the DC voltage mode switch.

Example 1 In this example, the DC voltage function is selected as the measurement func-
tion, the range is set to the auto range, display is set to 5 1/2 digit mode, and the
measured current value is displayed on the terminal.

My-address of the digital multi-meter in this example is 24.
10 PARACT 0
20 ’***********************************
30 ’* GP–IB PROGRAM SAMPLE 1 *
40 ’* DMM = 3478A (ADDRESS ”24”) *
50 ’***********************************
60 ISET IFC Transfer interface clear command to ini-.

tialize GP-IB interface
70 ISET REN Make REN (remote enable) line true.

(low) to enable GP-IB to be remotely
controlled

80 WBYTE &H14; Send device-clear command (&H14) to.
initialize 3478A

90 FOR J=0 TO 5000:NEXT J Wait until 3478A has finished initializa-
tion

100 PRINT@ 24; ”F1RAN5T4” Send program codes to set DC voltage
function (F1), auto-range (RA), 5 1/2 dig-
it display (N5), and trigger hold (T4)

110 PRINT@ 24; ”T3” Send single trigger (T3) to 3478A.
120 INPUT@ 24; I Receive data from 3478A.
130 PRINT I Print data on terminal.
140 END
150 END PARACT

Example 2 In this program, the two-line resistor function is selected as the measurement
function, the range is set to auto range, the display is set in 5 1/2 digit mode, and
the internal trigger is set. When the service request button on the front panel is
pressed, the measured resistance is displayed on the terminal.
My-address of the digital multi-meter in this example is 24.
10 PARACT 0
20 ’**********************************
30 ’*GP–IB PROGRAM SAMPLE 2 *
40 ’* DMM = 3478A (ADDRESS ”24”) *
50 ’**********************************
60 ISET IFC Transfer interface clear command to ini-.

tialize GP-IB interface
70 ISET REN Make REN (remote enable) line true.

(low) to enable GP-IB to be remotely
controlled

80 WBYTE &H14; Send device-clear command (&H14) to.
initialize 3478A

90 FOR J=0 TO 5000:NEXT J Wait until 3478A has finished initializa-
tion

GP-IB Programming Section 7-2

139

100 PRINT@ 24; ”F3RAN5T1” Send program codes to set 2-line resis-
tor function (F3), auto-range (RA), 5 1/2
digit display (N5), and internal trigger
(T1)

110 PRINT@ 24; ”KM20” Clear serial poll register (K) and set.
mask (M20) so that SRQ is generated
only when SRQ button on front panel is
pressed

120 ON SRQ GOSUB *SBOT Define SRQ interrupt service routine. . . .
130 SRQ ON Enable SRQ interrupts.
140 PRINT ”SRQ KEY ON!” Display ”SRQ KEY ON!” on terminal. .
150 *LOOP Wait here until SRQ key is pressed.
160 GOTO *LOOP
170 ’––––––––––––––––––––––––––––––––––
180 *SBOT SRQ interrupt service routine.
190 POLL 24, S Read device status.
200 IF S<64 THEN 230 Make sure the device generated SRQ.
210 INPUT@ 24;R Read data from the 3478A and display it.

on the terminal.
220 WBYTE $H5F;
230 PRINT ”R=”;R
240 RETURN
250 END
260 END PARACT

Note If the sampling cycle of the 3478A’s internal trigger is short, the previously held
data may be transferred. If this occurs, it is necessary to clear the serial poll reg-
ister. Change line 220 of the sample program as follows:

220 PRINT@24;”K”

Program Code Example for Digital Multi-meter 3478A

Type Program code Function

Measurement function F1 to F7 DC voltage, AC voltage, 2-line resistor, 4-line resistor, DC current, AC
current, expansion resistor

Range R-2
R-1
R0 to R2
R3 to R7
RA

30 mVDC
300 mV, 300 mA AC/DC
3 V, 30 V, 300 V AC/DC or 3 A, 30 Ω, 300 Ω, 30 kΩ, 30 kΩ, 300 kΩ, 3 MΩ,
30 MΩ
Auto range

Display N3 to N5 3 1/2, 4 1/2, 5 1/2 display

Trigger T1 to T5 Internal trigger, external trigger, single trigger, trigger hold, first trigger

Auto zero Z0
Z1

Auto zero off
Auto zero on

Write to display D2 text
D3 text
D1

Displays message
Displays message (display updating stopped)
Normal display (D2, D3 display mode canceled)

Preset command H0
H1
H2 to H7

Sets DC voltage, auto range, single trigger, 4 1/2 digit display, and auto
zero ON. INPUT@ command disabled.
Same, except INPUT@ command enabled.
DC voltage, 2-line resistor, 4-line resistor, DC current, AC current,
expansion current. Others same as H1

Binary status B Outputs status currently programmed by RBYTE command

Others K
E
MXX
S
C

Clears serial poll register
Reads error register
Sets serial mask register (SRQ)
Reads front rear switch
Calibration

GP-IB Programming Section 7-2

141

SECTION 8
Troubleshooting and Maintenance

This section provides the error messages and indications required for troubleshooting as well as general maintenance proce-
dures for the BASIC Unit.

8-1 Troubleshooting 142.
8-1-1 Error Messages 142.
8-1-2 Error Indication and Status 146.

8-2 Maintenance 147.
8-2-1 Replacing Units 147.
8-2-2 Battery Replacement 147.
8-2-3 Inspection 149.

142

8-1 Troubleshooting

8-1-1 Error Messages
If an error occurs while a program is being entered or executed, an error mes-
sage will be displayed on the terminal and the BASIC Unit will wait for operator
input. At this time, an error code corresponding to the error message is set in
ERR. This error code can be checked with the ERR function.

This table lists error messages, error codes, causes, and remedial actions.
Some error messages do not have error codes. When these error messages are
displayed, no error code is set in ERR.

Error message Error
code

Cause Remedy

NEXT without FOR 1 FOR and NEXT are not correctly used in
pairs

Use FOR and NEXT in pairs.

Syntax error 2 Instruction not used properly
-RDIM is declared without global variable.
-Number of arguments to FN function is
different from the number declared.

-System variable other than MID$, DATE$,
and TIME$ is used on the left side of an
assignment statement.

-Incorrect line numbers are used in GOTO
or GOSUB.

-Multi-dimensional array variable was used
in a PC READ or PC WRITE.

-Number of arguments to a system
function is wrong.

-Character string is used for arithmetic
operation other than addition.

Check the Reference Manual for the
correct syntax and correct the
program.

RETURN without GOSUB 3 GOSUB and RETURN are not correctly used
in pairs.

This error occurs if a RETURN
statement is encountered in a routine
that was not called by GOSUB. Always
call subroutines with GOSUB.

Out of DATA 4 No more data for a READ statement. Match the number of data in DATA
statements with the number used by
READ. Check whether RESTORE is
used correctly.

Illegal function call 5 A function was used incorrectly: an
argument exceeds range permitted by the
function, or the result exceeds the range of
function.
-Negative or 0 argument is specified for
LOG function.

-Negative argument is specified for SQR
function.

-Incorrect argument is used for MID$,
LEFT$, RIGHT$, SPACE$, or INSTR.

-Incorrect interrupt, signal, or key number
is used for ON PC GOSUB, ON SIGNAL
GOSUB, or ON KEY GOSUB.

-Value of expression of ON GOSUB or ON
GOTO is negative.

-PC READ or PC WRITE variable and
format types do not match.

-FIELD, PUT, or GET was used on a
non-random access file.

Check the Reference Manual to see
how to use the function correctly.

Overflow (OV) 6 Operation result or numeric constant
exceeds permitted range.

Check if data type and permitted
range of values are correct.

Troubleshooting Section 8-1

143

Error message RemedyCauseError
code

Out of memory 7 Memory capacity exceeded; program is
too long.
Memory capacity of compiler area,
general-purpose memory area, S code
area, E code area, and stack area
exceeded.

Review program and remove
unnecessary portions.
Use PARACT to increase the work
area for the task.

Undefined line number 8 The line number in a GOTO, GOSUB, or IF
... THEN ... ELSE does not exist.
Non-existent line number specified in an
EDIT command.

Check line number.

Subscript out of range 9 Value of subscript of array variable
exceeds range defined by DIM and
OPTION BASE.

Check range of subscript defined by
array variable and range of array
variable to be referenced.

Duplicate definition 10 An attempt was made to re-define an array
or type.
More than one OPTION BASE, OPTION
LENGTH, or OPTION ERASE statement
was found.
More than one argument with the same
name and type was defined by DEF FN.

Use a different array name.
Define type once.
Use OPTION BASE, OPTION
LENGTH, or OPTION BASE only once.
Check name of argument.

Division by Zero (/0) 11 The program attempted to divide by 0. Do not divide by 0.

Illegal direct 12 Attempted to use a BASIC statement as an
immediate mode command.

Use statements in programs.

Type mismatch 13 Types of variables do not match between
right and left members of expression or in
arguments of function.

Check data type.

Out of string space 14 Too much memory used by character
strings.

Reduce character string length or
character string array size.

String too long 15 One or more character strings is longer
than 538 characters.

Make sure that no character string is
longer than 538 bytes. (Long
character strings may be split into
several shorter strings).
Increase the size of the work area
allocated by PARACT.

Can’t continue 17 When execution is stopped by the STOP
statement or by CTRL+C or CTRL+X and
the program is changed, execution cannot
be resumed with CONT.

If you wish to use CONT, do not
change the program while it is
stopped. (There may also be places
from which execution cannot be
continued even if the program is not
changed.)

Undefined user function 18 Undefined user function or machine
language function is referenced.

Define functions with DEF FN or DEF
USR before using them.

RESUME without error 20 RESUME was encountered outside of an
error processing routine defined with ON
ERROR GOTO.

Don’t use RESUME outside of an error
processing routine defined with ON
ERROR GOTO.

FOR without NEXT 26 FOR and NEXT are not correctly used in
pairs.

Use FOR and NEXT in pairs.

WHILE without WEND 29 WHILE and WEND are not correctly used in
pairs.

Use WHILE and WEND in pairs.

WEND without WHILE 30 WHILE and WEND are not correctly used in
pairs.

Use WHILE and WEND in pairs.

Duplicate label 31 The same label was defined more than
once in the program.

Change labels so that each label is
only defined once.

Undefined label 32 Undefined label was referenced. Make sure that all labels referenced
are defined.

Feature not available 33 The program attempted to use a
non-existent device.

Make sure all necessary hardware
exists.

Troubleshooting Section 8-1

144

Error message RemedyCauseError
code

Routing error 37 The network specified by a PC READ or PC
WRITE statement was not found in the
CPU Unit’s routing table.

Correct routing table or specify a
different network.

READ or WRITE
mismatch

38 PC READ/WRITE command without area
specified and SEND(192) or RECV(193)
instruction of CPU Unit are not correctly
used.

Use PC READ and SEND(192), or PC
WRITE and RECV(193), in pairs.

Not required from FINS 39 PC READ/WRITE was executed without
area specified when SEND(192) and
RECV(193) instruction of CPU Unit
program is not executed.

Define a PC interrupt service routine
with ON PC and use PC READ or PC
WRITE in the routine.

FIELD overflow 50 FIELD length of more than 256 bytes was
specified as the record length of a random
file.

Field length must be less than 257
bytes.

Bad file number 52 The program attempted to use a file
number outside the range 1 to 15.

Check the file number and reduce the
number of files open simultaneously if
necessary.

File not found 53 Specified file was not found while
executing a file manipulation command
such as LOAD, SAVE, KILL, or NAME.
File name specified by LOC or LOF was not
found.
An attempt was made to open a
non-existent file in APPEND or INPUT
mode.

Specify correct file name.

File already open 54 OPEN, KILL, or NAME was executed on an
open file.

Close the file before re-opening,
deleting, or renaming it.

Input past end 55 There is no more data in the file. Use functions such as EOF and LOF to
detect end of file.

Bad file name 56 Incorrect file name was specified for a file
manipulation command such as LOAD,
SAVE, KILL, or OPEN.

Specify correct file name.

Direct statement in file 57 A direct statement (statement with no line
number) was found when loading an ASCII
program file.

Check file contents to see if line
numbers have been damaged.

Sequential I/O only 59 I/O command other than sequential I/O
command was used.
Binary file was specified for MERGE.

Use sequential I/O command.
Only ASCII file may be MERGEd.

File not open 60 The program attempted to use a file
number which has not been opened in a
command such as PRINT#, INPUT#,
WRITE#, GET, or PUT.

Open file before executing I/O
command.

File write protected 61 The program attempted to write to a
write-protected file, or to write to a memory
card whose write-protect switch is ON.

Turn off write protection.

Disk offline 62 The device specified in a file manipulation
command such as LOAD, SAVE, KILL, or
OPEN was not found.

Set the memory card correctly.

Disk I/O error 64 There was not enough space available in
the Memory Card.
An error occurred during memory card
input or output.

Check to see if the Memory Card is
correctly formatted and contains valid
data

File already exists 65 File name specified by NAME already
exists.

Specify a different file name or change
the name of the existing file.

Disk full 68 There is no more room on the memory
card for a SAVE, PRINT#, or PUT
instruction.

Delete any unnecessary files or insert
new memory card.

Bad drive number 70 Incorrect drive was specified in file name. Drive number must be 0.

Troubleshooting Section 8-1

145

Error message RemedyCauseError
code

Rename across disks 73 A file cannot be renamed from one drive to
another.

Do not attempt to rename files from
one drive to another.

Illegal operation 74 The program attempted to perform a file
operation which is not allowed by the file’s
OPEN mode.

Check the mode used in the OPEN
statement

RS232C board not ready 82 DSR is OFF. Check connected device.

No Message queue 101 Message queue is missing or full. A task
may have more than 4 message queues.

Reduce the number of messages
used by the task.

Message queue not
found

102 Message queue specified by SEND or
RECEIVE was not found.

Use correct message number. Be sure
to allocate the message number with
MESSAGE before using it.

Message queue can’t
release

103 An error occurred during I/O. This is
probably a result of internal stack
manipulation.

Check program.

Cannot allocate
message queue

111 No message queue is assigned. Reduce number of message queues
in use to eight or less.

Fatal Error 120 An error occurred during I/O. This is
probably a result of internal stack
manipulation.

Check program.

GPIB BIOS Error 121 An error occurred during GP-IB I/O. Check GP-IB connections.

IEEE time out 128 Time out while processing time monitoring
of GP-IB.

Check GP-IB connections and status
of GP-IB devices.

IEEE interface clear 129 IFC was received during execution. Correct the GPIB application so that
IFC only goes ON once.

IEEE not controller 130 Command used by controller (master
mode) is used.

Set controller (master mode).

IEEE not active device 131 Specified GP-IB device is not connected. Check GP-IB devices and addresses.

I/O Timeout 200 Peripheral device is inoperable and
monitor time (60 seconds) is exceeded.

Check device connections and status.

Illegal task number 201 Undefined or illegal task number was
specified for TRON, TROFF, @ (current task
switching), TASK, TWAIT, EXIT, or
SENDSIG.

Make sure the task number is
between 0 and 15, and that the task is
defined in the program.

Illegal format 202 Incorrect characters were found in a PC
READ or PC WRITE statement.

Check syntax of PC READ or PC
WRITE.

Task already END 203 TWAIT was used to wait for a task that has
already finished.

Check program.

Task already RUN 204 TASK was used to start a task that was
already executing.

Check program.

Timer nothing 205 Timer cannot be acquired from system. Check program.

Floating point exception 206 Valid range was exceeded in a
floating-point operation.

Make sure that data does not exceed
valid range.

FINS error response 207 Error occurred during execution of network
instruction. Another error code is stored in
ERR2 or ERR3.
ERR2: Main response code
ERR3: Sub-response code

Check devices on network. For
details, refer to the descriptions of
FINS.

Too many files OPEN 208 Too many files were opened
simultaneously.

Check program.

Undefined Array --- The program used an array that was not
defined with DIM or RDIM.

Define arrays before they are used.

Illegal line number --- A line number outside the range 0 to
65535 was referenced, or the program
attempted to branch to a different task with
GOTO or GOSUB.

Line numbers must be between 0 and
65535. Do not branch from one task to
another.

Troubleshooting Section 8-1

146

Error message RemedyCauseError
code

Verify Error --- Contents of current program area do not
coincide with contents of file specified for
verification.

Check program area and file.

Program is protected --- User program area is memory-protected. Turn off memory protection with the
DIP switch on front panel.

Undefined task0 --- The program has no task 0. The program’s main task must be task
0.

Too many variables --- Space used by variables exceed memory
capacity.

Reduce number of variables.

Compiler error --- Error in system ROM. Contact your OMRON representative.

Not enough memory --- Out of memory during compilation in RUN
status.

Increase program capacity, number of
variables, or size of variable.

Switch is STOP --- Attempt was made to RUN the program
with RUN/STOP switch set to STOP.

Set switch to RUN.

System has fatal error --- Error occurs during initialization. Program
cannot be executed.

Refer to 8-1-2 Error Indication and
Status.

END PARACT without
PARACT

--- END PARACT was encountered without a
corresponding PARACT.

Check and correct program.

PARACT without END
PARACT

--- END PARACT statement is missing. Check and correct program.

Undefined line %u --- Branch destination for GOTO or GOSUB was
not found when RESUME was executed.

Check program.

Invalid ECODE --- Execution code (ECODE) is wrong and
program cannot be run.

ECODE is assumed to be missing
during next RUN, and ECODE is
created again and program is
executed.

8-1-2 Error Indication and Status
Error List

Error Problem Correction
All indicators do not light Power to PC is turned OFF. Turn ON power to PC.g

BASIC Unit is not securely mounted. Correctly mount BASIC Unit.

Initialization between CPU Unit and BASIC
Unit is not correctly performed.

CPU Bus Unit error.

BASIC Unit will not start at this time but CPU
Unit can operate.

Clear cause of error and restart Unit by using
the Restart Bit in Auxiliary Area word AR001
corresponding to Unit (turn the bit ON, and
then OFF).

If error persists, replace Unit.

Malfunctioning of
d d i

Power to connected devices is turned OFF. Turn ON power to devices.g
connected devices Cable disconnected. Connect cable and tighten screws.

Break in cables, wrong wiring, or faulty
connections.

Repair or replace cable.

Baud rate and communication parameters do
not match.

Check baud rate and communication
parameters.

BAT LOW lights Battery is not properly connected. Check battery connections.g

Battery is discharged. Replace battery.

Note The program area can be disturbed if a machine language program is run out of
control. Re-initialize the program area using the following procedure if required.

• If the BASIC Unit operates with power turned on, but LIST or EDIT cannot be
executed, input the following and then turn the power supply off and on:

MON� Enters machine language monitor
*RDS0=40� Sets segment register to 40 (address 400)
*D0.3� Displays the first four bytes

0000 – 04 12 90 19
*W0:0.0.0.0� Overwrites the above four bytes.

Troubleshooting Section 8-1

147

• If the BASIC Unit does not operate at all, contact your OMRON representative.

The following errors may occur if the unit number is set incorrectly or if the
memory switches cannot be read or written correctly. The BASIC program can-
not be executed if any of these errors occur.

The error codes will be indicated as a binary value on the user indicators 0
through 7, with each indicating a binary digit between 20 and 27, i.e., indicator 0
turns ON to indicate a 1 in the 1’s digit, indicator 1 turns ON to indicate a 1 in the
2’s digit, indicator 2 turns ON to indicate a 1 in the 4’s digit, etc.

Error code (on user
indicators)

Problem Correction

11 The same unit number has been set for two
CPU Bus Units.

Check I/O table with CVSS and set I/O table
correctly.

12 The unit number is already used for another
Unit.

Check I/O table with CVSS and set I/O table
correctly.

13 Unit is not registered in I/O table. Update I/O table.

14 Unit number is not read correctly from CPU
Unit.

Rotate unit number setting switch once and
set correct unit number. If error still persists,
Unit may be defective.

15 and 16 Cyclic interface operation error. Turn the PC OFF and then ON. If error
persists, BASIC Unit or CPU Unit may be
defective.

07 through 09 Error occurs while reading or writing the CPU
Unit’s memory switches.

BASIC Unit will operate with default memory
switch values.

Turn the PC OFF and then ON. If error
persists, Unit may be defective.

8-2 Maintenance

8-2-1 Replacing Units

• Before replacing the Unit, be sure to turn off the power.

• After replacing the Unit with a new one, check again to see if the old Unit is
really defective.

• When sending a defective Unit to OMRON for repair, describe the symptoms of
the error as clearly as possible.

• When the BASIC Unit malfunctions, the program in the internal RAM or EE-
PROM of the BASIC Unit cannot be read at all. It is therefore recommended
that the program be saved to a memory card of the CPU Unit or to a floppy disk.
For details, refer to Section 4-4 Program Save and Load.

• For quick recovery in case of trouble, always have at least one spare Unit avail-
able.

8-2-2 Battery Replacement

The maximum life of the battery is 5 years, regardless of whether or not power is
supplied to the Unit.

The battery life when power is not supplied to the Unit varies significantly with
ambient temperature. The higher the temperature, the shorter the life of the bat-
tery.

Battery Life and
Replacement Period

Maintenance Section 8-2

!

148

The guaranteed and typical values for battery life when the power is not supplied
to the Unit are shown below. The guaranteed value is based on memory backup
at 55°C when the power is not supplied to the Unit. The typical value is based on
memory backup at 25°C when the power is not supplied to the Unit

Effective life of battery 5 years

Memory backup battery life
when power is not supplied

Guaranteed
value

9,500 hours (Approx. 1 year)
e po e s o supp ed

Typical value 43,000 hours (Approx. 5 years)

Total time during
which power is not
supplied to the Unit
(years)

Ambient tem-
perature (°C)

5

4

3

2

1

25 40 55

5

4

3

2

1

25 40 55

If the memory backup battery lifetime is exceeded, the BAT LOW indicator will
light and the Battery Error Flag at bit 15 of word n+1 of the cyclic area input status
will turn ON.

Replace the battery with a new one within 1 week after the BAT LOW indicator
turns ON using the following replacement battery.

Name Model no.
Battery Set C500-BAT08

Battery Replacement Procedure

Press the cover
while sliding it down

1, 2, 3... 1. Turn OFF the power to the Unit. If the power is already OFF, turn it ON for at
least 1 minute and then turn OFF.

Caution It is possible to replace the battery with the power turned ON, but it is very dan-
gerous because short-circuiting can easily occur.

Maintenance Section 8-2

!

149

2. While pressing the upper part of the battery compartment cover, slide it
down and remove it.

3. Pull out the battery and connector and replace it with a new one. This proce-
dure must be completed within 5 minutes.

4. Replace the battery compartment cover.

 DANGER The battery may leak, catch fire, or explode if disposed of in fire. Do not
short-circuit, charge, disassemble, heat, or incinerate the battery.

8-2-3 Inspection
Item of Inspection The main inspection items are as follows:

Item Criteria Check With

Ambient
temperature

Is the temperature (in the control box)
appropriate?

Must be 0° to 55°C Thermometer
e pe a u e

Is the humidity (in the control box) appropriate? Must be 10% to 90% with no
condensation

Hygrometer

Is the Unit clean? Must be free from dust Visual
inspection

Mounting status Are the cable connector screws tight? Must not be loose Screwdriverg

Is the cable okay? Appearance must be normal Visual
inspection

Maintenance Section 8-2

151

Appendix A
Standard Models

BASIC Unit
Name Specifications Model number

BASIC Unit Two RS-232C interfaces, RS-422 interface CV500-BSC11

Two RS-232C interfaces, RS-422 interface,
EEPROM

CV500-BSC21

Two RS-232C interfaces, Centronics interface CV500-BSC31

Two RS-232C interfaces, Centronics interface,
EEPROM

CV500-BSC41

RS-232C interface, GP-IB interface CV500-BSC51

RS-232C interface, GP-IB interface, EEPROM CV500-BSC61

Option and Maintenance Parts
Name Specification Model number

Battery Set Backup battery 3G2A9-BAT08

Connecting Cable For connecting 14-pin and 36-pin connectors
(printer cable)
Cable length: 1.5 m

CV500-CN127

153

Appendix B
Specifications

Ratings
Conform to the SYSMAC CV-series Programmable Controllers.

Characteristics

Item Specification

CPU µPD79011 (V25 + internal OS)

Operating system Real-time monitor (NEC)

Program language Interpreter-type multitasking BASIC and machine language (V25)

Number of user tasks 16 (can be executed in parallel)

Inter-task communication Message transfer by SEND and RECEIVE instructions. Data sharing by global variable

Inter-task synchronization Notification of event occurrence by SENDSIG, ON SIGNAL GUSOB, and TWAIT instructions

Task control method Started by TASK instruction, and stopped by END, STOP, or EXIT instruction

Debugging function Tracing by TRON instruction, one-instruction execution by STEP instruction, pause and
resumption by STOP, BREAK, and CONT instructions

Memory RAM Source code area: 63K bytesy

Variable area + executable code area: Approx. 110K bytespp y

32K bytes of variable area reserved for non-volatile variables.

EEPROM To save source program: 63K bytes (BSC21, 41, and 61 only)
The number of times the program can be written to the EEPROM is limited
to 5,000. Do not exceed this limit.

Interface with PC’s CPU
Unit

Cyclic Total of 384 I/O words possible
Default: 10 input words and 15 output words (via CPU Unit’s I/O refresh)U

CPU bus
link

Default: No CPU bus link. To link CPU bus, CPU bus link must be set with
the CVSS.
Number of words read from CPU Unit: 128 max.
Number of words read between CPU Bus Units: 8 max
(The CPU Bus Link Area is refreshed by CPU Unit at 10-ms intervals.)

Event When PC READ or PC WRITE instruction is executed:
512 bytes max. each for read and write
When PRINT instruction is executed:
538 bytes max. each for read and write

External interface Interface CV500-BSC11/BSC21 CV500-BSC31/BSC41 CV500-BSC51/BSC61

RS-232C
RS-422
Centronics
GP-IB

2 ports
1 port

2 ports

1 port

1 port

1 port

Diagnosis function BASIC Unit Watchdog timer, low battery voltage detectiong

PC interface Bus check, transfer/receive data horizontal parity check

Battery life 5 years

When the memory is backed up with no power applied, the life expectancy depends on the
ambient temperature. When the BAT LOW indicator on the front panel of the Unit is lit,
replace the old battery with a new one within 1 week.

Current consumption CV500-BSC11/BSC21/BSC51/BSC61: max. 0.5 A
CV500-BSC31/BSC41: max. 0.3 A

Dimensions 250 x 34.5 x 93 mm (HxWxD)

Weight 550 gram max.

Appendix BSpecifications

154

I/O Interfaces

RS-232C (Port 1 or Port 2)

Item Specification

Communication Half duplex

Synchronization Start-stop

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200 bps

Transmission method Point-to-point

Transmission distance 15 m max.

Interface Conforms to EIA RS-232C

RS-422 (Port 3)

Item Specification

Communication Half duplex

Synchronization Start-stop

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200 bps

Transmission method
(connection)

1:N
Up to 32 Units can be connected to a PC. Termination resistance can be set by DIP
switch.

Transmission distance Total extension: 500 m max.

Interface (electrical
characteristics)

Conforms to EIA RS-422 (Driver IC conforming to RS-485 is used.)

Termination resistance 220 Ω (built-in)

Centronics

Item Specification

Communication Unidirectional communication

Handshake 2-line handshaking with STROBE and BUSY lines

Data transmission 8-bit parallel transmission

Interface TTL level L level: Output ≤ 0.5 V, Input ≤ 0.8 V

H level: Output ≥ 2.4 V, Input ≥ 2.0 V

Timing Chart

STROBE

DATA 1 to 8

BUSY

H

L

H

L

H

L

1 µs (min.) 2 µs (min.) 1 µs (min.)

Appendix BSpecifications

155

GP-IB
Item Specification

Communication Half duplex

Baud speed Varies depending on device connected

Handshake Three-line handshaking

Data transmission 8-bit parallel transmission

Total cable length 20 m or number of devices connected to bus × 2 m, whichever is shorter

Cable length between devices 4 m max.

Number of devices connectable 15 max. including this Unit

Interface Conforms to IEEE Std 488-1978 (with 24-pin piggyback connector)

Signal lines Data lines: 8 (DIO1 through DIO8)
Handshake lines: 3 (DAV, NRFD, NDAC)
Control lines: 5 (ATN, REN, IFC, SRQ, EOI)
Signal system ground: 8

Signal logic Negative logic True: L level (max. 0.8 V)g g g g

False: H level (min. 2.0 V)

GP-IB Interface
Operation Symbol Sub-

function
Function

Source handshake SH SH1 SH all functions

Acceptor handshake AH AH1 AH all functions

Talker T T6 Basic talker
Serial polling
Talker cancellation by MLA

Expansive talker TE TE0 No TE function

Listener L L4 Basic listener
Listener cancellation by MTA

Expansive listener LE LE0 No LE function

Service request SR SR1 SR all functions

Remote-local RL RL1 RL all functions

Parallel poll PP PP1 PP function by remote message

Device clear DC DC1 DC all functions

Device trigger DT DT1 DT all functions

Controller C C1
C2
C3
C4
C26

System controller function
Transmission of IFC
Controller in charge
Transmission of REN
Transmission of message of interface responding to SRQ.
Execution of parallel polling

The BASIC Unit can be set in two modes: Master Mode and Slave Mode. In the Master Mode, the Unit always serves as
the system controller. In the Slave Mode, the Unit only serves as the talker or listener.

157

Appendix C
Hardware Interfaces

RS-232C Interfaces

Pin Configuration
Port 1 and Port 2 are RS-232C interfaces and are configured as follows:

6

9

1

5

Pin No. Signal symbol Signal name Signal flow

1 FG Frame ground ---

2 SD (TXD) Send data Output

3 RD (RXD) Receive data Input

4 RS (RTS) Request to send Output

5 CS (CTS) Clear to send Input

6 --- Unused ---

7 DR (DSR) Data set ready Input

8 ER (DTR) Data terminal ready Output

9 SG Signal ground ---

Connector
washer

FG Frame ground ---

Applicable Connector

One plug and one hood are supplied for each port.
Connectors other than those on the left cannot be used.

Plug: XM2A-0901 (OMRON)

Hood: XM2S-0911 (OMRON) or equivalent

Recommended Cables
AWG28 x 5P IFVV-SB (Fujikura Densen)
CO-MA-VV-SB 5P x AWG28 (Hitachi Densen)
Cable length: 15 m max.

Appendix CHardware Interfaces

158

Connection Examples

Personal Computers

FG

9

2

3

4

5

7

8

SG

SD

RD

RS

CS

DR

ER

FG

SG

SD

RD

RTS

CTS

DSR

DTR

7

2

3

4

5

6

20

1Connector frame

BASIC Unit Personal computer

Shielded cable

Numbers indicate pin numbers.

Printers

FG

9

2

5

7

SG

SD

CS

DR

FG

SG

RD

DTR

7

3

20

1Connector frame

BASIC Unit Printer

Shielded cable

Plasma Displays

FG

9

2

3

4

5

7

SG

SD

RD

RS

CS

DR

SG

SD

RD

RTS

CD

DTR

7

2

3

4

8

20

Connector frame

BASIC Unit Plasma display

Shielded cable

CPU Unit Host Interface/Host Link Unit

FG

9

2

3

4

5

7

8

SG

SD

RD

RS

CS

DR

ER

FG

SG

SD

RD

RS

CS

9

2

3

4

5

Connector frameConnector frame

BASIC Unit Host Interface/Host Link Unit

Shielded cable

Appendix CHardware Interfaces

159

Note 1. If the cable is connected or disconnected while the power is being supplied to the BASIC Unit and periph-
eral device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting the
cable.

2. The above connection examples do not necessarily apply to all devices. Be sure to consult the manual
for the peripheral device you are connecting.

RS-422 Interface

Pin Configuration
Port 3 is an RS-422 interface and is configured as follows:

6

9

1

5

Signal name Abbreviation Pin No. Signal flow

Send data SD– (SDA) 9 Output

SD+ (SDB) 5

p

Receive data RD– (RDA) 6 Input

RD+ (RDB) 1

p

Frame ground FG 7 ---

Frame ground FG Connector fixture ---

Send data Receive data

Connector

Plug: XM2A-0901 (OMRON)

Hood: XM2S-0911 (OMRON) or equivalent

One plug and one hood are
supplied for port 3.

Recommended Cables

AWG28 x 5P IFVV-SB (Fujikura Densen)
CO-MA-VV-SB 5P x AWG28 (Hitachi Densen)
Cable length: 500 m max.

Note 1. Connect only one side of the shield cable to FG so that no current flows through the shield. To connect
the shield to FG, connect it to pin 7 of the connector or to the hood.

2. Turn ON the termination resistance (220 Ω, built-in) of the BASIC Units at both ends of the RS-422 com-
munication line or Link Adapter. Turn OFF the termination resistance of the other Units. If the termination
resistance is not set correctly, communications will not be possible.

3. Ground the FG terminal of the CPU Unit to less than 100 Ω.

Appendix CHardware Interfaces

160

Wiring the Connector
Connect and solder the cable according to the following procedure. Keep the cable length to within the length
shown in the following figures.

Preparation when Connecting the Shield to FG

Cut the cable to the required length. Remove the
sheath with a razor. Take care not to damage the
shield (mesh).

Cut the shield with scissors.

Expose the core with a stripper.

Turn the shield over the cable and wind the cable
with aluminum-foil tape.

25 mm (RS-422)
40 mm (RS-232C)

10 mm

5 mm

Aluminum foil
tape

Preparations When Not Connecting the Shield to FG

Cut the cable to the necessary length.
Remove the sheath with a razor.

Remove the exposed shield with scissors.

Expose the core with a stripper.

Wind the cut portion of the shield with vinyl tape.

25 mm (RS-422) 40
mm (RS-232C)

5 mm

Vinyl tape

Soldering

1, 2, 3... 1. Pass each line through a heat-shrinking tube.

2. Apply preliminary solder to each line and connector pin.

Appendix CHardware Interfaces

161

3. Solder each line.

Thermal contrac-
tion tube (Tube
F, 1.5 ID, l=10)

Solder iron

1 mm

4. Slide the heat-shrinking tube over the soldered portion and heat the tube to shrink it into place.

Heat shrinking tube

Hood Assembly
Assemble the connector hood as follows.

Shield connected to FG

Aluminum foil tape

Shield not connected to FG

Point-to-point Connection
This section describes how to connect one BASIC Unit to one host computer.

Host computer CV-series PC

15 m max. 500 m max.

RS-232C RS-422

Link Adapter

BASIC Unit

3G2A9-AL004-(P)E

CV500-BSC11/21

Appendix CHardware Interfaces

162

Connection Example

FG
SD
RD
RS
CS
DR
SG
CD
ER

1
2
3
4
5
6
7
8
20

1
2
3
4
5
6
7
8
20

SDA
SDB
RDA
RDB
SG
FG

9
5
6
1
3
7

9
5
6
1
3
7FG

NC
RDB
RDA
SDB
SDAOR/

selec-
tion
circuit

100
VAC

5 V

24 V

Fuse

FG
LG

AC power
supply

200
VAC

Pin
no.

Sym-
bol

RS-232C
interface

Pin
no.

0 V

Pin
no.

Termination resistance

Port 3
RS-422
Interface

Sym-
bol

Pin
no.

Host computer RS-232C

0 V

Sym-
bol

RS-422

0 V

0 V

Link Adapter 3G2A9-AL004-(P)E

Trans-
mission

Recep-
tion

Shield
wire

Ground (for the
Link Adapter only)

Shield
wire

BASIC Unit
CV500-BSC11/21

See Note 1.

Outer
connectionCTS

selection

Turn ON the internal termination resistance (220 Ω) by using the DIP switch (pin 4) on the front panel.

Setting Link Adapters

Turn ON the internal termination resistance (220 Ω). To keep ON the CTS (clear to send) signal, set the Link Adapt-
er to 0 V. To receive the CTS signal from an external source, set to external. The Link Adapter is usually set to 0 V.

Note 1. Connect only one end of the shield to FG so that no current flows through the shield. To connect the
BASIC Unit with a Link Adapter, connect the shield of the BASIC Unit to FG. To connect the shield to FG,
connect it to pin 7 of the connector or to the connector hood.

2. Be sure to cap all unused optical connectors. Errors will occur due to external light disturbances if un-
used connectors are left open.

Multidrop Connection, Example 1
In a multidrop connection, more than one RS-422 device can be connected to one BASIC Unit.

BASIC Unit Temperature Controllers (RS-422 compatible)

Link Adapter Link Adapter

(CV500-BSC11/21)

3G2A9-AL001 3G2A9-AL001

Appendix CHardware Interfaces

163

Connection Example

9
5
6
1
3
7

9
5
6
1
3
7

9
5
6
1
3
7

731659

9
5
6
1
3
7

9
5
6
1
3
7

731659

9
5
6
1
3
7

9
5
6
1
3
7

SDA
SDB
RDA
RDB
NC
FG

Pin no.

Port 3
RS-422
Interface

Signal

Pin no.

SDA
SDB
RDA
RDB
SG
FG

Pin no.

SDA
SDB
RDA
RDB
SG
FG

Pin no.

RS-422
interface

SDA SDB RDA RDB SG FG

SignalSignal

Signal

Pin no.

RS-422
interface

Pin no.

RS-422
interface

Pin no. Pin no.
Pin no.

RS-422
interface

BASIC Unit CV500-BSC11/21 Link Adapter 3G2A9-AL001 Temperature Controller

To Temperature Controller
or next Link Adapter

Temperature Controller

See Note.

Link Adapter 3G2A9-AL001

Note Connect the shield from the BASIC Unit to FG at the Link Adapter only.

Multidrop Connection, Example 2
In multidrop connection, more than one BASIC Unit can be connected to one host computer. In the following dia-
gram, “Yes” means that the shield is connected to FG (frame ground) of the Unit, and “No” means that the shield is
not connected to FG.

Host computer

RS-232C
15 m max.

Yes Yes Yes

Yes YesNo No No No No

BASIC Unit
CV500-BSC11/21

Link Adapter
3G2A9-AL004(-P)

3G2A9-AL001 3G2A9-AL001
Link Adapter Link Adapter

Appendix CHardware Interfaces

164

Connection Example

FG
SD
RD
RS
CS
DR
SG
CD
ER

1
2
3
4
5
6
7
8
20

1
2
3
4
5
6
7
8
20

SDA
SDB
RDA
RDB
SG
FG

9
5
6
1
3
7

9
5
6
1
3
7

731659

9
5
6
1
3
7

9
5
6
1
3
7

Pin
no.

Sym-
bol

RS-
232C
inter-
face

Pin
no.

OR/
selec-
tion
circuit

Pin
no.

Sym-
bol

Termination resistance

Port 3
RS-422
Inter-
face

Pin
no.

Pin
no.

Pin
no.

Pin
no.

RS-422
interface

0 V

0 V

0 V

0 V

Host
computer RS-232C

RS-422

100
VAC

5 V

24 V

Fuse

Link Adapter 3G2A9-AL004-(P)E

Shield
wire

200
VAC

BASIC Unit
CV500-BSC11/21

See Note 2. See Note 1.

Shield
wire

Link Adapter
3G2A9-AL001

To other Link Adapter
3G2A9-AL001 or BASIC
Unit

Trans-
mission

Recep-
tion

Outer
connectionCTS

selection

FG
LG Ground (for the

Link Adapter only)

AC power
supply

Shield
wire

Note 1. Connect the shield from the BASIC Unit to FG at the Link Adapter only.

2. Connect the shield to FG at only one Link Adapter for lines connecting two Link Adapters.

Appendix CHardware Interfaces

165

Cable Length and Termination Resistance in Multidrop Configurations
Use shielded twisted pair cables. Route the cables keeping them separate from other signal lines. Keep the total
cable length, including branch lines, to within 500 m. Keep the branch lines to within 10 m.

Turn on the termination resistance of the BASIC Units at both ends of the trunk line and that of the Link Adapters.
Turn OFF the termination resistance of the other BASIC Units to OFF. Communications will not be possible if termi-
nation resistance is not set correctly.

Wire the system so that the branch lines extend from the trunk line.

RS-232C (15 m max.)

Trunk lineLink Adapter
3G2A9-AL004-(P)E

Termination re-
sistance setting
has to be ON.

RS-422

RS-422

RS-422 RS-422

Branching
max.10 m

Total of cable length is up to 500 m.

Link Adapter Link Adapter
3G2A9-AL001 3G2A9-AL001

BASIC Unit BASIC Unit BASIC Unit
CV500-BSC11/21 CV500-BSC11/21 CV500-BSC11/21

Host computer

Branching
max.10 m Termination

resistance
setting has
to be OFF.

Termination re-
sistance setting
has to be OFF.

Termination
resistance
setting has
to be ON.

Appendix CHardware Interfaces

166

3G2A9-AL001 Link Adapter Specifications

Dimensions

74.6 58

63

77

87

14

20.5

Four, 3.5 dia. holes

Approx. 100

Signals

1

2

3

4

6

5

7

9

8

1 2 3 4 65 7 98

1

2

3

4

6

5

7

9

8

RS-422 Link Adapter 3G2A9-AL001

Pin
no.

Pin
no.

Pin
no.

Applicable Connector
Connector: XM2A-0901

Connector cover: XM2S-0901

Three RS-422 connectors are supplied with 3G2A9-AL001.

Appendix CHardware Interfaces

167

3G2A9-AL004-(P)E Link Adapter Specifications

Dimensions

52.5

120

164

188

174

63

4.5

7

Approx. 140

10 dia.

Internal Configuration

1

2

3

4

5

6

7

8

20

FG

SD

RD

RS

CS

DR

SG

CD

ER

9

5

6

1

3

7

SDA

SDB

RDA

RDB

SG

FG

LG

FG

100
VAC

200
VAC5 V

24 V

N2

N1

H

Fuse

AC power
supply

Ground (for the
Link Adapter only)

Termination resis-
tance

Pin
no.

Symbol

OR/
selec-
tion
circuit

Transmis-
sion

Reception

Pin
no.

Symbol

0 V

RS-232C
BA-422

0 V

0 V

CTS
selection

Outer con-
nection

Link Adapter
3G2A9-AL004-(P)E

Appendix CHardware Interfaces

168

Cable Lengths (max.)

Cable unit 3G2A9-AL004-PE 3G2A9-AL004-PE

APF (All Plastic optical Fiber) 20 m Not connectable

PCF (Plastic Clad optical Fiber) 200 m 800 m

Note Be sure to cap all unused optical connectors.

Selecting CTS (CS)
To keep ON the CTS (clear to send) signal, set to 0 V. To receive the signal from an external source, set to external.

Setting Termination Resistance
To connect the internal termination resistance (220 Ω), set the selector switch to ON. If the resistor is not to be
connected, set the switch to the OFF position.

Power Supply

N2

N1

H

Ground line

Hot line

100 VAC 200 VAC

Ground line

Hot line

A fuse is provided at the common. Connect the AC hot line to the common terminal side when connecting the
power supply.

Installing Link Adapters
To avoid electric shock, do not touch the terminal block when installing the Link Adapter in an office or on a desk.

Note 1. Do not use the Link Adapter with the terminal cover removed.

2. Securely mount the terminal block cover.

Appendix CHardware Interfaces

169

Centronics Interface

Communication Specifications
Conforms to Centronics specifications

Pin Configuration

8

14

1

7

Pin no. Abbreviation Name Signal flow

1 STROB Strobe Output

2 DATA 1 Send data Output

3 DATA 2 Send data Output

4 DATA 3 Send data Output

5 DATA 4 Send data Output

6 DATA 5 Send data Output

7 DATA 6 Send data Output

8 DATA 7 Send data Output

9 DATA 8 Send data Output

10 NC Not used ---

11 BUSY Busy Input

12 NC Not used ---

13 NC Not used ---

14 GND (0 V) Ground ---

Applicable Connector
Connector: 57-30140 (DDK)
Cable: CV500-CN127 (optional, cable length: 1.5 m, 14P-36P)

The cable supplied with the printer can also be used.

Note If the cable is connected or disconnected while power is being supplied to the BASIC Unit and the Centron-
ics device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting or discon-
necting the cable.

Appendix CHardware Interfaces

170

GP-IB Interface

Pin Configuration

LOGIC
 GND

1

EOI DIO3 DIO1

GNDGND

ATN IFC NRFD

GND REN DIO7 DIO5

SHIELD SRQ NDAC DAV DIO4 DIO2

GND GND GND DIO8 DIO6

23456789101112

131415161718192021222324

Signal Lines
Line Bus

Data bus DIO 1 (Data Input/Output 1) Transmit data
E l Add C d M d d P d Di lDIO 2 (Data Input/Output 2) Example: Address, Command, Measured data, Program data, Display
data Status

DIO 3 (Data Input/Output 3)
data, Status

DIO 4 (Data Input/Output 4)

DIO 5 (Data Input/Output 5)

DIO 6 (Data Input/Output 6)

DIO 7 (Data Input/Output 7)

DIO 8 (Data Input/Output 8)

Transfer bus DAV (Data Valid) Signal indicating validity of data Perform acceptor and handshaking

NRFD (Not Ready For Data) Reception ready signal

p g

NDAC (Not Data Accepted) Reception completion signal

Control bus ATN (Attention) Signal indicating that data on data bus is address or command

IFC (Interface Clear) Signal initializing interface

SRQ (Service Request) Signal requesting service

REN (Remote Enable) Remote/local specifying signal

EOI (End Of Identify) Indicates last byte of data, or indicates execution of parallel polling

Note If the cable is connected or disconnected while power is being supplied to the BASIC Unit and the GP-IB
device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting or disconnecting
the cable.

Appendix CHardware Interfaces

171

Recommended Cables
Maker Model

DDK 408JE-10P5 (50 cm)
408JE-101 (1 m)
408JE-102 (2 m)
408JE-104 (4 m)

Honda Tsushin Kogyo ADS-GP24-050 (50 cm)
ADS-GP24-100 (1 m)
ADS-GP24-200 (2 m)
ADS-GP24-300 (3 m)
ADS-GP24-400 (4 m)

Note Turn off the power to both the GP-IB and BASIC Unit before connecting or disconnecting the GP-IB and
BASIC Unit. Otherwise, the BASIC Unit may malfunction.

173

Appendix D
Program Examples and Reserved Words

Single Task Program
Operation Calculates and displays the square root of an input numeric value.

If no data is input for 10 seconds, an error occurs, an error message is displayed.
At this stage, the BASIC Unit waits for input.

The program is terminated when E is input.

Configuration

CPU Rack

CPU Unit Power Supply

BASIC Unit

Computer with terminal mode

Example Program
10 PARACT 0
15 ON ERROR GOTO *INERROR
20 CLS:LOCATE 20,10
30 INPUT WAIT 100, ”Input numeric value whose square root is to be calculated.
(End: E)”,V$ Input numeric value. If no input is made for 10 seconds, error message is displayed.
40 IF V$=”E” OR V$=”e” THEN END Terminates when E or e is input.
50 GOSUB *DSPLY
55 GOTO 20
60 *INERROR GOSUB *MESS
70 RESUME 20
80 END
90 ’
100 *MESS Message output subroutine.
110 CLS
120 FOR K=0 TO 19
130 LOCATE 20, K:PRINT ”OMRON’s PC is best!”
140 FOR J= 0 TO 200:NEXT J
150 NEXT K
160 LOCATE 20,20:WRITE ”BASIC UNIT is also good.”
170 FOR J=0 TO 1000:NEXT J
180 RETURN

Appendix DProgram Examples and Reserved Words

174

190 ’
200 *DSPLY Calculation result display subroutine.
210 OV%=VAL(V$) Converts character into integer.
220 ANS#=SQR(OV%) Calculates square root. Result is.

double-precision integer
230 CLS:LOCATE 20,20
240 PRINT ”Square root of ”;V$;” is ”;ANS#;”.” Result is displayed. . . .
250 FOR K=0 TO 10000:NEXT K
260 RETURN
270 END PARACT

Multitask Program
Operation Task 0 creates data in a random-access file and sends a message to task 1. Task

1 then waits for a message from task 0. When the message is received from task
0, data from the random file is read and displayed.

Task 0 waits until task 1 is terminated.

Configuration

CPU Rack

CPU Unit Power Supply

BASIC Unit

Computer with terminal mode

Example Program
10 ’****************
20 ’*MULTI TASK (0)*
30 ’* *
40 ’****************
50 DIM BUF1$10, BUF2$10, BUF3$10, BUF4$10
60 DIM MESS$30
70 PARACT 0
80 TASK 1
90 OPEN ”testfile” AS #1
100 FIELD #1, 10 AS BUF1$, 10 AS BUF2$
110 LSET BUF1$=”OMRONCV500”
120 LSET BUF2$=”BASIC UNIT”
130 PUT #1,1
140 CLOSE #1
150 MESSAGE 0,10
160 MESS$=”DATA is written to testfile”
170 SEND 10, MESS$
180 TWAIT 1

Appendix DProgram Examples and Reserved Words

175

190 END
200 END PARACT
210 ’****************
220 ’*MULTI TASK (1)*
230 ’* *
240 ’****************
250 PARACT 1
260 ’Data is received from common memory and message is transferred
270 MESSAGE 0,10
280 RECEIVE 10, MESS$
290 MESSAGE 1,10
300 PRINT ”Slave task”
310 PRINT ”Message is received from master task.”
320 PRINT ”Message is as follows: ”;MESS$
330 OPEN ”testfile” AS #1
340 FIELD #1,10 AS BUF3$,10 AS BUF4$
350 GET #1,1
360 CLOSE #1
370 KILL ”testfile”
380 PRINT ”Do you want to see this data?”
390 INPUT ”Press Y key, if YES: ”;A$
400 IF A$=”y” OR A$=”Y” THEN GOTO *SEE ELSE GOTO *E
410 *SEE
420 PRINT BUF3$
430 PRINT BUF4$
440 PRINT ”That is all for data.”
450 *E
460 END
470 END PARACT

Appendix DProgram Examples and Reserved Words

176

Input/Output of Each Port
Operation RS-232C Interface

Receives RS-232C data by means of an interrupt, and decides whether recep-
tion, transmission, or termination is to be performed according to the input data.
RS-422 Interface
Communicates with the C-series Host Link System, and writes data to the CPU
Unit’s data memory on the Host Link System.
Centronics Interface
Outputs a square root to the printer.

Configuration Possibilities

CPU PS

CPU PS CPU PS

CPU PS

BASIC Unit (BSC11 to BSC41)

BASIC Unit (BSC11 or BSC21)

CV-series PC C1000H

Host Link Unit

BASIC Unit (BSC31 or BSC41)

IBM PC/AT
or compat-
ible with ter-
minal mode

Printer

(1)

(2)

(3)

IBM PC/AT
or compat-
ible with ter-
minal mode

Example Program
10 ’******************************
20 ’*RS–232C serial communication*
30 ’* *
40 ’******************************
50 PARACT 0
60 OPEN ”COM2:N,8,2” AS #1 Sets RS-232C port to non-parity, 8 bits,.

and 2 stop bits

Appendix DProgram Examples and Reserved Words

177

70 ON COM (2) GOSUB *COMPRO Branches if interrupt is input to RS-232C.
port

80 COM (2) ON Enables port input of RS-232C.
90 *START
100 INPUT ”Reception processing: R, transfer processing: T, termination process-
ing: E”;A$
110 IF A$=”R” OR A$=”r” THEN GOSUB *RCV To reception processing.
120 IF A$=”T” OR A$=”t” THEN GOSUB *TRNSFR To transfer processing.
130 IF A$=”E” OR A$=”e” THEN GOSUB * To termination processing.
140 GOTO *START
150 *E
160 COM (2) OFF Disables RS-232C port input.
170 CLOSE #1
180 END
190 ’
200 *TRNSFR
210 COM (2) OFF Disables RS-232C port input.
220 INPUT ”Input transfer data”;DATA$
230 PRINT #1, DATA$ Output to RS-232C port.
240 COM (2) ON
250 RETURN
260 ’
270 *RCV
280 INPUT ”Stop reception? (Y/else)”;B$
290 IF B$=”Y” OR B$=”y” THEN COM (2) OFF ELSE COM (2) ON
300 RETURN
310 ’
320 *COMPRO
330 INPUT #1,DATA$ Input from RS-232C port.
340 PRINT ”Sent data is: ”;DATA$
350 RETURN
360 END PARACT

10 ’***
20 ’*RS–422 Host Computer Program for C–series Host Link*
30 ’* *
40 ’***
50 OPTION LENGTH 100
60 PARACT 0
70 OPEN ”COM3:E,7,2” AS #1 Open RS-422C port.
80 *SND?
90 INPUT ” ”;TD$
100 TC$=”@00WD0001”
110 T$=TC$+TD$
120 GOSUB *FCSSET
130 TXD$=T$+FCS$+”+”
140 PRINT ”TXD$=”;TXD$ Data transferred to Host Link Unit Trans-.

fer
150 PRINT #1, TXD$ Transmission.
160 *RCV
170 TUP=0
180 ON ALARM 100 GOSUB *TIMEUP
190 ALARM ON
200 INPUT #1,RXD$ Reception wait.
210 ALARM OFF
220 IF TUP=1 GOTO *ERPRINT Judgment of reception timeout.
230 R$=MID$(RXD$,6,2)
240 IF R$<>”00” GOTO *ER Response error.
250 PRINT ”RXD$=”;RXD$+” OK”
260 *CMPLT
270 CLOSE #1
280 END

Appendix DProgram Examples and Reserved Words

178

290 ’
300 *TIMEUP Reception timeout processing.
310 ER$=”TIME UP”
320 TUP=1
330 RETURN
340 ’
350 *ER Response error processing.
360 ER$=RXD$+” NG”
370 GOTO *ERPRINT
380 ’
390 *ERPRINT Display of error.
400 PRINT ”ERROR”
410 PRINT ”RXD$=”;ER$
420 GOTO *RCV
430 ’
440 *FCSSET Calculation of data for frame check.
450 L=LEN(T$)
460 A=0
470 FOR J=1 TO L
480 TJ$=MID$(T$,J,1)
490 A=ASC(TJ$) XOR A
500 NEXT J
510 FCS$=HEX$(A)
520 IF LEN(FCS$)=1 THEN FCS$=”0”+FCS$
530 RETURN
540 END PARACT

10 ’********************************
20 ’*Example Program of Printer Port*
30 ’* *
40 ’********************************
50 PARACT
60 FOR I=0 TO 10
70 ATAI=SQR(I)
80 TEXT$=STR$(ATAI)
90 LPRINT I;”Square root”+TEXT$
100 NEXT I
110 END PARACT

Note Memory switch bit 13 must be ON before using the Kanji printer (KI or KO). Refer to 3-3 Memory Switches.

Appendix DProgram Examples and Reserved Words

179

PC Communications
Operation Writes or reads data to or from the PC connected through a network.

Writes data to the memory of the node 1 PC in network 1.
The CPU Unit checks whether data has been written, and sends back the data
as is. The BASIC Unit reads the data sent from the CPU Unit by means of an
interrupt.

Configuration

CPU Rack

CPU Rack

BASIC
Unit

BASIC
Unit

CPU
Unit

Power
Supply

Link Unit (#15)

Network

Link Unit CPU
Unit

Power
Supply

Network 1
Node 1

Example Program
10 ’**
20 ’* Data is written to CPU Unit and same data is sent back to Basic *
30 ’* Unit, read in a interrupt, and compared with original data. *
40 ’**
50 PARACT 0
60 DIM DM(3),R(3)
70 A=1 : B=&H10 : C=&H100
80 PC WRITE ”#1.1,@D,0,3,3H4”;A,B,C Writes data memory of network 1 and.

node 1
90 ON PC (1) GOSUB *RCV
100 PC (1) ON

Appendix DProgram Examples and Reserved Words

180

110 PAUSE
120 PC READ ”#1.1,@D,0,3,S3H4”;DM(0) Reads data memory.
130 FOR I=0 TO 2
140 IF DM(I) <> R(I) THEN PRINT ”Comparison error”;I

Comparison of receive data
150 NEXT I
160 END
170 ’
180 *RCV
190 PC READ ”S3H4”;R(0) Reads data transferred from PC.
200 RETURN
210 ’
220 END PARACT

CPU Unit Ladder Diagram
In the following program, the SEND(192) instruction is executed if D00000 con-
tains anything but all-zeros, i.e., if data has been sent from the BASIC Unit. A
differentiated condition is used to execute SEND(192) so that it is executed only
once.

(020
CMP D0000 #0000

(040
XFER #0003 D0000 D00010

(192)
SEND D0010 0000 D00100

0010
10

0010
11

0010
11

A500
06

The following work bits and flags are used in this program: CIO 001010 enables
operation; CIO 001011 is used to signal when the content of D00000 is non-zero;
and A50006 is the Equals Flag.

The control data for SEND(192) must be set in advance as follows:

D00100 0003
D00101 0100
D00102 001F
D00103 0000
D00104 0000

Appendix DProgram Examples and Reserved Words

181

Communicating Between BASIC Units
Operation Communication is performed between two BASIC Units mounted on the same

PC. Data is sent from Unit 0 and Unit 1 processes the data.

Configuration

BASIC
Unit 2

BASIC
Unit 1

CPU
Unit

Power
Supply

CPU Rack

Computers with
terminal mode

Example Program
10 ’***********************************
20 ’*Communication between BASIC Units*
30 ’*Execute this Program on Unit 0 *
40 ’***********************************
50 PARACT 0
60 ’
70 OPEN ”FINS:00.00.17” AS #1 Open BASIC Unit of network 0, node.

0, and Unit 0
80 PRINT #1, ”Please return this data.”
90 INPUT #1,REVERSE$
100 PRINT ”Returned data is ”;REVERSE$
110 CLOSE #1
120 END PARACT

10 ’***
20 ’*Program for communication between BASIC Units*
30 ’*Execute this program on Unit 1 *
40 ’**
50 PARACT 0
60 ’
70 OPEN ”FINS:00.00.16” AS #1 Open BASIC Unit of network 0, node 0,.

and Unit 0
80 ’
90 ON FINS GOSUB *RCV
100 FINS ON
110 PAUSE
120 CLOSE #1

Appendix DProgram Examples and Reserved Words

182

130 END
140 ’
150 *RCV
170 INPUT #1,RCVD$
180 PRINT ”Received: ”;RCVD$
190 PRINT #1,RCVD$
200 RETURN
210 ’
220 END PARACT

Note Start the program for Unit #1 first

File Input/Output
Operations

Sequential File:

1, 2, 3... 1. Opens a file in the Memory Card of the CPU Unit.

2. Using the keyboard, sequentially reads and writes data to the file. To end,
999 is input.

3. Reads the written sequential file and displays the data.

Random-access File:

1, 2, 3... 1. Opens a file in the memory card of the CPU Unit.

2. Identifies whether data input from the keyboard is to be read from or written
to the file, and writes to or reads from a specified record number.

Configuration

CPU Rack

CPU Unit Power Supply

BASIC Unit

Computer with terminal mode

Example Program
10 ’*****************
20 ’*Sequential file*
30 ’* *
40 ’*****************
50 PARACT 0
60 DIM E$50,F$50,G$50
70 OPEN ”1:DATA2” FOR OUTPUT AS #1 Open new sequential file to be output on.

data memory of CPU Unit

Appendix DProgram Examples and Reserved Words

183

80 A$=” OMRON ”
90 B$=” CV500 ”
100 C$=”VERSION 1”
110 D$=”BASIC UNIT”
120 WRITE #1,A$,B$ Output data to sequential file (data com-.

pression)
130 PRINT #1,USING ”& & & &”;C$,D$ Output data to sequential file with format
140 GOSUB *WRT
150 CLOSE Close opened file.
160 OPEN ”0:DATA2” FOR INPUT AS #1 Open sequential file to be input.
170 PRINT ”Contents of data file are as follows:”
180 LINE INPUT #1,F$ Read one entire line to character vari-.

able (F$)
190 PRINT F$
200 LINE INPUT #1,F$
210 PRINT F$
220 GOSUB *RD
230 CLOSE
240 END
250 ’
260 *WRT Processing to output data to sequential.

file
270 INPUT ”Input data (to end writing, input 999)”;E$
280 IF E$=”999” THEN RETURN
290 PRINT #1,E$ Output data to sequential file.
300 GOTO *WRT
310 ’
320 *RD Processing to input data from sequential.

file
330 IF EOF(1) THEN RETURN Branch if data has run out.
340 INPUT #1,G$ Read data.
350 PRINT G$
360 GOTO *RD
370 END PARACT

10 ’************
20 ’*Random file*
30 ’* *
40 ’************
50 OPTION LENGTH 100 Set default character length of 100.
60 PARACT 0
70 ON ERROR GOTO *OCCR
80 OPEN ”0:DATA3” AS #1 Open random file on memory card.
90 FIELD #1,50 AS A$ Assign variable area.
100 PRINT ”Input [W] to write file”
110 PRINT ”Input [R] to read file”
120 PRINT ”Input [E] to end”
130 B$=INPUT$(1) Input condition from buffer to character.

string
140 IF B$=”w” OR B$=”W” THEN GOSUB *WRT
150 IF B$=”r” OR B$=”R” THEN GOSUB *RD
160 IF B$=”e” OR B$=”E” THEN GOTO *E
170 GOTO 100
180 *E
190 PRINT ”The size of data file is ”;LOF(1) Size depends on file record no.. .
200 CLOSE #1 Closing the file.
210 END
220 ’
230 *WRT Write subroutine.
240 INPUT ”Specify record number (1–999):”,REC%
250 IF REC%>999 THEN ERROR 1 Set error generation number (ERR=1).
260 IF REC%<1 THEN ERROR 2 Set error generation number (ERR=2).

Appendix DProgram Examples and Reserved Words

184

270 LINE INPUT ”Data: ”;C$
280 PRINT ”Write the data? (Y/[ELSE])”
290 D$=INKEY$
300 IF D$=””THEN GOTO 290
310 IF D$<>”Y” AND D$<>”y” THEN RETURN
320 LSET A$=C$ Set data in buffer.
330 PUT #1,REC% Write buffer data.
340 RETURN End of write subroutine.
350 ’
360 *RD Read subroutine.
370 INPUT ”Specify record number (1–999):”;REC%
380 IF REC%>999 THEN ERROR 1
390 IF REC%<1 THEN ERROR 2
400 GET #1,REC% Read data to buffer.
410 PRINT A$
420 RETURN End of read subroutine.
430 ’
440 *OCCR Error processing subroutine.
450 IF ERR=1 THEN PRINT ”Record number is too large”
460 IF ERR=2 THEN PRINT ”Record number is too small”
470 ENUM=ERL
480 IF ENUM=400 THEN PRINT ”No data exists in specified record number”
490 RESUME 100
500 END PARACT

Reserved Words
ABS

ACOS

ALARM ON / OFF / STOP

ASC

ASIN

ATN

AUTO

BITON / BITOFF

BREAK

CALL

CDBL

CHR$

CINT

CLOSE

CLS

CMD DELIM

CMD PPR

CMD TIMEOUT

COM ON / OFF / STOP

CONT

COS

CSNG

CVI / CVS / CVD

DATA

DATE$

DEF FN

DEF USR

DEFINT / DEFSNG/ DEFDBL /
DEFSTR

DEG SEG

DELETE

DIM

EDIT

END

END PARACT

EOF

ERL/ERR

ERROR

EXIT

EXP

FIELD

FILES / LFILES

FINS ON / OFF / STOP

FIX

FOR... TO... STEP...

FRE

GET

GOSUB / RETURN

GOTO

HEX$

IEEE(0)

IEEE(1)

IEEE(2)

IEEE(4)

IEEE(5)

IEEE(6)

IEEE(7)

IF... GOTO... ELSE...

INKEY$

INPUT

INPUT #

INPUT @

INPUT$

INSTR

INT

INTRB

INTRL

INTRR

IRESET REN

ISET IFC

ISET REN

ISET SRQ

Appendix DProgram Examples and Reserved Words

185

KEY ON / OFF / STOP

KILL

LEFT$

LEN

LET

LINE INPUT

LINE INPUT #

LINE INPUT @

LIST / LLIST

LOAD

LOC

LOCATE

LOF

LOG

LPRINT

LPRINT USING

LSET/RSET

MERGE

MESSAGE

MID$

MKI$ / MKS$ / MKD$

MON

MSET

NAME

NEW

NEXT

OCT$

ON ALARM GOSUB

ON COM GOSUB

ON ERROR GOTO

ON FINS GOSUB

ON GOSUB

ON GOTO

ON KEY GOSUB

ON PC GOSUB

ON SIGNAL GOSUB

ON SRQ GOSUB

ON TIME$ GOSUB

ON TIMER GOSUB

OPEN

OPTION BASE

OPTION ERASE

OPTION LENGTH

PARACT

PAUSE

PC ON / OFF / STOP

PC READ

PC WRITE

PEEK

PGEN

PINF

PNAME

POKE

POLL

PPOLL

PRINT #

PRINT # USING

PRINT / ?

PRINT @

PRINT USING

PUT

RANDOMIZE

RBYTE

RDIM

READ

RECEIVE

REM

RENUM

RESTORE

RESUME

RIGHT$

RND

ROMLOAD

ROMSAVE

ROMVERIFY

RUN

RUNr

SAVE

SEARCH

SEND

SENDSIG

SGN

SIGNAL ON / OFF / STOP

SIN

SPACE$

SPC

SQR

SRQ ON/OFF/STOP

STATUS

STEP

STOP

STR$

STRING$

SWAP

TAB

TAN

TASK

TIME$

TIME$ ON / OFF / STOP

TIMER ON / OFF / STOP

TROFF

TRON

TWAIT

USR

VAL

VARPTR

VERIFY

VLOAD

VSAVE

WBYTE

WHILE/WEND

WRITE

WRITE #

187

Appendix E
BASIC Instructions

The instructions of the BASIC Unit are broadly classified into commands, statements, functions, and GP-IB in-
structions.

Commands can be typed in and executed directly from the console in edit or debug mode. Some commands can
also be used as statements.

Statements are used in BASIC programs to do most of the program’s work and to control the program’s execution.

Functions perform a specified calculation and return the result of the calculation to the program. Many functions
require one or more arguments.

GP-IB instructions, which control the GP-IB interface, are sub-divided into statements and functions. The GP-IB
instructions can be used with the CV500-BSC51 and CV500-BSC61 only.

How to Use this Table
Instruction: This column lists the names of the commands, statements, and functions in alphabetical order.

Syntax: This column describes the form(s) in which the instruction appears in a program, using the follow-
ing notation:

• Words and symbols in typewriter font should be entered exactly as written.

• Items in square brackets ([]) may be omitted.

• Items in curly brackets ({ }) indicate choices; alternatives are delimited from each other with the vertical bar
character (|). Select one of the alternatives.

• An asterisk (*) indicates that the preceding item or items may be repeated.

• � indicates a required space. (Spaces can also be used between words and symbols to increase program read-
ability.)

• Words in italics are English descriptions of the element that should be substituted. For example, line-no. should
be replaced with an actual line number.

Purpose: This column presents a brief description of the instruction.

Command List
These instructions may be used in EDIT or DEBUG mode. Instructions marked with a diamond (♦) may also be
used as statements in programs.

Instruction Syntax Purpose

@ @ [task-number] Selects a task to be debugged.

AUTO AUTO [start-line-no.] [, increment] Automatically generates line numbers when a
program is typed in.

BREAK BREAK [{DELETE {ALL | line-no. [, line-no.]*} |
line-no. [, line-no.]*}]

Sets, deletes, or lists breakpoints.

CLS♦ CLS Clears screen.

CONT CONT Resumes execution of program.

DELETE DELETE [start-line-no.] [–[end-line-no.]] Deletes program lines.

EDIT EDIT [line-no.] Edits one line of program.

FILES / LFILES FILES [drive-no.] Displays names and size of files in drive./

LFILES [drive-no.] Prints names and sizes of files in drive.

KILL♦ KILL ”file-name” Deletes file.

LET♦ [LET] variable-name = expression Stores value of expression in variable.

LIST / LLIST LIST [start-line-no.] [– [end-line-no.]] Displays all or part of program./

LLIST [start-line-no.] [– [end-line-no.]] Prints all or part of program.

Appendix EBASIC Instructions

188

Instruction PurposeSyntax

LOAD LOAD ”file-name” Reads BASIC program into current program
area.

MERGE MERGE ”file-name” Reads BASIC program to current program
area. Program is merged with any existing
program.

MON MON Sets monitor mode.

MSET MSET [address] Sets upper limit of BASIC program area to
allocate machine language program area.

NAME♦ NAME ”old-file-name” AS ”new-file-name” Changes file name.

NEW NEW Deletes program and variables.

PGEN PGEN [program-no.] Selects current program area.

PINF PINF Displays information on program area.

PNAME PNAME ”program-name” Registers or deletes name of current program
area.

PRINT♦ PRINT [expression] [{,|;|�} [expression]]* Displays value of expression.

LPRINT♦ LPRINT [expression] [{,|;|�} [expression]]* Prints value of expression.

PRINT USING♦
LPRINT USING♦

PRINT USING format ; expression [{,|;|�}
[expression]]*

Displays value of expression in specified
format.

LPRINT USING♦
LPRINT USING format ; expression [{,|;|�}
[expression]]*

Prints value of expression in specified format.

RENUM RENUM [new-line-no.] [, [old-line-no.]
[, increment]]

Re-numbers program lines.

ROMLOAD ROMLOAD Reads information in EEPROM to user program
area.

ROMSAVE ROMSAVE Writes information in user program area to
EEPROM.

ROMVERIFY ROMVERIFY Verifies between EEPROM and user program
area.

RUN♦ RUN [”file-name”] [, ERASE] Starts program execution.

SAVE SAVE ”file-name” Saves BASIC program to file.

STEP STEP Executes program one step at a time.

TROFF♦ TROFF [{task-no.|ALL}] Stops output of line number trace.

TRON♦ TRON [{task-no.|ALL}] Starts output of line number trace.

VERIFY VERIFY ”file-name” Verifies program.

VLOAD♦ VLOAD ”file-name” Reads contents of non-volatile variable from
file.

VSAVE♦ VSAVE ”file-name” Saves contents of non-volatile variable to file.

WRITE♦ WRITE expression [{,|;|�}expression]* Displays value of expression.

♦The command can also be used as a statement in a program.

Statement List
Instruction Syntax Purpose

ALARM
ON / OFF / STOP

ALARM {ON | OFF | STOP} Enables, disables, or stops time interrupt.

BITON / BITOFF {BITON | BITOFF} integer-variable,
bit-position

Turns ON (1) or OFF (0) the specified bit of an
integer variable.

CALL CALL name [(argument [, argument]*)] Calls a machine language program
(subroutine) stored in memory.

CLOSE CLOSE [#file-no. [, #file-no.]*] Closes file.

CLS CLS Clears screen.

COM ON / STOP
(OFF is same as
STOP)

COM [(port-no.)] {ON | STOP} Enables or stops interrupt from communication
line.

Appendix EBASIC Instructions

189

Instruction PurposeSyntax

DATA DATA constant [, constant]* Stores numeric and character constants for
use by READ statements.

DEF FN DEF FNfunction-name
[(argument [, argument]*)] =
function-definition-expression

Defines function.

DEG SEG DEF SEG = segment-address Declares segment address.

DEF USR DEF USR [no.] = start-address Defines execution start address of machine
language USR function.

DEFINT/DEFSNG/
DEFDBL/DEFSTR

{DEFINT | DEFSNG | DEFDBL | DEFSTR}
{variable-name | character–character}
[, {variable-name | character–character}]*

Declares variable type.

DIM DIM variable-name
[(subscript [, subscript]*)]
[maximum-number-of-characters]
[, variable-name [(subscript [, subscript]*)]
[maximum-number-of-characters]]*

Declares an array variable or fixed-length
string.

END END Terminates task.

END PARACT END PARACT Declares the end of a task.

ERROR ERROR error-no. Simulates generation of error.

EXIT EXIT task-no. Terminates specified task.

FIELD FIELD #file-no., width AS
character-string-variable
[, width AS character-string-variable]*

Assigns field variable to random file buffer.

FINS ON / STOP
(OFF is same as
STOP)

FINS {ON | STOP} Enables or stops interrupts from network.

FOR... TO...
STEP...
NEXT...

FOR variable = initial-value TO final-value
[STEP increment]
NEXT [variable [, variable]*]

Repeatedly execute group of statements
enclosed by FOR and NEXT statements.

GET GET #file-no. [, record-no.] Reads data from random file.

GOSUB / RETURN GOSUB {line-no. | label}
RETURN

Calls subroutine / returns from subroutine.

GOTO GOTO {line-no. | label} Branches to specified line or label.

IF... THEN...
ELSE...
IF... GOTO...
ELSE...

IF conditional-expression THEN {statement |
line-no. | label} [ELSE {statement | line-no. |
label}]
IF conditional-expression
GOTO {line-no. | label}
[ELSE {statement | line-no. | label}]

Selects statement to be executed according to
result of conditional-expression.

INPUT INPUT [WAIT expression,] [”prompt” {, | ;}]
variable [, variable]*

Inputs data to specified variable.

INPUT # INPUT #file-number, variable [, variable]* Reads data from file into specified variable.

KEY
ON / OFF / STOP

KEY (key-no.) {ON | OFF | STOP} Enables, disables, or stops interrupts from
console numeric keys.

KILL KILL ”file-name” Deletes file.

LET [LET] variable-name = expression Assigns the value of an expression to a
variable

LINE INPUT LINE INPUT [WAIT expression,] [”prompt”
{, | ;}] character-variable

Inputs a whole line to a character string
variable.

LINE INPUT # LINE INPUT #file-no., character-variable Reads one line from a file into a character
string variable.

LOCATE LOCATE horizontal-position, vertical-position Moves cursor on screen.

LSET/RSET LSET character-variable =
character-expression
RSET character-variable =
character-expression

Substitutes data into field variable.

LPRINT LPRINT [expression] [{,|;|�} [expression]]* Prints value of expression.

Appendix EBASIC Instructions

190

Instruction PurposeSyntax

LPRINT USING LPRINT USING format ; expression
[{, | ; | �} [expression]]*

Output value of expression using specified
format.

MESSAGE MESSAGE function, message-no. Allocates and releases message numbers.

MID$ MID$(character-expression, expression
[, expression]) [= character-expression]

Returns or replaces part of character string
variable.

NAME NAME ”old-file-name” AS ”new-file-name” Changes file name.

ON ALARM GOSUB ON ALARM time GOSUB {line-no. | label} Specifies interrupt time and defines interrupt
routine.

ON COM GOSUB ON COM [(port-no.)] GOSUB
{line-no. | label}

Defines subroutine to process interrupts from
communication line.

ON ERROR GOTO ON ERROR GOTO {0 | line-no. | label} Defines error processing routine and starts
error trap.

ON FINS GOSUB ON FINS GOSUB {line-no. | label} Defines subroutine to process interrupts from
network.

ON GOSUB ON expression GOSUB {line-no. | label} [,
{line-no. | label}]*

Selects and calls one of several subroutines
based on the value of expression.

ON GOTO ON expression GOTO {line-no. | label}
[, {line-no. | label}]*

Selects and branches to one of several
locations based on the value of expression.

ON KEY GOSUB ON KEY (key-no.) GOSUB {line-no. | label} Defines subroutine to process numeric key
interrupts.

ON PC GOSUB ON PC (interrupt-no.) GOSUB
{line-no. | label}

Defines subroutine to process interrupts from
CPU Unit.

ON SIGNAL GOSUB ON SIGNAL (signal-no.) GOSUB {line-no. |
label}

Defines interrupt subroutine for user-defined
or system signal.

ON TIME$ GOSUB ON TIME$ = ”time” GOSUB {line-no. | label} Defines subroutine to be executed at a certain
time.

ON TIMER GOSUB ON TIMER = interval GOSUB {line-no. | label} Specifies subroutine to be executed after a
certain interval

OPEN OPEN ”file-name”
[FOR {INPUT | OUTPUT | APPEND}]
AS #file-no.

Opens file.

OPTION BASE OPTION BASE {0 | 1} Declares subscript of first array element.

OPTION ERASE OPTION ERASE Declares initialization of non-volatile variables.

OPTION LENGTH OPTION LENGTH no.-of-characters Declares default length for fixed character
strings.

PARACT PARACT task-no. [WORK no.-of-bytes] Declares beginning of task.

PAUSE PAUSE Stops execution of task until interrupt occurs.

PC ON / STOP
(OFF is same as
STOP)

PC (interrupt-no.) {ON | STOP} Enables or stops interrupt from CPU Unit.

PC READ PC READ [WAIT time,] ”[[#network, node,]
source-area, start-word, no.-of-words,]
format [, format]*”; variable [, variable]*

Reads data from CPU Unit into variable.

PC WRITE PC WRITE [WAIT time,] ”[[#network,
node,] destination-area, start-word,
no.-of-words,]
format [, format]*”; variable [, variable]*

Writes value of variable to CPU Unit.

POKE POKE address, expression Writes data to specified address of memory.

PRINT / ? {PRINT | ?} [expression]
[{, | ; | �} [expression]]*

Displays value of expression.

PRINT # PRINT #file-no., [expression]
[{, | ; | �} [expression]]*

Outputs value of expression to a file.

PRINT USING PRINT USING format ; expression
[{, | ; | �} [expression]]*

Output value of expression in specified format.

PRINT # USING PRINT #file-no., USING format ; expression
[{, | ; | �} [expression]]*

Output value of expression in specified format
to a file.

Appendix EBASIC Instructions

191

Instruction PurposeSyntax

PUT PUT #file-no. [, record-no.] Writes data to random file.

RANDOMIZE RANDOMIZE [expression] Initializes random series.

RDIM RDIM variable-name
[(subscript [, subscript]*)]
[maximum-number-of-characters]
[, variable-name [(subscript [, subscript]*)]
[maximum-number-of-characters]]*

Declares non-volatile variables.

READ READ variable [, variable]* Reads data from DATA statement and stores it
in variable.

RECEIVE RECEIVE message-no., character-variable Receives message.

REM REM [comment-text] Causes the BASIC Unit to ignore the
comment-text.

RESTORE RESTORE [{line-no. | label}] Specifies re-use of values in a DATA statement

RESUME RESUME [{0 | line-no. | label | NEXT}] Exits from error processing routine.

RUN RUN [”file-name”] [, ERASE] Starts program execution.

SEND SEND message-no., character-expression Sends message.

SENDSIG SENDSIG signal-no., task-no. Generates signal.

SIGNAL
ON / OFF / STOP

SIGNAL signal-no. {ON | OFF | STOP} Enables, disables, or stops signal interrupt.

STOP STOP Stops program execution.

SWAP SWAP variable-name, variable-name Swaps values of two variables.

TASK TASK task-no. Starts terminated task.

TIME$
ON / OFF / STOP

TIME$ {ON | OFF | STOP} Enables, disables, or stops time interrupt.

TIMER
ON / OFF / STOP

TIMER {ON | OFF | STOP} Enables, disables, or stops timer interrupt.

TROFF TROFF [{task-no. | ALL}] Stops output of line number trace.

TRON TRON [{task-no. | ALL}] Starts output of line number trace.

TWAIT TWAIT task-no. Waits for termination of task.

VLOAD VLOAD ”file-name” Reads contents of non-volatile variable from
file.

VSAVE VSAVE ”file-name” Saves contents of non-volatile variable to file.

WHILE/WEND WHILE conditional-expression
WEND

Repeatedly execute series of statements while
condition is satisfied.

WRITE WRITE expression [{, | ; | �} [expression]]* Outputs value of expression.

WRITE # WRITE #file-no., expression
[{, | ; | �} [expression]]*

Outputs value of expression to a file.

Function List

Instruction Syntax Purpose

ABS ABS(expression) Calculates the absolute value of the expression.

ACOS ACOS(expression) Calculates arc cosine of the expression.

ASC ASC(character-expression) Returns the ASCII code of the first character of
character-expression.

ASIN ASIN(expression) Calculates the arc sine of the expression.

ATN ATN(expression) Calculates the arc tangent of the expression.

CDBL CDBL(expression) Converts expression into a double-precision
real number.

CHR$ CHR$(expression) Converts expression into characters.

CINT CINT(expression) Rounds any fractional part of expression

COS COS(expression) Returns cosine of expression.

Appendix EBASIC Instructions

192

Instruction PurposeSyntax

CSNG CSNG(expression) Converts expression into single-precision real
number.

CVI / CVS / CVD CVI(2-character-string)
CVS(4-character-string)
CVD(8-character-string)

Converts character string into numeric value.

DATE$ DATE$ [= ”year/month/day”] Returns date of internal clock, or sets date.

EOF EOF(file-no.) Returns true (–1) if file-no. has reached end of
file; false (0) otherwise.

ERL/ERR ERL
ERR

Return line on which error has occurred (ERL)
and error code (ERC).

EXP EXP(expression) Calculates exponential function of expression
(eexpression)

FIX FIX(expression) Truncates any fractional part of expression.

FRE FRE(expression) Returns size of unused memory area.

HEX$ HEX$(expression) Returns a character string with the value of
expression expressed as a hexadecimal
number.

INKEY$ INKEY$ Returns next character in keyboard buffer.

INPUT$ INPUT$(expression [, #file-no.]) Reads character string of specified length from
specified file.

INSTR INSTR([expression,] character-string,
key-string)

Searches for key-string in character-string and
returns its position.

INT INT(expression) Returns the largest integer which does not
exceed expression.

INTRB
INTRL
INTRR

INTRB
INTRL
INTRR

Variables containing information on an interrupt
that has occurred.

LEFT$ LEFT$(character-expression, expression) Returns the leftmost expression characters
from character-expression.

LEN LEN(character-expression) Returns length of character-expression.

LOC LOC(file-no.) Returns current logical position in file.

LOF LOF(file-no.) Returns size of file.

LOG LOG(expression) Calculates natural logarithm of expression

MID$ MID$(character-expression,
length [, position])

Returns length characters from
character-expression starting from position.

MKI$ / MKS$ /
MKD$

MKI$(integer-value)
MKS$(single-precision-value)
MKD$(double-precision-value)

Converts numeric value into character string.

OCT$ OCT$(expression) Returns a character string with the value of
expression expressed as an octal number.

PEEK PEEK(address) Returns contents of the specified address.

RIGHT$ RIGHT$(character-expression, expression) Returns the rightmost expression characters
from character-expression

RND RND(expression) Returns random number.

SEARCH SEARCH(integer-array [, expression]
[, start-element] [, increment])

Searches for first occurrence of the integer
value expression in integer-array and returns
element number.

SGN SGN(expression) Returns –1, 0, or 1 depending on whether
expression is negative, zero, or positive.

SIN SIN(expression) Calculates sine of expression.

SPACE$ SPACE$(expression) Returns a character string containing
expression spaces.

SPC SPC(expression) Outputs expression spaces.

SQR SQR(expression) Calculates the square root of expression.

Appendix EBASIC Instructions

193

Instruction PurposeSyntax

STR$ STR$(expression) Returns a character string with the value of
expression expressed as a decimal number

STRING$ STRING$(expression,
{character-string | character-code})

Returns a string with expression copies of the
first character of character-expression or
character-code.

TAB TAB(expression) Moves cursor to specified column.

TAN TAN(expression) Calculates tangent of expression.

TIME$ TIME$ [= ”hour:minute:second”] Returns time of internal clock, or sets time.

USR USR[func-no.](argument) Calls a machine language function

VAL VAL(character-expression) Converts character-expression into a numeric
value.

VARPTR VARPTR(variable-name) [, feature] Returns memory address of variable.

GP-IB Instruction List
Statements

Instruction Syntax Purpose

CMD DELIM CMD DELIM = delimiter-code Specifies delimiter.

CMD PPR CMD PPR = mode Selects PPR mode.

CMD TIMEOUT CMD TIMEOUT = timeout-parameter Specifies limit value for timeout check.

INPUT @ INPUT@ [talker-address [, listener-address
[, listener-address]*]]; variable [, variable]*

Receives data sent from specified talker and
stores it in variable.

IRESET REN IRESET REN Makes REN (remote enable) false.

ISET IFC ISET IFC [, integer] Transmits IFC (interface clear).

ISET REN ISET REN Makes REN (remote enable) true.

ISET SRQ ISET SRQ [@] [N] Transmits SRQ (service request).

LINE INPUT @ LINE INPUT@ [talker-address
[, listener-address [, listener-address]*]];
character-string-variable

Receives string data sent from specified talker
and substitutes it into character string variable.

ON SRQ GOSUB ON SRQ GOSUB {line-no. | label} Specifies first line of SRQ subroutine.

POLL POLL talker-address, numeric-variable
[; talker-address, numeric-variable]*

Performs serial polling.

PPOLL PPOLL [PPU] [, listener-address, integer]* Assigns response output line for parallel
polling.

PRINT @ PRINT@ [listener-address
[, listener-address]*]; [data [,data]*] [@]

Transmits data as ASCII character string.

RBYTE RBYTE [command] [, command]*;
[numeric-variable [,numeric-variable]*

Receives binary data after transmitting
multi-line message.

SRQ ON/OFF/STOP SRQ {ON | OFF | STOP} Controls reception of SRQ.

WBYTE WBYTE [command] [, command]*];
[data [, data]*] [@]

Transmits multi-line message and binary data.

Appendix EBASIC Instructions

194

Functions
Instruction Syntax Purpose

IEEE(0) IEEE(0) Checks the delimiter.

IEEE(1) IEEE(1) Checks the initialized status of GP-IB interface.

IEEE(2) IEEE(2) Checks the talker and listener status, and
received interface message.

IEEE(4) IEEE(4) Stores the device status of the device that
transmits the service request during serial
polling.

IEEE(5) IEEE(5) Stores the talker address of the device that
transmits the service request during serial
polling.

IEEE(6) IEEE(6) Stores the talker address of the device that
does not respond to the serial polling.

IEEE(7) IEEE(7) Stores the data byte obtained as a result of
parallel polling.

STATUS STATUS Stores device status.

195

Appendix F
Machine Language Commands

Each of the machine language monitor commands is described in detail on the following pages. In the de-
scription, the following syntax is used:

• Items in brackets [] may be omitted.

• An item followed by an asterisk (*) may be repeated.

• Words in italics are English descriptions of the value that must be supplied.

Note 1. All commands must be entered in upper case.

2. DS0 is generally used for address calculation. The target address is the specified address (offset) +
DS0.

3. If any start address is greater than an end address, an error will occur.

4. Addresses (offsets) must be entered as numbers of 4 digits or less. (A 5-digit address will cause an er-
ror.) Leading 0’s may be omitted.

5. Data must be entered as numbers of 1 or 2 digits. (3-digit data values will cause an error.) Leading 0’s
may be omitted.

6. If the monitor detects an input error, it will display a question mark (?).

7. The program counter (PC) and program segment (PS) are used for the G, T, and B commands.

8. The Backspace Key can be used to correct inputs until the carriage return is input.

Command: D
Function Displays the contents of memory in hexadecimal notation.

Syntax D [start-address][.end-address]

Explanation Display the contents of the memory from a specified start address to end ad-
dress (example 1). If the end address is omitted, only the byte at the start ad-
dress is displayed (example 2) If both the start and end addresses are omitted, 8
bytes are displayed, starting from the address after that displayed previously
(example 3). If the start address is omitted, the memory contents from the ad-
dress after that displayed previously and ending at the specified end address
(example 4).

To suspend the display, press CTRL+S. To resume, press CTRL+Q.

Examples
1, 2, 3... 1. *D4001.4005�

4001–20 30 40 50 60

2. *D4010�
4010–23

3. *D�
4011–34 56 78 9A BC DE F0 12

4. *D.4021�
4019–31 32 33 34 35 36 37 38
4021–39

Command: W
Function Writes new values into memory.

Syntax W start-address:data[.data]*

Explanation Stores the specified data in memory beginning at start-address (example 1).

Up to 80 values can be stored with one W command.

Appendix FMachine Language Commands

196

Example *W4000:12.34.56.78.9A�
*D4000.4004�
4000–12 34 56 78 9A

Command: M
Function Moves a specified block of memory to another place in memory.

Syntax M destination-address < block-start.block-end

Explanation The source block and destination address must be in the same segment.

Note Make sure the source and destination areas do not overlap.

Example *M000<4000.403F�

Command: C
Function Compares the contents of two blocks of memory.

Syntax C block-2-start < block-1-start.block-1-end

Explanation The contents of blocks 1 and 2 are compared and any differences are displayed.
If no differences are found, only the next prompt is displayed.

Example This command will compare memory locations from &H4000 to &H401A to loca-
tions from &H5000 to &H501A.
*C5000<4000.401A�
4009–FF(FB)
4013–56(34)
*
The lines before the next * prompt show that differences were found at &H4009
(which contains &HFF) and &H5009 (which contains &HFB), and at &H4013
(&H56) and &H5013 (&H34).

Command: A
Function Start assembling mnemonic codes.

Syntax A
The prompt will change to an exclamation point (!). Enter the mnemonic codes:
![address:]mnemonic-code�*
Enter X to exit from the mnemonic assembler.

Explanation The CPU’s mnemonics and operands are described in the NEC V25
(µPD70322) manual. (Some mnemonics and operands are slightly different.
See the list on page 185 for details.)
The assembler’s location counter is updated appropriately each time a line has
been entered, so it is not necessary to enter a new address in order to assemble
into consecutive memory locations.

Example
*A�
!3000:MOV IX,IY�
3000–89 FE MOV IX,IY
!MOV AW,BW�
3002–89 D8 MOV AW,BW
!X�
*

Command: I
Function Disassembles and displays the machine language program at a specified ad-

dress.

Appendix FMachine Language Commands

197

Syntax I[start-address][.end-address]

Explanation Disassembles and displays the memory contents between start-address and
end-address (example 1). If end-address is omitted, 20 instructions are dis-
played (starting at start-address) (example 2). If both start- and end-address are
omitted, 20 instructions are displayed starting from the address after the one dis-
played immediately before (example 3). To display only one instruction, specify
the same start-address and end-address (example 4).

Example
1, 2, 3... 1. *I3000.3003�

3000–89FE MOV IX,IY
3002–89D8 MOV AW,BW

2. *I3000�
3000–89FE MOV IX,IY
3002–89D8 MOV AW,BW
3004–1000 ADDC [BW+IX],AL
3006–86E0 XCH AL,AH
3008–26 DS1:
3009–8905 MOV [IY],AW
300B–2438 AND AL,38
300D–C0E803 SHR AL,03
3010–B409 MOV AH,09
3012–F6E4 MULU AH

Displays 20 instructions

3. *I�
3025–50 PUSH AW
3026–8CC8 MOV AW,PS
3028–8ED8 MOV DS0,AW

Displays 20 instructions

4. *I3000.3000�
3000–89FE MOV IX,IY
*

Command: S
Function Saves (writes) the contents of the specified address range to a file on a memory

card or to a port connected to a terminal. The format of the saved file can also be
specified.

Syntax SR format start-address.end-address
SFH start-address.end-address.file-name

Explanation The save destination is indicated by the character after S: R is the terminal port; F
is the CPU Unit memory card.

Format can be S (indicating Motorola S-records) or H (indicating Intel Hex For-
mat). If the destination is the memory card, only the Intel Hex Format can be
used.

File-name does not include the 3-character extension (.XXX)
Transfer is started immediately after the command has been entered.

Examples
1, 2, 3... 1. *SRS5000.52FF

*

Appendix FMachine Language Commands

198

2. *SFH4000.41FF.FILE2�
*

Note To save the contents of memory by specifying save destination R, the CVSS is
necessary. If the CVSS is not installed, the data are only displayed, and not
saved.

Command: L
Function Loads (reads) a section of memory from a file on the memory card or from the

port to which a terminal is connected.

Syntax LR format [offset]
LFH[offset].file-name

Explanation The load source is specified by the second letter of the command:
R: terminal connected to port
F: CPU Unit’s memory card
If the source is the terminal, format can be either S (for Motorola S-records) or H
(for Intel Hex Format). If the source is the memory card, only Intel Hex Format
can be used.

The address to which the file contents is to be loaded is the specified address +
segment value of DS0 + offset.

File-name does not include the extension (.XXX).

To abort this command, press CTRL+Z twice.

Examples
1, 2, 3... 1. *LFH.FILE3�

2. *LRH�

3. *LRH1000�

Note To load the machine language program from a Terminal connected to the port,
the CVSS is necessary. Memory contents cannot be directly loaded from a ter-
minal other than those with CVSS.

Command: V
Function Verifies the memory block transferred from the port to which a terminal is con-

nected or the memory card of the CPU Unit against the contents of the BASIC
Unit’s memory.

Syntax VR format [offset]
VFH[offset].file-name

Explanation The source of data to verify is specified by the second letter of the command:
R: terminal connected to port
F: CPU Unit’s memory card
If the source is the terminal, format can be either S (for Motorola S-records) or H
(for Intel Hex Format). If the source is the memory card, only Intel Hex Format
can be used.

The address to be verified is the specified transfer address + segment value of
DS0 + offset.

The result of the verification can be checked by the X command (refer to the de-
scription of the X command).

To abort this command, press CTRL+Z twice.

Examples
1, 2, 3... 1. *VRS�

2. *VFH1000.FILE4�

Appendix FMachine Language Commands

199

Command: X
Function Displays the result of the previous S, L, or V command. (The S, L, and V com-

mands do not display an error code even if an error has occurred while these
commands are executed.) The results of executing these commands therefore
must be checked by this command.

Syntax X[command]

Explanation The results of executing the S, L, and V commands are recorded and may be
displayed by this command, as follows:

Command Normal completion Abnormal completion

S SAVE COMPLETE SAVE ERROR

L LOAD COMPLETE LOAD ERROR

V VERIFY OK Mis-matched addresses and
data are displayed.

Example
*XS�
SAVE COMPLETE
*

Command: B
Function Sets a break point at the specified address, or displays currently set break

points. Up to two break points can be set.

Syntax B [address]

Explanation Sets a break point at address. Only the two most recently set break points are
valid. If no break points are set, 0000 is displayed. A break point cannot be set at
address 0000.
If address is omitted, currently set break point addresses are displayed.
The PS (program segment) is used and the target address is the specified ad-
dress plus PS.

Examples
1, 2, 3... 1. *B3000�

2. *B�
B=3000 0000

3. *B5000�
*B�
B=3000 5000

Command: N
Function Cancels all break points.

Syntax N

Explanation Cancels both break points at once.

Command: G
Function Begin executing the machine language program at the specified start address.

Syntax G[start-address]

Explanation Usually, the program is executed with break points set in advance. When the
program execution has stopped at a break point, the break point is cleared and
the current contents of the registers are displayed.
If start-address is omitted, the program is executed starting from the current ad-
dress indicated by the program counter.

Appendix FMachine Language Commands

200

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

The initial values of the stack pointers (SP, SS) for MON are set according to
MSET.

Example
*G4000r
R2 R1 R0 V D I B S Z F1 A F0 P IB C
– – – * – – – – – – – – – – –
AW–FEDC BW–0000 CW–0000 DW–0000 SP–0000 BP–0000
IX–0000 IY–0000 PS–0000 DS0–0000 SS–0000 DS1–0000 PC–1234
For the flags, * indicates 1 (set) and – indicates 0 (reset)

Command: T
Function Executes one step (one instruction) of the machine language program.

Syntax T[address]

Explanation Executes one instruction at the specified address, and, after execution, disas-
sembles and displays the instruction. Also displays the current contents of the
registers.

If address is omitted, the instruction at the address currently indicated by the pro-
gram counter is executed.

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

Example
*T4020�

Command: R
Function Changes the contents of a register or flag, or displays the current contents of all

the registers and flags.

Syntax R
R register-name = data
R flag-name = flag-state

Explanation Register-name must be one of these names:
AW, BW, CW, DW, SP, BP, IX, IY, PS, DS0, SS, DS1, or PC

Data should be a hexadecimal number.

Flag-name must be one of these names:
R2, R1, R0, V, D, I, B, S, Z, F1, A, F0, P, IB, or C

Flag-state should be 0 (reset) or 1 (set).

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

Examples

1, 2, 3... 1. *RAW=FEDC�

2. *RV=1�

3. *RS=0�

4. *R�
R2 R1 R0 V D I B S Z F1 A F0 P IB C

– – – * – – – – – – – – – – –
AW–FEDC BW–0000 CW–0000 DW–0000 SP–0000 BP–0000

IX–0000 IY–0000 PS–0000 DS0–0000 SS–0000 DS1–0000

PC–1234

Appendix FMachine Language Commands

201

Command: K
Function Performs addition or subtraction on 4-digit hexadecimal data.

Syntax K value + value
K value – value

Explanation Calculates the sum or difference of the two values. Any carry or borrow is ig-
nored.

Example
*K1234+5678�
1234+5678=68AC

Command: ESW
Function Displays or sets the contents of the memory switches in the BASIC Unit, or reads

or writes the memory switches of the CPU Unit.

Syntax ESW switch-no. Displays switch settings.
ESW switch-no. = data Sets memory switches.
ESW – R Displays memory switches from CPU Unit.
ESW – W Write memory switches to CPU Unit.

Explanation
• Display

The switch numbers are as follows:

1 : System parameters (ESW1)
2 : Automatic transfer file name (ESW2)
3 : Terminal, printer ports (ESW3)
4 : Baud rate for each port (ESW4)
5 : Terminal specifications (ESW5)
6 : Cyclic area settings (ESW6) (Groups 1 to 12 displayed.)
7 : GP-IB setting (ESW7)

• The file name consists of up to eight ASCII characters, a period, and a 3-char-
acter extension. The file name must start with an alphanumeric character. The
file extension is BAS.

• Do not leave any blank characters between the file name and period or period
and file extension.

Name

Extension

Upper byte Lower byte

Appendix FMachine Language Commands

202

Example: File name ABC1234.BAS

Right-justify file name..

Place period (&H2E)
after file name.
Place extension after period..

Fill excess bytes with &H00.
When setting this area with ma-
chine language monitor command
ESW2, excess bytes are automati-
cally filled.

A (41)

B (42)

C (43)

1 (31)

2 (32)

3 (33)

4 (34)

(2E)

B (42)

A (41)

S (53)

(00)

• Setting

Set switches 1, 3, 4, 5, and 7 as follows:
ESWn=4-digit-hexadecimal-number
Set switch 2 as follows:
ESW2=file-name.file-extension
Set switch 6 as follows:
ESW6–m =dddd–dddd–dddd–dddd
(m : group no. 1 to 12, d : decimal digit)
Only the contents of the memory in the BASIC Unit are changed. To change
the contents of the CPU Unit’s memory, write the settings to the CPU Unit
(ESW – W).

Reading from CPU Unit The current contents of the memory switches in the CPU Unit are read to the
BASIC Unit. The messages displayed at this time are as shown in the table be-
low.

Status Message

Normal completion MEMORY SWITCH READ COMPLETE

Memory switch information error MEMORY SWITCH ERROR

Memory switch information missing MEMORY SWITCH NONE

Read error MEMORY SWITCH FINS ERROR

Read timeout TIMEOUT ERROR

Error during error logging ERROR LOG WRITE ERROR

Writing to CPU Unit The contents of the memory switches in the BASIC Unit are written to the CPU
Unit. The messages displayed at this time are as shown in the following table:

Status Message

Normal completion MEMORY SWITCH COPY COMPLETE

Write data error MEMORY SWITCH ERROR

Write error MEMORY SWITCH FINS ERROR

Write timeout TIMEOUT ERROR

Examples
1, 2, 3... 1. *ESW1=007F�

2. *ESW1�
007F

3. *ESW2=ABCDE123.BAS�

Appendix FMachine Language Commands

203

4. *ESW2�
ABCDE123.BAS

5. *ESW3�
0000

6. *ESW6–7=0080–0032–0000–0005�
7. *ESW6�
0080 1500 0000 0015 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0080 0032 0000 0005 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Machine Language Mnemonics

The mnemonics accepted by the machine language monitor’s assembler con-
form to those of the BASIC Unit’s CPU, the V25 (NEC µPD70322), with slight
differences.

The following instructions are not used because their functions or operands are
meaningless for the BASIC Unit, or because they are represented by a different
methods:

MOVBK

CMPBK

CMPM

LDM

STM

INM

OUTM

FPO1

FPO2

The operands related to processing outside a segment cannot be used because
the capacity of the user program area of the BASIC Unit is limited.
CALL far-proc
CALL memptr32
RETF pop-value
BR far-label
BR memptr32
BR short-label

The operands cannot be abbreviated. The describe the full name of an operand.
MUL reg,imm8
MUL reg,imm16
An instruction that can be assembled in more than one way is always assembled
in only one way.
MOV reg,reg ... (pattern of instruction reg,reg)
→1000 100W 11reg2 reg1 with direction flag d = 0
Only one instruction can be entered on each line. Use separate lines for mul-
ti-opcode instructions. For example, the following entries are illegal:
REPC CMPBKW
MOV DS1:[BW],AW

Operand Representation Rules
Immediate Values xxxx: 4-digit hexadecimal number

Words and bytes are identified by the values.

Memory Addressing Modes [BW+IX] [BW+IY] [BP+IX] [BP+IY]
[IX+BW] [IY+BW] [IX+BP] [IY+BP]
[IX] [IY] [BW]
[0000] to [FFFF] Direct address.
1234[BW+IX] Enter displacement on the left.
Examples MOV [BW+IX],AW

MOV FF12[BW+IY],AW
MOV [4321],AW

Instructions that Cannot be
Used

Operand Description
Restrictions

Appendix FMachine Language Commands

204

To specify whether an instruction should operate on a byte or word, use the BYTE
or WORD qualifiers:

Examples TEST1 BYTE [IX],CL
TEST1 WORD [IY],CL

Branch Instructions Labels cannot be used; specify branch addresses.

Examples 2000 7502 BNE 2004
2002 8B04 MOV AW,[IX}
2004 E90900 2010

Processing Unit
Specifications (Word/Byte)

205

Appendix G
Reserved Words

A

ABS

ACOS

ALARM

AND

APPEND

AS

ASC

ASIN

AUTO

B

BASE

BITOFF

BITON

BREAK

C

CALL

CDBL

CHDIR

CHR $

CINT

CLOSE

CLS

CMD

COM

CONT

COS

CSNG

CVD

CVI

CVS

D
DATA

DATE $

DEF

DEFDBL

DEFINT

DEFSNG

DEFSTR

DIM

DELIM

DELETE

E
EDIT

END

EOF

EQV

ERASE

ERL

ERR

ERR2

ERR3

ERROR

EXIT

EXP

F
FIELD

FINS

FILES

FIX

FN

FOR

FRE

G
GET

GO

GOSUB

GOTO

H
HEX $

I
IEEE

IF

IFC

IMP

INKEY $

INPUT

INPUT $

INPUT @

INSTR

INT

INTR

INTRB

INTRL

INTRR

IRESET

ISET

K
KEY

KILL

KYBD

L
LEFT $

LEN

LENGTH

LET

LFILES

LIST

LLIST

LOAD

LOC

LOCATE

LOF

LOG

LPRINT

LPRT

LSET

Appendix GReserved Words

206

M
MERGE

MESSAGE

MID $

MKD $

MKI $

MKS $

MOD

MON

MSET

N
NAME

NEW

NEXT

NOT

O
OCT $

OFF

ON

OPEN

OPTION

OR

P
PARACT

PAUSE

PC

PEEK

PGEN

PINF

PNAME

POKE

POLL

PPOLL

PPR

PRINT

PRINT @

PUT

R

RANDOMIZE

REN

RBYTE

RDIM

READ

RECEIVE

REM

REN

RENUM

RESTORE

RESUME

RETURN

RIGHT $

RND

ROMLOAD

ROMSAVE

ROMVERIFY

RSET

RUN

S

SAVE

SCRN

SEARCH

SEG

SEND

SENDSIG

SGN

SIGNAL

SIN

SPACE $

SPC

SQR

SRQ

STATUS

STEP

STOP

STR $

STRING $

SWAP

T
TAB

TAN

TASK

THEN

TIME $

TIMER

TO

TROFF

TRON

TWAIT

TIMEOUT

U
USING

USR

V
VAL

VARPTR

VERIFY

VLOAD

VSAVE

W
WAIT

WBYTE

WEND

WHILE

WRITE

X
XOR

207

Appendix H
Controlling RS-232C Communications Lines

RS-232C communications lines are controlled using the OPEN statement as follows:

OPEN” COMn: [speed] [, parity] [, data_length] [, stop_bits]

[, XON/XOFF] [, RS] [, CSml] [, DS0] [, LF]” AS#file-no.

RS If RS control is designated, the RTS signal will be turned ON when the I/O com-
mand is executed and will be turned OFF otherwise. If RS control is not desig-
nated, the RTS signal will remain ON.

CS If CS0 or nothing is designated, there will be no limit to the wait for the ON CTS
signal or end of transmission. If a value between CS100 and CS30000 is desig-
nated, a wait will be for 100 ms to 30 s maximum.

DS0 If DS0 is designated, the DSR signal will not be checked. If nothing is desig-
nated, the DSR signal will be checked.

XON/XOFF If XON/XOFF or nothing is designated, XON/XOFF control will be performed. If
XN is designated, XON/XOFF control will not be performed.

ÉÉÉ
ÉÉÉ

ÉÉÉ
ÉÉÉ

DTR (Out) ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

DSR (In)

RTS (Out)

CTS (In)

TXD (Out)

RXD (In)

End

CloseInputPrint

(1)

(2) (4)

(3)

PrintOpen
Without
RS

Input Close Open
With
RS

(1) and (2) Not checked if DS0 is designated. Checked if nothing is designated (i.e., a
RS-232C not ready error will occur if OFF when checked).

(3) and (4) If CS0 or nothing is designated, the signal will be turned ON and an indefinite
wait will be made until printing has ended. If a value between CS100 and
CS30000 is designated, the signal will be turned ON and a wait of 100 ms to 30 s
will be made until printing ends. If the signal turns ON during printing or the time
expires, a wait of 60 s will be made. If the 60 s also expire, an I/O timeout error will
occur.

Note Communications control using RTS/DTR signals is not possible for the ports set as the terminal and printer
ports. This point particularly applies to BCS11/12 Units, for which port 1 is default set to terminal port and
port 2 is default set to printer port.

209

 Appendix I
Programming with Windows 95

HyperTerminal

Overview
Previously, an FIT10 Terminal Pack or N88-DISK-BASIC was required to program the BASIC Unit. Now, how-
ever, it is possible to program using HyperTerminal and other accessories that have been added to the stan-
dard Windows 95 package.

When creating programs using HyperTerminal, only the backspace key can be used in operations on the ter-
minal screen. The cursor keys cannot be used.

Setup
Connections
Provide a connecting cable for connecting the BASIC Unit to the computer. Connector specifications and the
connection configuration are shown below.

Connector
(a) D-sub 9-pin female Hood: XM2S-0913

Connector: XM2D-0901

(b) D-sub 9-pin male Hood: XM2S-0911
Connector: XM2A-0901

IBM PC/AT or compatible C200H-ASC02

3 SD
2 RD
7 RTS
8 CTS
6 DSR
4 DTR
5 GND

2 SD
3 RD
4 RTS
5 CTS
7 DSR
8 DTR
9 GND

(a) (b)

DIP Switch Settings
Make the settings shown below using the DIP switch in the lower part of the front of the Unit.
Pin 1: Memory protect
Pin 2: Memory switch disabled
Pin 3: ---
Pin 4: ---

ON

1
2

3
4

OFF

OFF

OFF

Appendix IProgramming with Windows 95 HyperTerminal

210

HyperTerminal Startup
• Start up HyperTerminal via Start/Programs/Accessories.
• After starting up HyperTerminal, make the settings shown below.

Location Information

Area code: Enter the area code and select OK.

HyperTerminal

A message prompting you to install a modem will be dis-
played. Select No.

Connection Description

Name: Enter the desired name and select OK.

Connect To

Connect using: Select COM1 and OK.

COM1 Properties

Bits per second: Set to 9,600.
Data bits: Set to 8.
Parity: Set to “None”.
Stop bits: Set to 1.
Flow control: Set to “Xon/Xoff”.
Select OK.

• Default settings can be used for all the other settings.
• These settings do not have to be repeated each time you use HyperTerminal. Simply select the icon with the

required name.
• If the modem settings have already been made for the computer you are using, only the settings from Con-

nection Description onwards are required.

Confirming Connection
Key in Ctrl + X at the computer. The following message will be displayed indicating that connection is com-
plete.

BASIC UNIT Version 1.18 1994/03/25
(C) Copyright OMRON Corporation 1991
ok

Memory Switch Settings for BASIC Unit
Set the control method for terminal connection. The backspace key will be enabled by this.

Ok
MON↵
*ESW5=1200↵
*ESW–W↵
MEMORY SWITCH COPY COMPLETE
*Q↵
Ok
�

Moves to monitor mode

VT-100 insert mode

Writes settings to EEPROM

Exits MONITOR mode

With IBM PC/AT or compatible machines, turn OFF the Scroll Lock key.
This completes the setup.

Appendix IProgramming with Windows 95 HyperTerminal

211

Operation
Creating Programs
Programs are created using text editors, such as Notepad, and are saved as text.

Transferring Programs from the Computer
1, 2, 3... 1. Delete the program currently in the BASIC Unit memory using the NEW

command.
2. Transfer the program saved by selecting Send Text File... from the

Transfer menu as shown below.

Transferring Programs to the Computer
1, 2, 3... 1. Input the following on the terminal screen. (Do not press the Enter Key

yet.)

SAVE “COM1:”

2. Select Capture Text from the Transfer menu, and specify the name of
the file for saving the program.

3. Press the Enter Key.
4. When program transfer has finished, select Stop in Transfer/Capture

Text.

213

 Appendix J
Setting Memory Switches

With BASIC Units, serial port settings and other settings are performed using memory switches. This appendix
explains how to make memory switch settings.

The following two methods can be used to set memory switches. Explanations for both methods are given below.

1. From the Terminal

2. Using Support Software (e.g., CVS, SSS)

1. Setting Memory Switches from the Terminal
After the BASIC Unit is connected to the terminal, go into monitor mode as shown below.

Ok

MON↵

*

Goes into monitor mode

Next, make the memory switch settings as shown below.

*ESW1=1101↵

*ESW7=0125↵ Sets ESW7 to 0125

Sets ESW1 to 1101

When the settings have been completed, write the settings to the Unit and exit monitor mode.

*ESW-W↵

MEMORY SWITCH COPY COMPLETE

*Q↵ Exits monitor mode

Writes the memory switch settings

Appendix JSetting Memory Switches

214

2. Setting Memory Switches Using Support Software
1. After the Support Software has been connected online to the PC, select “T: CPU SIOU Unit System Setup” from
the Communications and CPU Bus Unit Setup Menu. The following screen will be displayed.

Use the PageUp
and PageDown
Keys to select the
Unit to be set.

Press the Shift+Right
Cursor Keys to make
input in hexadecimal.
Press the Shift+Left
Cursor Keys to return to
decimal input.

The setting will be written
directly to the CPU Unit.

Use the PageUp, Page-
Down, and Cursor Keys to
select the address to to
be set.

[CPU SIOU Unit System Setup]

unit # 00 BA

BYTE b7 b0 HEX BYTE b7 b0 HEX
+0 [0000 0000] 00 +10 [0000 0000] 00
+1 [0000 0000] 00 +11 [0000 0000] 00
+2 [0000 0000] 00 +12 [0000 0000] 00
+3 [0000 0000] 00 +13 [0000 0000] 00
+4 [0000 0000] 00 +14 [0000 0000] 00
+5 [0000 0000] 00 +15 [0000 0000] 00
+6 [0000 0000] 00 +16 [0000 0000] 00
+7 [0000 0000] 00 +17 [0000 0000] 00
+8 [0000 0000] 00 +18 [0000 0000] 00
+9 [0000 0000] 00 +19 [0000 0000] 00

2. Perform the memory switch settings from this screen. (For details of the settings, refer to 3-3 Memory Switches.)

ESW1
(System
parameters)

ESW4
(Baud rate)

ESW3
(Selecting printer/
terminal ports)

[CPU SIOU Unit System Setup]

unit # 00 BA

BYTE b7 b0 HEX BYTE b7 b0 HEX
+0 [0000 0000] 00 +10 [0000 0000] 00
+1 [0000 0000] 00 +11 [0000 0000] 00
+2 [0000 0000] 00 +12 [0000 0000] 00
+3 [0000 0000] 00 +13 [0000 0000] 00
+4 [0000 0000] 00 +14 [0000 0000] 00
+5 [0000 0000] 00 +15 [0000 0000] 00
+6 [0000 0000] 00 +16 [0000 0000] 00
+7 [0000 0000] 00 +17 [0000 0000] 00
+8 [0000 0000] 00 +18 [0000 0000] 00
+9 [0000 0000] 00 +19 [0000 0000] 00

ESW2
(Automatic
transfer file
name)

ESW5
(Terminal
specifications)

ESW2
(Automatic
transfer file
name)

ESW6-11
(Cyclic area
settings,
input area 5)

ESW6-12
(Cyclic area
settings,
input area 6)

ESW7
(GP-IB
setting)

ESW6-12
(Cyclic area
settings,
input area 6)

[CPU SIOU Unit System Setup]

unit # 00 BA

BYTE b7 b0 HEX BYTE b7 b0 HEX
+100 [0000 0000] 00 +110 [0000 0000] 00
+101 [0000 0000] 00 +111 [0000 0000] 00
+102 [0000 0000] 00 +112 [0000 0000] 00
+103 [0000 0000] 00 +113 [0000 0000] 00
+104 [0000 0000] 00 +114 [0000 0000] 00
+105 [0000 0000] 00 +115 [0000 0000] 00
+106 [0000 0000] 00 +116 [0000 0000] 00
+107 [0000 0000] 00 +117 [0000 0000] 00
+108 [0000 0000] 00 +118 [0000 0000] 00
+109 [0000 0000] 00 +119 [0000 0000] 00

Saving Memory Switch Settings
• The memory switch settings cannot be saved to a file from the CPU SIOU Unit System Setup Screen. If a

memory card is installed in the CPU Unit, save the settings to the memory card using the online memory card
operations, and then save them to a computer.

• The memory switch settings are saved to the CPU Unit’s EEPROM. For this reason, if the CPU Unit is replaced, it
is necessary to make the memory switch settings again.

215

Glossary

active controller The device on a general-purpose interface bus that is currently controlling com-
munications on the bus.

address A number used to identify the location of data or programming instructions in
memory or to identify the location of a network or a unit in a network.

address command A command sent to a specific address on a general-purpose interface bus.

advanced instruction An instruction input with a function code that handles data processing opera-
tions within ladder diagrams, as opposed to a basic instruction, which makes up
the fundamental portion of a ladder diagram.

allocation The process by which the PC assigns certain bits or words in memory for various
functions. This includes pairing I/O bits to I/O points on Units.

alphanumeric character An upper- or lower-case letter, digit, or underscore (_). The underscore is con-
sidered to be a letter.

analog Something that represents or can process a continuous range of values as op-
posed to values that can be represented in distinct increments. Something that
represents or can process values represented in distinct increments is called
digital.

Analog I/O Unit I/O Units that convert I/O between analog and digital values. An Analog Input
Unit converts an analog input to a digital value for processing by the PC. An Ana-
log Output Unit converts a digital value to an analog output.

AND A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

area See data area and memory area.

area prefix A one or two letter prefix used to identify a memory area in the PC. All memory
areas except the CIO area require prefixes to identify addresses in them.

argument A value passed to a function when the function is called.

arithmetic operator A character indicating to the BASIC Unit that it should perform some sort of cal-
culation; for instance, “+” indicates addition, and “*” indicates multiplication.

array element One part of an array variable. An array element can be another array (for mul-
ti-dimensional arrays) or a simple variable (an integer, floating-point, string, etc.)

array subscript An integer expression used to designate an array element for some operation.

array variable A variable which consists of a collection of parts called array elements. Each ele-
ment can be another array (for multi-dimensional arrays) or a simple variable (an
integer, floating-point, string, etc.)

ASCII Short for American Standard Code for Information Interchange. ASCII is used to
code characters for output to printers and other external devices.

Glossary

216

assembler A program which converts machine-language mnemonics to machine instruc-
tions.

asynchronous execution Execution of programs and servicing operations in which program execution
and servicing are not synchronized with each other.

Auxiliary Area A PC data area allocated to flags and control bits.

auxiliary bit A bit in the Auxiliary Area.

back-up A copy made of existing data to ensure that the data will not be lost even if the
original data is corrupted or erased.

BASIC A common programming language. BASIC Units are programmed in BASIC.

basic instruction A fundamental instruction used in a ladder diagram. See advanced instruction.

BASIC Unit A CPU Bus Unit used to run programs in BASIC.

baud rate The data transmission speed between two devices in a system measured in bits
per second.

BCD Short for binary-coded decimal.

binary A number system where all numbers are expressed in base 2, i.e., numbers are
written using only 0’s and 1’s. Each group of four binary bits is equivalent to one
hexadecimal digit. Binary data in memory is thus often expressed in hexadeci-
mal for convenience.

binary-coded decimal A system used to represent numbers so that every four binary bits is numerically
equivalent to one decimal digit.

bit The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one, corresponding to the electrical signals ON
and OFF. A bit represents one binary digit. Some bits at particular addresses are
allocated to special purposes, such as holding the status of input from external
devices, while other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address specifies the
data area and word that is being addressed as well as the number of the bit with-
in the word.

breakpoint Used during program debugging to mark places where the BASIC Unit should
stop executing the program and allow the programmer to check the state of the
program’s variables.

buffer A temporary storage space for data in a computerized device.

building-block PC A PC that is constructed from individual components, or “building blocks.” With
building-block PCs, there is no one Unit that is independently identifiable as a
PC. The PC is rather a functional assembly of Units.

bus A communications path used to pass data between any of the Units connected
to it.

bus link A data link that passed data between two Units across a bus.

byte A unit of data equivalent to 8 bits, i.e., half a word.

Glossary

217

central processing unit A device that is capable of storing programs and data, and executing the instruc-
tions contained in the programs. In a PC System, the central processing unit ex-
ecutes the program, processes I/O signals, communicates with external de-
vices, etc. The Unit containing the CPU is called the CPU Unit.

channel See word.

character code A numeric (usually binary) code used to represent an alphanumeric character.

character constant A character expression which contains no string variables.

character expression An expression involving only character strings, string variables, functions re-
turning character strings, and the “+” operator.

character string A sequence of characters delimited by double quotes (”).

checksum A sum transmitted with a data pack in communications. The checksum can be
recalculated from the received data to confirm that the data in the transmission
has not been corrupted.

CIO Area A memory area used to control I/O and to store and manipulate data. CIO Area
addresses do not require prefixes.

command A BASIC Unit instruction which is usually used in immediate mode (e.g. LIST,
RUN, or NEW).

command format The syntax required for use in a command and specifying what data is required
in what order.

comment statement A statement which is ignored by the BASIC Unit. They may be included in a pro-
gram to describe the program or to explain how it is supposed to work. Lines be-
ginning with the REM instruction are comments, and the single quote character
(’) begins a comment which extends to the end of the current line.

communications port interrupt An interrupt that occurs when a character is received by one of the communica-
tions ports.

constant An input for an operand in which the actual numeric value is specified. Constants
can be input for certain operands in place of memory area addresses. Some op-
erands must be input as constants.

control bit A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart Bit is turned ON and
OFF to restart a Unit.

control signal A signal sent from the PC to effect the operation of the controlled system.

Control System All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all I/O devices
that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

controller A device on a general-purpose interface bus that is capable of controlling com-
munications.

CPU See central processing unit.

Glossary

218

CPU Bus Unit A special Unit used with CV-series PCs that mounts to the CPU bus. This con-
nection to the CPU bus enables special data links, data transfers, and process-
ing.

CPU Rack The main Rack in a building-block PC, the CPU Rack contains the CPU, a Power
Supply, and other Units. The CPU Rack, along with the Expansion CPU Rack,
provides both an I/O bus and a CPU bus.

C-series PC Any of the following PCs: C2000H, C1000H, C500, C200H, C40H, C28H, C20H,
C60K, C60P, C40K, C40P, C28K, C28P, C20K, C20P, C120, or C20.

CTS signal A signal used in communications between electronic devices to indicate that the
receiver is ready to accept incoming data.

CV Support Software A programming package run on an IBM PC/AT or compatible to serve as a Pro-
gramming Device for CV-series PCs.

CV-series PC Any of the following PCs: CV500, CV1000, CV2000, or CVM1

CVSS See CV Support Software.

cycle One unit of processing performed by the CPU, including SFC/ladder program
execution, peripheral servicing, I/O refreshing, etc. The cycle is called the scan
with C-series PCs.

cycle time The time required to complete one cycle of CPU processing.

cyclic (data) transfer A transfer of data that occurs at a specific interval.

data area An area in the PC’s memory that is designed to hold a specific type of data.

data link An automatic data transmission operation that allows PCs or Units within PC to
pass data back and forth via common data areas.

data register A storage location in memory used to hold data. In CV-series PCs, data registers
are used with or without index registers to hold data used in indirect addressing.

data transfer Moving data from one memory location to another, either within the same device
or between different devices connected via a communications line or network.

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

decimal A number system where numbers are expressed to the base 10. In a PC all data
is ultimately stored in binary form, four binary bits are often used to represent
one decimal digit, via a system called binary-coded decimal.

decimal integer constant An integer constant expressed in decimal notation. Such a constant uses only
the numerals 0 through 9.

declarator A special character added to a variable to specify the type of variable, e.g., a
character, a single-precision real number, etc.

decrement Decreasing a numeric value, usually by 1.

default A value automatically set by the PC when the user does not specifically set
another value. Many devices will assume such default conditions upon the appli-
cation of power.

Glossary

219

destination The location where an instruction places the data on which it is operating, as op-
posed to the location from which data is taken for use in the instruction. The loca-
tion from which data is taken is called the source.

destination line The target of a GOTO or GOSUB statement.

destination variable The variable which is to receive the results of a calculation or operation (the vari-
able in which the results are to be stored).

digit A unit of storage in memory that consists of four bits.

DIP switch Dual in-line package switch, an array of pins in a signal package that is mounted
to a circuit board and is used to set operating parameters.

distributed control A automation concept in which control of each portion of an automated system is
located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is a concept basic to PC
Systems.

DM Area A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

DM word A word in the DM Area.

double-precision constant A floating-point constant which has at least one of these properties: a trailing
hash mark (e.g. 123.45#); an exponent declared with D or d instead of E or e
(e.g. 1.2345D2); or more than 15 digits in the mantissa (e.g.
123.450000000000).

double-precision variable A variable which can hold a double-precision value.

downloading The process of transferring a program or data from a higher-level or host com-
puter to a lower-level or slave computer. If a Programming Device is involved,
the Programming Device is considered the host computer.

DSR signal Data Set Ready signal; sent by a modem to indicate that it is functional.

EEPROM Electrically erasable programmable read-only memory; a type of ROM in which
stored data can be erased and reprogrammed. This is accomplished using a
special control lead connected to the EEPROM chip and can be done without
having to remove the EEPROM chip from the device in which it is mounted.

elapsed-time interrupt An interrupt which occurs after a specified period of time.

electrical noise Random variations of one or more electrical characteristics such as voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

EM Area Extended Data Memory Area; an area that can be optionally added to certain
PCs to enable greater data storage. Functionally, the EM Area operates like the
DM Area. Area addresses are prefixes with E and only words can be accessed.
The EM Area is separated into multiple banks.

EPROM Erasable programmable read-only memory; a type of ROM in which stored data
can be erased, by ultraviolet light or other means, and reprogrammed.

error code A numeric code generated to indicate that an error exists, and something about
the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

Glossary

220

error generation number A number used to identify an error generated by a program.

event (data) transfer A data transfer that is performed in response to an event, e.g., an interrupt sig-
nal.

event processing Processing that is performed in response to an event, e.g., an interrupt signal.

executable statement A statement which causes the BASIC Unit to perform some operation, rather
than one which changes the way the BASIC Unit interprets the program. (For
example, PRINT is an executable statement, but REM is not.)

Expansion CPU Rack A Rack connected to the CPU Rack to increase the virtual size of the CPU Rack.
Units that may be mounted to the CPU Backplane may also be mounted to the
Expansion CPU Backplane.

Expansion I/O Rack A Rack used to increase the I/O capacity of a PC. In CV-Series PC, either one
Expansion I/O Rack can be connected directly to the CPU or Expansion CPU
Rack or multiple Expansion I/O Racks can be connected by using an I/O Control
and I/O Interface Units.

expression The translation of a mathematical formula into BASIC notation. For example, the
formula for the area of a circle is: A=πr2; the BASIC expression to calculate the
area of a circle is: AREA=3.1415*RADIUS^2.

FA Factory automation.

factory computer A general-purpose computer, usually quite similar to a business computer, that
is used in automated factory control.

fatal error An error that stops PC operation and requires correction before operation can
continue.

FINS See CV-mode.

flag A dedicated bit in memory that is set by the system to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator
or via the program.

floating-point decimal A decimal number expressed as a number (the mantissa) multiplied by a power
of 10, e.g., 0.538 x 10–5.

floating-point format The layout of a single- or double-precision value in memory.

floating-point constant A numeric constant which has a fractional or exponential part.

force reset The process of forcibly turning OFF a bit via a programming device. Bits are usu-
ally turned OFF as a result of program execution.

force set The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

frame checksum The results of exclusive ORing all data within a specified calculation range. The
frame checksum can be calculated on both the sending and receiving end of a
data transfer to confirm that data was transmitted correctly.

function A BASIC Unit instruction which calculates a value based on its arguments and
returns the value to the program. The programmer can define new functions with
the DEF FN statement.

Glossary

221

general-purpose interface busA bus used to connect various devices to a computer.

generation line The line in a program that generates an event, e.g., an interrupt.

global variable A variable which can be accessed from any of the tasks in a program.

GPC An acronym for Graphic Programming Console.

GP-IB An acronym for general-purpose interface bus.

Graphic Programming Console A programming device with advanced programming and debugging capabilities
to facilitate PC operation. A Graphic Programming Console is provided with a
large display onto which ladder-diagram programs can be written directly in lad-
der-diagram symbols for input into the PC without conversion to mnemonic
form.

handshake line A line in a program or a physical connection between devices used for hand-
shaking.

handshaking The process whereby two devices exchange basic signals to coordinate com-
munications between them.

hexadecimal A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

hexadecimal constant An integer constant expressed in hexadecimal notation. Hexadecimal constants
must begin with the characters &H or &h and contain only hexadecimal digits (nu-
merals 0 through 9 and letters a through f or A through F).

host interface An interface that allows communications with a host computer.

Host Link System A system with one or more host computers connected to one or more PCs via
Host Link Units or host interfaces so that the host computer can be used to trans-
fer data to and from the PC(s). Host Link Systems enable centralized manage-
ment and control of PC Systems.

Host Link Unit An interface used to connect a C-series PC to a host computer in a Host Link
System.

I/O allocation The process by which the PC assigns certain bits in memory for various func-
tions. This includes pairing I/O bits to I/O points on Units.

I/O Block Either an Input Block or an Output Block. I/O Blocks provide mounting positions
for replaceable relays.

I/O Control Unit A Unit mounted to the CPU Rack to monitor and control I/O points on Expansion
CPU Racks or Expansion I/O Racks.

I/O delay The delay in time from when a signal is sent to an output to when the status of the
output is actually in effect or the delay in time from when the status of an input
changes until the signal indicating the change in the status is received.

I/O device A device connected to the I/O terminals on I/O Units, Special I/O Units, etc. I/O
devices may be either part of the Control System, if they function to help control
other devices, or they may be part of the controlled system.

Glossary

222

I/O Interface Unit A Unit mounted to an Expansion CPU Rack or Expansion I/O Rack to interface
the Rack to the CPU Rack.

I/O point The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, I/O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an I/O points corre-
spond to I/O bits in the IR area.

I/O refreshing The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

I/O response time The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

I/O Terminal A Remote I/O Unit connected in a Wired Remote I/O System to provide a limited
number of I/O points at one location. There are several types of I/O Terminals.

I/O Unit The most basic type of Unit mounted to a Backplane. I/O Units include Input
Units and Output Units, each of which is available in a range of specifications.
I/O Units do not include Special I/O Units, Link Units, etc.

I/O verification error A error generated by a disagreement between the Units registered in the I/O
table and the Units actually mounted to the PC.

I/O word A word in the CIO area that is allocated to a Unit in the PC System and is used to
hold I/O status for that Unit.

IBM PC/AT or compatible A computer that has similar architecture to, that is logically compatible with, and
that can run software designed for an IBM PC/AT computer.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

input bit A bit in the CIO area that is allocated to hold the status of an input.

Input Block A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Input Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific input requirements.

input device An external device that sends signals into the PC System.

input point The point at which an input enters the PC System. Input points correspond phys-
ically to terminals or connector pins.

input signal A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

Input Terminal An I/O Terminal that provides input points.

instruction A direction given in the program that tells the PC of the action to be carried out,
and the data to be used in carrying out the action. Instructions can be used to
simply turn a bit ON or OFF, or they can perform much more complex actions,
such as converting and/or transferring large blocks of data.

Glossary

223

integer constant A numeric value which has a percent sign (%) appended, or an expression con-
taining only integer constants.

integer variable A variable that can hold an integer value.

Intel HEX record Hexadecimal data recorded according to the Intel standard.

Intelligent Signal Processor A control-panel interface used to access and control signals. The Processor is
capable of processing the signals according to specifications, and thus the
name.

interface An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or
speed of the data.

interrupt (signal) A signal that stops normal program execution and causes a subroutine to be run
or other processing to take place.

Interrupt Input Unit A Rack-mounting Unit used to input external interrupts into a PC System.

interrupt service routine A BASIC subroutine which is called in response to an interrupt.

inter-task communication Communication (transfer of data or status information) between two tasks in a
BASIC Unit program.

interval interrupt An interrupt which occurs each time a certain amount of time has elapsed.

IOIF An acronym for I/O Interface Unit.

IOM (Area) A collective memory area containing all of the memory areas that can be ac-
cessed by bit, including timer and counter Completion Flags. The IOM Area in-
cludes all memory area memory addresses between 0000 and 0FFF.

JIS An acronym for Japanese Industrial Standards.

jump A type of programming where execution moves directly from one point in a pro-
gram to another, without sequentially executing any instructions in between.
Jumps in ladder diagrams are usually conditional on an execution condition;
jumps in SFC programs are conditional on the step status and transition condi-
tion status before the jump.

keyword A word that has special meaning to the BASIC Unit. Programs cannot use key-
words for variable or label names.

label A name attached to a program line for use in GOTO and GOSUB statements.

least-significant (bit/word) See rightmost (bit/word).

LED Acronym for light-emitting diode; a device used as for indicators or displays.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called
most-significant bits/words.

line number An integer which uniquely identifies a line within a program. Line numbers may
be used in GOTO and GOSUB statements.

Glossary

224

line One portion of a BASIC program. A line consists of a line number and one or
more statements.

link A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units or a software con-
nection created to data existing at another location (i.e., data links).

Link System A system used to connect remote I/O or to connect multiple PCs in a network.
Link Systems include the following: SYSMAC BUS Remote I/O Systems, SYS-
MAC BUS/2 Remote I/O Systems, SYSMAC LINK Systems, Host Link Systems,
and SYSMAC NET Link Systems.

Link Unit Any of the Units used to connect a PC to a Link System. These include Remote
I/O Units, SYSMAC LINK Units, and SYSMAC NET Link Units.

listener A device on a general-purpose interface bus that is receiving data from another
device on the bus.

listener address The addresses on a general-purpose interface bus of a device that is receiving
data from another device on the bus.

load The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

local variable A variable which can only be accessed by the task in which it is declared.

logical expression An expression made up of one or more logical operations, which has “TRUE” or
“FALSE” as its value.

logical operation An operation on one or more “TRUE” or “FALSE” values (a Boolean operation),
or an operation which returns a “TRUE” or “FALSE” indication.

logical operator A keyword or symbol which instructs the BASIC Unit to perform some calculation
that returns a “TRUE” or “FALSE” value.

loop A group of instructions that can be executed more than once in succession (i.e.,
repeated) depending on an execution condition or bit status.

LSI An acronym for large scale integration.

machine code The binary program code that is actual executed by a CPU.

machine language A programming language in which the program is written directly into machine
code.

MCR Unit Magnetic Card Reader Unit.

megabyte A unit of storage equal to one million bytes.

memory area Any of the areas in the PC used to hold data or programs.

memory switch A bit or bits in memory that are used to set operating parameters similar to the
way a hardware switch would be.

most-significant (bit/word) See leftmost (bit/word).

Motorola S-record A format standardized by the Motorola company to store programs.

Glossary

225

MS-DOS An operating system in common use on smaller computers.

multi-dimensional array An array in which more than one subscript is required to access an element.

multidrop configuration A bus configuration in which all devices are connected in series, but across, not
through, each device.

multitasked program A program which consists of two or more sub-programs or “tasks” executing
concurrently.

multitasking Describes a computer which can run more than one program at a time, or which
can give the illusion that several programs are running simultaneously.

my-address The address of a device on a general-purpose interface bus.

nesting Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF–ELSE programming section
within another IF–ELSE section.

network interrupt An interrupt that occurs when data is received on the network interface.

Network Service Board A device with an interface to connect devices other than PCs to a SYSMAC NET
Link System.

Network Service Unit A Unit that provides two interfaces to connect peripheral devices to a SYSMAC
NET Link System.

noise interference Disturbances in signals caused by electrical noise.

non-executable statement A statement that changes the way the BASIC Unit processes the program, but
does not cause the Unit to perform any particular operation. For example, the
REM statement causes the Unit to ignore the rest of the line.

nonfatal error A hardware or software error that produces a warning but does not stop the PC
from operating.

non-volatile variable A variable that is stored in battery-backed memory. Non-volatile variables retain
their values even if power to the Unit is turned off.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

null string A string containing no characters (“”).

numeric constant A number (integer or floating-point) or a numeric expression containing no vari-
ables or function calls.

numeric expression A sequence of numbers, variables, and arithmetic operators that instructs the
BASIC Unit to calculate a numeric value.

numeric key interrupt An interrupt that occurs when the user presses one of the numeric keypad keys.

numeric variable A variable that can hold a numeric value.

object code The code that a program is converted to before actual execution. See source
code.

Glossary

226

octal A number system where all numbers are expressed in base 8, i.e., numbers are
written using only numerals 0 through 7.

octal constant An integer constant expressed in octal notation. Octal constants must begin with
&, &O, or &o and contain only octal digits (numerals 0 through 7).

OFF The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but can be
defined as the opposite of either.

OFF delay The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

offset A positive or negative value added to a base value such as an address to specify
a desired value.

ON The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

ON delay The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

operand The values designated as the data to be used for an instruction. An operand can
be input as a constant expressing the actual numeric value to be used or as an
address to express the location in memory of the data to be used.

operating error An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

operator A character that instructs the BASIC Unit to perform some calculation. For ex-
ample, the “+” character indicates that the BASIC Unit should add two numeric
values (or concatenate two strings).

operator priority Controls the order of evaluation for sub-expressions in a numeric expression.
For example, 2+3*4 is interpreted as 2+(3*4) or 14 (and not (2+3)*4 or 20),
because the operator priority for * is higher than that for +. Parentheses may be
used to change the order in which sub-expressions are evaluated.

OR A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

OS Operating system; the basic software the drives a computer and on which all oth-
er software is executed.

output The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

Output Block A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Output Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific output requirements.

output device An external device that receives signals from the PC System.

Glossary

227

output point The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

output signal A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connection point goes from low to high voltage or from
a nonconductive to a conductive state.

Output Terminal An I/O Terminal that provides output points.

overflow The state where the capacity of a data storage location has been exceeded.

overwrite Changing the content of a memory location so that the previous content is lost.

pad byte An extra byte added at the end of a string to make the total number of characters
in the string even.

parallel polling A polling method in which all devices in a system are polled at the same time.

parity Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

parity check Checking parity to ensure that transmitted data has not been corrupted.

PC An acronym for Programmable Controller.

PC configuration The arrangement and interconnections of the Units that are put together to form
a functional PC.

PC System With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the I/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the I/O
Units, Special I/O Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

PCB An acronym for printed circuit board.

PC Setup A group of operating parameters set in the PC from a Programming Device to
control PC operation.

Peripheral Device Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.

peripheral servicing Processing signals to and from peripheral devices, including refreshing, com-
munications processing, interrupts, etc.

PID Unit A Unit designed for PID control.

placeholder A zero that is required to indicate the place value of other digits in a numeral,
e.g., the zeros to the right of the decimal point in the following number: 0.0045.

pointer A variable or register which contains the address of some object in memory.

present value The current value registered in a device at any instant during its operation. Pres-
ent value is abbreviated as PV. The use of this term is generally restricted to tim-
ers and counters.

printed circuit board A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

Glossary

228

program code The representation of a program used internally by the BASIC Unit.

Programmable Controller A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-
grammable Controllers are used to automate control of external devices. Al-
though single-unit Programmable Controllers are available, building-block Pro-
grammable Controllers are constructed from separate components. Such Pro-
grammable Controllers are formed only when enough of these separate compo-
nents are assembled to form a functional assembly, i.e., there is no one individu-
al Unit called a PC.

Programming Console The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

Programming Device A Peripheral Device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

PROM Programmable read-only memory; a type of ROM into which the program or
data may be written after manufacture, by a customer, but which is fixed from
that time on.

PROM Writer A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

prompt A message or symbol that appears on a display to request input from the opera-
tor.

protocol The parameters and procedures that are standardized to enable two devices to
communicate or to enable a programmer or operator to communicate with a de-
vice.

PV See present value.

Rack An assembly that forms a functional unit in a Rack PC System. A Rack consists
of a Backplane and the Units mounted to it. These Units include the Power Sup-
ply, CPU, and I/O Units. Racks include CPU Racks, Expansion I/O Racks, and
I/O Racks. The CPU Rack is the Rack with the CPU mounted to it. An Expansion
I/O Rack is an additional Rack that holds extra I/O Units. An I/O Rack is used in
the C2000H Duplex System, because there is no room for any I/O Units on the
CPU Rack in this System.

rack number A number assigned to a Rack according to the order that it is connected to the
CPU Rack, with the CPU Rack generally being rack number 0.

Rack PC A PC that is composed of Units mounted to one or more Racks. This configura-
tion is the most flexible, and most large PCs are Rack PCs. A Rack PC is the
opposite of a Package-type PC, which has all of the basic I/O, storage, and con-
trol functions built into a single package.

RAM Random access memory; a data storage media. RAM will not retain data when
power is disconnected.

random access file A file that can be accessed at any desired point, and not only sequentially.

RAS An acronym for reliability, assurance, safety.

Glossary

229

record One block or unit of data in a sequential access file.

refresh The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

register A special memory location inside the BASIC Unit’s CPU.

relative expression A logical expression concerning the magnitudes of two numeric or string expres-
sions (for example, A>B is a relative expression which is TRUE if the value of A is
greater than the value of B, and FALSE otherwise).

relative operator A character (e.g. >, <, =) or pair of characters (e.g. >=, <=) used in a relative
expression.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable cir-
cuits.

reserved bit A bit that is not available for user application.

reserved word A word in memory that is reserved for a special purpose and cannot be accessed
by the user.

reset The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

Restart Bit A bit used to restart a Unit mounted to a PC.

restart continuation A process which allows memory and program execution status to be maintained
so that PC operation can be restarted from the state it was in when operation
was stopped by a power interruption.

retrieve The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

retry The process whereby a device will re-transmit data which has resulted in an er-
ror message from the receiving device.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

rising edge The point where a signal actually changes from an OFF to an ON status.

ROM Read only memory; a type of digital storage that cannot be written to. A ROM
chip is manufactured with its program or data already stored in it and can never
be changed. However, the program or data can be read as many times as de-
sired.

round-robin In order, completing one item before moving on to the next.

routine A section of a program; often one which may be called by other parts of the pro-
gram as a subroutine.

row-major form Describes the layout of the elements of an array variable in memory.

Glossary

230

RS-232C interface An industry standard for serial communications.

RS-422 interface An industry standard for serial communications.

RTS signal Request To Send: the BASIC Unit can be programmed to assert this signal when
it wishes to send data through a communications port.

scan The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions. The scan also includes peripheral processing,
I/O refreshing, etc. The scan is called the cycle with CV-series PCs.

scan time The time required for a single scan of a ladder-diagram program.

secondary command A command sent with a listener address to specify the address of another listen-
er or talker.

segment A 64K-byte block of memory beginning on a 16-byte boundary. The BASIC
Unit’s CPU has several registers that can hold the address of the beginning of a
segment.

self diagnosis A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

sequential access file A file that can be read or written only sequential from the beginning to the end.

serial polling A polling method in which each device being polled is polled one at a time in se-
quence.

series A wiring method in which Units are wired consecutively in a string. In Link Sys-
tems wired through Link Adapters, the Units are still functionally wired in series,
even though Units are placed on branch lines.

service request A signal from a device requesting that some sort of processing occur.

servicing The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

set The process of turning a bit or signal ON.

set value The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

signal interrupt An interrupt caused by another task activating a SIGNAL instruction.

simple variable A non-array variable. Simple variables have only one value and cannot be sub-
scripted.

single-precision constant Any number which is not specifically designated as an integer or double-preci-
sion floating point value, or which is designated as a single-precision value by a
trailing exclamation point (!), or a numeric expression containing only integer
and single-precision constants.

single-precision variable A variable that can hold a single-precision floating point value.

software error An error that originates in a software program.

Glossary

231

software protect A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

software switch See memory switch.

source code The code in which a program is written, e.g., ASCII. Source code must be con-
verted to object code before execution.

Special I/O Unit A Unit that is designed for a specific purpose. Special I/O Units include Position
Control Units, High-speed Counter Units, Analog I/O Units, etc.

SRAM Static random access memory; a data storage media.

SRQ See service request.

stack A data structure in memory which is maintained automatically by the BASIC
Unit’s CPU. The stack is used in GOSUB and RETURN instructions, as well as dur-
ing interrupts.

statement The smallest complete unit of a BASIC program.

suboperand See operand.

subroutine A group of instructions placed separate from the main program and executed
only when called from the main program or activated by an interrupt.

subscript An integer expression that designates an element of an array variable.

substitution statement A statement that uses the “=” operator to substitute the value of a second vari-
able for that of the first variable.

SV Abbreviation for set value.

synchronous execution Execution of programs and servicing operations in which program execution
and servicing are synchronized so that all servicing operations are executed
each time the programs are executed.

syntax The form of a program statement (as opposed to its meaning). For example, the
two statements, LET A=B+B and LET A=B*2 use different syntaxes, but have
the same meaning.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying read-only bits as a
destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

system configuration The arrangement in which Units in a System are connected. This term refers to
the conceptual arrangement and wiring together of all the devices needed to
comprise the System. In OMRON terminology, system configuration is used to
describe the arrangement and connection of the Units comprising a Control Sys-
tem that includes one or more PCs.

system error An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

system error message An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

Glossary

232

system variable A variable that contains information about the system (e.g. the current date and
time, or the line number on which the last error occurred).

talker A device on a general-purpose interface bus that is sending data to other de-
vices on the bus.

talker address The addresses on a general-purpose interface bus of a device that is sending
data to other devices on the bus.

task A complete sub-unit within a BASIC program. Each task has its own variables,
stack, and so on, and is completely independent of any other tasks in the pro-
gram, although it may use inter-task communication to exchange data with
these other tasks. The BASIC Unit can execute several tasks simultaneously.

task block Each task is delimited the TASK and END TASK statements; all statements be-
tween these statements are part of the task block.

task program A program written to perform a task.

terminator The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data in communications between devices. Frames within a mul-
ti-frame block are separated by delimiters. Also a Unit in a Link System desig-
nated as the last Unit on the communications line.

three-line handshaking A handshaking method that uses three communications lines to perform hand-
shaking.

timer A location in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

timer interrupt An interrupt caused by the BASIC Unit’s timer.

TR Area A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

TR bit A bit in the TR Area.

transfer The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

transmission distance The distance that a signal can be transmitted.

UM area The memory area used to hold the active program, i.e., the program that is being
currently executed.

uni-line message A message transferred on the control bus using only one signal line.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

unit address A number used to control network communications. Unit addresses are com-
puted for Units in various ways, e.g., 10 hex is added to the unit number to deter-
mine the unit address for a CPU Bus Unit.

Glossary

233

unit number A number assigned to some Link Units, Special I/O Units, and CPU Bus Units to
facilitate identification when assigning words or other operating parameters.

universal command A command sent to all devices on a general-purpose interface bus.

uploading The process of transferring a program or data from a lower-level or slave com-
puter to a higher-level or host computer. If a Programming Devices is involved,
the Programming Device is considered the host computer.

user indicator Indicators on a device that can be controlled by a user, e.g., from a user program
being run on the device.

user program A program written by the user as opposed to programs provided with a product.

variable An area of memory in which a value can be stored; also refers to the name used
in the program to designate that memory area.

variable-length character string A character string variable which can hold a string of any length (up to a sys-
tem-defined maximum length).

volatile variable A variable which is not stored in battery-backed memory. Volatile variables lose
their contents whenever power to the Unit is turned off.

watchdog timer A timer within the system that ensures that the scan time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

WDT See watchdog timer.

wildcard A special character used in a filename or extension to indicate zero or more pos-
sible characters.

wire communications A communications method in which signals are sent over wire cable. Although
noise resistance and transmission distance can sometimes be a problem with
wire communications, they are still the cheapest and the most common, and per-
fectly adequate for many applications.

word A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

word allocation The process of assigning I/O words and bits in memory to I/O Units and termi-
nals in a PC System to create an I/O Table.

work area A part of memory containing work words/bits.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-
served for work words. Parts of other areas not required for special purposes
may also be used as work words.

write protect switch A switch used to write-protect the contents of a storage device, e.g., a floppy
disk. If the hole on the upper left of a floppy disk is open, the information on this
floppy disk cannot be altered.

Glossary

234

write-protect A state in which the contents of a storage device can be read but cannot be al-
tered.

235

Index

A
addresses, GP-IB, 133

allocating
memory, machine language programming, 108
message number, 106
program areas, 62

AND, 49

applications, precautions, xiii

arrays
character variables, 82
declaring variables, 81
multi-dimensional, 81
one-dimensional, 81
subscripts, setting lower-limit value, 82

ASCII, GP-IB, 135

automatic transferring, file name, memory switch settings, 35,
36

B–C
BASIC programming, general, 2

battery
life, 147
replacement procedure, 148

baud rates, memory switch settings, 38

changing
line numbers, 66
program flow, 56

calling subroutines, 59
ending subroutines, 59
executing same processing at different locations, 58
processing according to conditions, 60
processing according to value of an expression, 60
repeating same process, 57
specifying conditions for repetition, 57

clearing, program areas, 62

commands
general list, 187
machine language

A, 196
B, 199
C, 196
D, 195
ESW, 201
G, 199
I, 196
K, 201
L, 198
M, 196
N, 199
R, 200
S, 197

T, 200
V, 198
W, 195
X, 199

communications
controlling RS-232C lines, 207
PC, 120

data from the PC, 121
data to the PC, 122
interrupt processing, 120

constants, 48

copying, in programs, 65

CPU Bus Link Area, 28

CV-series Commands, 123

cyclic transfer areas, 24
memory switch settings, 39

D
data

arrays
multi-dimensional arrays, 81
one-dimensional arrays, 81
variables, 81

character, 79
creating identical characters, 80
retrieving part of string, 79
rewriting part of string, 80
searching a string, 79

converting
character string into numeric value, 80
numeric value into character string, 80

displaying, 51
ending program, 53
format, 52
output data to printer, 53

files, 84
input/output

reading DATA command using READ command, 83
simplifying data, 83

numbers
decimal, 76
double-precision real numbers, 76
exponential, 77
hexadecimal, 76
number precision, 77
octal, 76
operation functions, 78
single-precision real numbers, 76
type conversion, 77

time
current time, 82
date, 82

transferring with the PC, 2, 30
CPU Bus Link timing, 33
cyclic timing, 32
data flow, 31
event timing, 32
PC operation, 32

Index

236

debugging, 2
programs, preparations, 67

deleting, in programs, 65
characters, 65
lines, 65

DIP switch, 7

displaying data, 51
ending program, 53
output data to printer, 53
specifying display format, 52

E
editing

key operations, 67
programs, 64

changing overwrite/insert mode, 64
inserting characters, 65
overwrite mode, 64

EEPROM, 2

entering, programs, preparations, 62

EQV, 50

errors
indicators, 146
messages, 142
processing, 96
status, 147

executing, programs, 68
displaying result, 68
preparations, 67
resuming, 69
step, 70
stopping, 69
tracing, 70

execution, precautions, 13

expressions
character, 49
logic, 49
numeric, 49
relative, 49

F
files

closing, 86
data, 84
names, 85
opening, 85
program, 84
random access, 84, 88

program example, 89
programming sequence, 88

sequential access, 84, 86
program example, 87

FINS commands, 123

front panel
indicators, 7
nomenclature, 6
ports, 6

functions
GP-IB, 136
GP-IB list, 194
list, 191
returning character strings, 51
returning numeric values, 50

G
GP-IB

commands
addresses, 133
ASCII codes, 135
codes in command mode, 134
codes in data mode, 135
data reception, 136
data transfer, 136
interface control, 136
interface messages, 133
multi-line messages, 134
SRQ interrupt, 136
uni-line messages, 134

functions, 136
initializing, 137
memory switch settings, 42
program codes, 136

example, 139
programming, 130

examples, 138
receiving, 137
service requests

interrupt processing, 137
parallel polling, 136
serial polling, 135

signal lines, 132
data, 132
handshake, 132
interface control, 132
three-line handshaking, 132

system configuration, 131
controller, 131
listener, 131
talker, 131

transferring, 137

H–I
hardware configuration, block diagram, 10

IMP, 50

indicators
errors, 146
front panel, 7

inputting data, keyboard, 53
character data, 54
displaying messages while data is input, 54
numeric data, 53
reserved words, 54
variable names, 54

Index

237

installation
BASIC Unit

dimensions, 17
mounting, 16

precautions, xiii

instructions, interrupt-related, 93

inter-task communications, 104
signals

interrupts, 105
processing routine, 105
program example, 105
sending, 104

interfaces, 2
Centronics

applicable connector, 169
pin configuration, 169

GP-IB
pin configuration, 170
signal lines, 170

hood assembly, 161
Link Adapter specifications

3G2A9-AL001, 166
3G2A9-AL004(-P), 167

multidrop connection
cable length, 165
examples, 162, 163
termination resistance, 165

point-to-point connection, 161
example, 162

RS-232C
applicable connectors, 157
connection examples, 158
pin configuration, 157
recommended cables, 157

RS-422
connector, 159
pin configuration, 159
recommended cables, 159

wiring the connector, 160

interrupts, 92
instructions, 93
interrupt service routine, 92
PC communications, 120
processing details, 96
programming, 93

example, 94
service requests, GP-IB, 137
signal, 105
types

communication port, 95
error processing, 96
network, 95
numeric key, 94
PC, 95
signal, 95
timer, 94

L
labels, 46

line numbers, 46

changing, 66
generating, 63

loading
EEPROM, 71
Floppy Disk, 71
machine language programs, 110
memory cards, 71

M
machine language, 2, 107

calling a subroutine, 112
CALL, 113
USR, 112

mnemonics, 203
monitoring commands, 119
offsets, 108
programming, 108

allocating memory, 108
checking, 109
common mistakes, 111
displaying memory, 110
displaying register contents, 110
entering, 108
loading, 110
running, 109
saving, 110
summary, 118

reading, memory, 111
saving format, 114

arrays, 116
character strings, 116
double-precision floating point values, 115
integers, 114
multi-dimensional arrays, 117
single-precision floating point values, 115

segments, 108
writing, memory, 111

maintenance, 147
battery replacement, 147
inspection, 149
replacing BASIC Units, 147

memory
configuration, 11

non-volatile variable area, 11
user program executable code area, 11
user program source code area, 11
variable, 11

CPU Bus Link Area, 28
cyclic transfer areas, 24
reading, machine language, 111
Restart Bits, 30
writing, machine language, 111

memory switches, 21, 33
automatic file transfer file name, 36
baud rates, 38
changing settings, 21
cyclic transfer areas settings, 39
default settings, 21

system parameters, 21
terminal and printer ports, 21

GP-IB settings, 42

Index

238

precautions, 12
printer, ports, 37
setting procedure, 42
system parameters, 35
terminals

ports, 37
specifications, 39

messages
allocating message number, 106
program example, 106
receiving, 106
releasing message number, 106
transmitting, 106

models
BASIC Units, 151

with EEPROM, 3
without EEPROM, 3

maintenance parts, 151
options, 151

modes, BASIC Unit, 103

multitasking, 2, 97
precautions, 14

N–P
naming, programs, 66

NOT, 49

operating environment, precautions, xiii

operations
arithmetic, 55
character, 56
operator priority, 56

OR, 50

PC interface, precautions, 12

PC interrupts, 95

peripheral devices, 126
communication ports, 127
computer with terminal mode, 3
display, 3

terminal, 3
Host Link Unit, 3
Intelligent Signal Processor, 3
opening a device, 126
printer, 3
temperature controller, 3
user indicators, 128

ports
front panel, 6
general, 6, 127
printer, 21, 37
program example, 176
terminal, 21, 37

precautions, 12
applications, xiii
general, xi
operating environment, xiii

safety, xii

printer, ports, memory switch settings, 37

printer ports, 21

program areas
allocating, 62
clearing, 62
precautions, 12

programming, precautions, 12, 13

programs
examples

communicating between BASIC Units, 181
file input/output, 182
input/output of each port, 176
multitask, 174
PC communications, 179
single-task, 173

merging, 66
program areas, 11
program numbers, 11
starting/stopping, 21

automatic starting, 22
from terminal, 21
RUN/STOP switch, 21

R
rear view, 8

RECV(193), 120

replacing BASIC Units, 147

reserved words, 54, 184, 205, 206, 207

Restart Bits, 30

RS-232C, 207

RUN/STOP switch, 7

S
safety precautions. See precautions

saving
EEPROM, 71
Floppy Disk, 71
machine language programs, 110
memory cards, 71

SEND(192), 120

specifications
characteristics, 153
I/O interfaces

Centronics, 154
GP-IB, 155
RS-232C, 154
RS-422, 154

ratings, 153

statements
general list, 188
GP-IB list, 193

status, BASIC Unit, 103

Index

239

switches
DIP switch, 7
general settings, 18
RUN/STOP, 7
settings

DIP switch, 9
RUN/STOP, 9
UNIT number, 8

UNIT number setting, 7

syntax, 46

system
configuration, 3

expanded, 4
single, 4

parameters, 21

T
tasks, 97

aborting, 99
end of task program, 99
multiple, 99
single, 99
start of task program, 98
starting, 99
starting/ending example, 101
status, 103
switching, 102
waiting, 100

terminals, 12

connecting, 20
getting ready, 19
ports, 21

memory switch settings, 37
preparation, 20
specifications, 21

memory switch settings, 39

transitions, BASIC Unit, 103

troubleshooting, 142

U–X
UNIT number setting switch, 7

user indicators, 128

variables, 46
global, 106

communication with non-volatile variables, 107
program example, 107

names, 54
storage, 2

words
input status, 27
output status, 27

writing, programs
example, 63
preparations, 62

XOR, 50

241

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W206-E1-04

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 June 1992 Original production
1A November 1992 Page 10: Details of configuration between $18000 and $3FFFF

corrected.

Page 25: Information on cyclic transfers corrected.

Page 27: Description of manual starting under Starting Mode Bit (b0)
changed.

Page 57: Information was added to end of 4-3-1 Preparations.

Page 179: Note added to introduction to Appendix.

Pages 179 and 180: W command description rewritten.

2 July 1993 Minor corrections to add CV2000 and CVM1, precautions subsection
added to Section 1, FINS commands added to Section 6, appendix
added on controlling RS-232C communications lines, and appendix
of reserved words added.

Page 3: Note added on FINS commands.

Page 10: Information added. Non-volatile variable and variable areas
description changed.

Page 14: DIP switch settings corrected.

Page 18: Note added.

Page 21: Information added to Battery Error Flag, Error Code, and
Fatal Error Flag.

Page 26: CPU Bus Link Transfers fixed; information added to
Memory Switches.

Page 30: Note and caution added and mode definitions added to
Terminal Model.

Page 31: Information added at top of page.

Page 33: Step 5 removed.

Page 37: Character variable classification corrected in the top chart.
Note was added.

Page 38: Single-precision data range corrected.

Page 55: Information added on merging programs.

Page 59: Note expanded.

Page 61: Section added on saving/loading PC programs.

Page 64: Range of numeric data for single-precision real numbers
corrected.

Page 73: Caution added.

Page 81: Information on interrupt-related instructions rewritten.

Page 82: Information added on communications port interrupts.

Page 83: Information added on network and PC interrupts.

Page 84: Example program altered.

Page 94: Limit to the number of possible message numbers stated.

Page 96: Information on PS added to top of page.

Page 97: HALT changed in first two programs; “300B” changed to
“300F” under Run the Program.

Page 98: Information added on Memory Cards and EEPROM.

Page 100: Note added; line 20 modified; and first and next to last
machine line modified.

Page 101: Lines 40, 50, and 70 altered and machine language pro-
gram altered.

Page 107: Notes added and “B” line in table corrected.

Page 113: Information on CTS (transmission monitor) corrected and
added.

Page 122: “IEEE(8)” corrected to “IEEE(7)” in first line under Func-
tions.

Pages 129 to 132: Corrections made to 7, 62, 64, 68, 70, 111, 129,
200, and “Compiler error.”

Page 139: RAM memory specifications corrected.

Page 144: Host interface example for CV-series PCs added.

Page 149: Lower right portion of top diagram corrected.

Page 153: “Outer connection” part of diagram corrected.

Pages 159 and 160: Corrections made in lines 120, 170, and 250.

Page 163: Line 290 corrected.

Pages 165 and 166: Lines 70, 80, 90, 100, 120, and 130 corrected
and ladder diagram added.

Page 167: Line 160 removed; note added, and 1st step in File Input/
Output corrected.

Page 168: Lines 130 and 160 corrected.

Page 170: Reserved words added.

Pages 173 to 175: Information for COM, FINS, and PC corrected.

Page 180: Example for A corrected.

Page 181: Syntax of S corrected.

Page 182: Syntax of L and V and examples for S and L corrected.

Page 183: Syntax of X corrected; addition made on PS to B and G,
on stack pointers to G; example corrected.

Page 184: PS information added to T.

Page 185: Syntax of ESW corrected.

Page 186: Examples #6 and #7 corrected.

2A December 1996 Precautions added before Section 1.

Page 13: Send and receive buffer information added to the end of
Execution.

Page 105: Point added to the end of Common Programming Mis-
takes.

3 May 2000 Changes were made on the following pages.
All pages: “PC” and “CPU” changed to “CPU Unit” where appropriate.
Page v: Changes to symbols and minor changes in wording.

Pages xii, xiii: Major changes to safety operation.

Pages 21, 121, 201: Information on RTS/DTR signals added.

Page 30: Sentence added to define “CPU Bus Unit System Setup.”

Pages 31 to 36: Graphics/tables added/changed in several places.

Page 87: Information on interrupts added.

Page 110: Information on mantissa changed; information added to graphics.

Page 121: Information on processing time added.

Page 139: Information on FINS error response codes added.

Page 148: One line added to second table.

Page 153: Information on termination resistance added.

Page 196: Top graphic changed.

Appendix I and Appendix J added.

Revision History

242

Revision code Revised contentDate

04 August 2003 Changes were made on the following pages.
Page xii: Added information on safety precautions for external circuits.
Page xiii: Added ”Power Supply Units” to application precaution.
Page 24: Added information on specifying cyclic areas and reading and writ-
ing from cyclic areas using the PC READ and PC WRITE instructions.
Information on output words also added.
Page 25: Added information on input words.
Pages 32, 33: Changed ”+0” to ”+1” in diagram.
Page 34: Changed ”+14” to ”+15” in top diagram and changed ”+15” to ”+14”
in bottom diagram.
Page 35: Changed ”+16” to ”+17” in top diagram and changed ”+17” to ”+16”
in bottom diagram.
Page 36: Changed ”+18” to ”+19” in top diagram and changed ”+19” to ”+18”
in bottom diagram.
Page 39: Changed ”+116” to ”+117” in top diagram and changed ”+117” to
”+116” in bottom diagram.

OMRON Corporation
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Cat. No. W206-E1-04 Note: Specifications subject to change without notice. Printed in Japan

Authorized Distributor:

Cat. No. W206-E1-04 CV500-BSC11/21/31/41/51/61 BASIC Units OPERATION MANUAL

